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1 
Introduction 
 

Humans can perceive specific desired sounds without difficulty, even in noisy 
environments. This is a useful ability that many animals possess, and is referred to 
as the 'Cocktail party effect'. We believe that by modeling this mechanism we will 
be able to produce tools for speech enhancement and segregation, or for other 
problems in speech recognition and analysis. 
 To construct models that mimic human sound perception ability, engineering 
know-how and knowledge of auditory physiology and/or psychoacoustics are 
required. This paper, first, introduces the basic concepts used to construct models 
such as "cancellation on the neural system" [5, 6, 7] and "auditory scene analysis" 
[2]. It then proposes models based on these concepts. 
 Specifically, this paper discusses the following; 
(1) Speech enhancement: a cancellation model and speech enhancement, and 
(2) Speech segregation: auditory scene analysis proposed by Bregman [3] and an 
auditory sound segregation model based on auditory scene analysis. 
 
2 
Speech Enhancement [1,10,11,12] 
 
2.1 
Method 
 

This paper assumes that the noises considered are unevenly distributed with 
regard to time, frequency, and direction. In this situation, spatial filtering is useful 
to extract target signals. Thus, we will discuss this filtering method with respect to 
inter-aural time differences (ITDs).  
 Models of systems used to reduce noise have been constructed using 
knowledge about auditory physiology and/or psychoacoustics. We used a 
cancellation method to design our filters (Durlach [7], Culling & Summerfield [5] 
for binaural masking level difference (BMLD) modeling, and de Cheveigné [6] 
for fundamental frequency estimation). The original cancellation method is a 
subtraction method that reduces periodical target signals with period T, using the 
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circuit in Fig. 1. We considered delay time T as to be the ITD for spatial filtering. 
We modified the circuit with an engineering point of view, as shown in Fig. 2. 
 
2.2 
Algorithm 
 
Our method uses a microphone array with three linear and equally spaced (10 cm) 
omni-directional microphones, which estimates the largest noise at the position of 
the center microphone in each time period. Then, noise is reduced by subtracting 
the estimated noises from the signal received by the center microphone. 
 
2.2.1 
Estimation of noise 
 
Noises are estimated by using the signals received by the paired microphones. 
These microphones are located at both ends of the microphone array (main pair), 
or with one in the center and one at both ends of the array (sub pair). Assume that 
a speech signal comes from a certain direction, and that noises come from 
directions other than that of the speech signal. Assuming that the speech signal 
s(t )comes from a direction such as the difference in arrival time between main 
paired microphones 2ζ , and the largest noise n(t ) comes from a direction that 
is 2δ , signals received at each microphone are described as follows: 
 left mic. : l(t) = s(t −ζ ) + n(t − δ)    (1) 
 center mic. : c(t ) = s(t) + n(t)     (2) 
 right mic. : r (t ) = s(t + ζ ) + n(t + δ)    (3) 
 For simplicity, we assume that speech signals come from the front. Then, 
l(t)  and r (t ) are shifted ±τ  in time, where τ  is a certain constant (τ ≠ 0 ), 
and these make function glr (t) . The function glr (t)  is a beamformer in the time 
domain, and its short-term Fourier transformation (STFT) is Glr (ω) . The 
function is defined as 

 g
lr

(t) =
l(t +τ ) − l(t − τ ){ } − r(t + τ ) − r(t − τ ){ }

4
≡ g(l,r ,τ , t ) , (4) 

 G
lr
(ω) = STFT g(l, r,τ ,t )[ ] = N(ω)sinωδsinωτ ,  (5) 

where N(ω) is the STFT of the largest noise n(t ). Note that G
lr

(ω)  does not 
have the component of S(ω) , the STFT of the speech signal s(t ), that is, S(ω)  
was cancelled. 
 

delay = T

excitatory
synapse

inhibitory
synapse

 
 

Fig. 1. Basic cancellation model.  Fig. 2. A cancellation model circuit. 
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 The item δ  in Eq. (5) represents the direction from which the largest noise 
comes, so it is determined by estimating where the noise comes from in each 
frame (this is described later). The spectrum of the noise can be calculated by 
setting a certain value τ  at the estimation of δ  and dividing Eq. (5) by 
sin

2 ωδ . However, it is not accurately calculated in the case of 
ωδ = nπ,  n:  integer . In that frequency band, Gcr (ω)  can be expressed form the 
other beamformer g (c, r,τ

2
, t)  as follows: 

 Gcr (ω) = STFT g(c, r, τ 2 , t)[ ] = N(ω)exp jω
δ

2

  
  

  
  sinω

δ

2
sinωτ2 . (6) 

Then, the spectrum of the largest noise n(t )is estimated over the entire frequency 
range as 

  ̂N (ω) =

G
lr

(ω) sin 2 ωδ, sin2 ωδ > ε
1

G
cr

(ω) sin 2 ω δ 2( ), sin2 ωδ ≤ ε
1
 and  sin 2 ω δ 2( ) > ε

2

G
lr

(ω) ε
2

2 , sin2 ω δ 2( ) ≤ ε
2

 

 
 

  
, (7) 

where ε
1
 and ε

2
 are threshold values.  

 
2.2.2 
Estimation of noise direction 
 
The arrival directions of noises are automatically estimated frame by frame. In 
this paper, two signals, in which the speech signal is perfectly eliminated, provide 
these noise directions, and they are calculated by using Eq. (6) and 
G

lc
(ω) = STFT g(l, c, τ

2
, t)[ ] . Here, the speech signal has no effect on the 

estimation of noise directions, as Gcr (ω)  and Glc (ω)  do not include speech 
signals at all. Setting τ 2  arbitrary, the following is calculated, 

 d(t) = IFFT
Glc (ω)Gcr

*
(ω)

Glc (ω) Gcr (ω)

 
  

 
  

 and δ = arg max
t

d(t )[ ]  (8) 

The value δ , half of the difference in the arrival time between the main paired 
microphones is given by Eq. (8). 
 
2.2.3 
Signal enhancement 
 
After estimating the spectrum of noise  ̂N (ω ), it must be subtracted from that of 
the noisy-speech signal received by the center microphone c(t ) . This method 
employs a non-linear spectral subtraction (SS), expressed as 

  ̂S (ω) =
C(ω) −α ⋅  ̂N (ω ), C(ω) ≥ α ⋅ ˆ N (ω)

β C(ω) , otherwise

 
 
 

,  (9) 

where α  is the subtraction coefficient, and β  is the flooring coefficient. Thus, 
this method reduces any distortions in amplitude spectra cased by acoustic noises. 
 In regards to SS, this method is superior to others; it can cope with all types 
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Noise added Noise reduced
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10 dB
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/a/

(a) (b) (c)   
Fig. 3. Simulated results using sound data A. (a) original noise-free speech wave (vowel /a/), (b) 
noise-added speech wave, (c) noise-reduced speech wave. 
 
of acoustic noise by estimating the spectra of each noise in frames. Other methods, 
however, are poor at eliminating non-stationary, like sudden, noise. This is 
because they substitute signals received in the past in greater or lesser degree. 
 This method can also employ wave subtraction (WS) [1]. 
 
2.3 
Evaluation 
 
2.3.1 
Sound data simulation conditions 
 
Two types of noise-added speech waves were evaluated. Both sound data were 
sampled at 48 kHz with 16-bit accuracy. 
 Sound data A, shown in Fig. 3, is a vowel /a/ in the ATR speech database. 
Two sudden narrow-band noises with center frequencies of 1500 Hz and 2500 Hz, 
bandwidth of 200 Hz, and duration of 50 ms are included. They were mixed on a 
computer with the speech signal coming from the front, and both of noises 
coming from about 30 degrees to the right. The noises are marked in black. 
 Sound data B is real sound waveform presented by two speakers in a 
soundproof room (reverberation time: about 50 ms at 500 Hz). The speech and 
noise come from 0 and 30 degrees to the right, both 3 meters from the 
microphones. The noise is wide-band white noise between 125 Hz to 6 kHz. 
Three SNRs (-10, 0, and 10 dB) were used. The speech waves without noise, and 
the speech wave with an SNR of 0 dB, are illustrated in Fig. 4. 
 

2.3.2 
Simulation conditions 
 
The noise reduction experiments were done under the following conditions. The 
frame length was 5.3 ms, the frame shift was 2.7 ms, and the window function is 
Hamming. The threshold values ε

1
 and ε

2
 were 0.6 and 0.2, and the 

coefficients α  and β  in Eq. (9) were 1 and 0.001, respectively. Here, the 
frame length was set to be as short as possible to decrease the distortions caused 
by the SS. The other parameters were set experimentally. 
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Fig. 4. Simulated results for Sound data B, 
(a) noise-free speech wave presented by 
speaker (ATR, mht14348 /bunri/), (b) 
noise-added speech wave: SNR = 0 dB, (c) 
noise-reduced speech wave, and (d) 
noise-added speech signal (SNR = 10 dB). 

Fig. 5. Log-spectra of sound of vowel /u/ at 
about 16000 points, (a) original sound, (b) 
noise-added speech wave (SNR = 0 dB), (c) 
noise-reduced speech wave, and (d) 
noise-added speech signal (SNR = 10 dB).

 
2.3.3 
Results 
 
For sudden noise in the sound data A, the noise-reduced speech signal for the 
simulation using the proposed method is shown in Fig. 3(c). By comparing Figs. 
3(a), (b) and (c), we see that sudden noises are greatly reduced. 
 For sound data B, Fig. 4(c) shows the noise-reduced sound from the 0-dB 
SNR. The amplitude of the noise was reduced, and was almost the same as that of 
the 10-dB SNR speech wave (Fig. 4(d)). This demonstrates that our method 
reduces noise in all segments. Figure 5 shows the log-spectra of the vowel /u/ at 
about 16000 points. Large peaks and dips are evident. The spectra of noise-added 
speech, by contrast, are flattened, especially in the higher-frequency region. Our 
results (Fig. 5(c)) indicate that this method recovers spectrum peaks and dips, and 
thus, may be helpful at the front end of ASR. 
 
2.3.4 
Front-end of automatic speech recognition [13] 
 
We studied the decline in ASR performance under additive noise conditions and 
the subsequent improvement offered by noise reduction. We used 
speaker-dependent HMM with 12th order MFCCs, as a baseline ASR. The 
phoneme recognition tests were conducted using 1048 words from the ATR 
Japanese speech database for training. Experiments were conducted using open 
data. A total of 216 phoneme-balanced words were used for testing, uttered by the   
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Fig. 6. Phoneme error rates. Three bars correspond to phoneme error rates of noise-added speech 
(black bar), noise-reduced speech obtained by optimized delay-and-sum beamformer (gray bar), 
and noise-reduced speech obtained by the proposed method (white bar). 

 
same speaker in the same database. Some test sets were prepared by adding 
random noise (125-6000 Hz) to several SNRs, and then reducing them. The 
speech signal came from the front, and the noise signal came from 30 degrees to 
the right. For comparison, a conventional delay-and-sum beamformer [9], was 
used as a typical algorithm for noise reduction. We assume that the signal 
directions are known for the delay-and-sum beamformer. On the other hand, the 
proposed method estimates them automatically. 
 The results of the phoneme recognition tests are shown in Fig. 6. There are 
three bars in each SNR. They correspond to the phoneme error rates of the 
noise-added speech, the speech noise-reduced by the optimized delay-and-sum 
beamformer, and that reduced by our proposed method. Our proposed method 
clearly decreased phoneme error rates. 
 
3 
Speech Segregation [15,16,17,18] 
 
3.1 
Method 
 
Bregman reported that the human auditory system uses four psychoacoustically 
heuristic regularities related to acoustic events to solve the problem of auditory 
scene analysis (ASA) [2, 3]. A number of ASA-based segregation models have 
been proposed to computationally solve this problem [4, 8, 14]. All models use a 
subset of the four regularities, and the amplitude (or power) spectrum as the 
acoustic feature. As a result, they do not completely segregate the desired signal 
from the noisy one, when the signal and noise are in the same frequency region. 
 We have addressed the necessity of using both the amplitude and the phase 
spectrum to completely extract the desired signal from a noisy one, thus solving 
the problems associated with segregating two acoustic sources [16]. This problem 
is defined as follows [16, 17, 18]. First, only the mixed signal f (t ), where  



Speech Enhancement and Segregation 7 

Auditory- 
motivated 
filterb ank 

(K-channels)

+

f1(t)

f2( t)

f ( t)

φk( t)

Ak(t)

Bk (t)

θ1k (t)

θ2k ( t)

ˆ f 1(t)

ˆ f 2 (t)

Separation 
b lock

Sk (t)

F0 Estimation b lock

Grouping 
b lock

Grouping 
b lock

(unknown)   (ob servable)   
Fig. 7. Auditory sound segregation model. 

 
f (t ) = f

1
(t ) + f

2
(t) , can be observed. Next, the observed signal f (t )  is 

decomposed into its frequency components by using a filterbank ( K  channels). 
The output of the k-th channel X

k (t)  is represented by 
 X

k (t) = S
k (t ) exp jωk

t + jφk(t )( ).    (10) 

Here, if the outputs of the k-th channel, which correspond to f
1
(t )  and f

2
(t ), are 

assumed to be A
k
(t )exp jω

k
t + jθ

1k
(t )( )  and B

k
(t) exp jω

k
t + jθ

2 k
(t)( ) , then 

instantaneous amplitudes A
k
(t ), B

k
(t) , and θ

k
(t)  can be determined by 

 Ak
(t ) = Sk

(t) sin θ
2k

(t ) −φ
k
(t )( ) sinθ

kt ,    (11) 

 Bk
(t) = Sk

(t)sin φ
k
(t ) − θ

1k
(t )( ) sinθ

kt , and   (12) 

 θ
k
(t) = arctan

S
k
(t )sin φ

k
(t ) − θ

1k
(t )( )

S
k
(t )cos φ

k
(t ) −θ

1k
(t)( ) + A

k
(t)

  
  
   

  
,  (13) 

where θ
k
(t) =θ

2 k
(t) − θ

1k
(t ) , θ

k
(t) ≠ nπ , n ∈ Z , and ω

k
 is the center 

frequency of the k-th channel [18]. However, the solution of this problem, A
k
(t ), 

B
k
(t) , θ

1k
(t ) , and θ

2 k
(t ) , cannot be uniquely determined without some 

constraints. The problem, therefore, is an ill-inverse problem. 
 This paper proposes an auditory sound segregation model to solve this 
problem by using constraints related to the heuristic regularities. 
 
3.2 
Algorithm 
 
This paper assumes that the desired signal f

1 (t )  is a harmonic complex tone, 
where F

0 (t)  is the fundamental frequency. The constraints used in this model are 
shown in Table 1.  

Constraint (i) is implemented by comparing the onset/offset (T
k , on

, T
k , off

) of 
X

k
(t)  with the onset/offset (T

S
, T

E ) of X ˆ l 
(t )  corresponding to F

0
(t) , where 

∆T
S

= 25  ms and ∆T
E = 50  ms [17]. Constraint (iii) is implemented by 

determining the channel number corresponding to the integer multiples of F
0
(t)  

[17]. Constraints (i) and (iii) are used to determine the concurrent time-frequency 
region of the desired signal in background noise.  
 To segregate the desired signal from the mixed one by constraining the 
temporal differentiation of A

k(t ) , θ1k (t ) , and F
0 (t) , constraint (ii) is 

implemented such that C
k , R (t)  and D

k, R (t )  are linear ( R = 1) polynomials, and  
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Table 1. Constrains corresponding to Bregman’s psychoacoustical heuristic regularities. 
Regularity [3] Constraint [17,18]  
(i) common onset/offset synchronous of onset/offset T

S
− T

k , on
≤ ∆T

S
,   T

E
− T

k , off
≤ ∆T

E
 

(ii) gradualness of 
change 
(smoothness) 

piecewise-differentiable 
polynomial approximation 
(spline interpolation) 

dA
k
(t) dt = C

k , R
(t ),   dθ

k
(t ) dt = D

k , R
(t)  

dF
0
(t) dt = E

0 , R
(t)  

σ
A

= A
k

( R+ 1)

(t )[ ] 2

dt
t

a

t
b∫ ⇒ min  

σ
θ

= θ
k

( R +1)

(t )[ ]2

dt
t

a

t
b∫ ⇒ min  

(iii) harmonicity multiples of the fundamental 
frequency 

n × F
0
(t ),   n = 1, 2,  ...,  N

F0

 

(iv) changes occurring 
in the acoustic event 

correlation between the 
instantaneous amplitudes 

A
k
(t)

A
k
(t)

≈
A

l
(t)

A
l
(t)

,   k ≠ l  

 
E

0 , R (t)  is zero (R=0) in a small segment Th − Th−1 , where Th  is the continuous 
point of F

0 (t)  [18]. Constraint (iv) is implemented by correlation function of the 
instantaneous amplitudes with the across-channel to determine the optimal 
Ck , R

(t)  and Dk, R
(t )  [17][18]. 

 The proposed model has four blocks: an auditory-motivated filterbank, an F
0

 
estimation block, a separation block, and a grouping block, as shown in Fig. 7. 
 The auditory-motivated filterbank (a constant Q gammatone filterbank) 
decomposes the observed signal f (t ) into Sk (t)  and φk (t)  [16].  
 The F

0  estimation block determines the fundamental frequency of f
1
(t )  

using the Comb filtering on an amplitude spectrogram Sk (t) s [15].  
 The separation block determines the optimal Ck ,1 (t ) and Dk, 1(t)  in every 
small segment using constraints (iv), and then determines Ak(t ), Bk (t) , θ1k (t ) , 
and θ2 k

(t ) from Sk
(t) , φk

(t) , Ck ,1
(t ), and Dk, 1

(t)  using Eqs. (11) - (13), in 
the concurrent time-frequency region. This concurrent region is determined by 
using constraints (i) and (iii), and the small segments are determined from the 
length of T

h
− T

h−1
 on the discontinuity of F

0
(t) . C

k ,1
(t )  and D

k, 1
(t)  are 

determined as optimal arguments when the correlation between the instantaneous 
amplitudes with the across-channel, obtained from the candidates of the smoothed  
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Fig. 8. Segregation accuracies for simulations. (a) vowel and (b) continuous vowel. 
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(the spline-interpolated) C
k ,1

(t ) and D
k, 1

(t) , is to be a maximum, in which the 
estimated region for C

k ,1
(t ) and D

k, 1
(t)  are determined by using the Kalman 

filtering.  
 The grouping block reconstructs the segregated instantaneous amplitude and 
phase using the inverse wavelet transformation [17].  
 
3.2 
Evaluation 
 
3.2.1 
Sound and simulation conditions 
 
To show that our proposed method segregates the desired signal f

1 (t )  from a 
noisy signal f (t ) that has precisely even waveforms, we ran two simulations 
using the following signals: (a) a noisy real vowel (/a/, /e/, /i/, /o/, /u/); and (b) a 
noisy real continuous vowel (/aoi/), where the noise was pink, and the SNRs of 
the noisy signals were between 5 and 20 dB, in 5-dB increments. These vowels 
were in the ATR database uttered by four speakers (two males and two females). 
 We used segregation accuracy, that is, the SNR in which S is an original 
signal and N is a difference between original and the extracted signals, to evaluate 
the segregation performance of the proposed method. Next, to show the 
advantages of the constraints in Table 1, we compared the performance of our 
method, when (1) extract without the smoothness of constraint (ii); (2) extract 
without constrains (ii) and (iv); and (3) extract with no constrains.  
 
3.2.2 
Results and discussion 
 
The segregation accuracy in the two simulations and the four comparisons is 
shown in Fig. 8. In this figure, the bars show the mean of segregation accuracy 
and the error bar shows the standard deviation of segregation accuracy. The 
results show that the segregation accuracy of the proposed model was better than 
that of the others. These results also prove that, even in waveforms, the proposed 
model is capable of precisely segregating a desired vowel sound from a noisy one. 
In addition, by comparing the proposed model and (2), we see that simultaneous 
signals can be precisely segregated using the instantaneous amplitude and phase. 
Finally, when compared with (3), the proposed method improved segregation 
accuracy at an SNR of 5 dB in both simulations by about 8 dB. 
 
4 
Conclusion 
 
This paper introduced some models associated with the 'Cocktail party effect'. 
Specially, it described; 
 - speech enhancement done by spatial filtering, and 
 - an auditory sound segregation model based on auditory scene analysis. 
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 Simulated results showed that spatial filtering is useful in speech 
enhancement, and thus can be effectively used at the front-end of automatic 
speech recognition. Even in waveforms, the sound segregation model is capable 
of precisely extracting a desired signal from a noisy one. 
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