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Abstract.

The paper addresses the mathematical modelling of domains of linguistic variables, i.e. term-sets of
linguistic variables, in order to obtain a suitable algebraic structure for the set of truth values of Zadeh’s
fuzzy logic. We shall give a unified algebraic approach to the natural structure of domains of linguistic
variables, which was proposed by Ho and Wechler in [8] and, then, by Ho and Nam in [6,7]. In this approach,
every linguistic domain can be considered as an algebraic structure called hedge algebra, because properties
of its unary operations reflect semantic characteristics of linguistic hedges. Many fundamental properties of
RH.algebras are examined, especially it is shown that every RH_algebra of a linguistic variable with a chain
of the primary terms is a distributive lattice. RH_algebras with exactly two distinct primary terms, one
being an antonym of the other, will also be investigated and they will be called symmetrical RH_algebras.

It is shown that a class of finite symmetrical RH_algebras has a rich enough algebraic structure.
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1 INTRODUCTION

The theory of approximate reasoning was introduced and developed by Zadeh in the 1970s (see, e.g., [38,39]),
and it is based on the notions of linguistic variables and fuzzy logics.

Formally, a linguistic variable is characterised by a quintuple (X,T(X),U, R, M), where X is the name of
variable such as age variable Age, truth variable Truth etc., T(X) denotes the term-set of X, that is, the set
of linguistic values of the linguistic variable; U is a universe of discourse of the base variable; R is a syntactic
rule for generating linguistic terms of T'(X), and M is a semantic rule assigning to each linguistic term a fuzzy
set on U.

As well known, the values of a linguistic variable are generated from primary terms (e.g. young and old in
the case of linguistic variable Age), by various hedges (e.g. very, more or less, etc.) and connectives (e.g. AND,
OR).

According to Zadeh’s idea [37-40], one of the most important characteristic of linguistic variables is that
the meaning of the primary terms (also called primary generators) is context-dependent, whereas the meaning
of the hedges and connectives is not. In addition, another important characteristic of linguistic variables is
the universality of their structure, i.e. most linguistic variables have the same basic structure in the sense that
their respective linguistic values have the same expressions except the primary terms. Our investigations come
from these important characteristics of linguistic variables and, moreover, from the intuitive meaning of vague
concepts in natural language, which can be formulated in terms of a so-called semantically ordering relation,
as well. More detailed discussions of the concept of a linguistic variable and its applications may be found in
Zadeh [38-40] and references therein.

We know that humans reason by means of their own language and they can choose and decide alternatives
by evaluating semantics of linguistic terms. The fundamental elements in human reasoning are sentences
normally containing vague concepts, and these sentences have implicitly or explicitly a truth degree, which is
often expressed also by linguistic values of linguistic truth variable. In connection with this, Rinks wrote in [33]
that “verbal coding is a human way of repackaging material into a few chunks of rich information. Natural
language is rather unique in this characteristic. Until recently, a unified theory for manipulating in a strict
mathematical sense non-numerical-valued variables, such as linguistic terms, did not exist.”

So, it becomes natural to look for an algebraic structure capable of accounting for the notions of linguistic
variables and hedges. This algebraic structure would thus provide a formal framework for a rigorous develop-
ment of fuzzy logic.

In Zadeh’s view of fuzzy logic, the truth-values are linguistic, e.g. of the form “true”’, “very true”, “more or

less true”, “false”, “possible false”, etc., which are expressible as values of the linguistic variable Truth, and the



rules of inference are approximate rather than exact. In this sense, approximate reasoning (also called fuzzy
reasoning) is, for the most part, qualitative rather than quantitative in nature, and almost all of it falls outside

of the domain of applicability of classical logic (see Zadeh [38,39]).

However, as stated in Dubois and Prade [11], “ the approach is rather general, but on the one hand it does
not say what particular types of approximate reasoning can be captured in this framework, and on the other

hand, its situation with respect to logical formalisms remain unclear”.

In last years, a logical foundation of fuzzy logic and approximate reasoning proposed by L. A. Zadeh has
been intensively investigated. These works on this subject can be observed in two trends. The first one is to
establish an exact mathematical basis for fuzzy logic (see, e.g., [21,26,36]). The second one is to investigate
a formal logical foundation of fuzzy inference and fuzzy reasoning methods (see, e.g., [10,13-15,20,23]). It
is shown that fuzzy logic in narrow sense has an elegant formal logical basis and ones can establish several
different logical calculus (based on ¢-norm based logical systems like Lukasiewicz’s logic, product logic, Gédel
logic,...) and fundamental inference rules of some deductive systems (see, e.g., [18,19,30]). Especially, Godo
and Hajek in [19] pointed out that fuzzy inference can be considered as deduction in the strict logical sense
and proposed to “understand much of Zadeh’s fuzzy logic inside many-sorted many-valued Pavelka-Lukasievicz

style rational quantification logic.”

As it can be observed in these works, there is a close relation between logical structure and the algebraic
structure of truth values of the mentioned logic. Recall that every deductive system in classical or non-
classical logic always determines an algebra of a certain class of universal algebras of the same category of
the corresponding algebra of truth values (see, e.g., [31,32]). For example, every deductive system based on
classical logics determines a Boolean algebra, which belongs to the same category of the two-element Boolean
algebra of truth values 0 and 1; every deductive system based on intuitionistic logics considered in [31,32]
determines a complete pseudo-Boolean algebra which has the same structure as that of the algebra of truth
values of intuitionistic logics, and so on. This means that many characteristics of the logic, which a deductive

system bases on, can be determined by the algebraic structure of the set of truth values of this logic.

Note that most of the works offered the logical formalization of fuzzy logic consider the unit interval [0, 1],
i.e. a linearly ordered set of real values, as the set of truth values. While the truth values of fuzzy logic in broad
sense are fuzzy sets defined over the interval [0, 1], which are designed to interpret the meaning of linguistic
truth values. Therefore, it will be very useful if we can point out that the set of all linguistic truth values itself
has a rich enough algebraic structure. If it is so, we may hope that it will provide specific characteristics for a

kind of fuzzy logic.

To answer this question, an algebraic approach to the natural structure of the domains (i.e. term-sets) of



linguistic variables was proposed by Ho and Wechler ( [4,8,9]), and it defines a class of algebras called hedge
algebras. These algebras are proved to be complete lattices, but not distributive, and hence we are not able to
express composed linguistic terms in the disjunction and conjunction normal forms. In addition, the structure of
such algebras is rather rough. For example, let us consider the set of all possible truth values T' = { true, false,
very true, very false, approximately true, possibly true, approzimately true or possibly true, approzimately true
and possibly true, ete.}. It can be shown from [9] that the linguistic term ‘approzimately true OR possibly true’
will be expressed by ‘approzimately true’ U ‘possibly true’ and it equals to ‘true’ in the structure of extended
hedge algebra of the linguistic truth variable, where U is the join operation of this algebra. This is clearly
unsuitable in nature. To overcome this problem, the so-called refined hedge algebras have been developed,
based on an extension of the axiom system of the hedge algebras [6,7].

In the paper, we shall establish a unified algebraic approach to modelling of linguistic domains of linguistic
variables and show that the obtaining structure is rich enough for the investigation of a kind of fuzzy logic.

This structure has some significant advantages.

1. It is a natural structure which models linguistic domains directly: Each term-set can be considered
as an abstract algebra, in which primary terms such as “true” and “false” are regarded as generators
(i-e. constants or zero-argument operations), hedges as unary operations. This algebra is equipped with
a partially ordering relation < induced by the meaning of hedges, called semantically ordering relation.
It orders the elements of the algebra based on semantic characteristics of linguistic hedges. So, elements
of these algebras can be regarded as just linguistic terms and their relative meaning can be expressed in
terms of the semantically ordering relation. It provides a possibility to introduce methods in linguistic

reasoning that allow to handle linguistic terms directly (see [4,5]).

2. Term-sets of the linguistic truth variable may become an algebraic structure (see e.g. Theorem 6.1 and
6.2 of the paper). Recall that in the classical logic there is no semantic difference between two cases where
we assign to every predicate a truth value in {0,1} in one case, or a truth value in an arbitrary Boolean
algebra, in the other case. However, it is not the case of multiple-valued logic or fuzzy logic. Therefore,
restricting the sets of truth values to hedge algebras, but not to the interval [0, 1] or any partially ordered

sets, will bring a certain benefit.

3. Because of specific structure of hedge algebras, their elements have specific semantics determined by
ordering relation. It provides us an interesting way to define the notion of fuzziness of a vague concept
x, based on the “size” of the set LH (x) generated from the concept # by means of hedges and, then, to
define a notion of fuzziness of hedges. It gives a possibility to introduce a clearly intuitive interpolation

reasoning method in multiple conditional fuzzy reasoning.



It is worthwhile to emphasise that our approach is different from the MV _algebra-based approach to establish-
ment of an algebraic basis for fuzzy logic. In fact, BL_algebras designed by P. Hajek [21] can be considered
as a generalization of MV _algebras in order to capture certain intuitive characteristics of fuzzy logic, while
the axiomatization of RH_algebras is based merely on natural semantic properties of linguistic hedges, which
can be formulated in terms of an ordering relation. Furthermore, it will be shown that RH_algebras are not
BL_algebras, in general.

The paper is organised as follows. In Section 2 we shall present a general construction of an abstract algebra
for a given linguistic domain (or term-set). In Section 3 we introduce a unified axiomatization of RH_algebras
and establish certain criteria for determining the relative position of elements in a RH_algebra and some
fundamental properties of these algebras. In Section 4, a main property, which says that every RH_algebra
with a chain of the primary terms is a distributive lattice, will be proved. In Section 5, a special class of
RH_algebras with exactly one positive and one negative primary generator, called symmetrical RH_algebras,
will be studied. Finite symmetrical RH_algebras and their properties, which may establish an algebraic basis

for fuzzy logic, will be discussed in Section 6. Finally, some concluding remarks will be given in Section 7.

2 TERM-SETS OF LINGUISTIC VARIABLES FROM ALGEBRAIC POINT
OF VIEW

2.1 Intuitive Properties of Hedges in Term of Ordering Relation

In his investigations of linguistic variables (e.g. [39]), Zadeh has always emphasised two most important
characteristics of linguistic variables. The first is the context-independent meaning of hedges and connectives,
whereas the meaning of the primary terms is context-dependent. The second is the universality of their
structure. That is most linguistic variables possess the same basic structure in the sense that their respective
linguistic values have the same expressions except for the primary terms. Therefore, a set of linguistic hedges
(or hedges, for short) under consideration may be applied to many different linguistic variables, where the
meanings of hedges are interpreted by operators on fuzzy sets [27,28,37-39]. From another viewpoint, these
characteristics of linguistic variables and the meaning of hedges in natural language permit us to consider each
domain of a linguistic variable as an algebraic structure called hedge algebra, say AX = (X,G, H, <), where X
is a set of values of a linguistic variable (regarded as a poset), G is the set of the primary terms of the linguistic
variable and H is a set of unary operations representing linguistic hedges.

The structure of these algebras will be constructed, originated from semantic properties of hedges and
linguistic terms. As the semantics of linguistic hedges seem to be complicated in natural, it is very difficult

to define mathematically what a hedge is. However, analysing their intuitive meaning, we can observe the



following semantic properties which hedges should have:

1. In general, each linguistic primary term possesses an intuitive semantic tendency which can be expressed
by a semantically ordering relation and one term possesses a meaning greater (or stronger) than another
one. For example, for the truth variable TRUT H, according to their intuitive meaning we can write
True > False, and observe that these primary terms have a converse semantic tendency: one term is
called to be positive and the other is called to be negative. Here, ‘T'rue’ is positive and ‘F'alse’ is negative,

and this positive-negative tendency can be characterised by Very True > True, while Very False < False.

Similarly, each linguistic hedge possesses an intuitive meaning which can be expressed also by a seman-
tically ordering relation, e.g. Approzimately True < True, while Very True > True. In addition, if a
hedge decreases the meaning (or the effect) of another hedge h, we say that k is negative w.r.t. h, and
if k£ increases the meaning of h, we say that k is positive w.r.t. h. For example, since Little AppTrue <
AppTrue < True, Little is said to be positive w.r.t. App and since App True < Very App True < True,
Very is said to be negative w.r.t. App. Furthermore, we can observe that the negative-positive property
of hedges h and k does not depend on the terms they apply to. In this example, it does not depend on
the term “T'rue”, that is, for every term z, we have either App © < Very App © < x or App = > Very

App x > z, and so on.

2. Hedges are modifiers or intensifiers and they have their degrees of modification and hence we can compare
two hedges. For example, Little > App, since Little True < App True < True, and App, Possibly and
More-or-Less seem to be incomparable. Thus, we may assume that the sets of hedges under consideration

are posets.

3. An important semantic property of hedges is the so-called semantic heredity, which stems from the
following observation: each hedge modifies merely a little the meaning of linguistic terms. That is,
changing the meaning of a term, it preserves the original essential meaning of this term. Based on the
semantically ordering relation, this property can be formulated in the following form: if the meaning of
two terms in the forms hz and kx can be expressed by hx < kz, then h'hz < k'kx, for arbitrary hedges
h' and k'. This means that A’ and k' can not change the semantically ordering relationship between
hz and kz, i.e. they preserve the relative meaning of hz and kz. This implies that H(hz) < H(kz),
where H(u) denotes the set of all terms generated from w by means of hedges, i.e. H(u) = {ou :
o is a chain of hedges, i.e. 0 € H*}. E.g. from Little True < App True it follows that Possibly Little

True < Little App True, and in general, H(LittleTrue) < H(AppTrue).

These properties will be analysed and used in turn to develop RH_algebras and some of them will be selected



as axioms. At this moment, we can adopt the assumption that there exists an ordering relation on X and on
H, where X and H are assumed to be disjoint sets. The semantic relation of these ordering relations will be

formulated in Definition 2.1.

2.2 Term-Sets as Abstract Algebras.

In order to formalize this idea, let us consider an abstract algebra AX = (X, G, O, <), where X is a underlying
set, G is the set of generators (or constants, i.e. zero-argument operations), O is a set of one-argument operations
and < is a partially ordering relation over X. X is intended to be interpreted as a term-set, G as a set of
primary terms and special constants, O as a set of hedges or modifiers and < as semantically ordering relation.
Note that the set G may contain special constants such as 1,0 and W which are different from the primary
terms and understood as “absolutely true”, “absolutely false” and the “neutral’, respectively. These constants
can be cheracterized by the conditions that he = ¢ for all h € O,c € {1, W,0} and 1 > W > 0. Since every
h in O can be considered as a mapping from X into X and several operations can be used in concatenation,
for convenience the image of an element z in X under h will be denoted by hz instead of h(z). And therefore
the result of the applying operations hi, hs,...h, € O to an element x € X in concatenation can be written
as hy,...hiz.

Although we only take a general algebraic point of view into account, we can still formulate some completely
new elementary properties of linguistic hedges ( [3,7,8]). Let h,k € O, h and k are said to be converse (or
h is said to be converse to k and vice versa) if the statement Vz € X(z < hz iff z > kx) holds. And if the
statement Vo € X (z < hz iff # < kz) holds, then h and k are said to be compatible. For any h,k € O,h is
said to be positive (or negative, resp.) with respect to k if the statement (z € X)(either kz > x implies hkz >
kxz(hkz < kz,resp.) or kz < x implies hkx < kx(hkx > kz, resp.)) holds.

Stimulating the semantic properties of terms-sets structure, throughout the paper it will be assumed that

1. Each element h € O is an ordering operation, i.e. the statement (Vo € X)(either hx > x or hx < x) holds

for every h.

2. O is decomposed into two non-empty subsets O and O~ such that for any h € OF and k € O~, h and

k are conwverse.

3. Let I be the identity of X, i.e. Vo € X, Iz = x. The sets Ot +1 and O~ +1 are lattices with unit-elements
V and S, respectively, and zero-element I. Because X, 0T and O~ are disjoint there is no confusion to
assume for simplicity that the partially ordering relations on each sets X, 0% and O~ will be denoted by

the same notation <.



As it is discussed in Subsection 2.1, we observe that the partially ordering relations on each sets X, O and
O~ have a close semantic relationship, which will be formulated in the following definition. In order to simplify

notations and formulations, we use from now on superscript ¢ to denote either the superscript T or ~.

Definition 2.1 (Assumption on semantic consistency) Let AX = (X, G, O, <) be an arbitrary abstract algebra.
As it is assumed above, the set O is decomposed into two disjoint subsets OF and O~ such that Ot + I and
O~ + I are finite lattices with the zero-element I. Then, X and O are said to be semantically consistent if the

following conditions hold:

1. X is generated from the generators by means of hedges in O, i.e. elements of X is of the form h,, ... hia,

forh; € O,i=1,...,n,and a € G.

2. Forany h,k € O°+1,h <k in O°+1 iff Yz € X)((he > = or kx > x implies hx < kz) and (hx <z or
kx < x implies hx > kz)). And, h,k are incomparable in O° + I iff (Vx € X)(hz # x or kx # x implies

that hx and kx are incomparable).

Note that 2) in Definition 2.1 describes also an aspect of the universality of hedges!

Example 2.1. Let X be a poset of values of the linguistic variable Truth as represented in Figure 1,
where H = {V,M,A,P,ML,S} is a set of linguistic hedges with V, M, A, P, ML, S standing for Very, More,
Approximately, Possibly, More or Less, LeSS (or Little). Intuitively, it can be seen that HT = {V, M}
and H- = {S,A,P,ML}, H" + I and H~ + I are lattices given in Figure 2. Such an X can be considered
as an abstract algebra AX = (X,G, H,<), in which G = {True, False}, < on X is the partially ordering
relation represented as the graph given in Figure 1 and < on H¢ + [ is given in Figure 2. The result of
applying any operation h to an element x can be understood as follows: hTrue and hFalse are defined to be
the elements given in Figure 1; and khx = hx, for all h,k € H and = € X. It can easily be seen that X and H

are semantically consistent.

2.3 General Construction of Abstract Algebras for Term-Sets.

Let us consider a term-set Xy and H be the set of all hedges occurring in Xy. In general, not all terms
in Xy can be written in an expression of the form h,, ...hju of an abstract algebra considered above, where
hn,-..,h1 € H, e.g. the term ‘Little App False OR Little Poss False’. Formally, this term can be rewritten
as Little(App V Poss)False, where V is an operation on the set of hedges. The expression (App V Poss)
can be regarded as a new, artificial hedge and hence this term can be considered as being expressed in the
above form. It suggests us to extend the set H into a distributive lattice, denoted by LH, and interpret it

as a new set of unary operations. Then, we shall try to show, in the next section, that the abstract algebra



AX = (X,G,LH,<) will model the “structure” of Xy and that ‘Little App False’ U ‘Little Poss False’ =
‘Little(App V Poss)False’, where U is the join operation in the lattice AX.
In this subsection, we shall present how we can construct an abstract algebra for a given term-set formally.

Firstly, we construct the lattice LH. We need to recall some notions and notations (see e.g. in [1]).

Definition 2.2 Let P be a partially ordered set (poset, for short). An element a is said to cover an element b
in a poset P, if a > b and there is no x € P such that a > x > .

Denote by I(P) the length of a poset P. For a given poset P of finite length with the least element denoted
by 0, the height of an element z € P is, by definition, the least upper bound of the length of the chains
0==x0<z <...<zp, =x between 0 and x, and it is denoted by height(x). If P has the greatest element,
denoted by 1, then clearly height(1) = [(P). Clearly also that height(x) = 1 iff z covers 0.

Definition 2.3 A poset P is said to be graded if there exists a function g from P into the set Z of all integers
with the natural ordering such that :

G1. x >y implies g(z) > g(y).

G2. If x covers y then g(z) = g(y) + 1.

Such a function g is called a graded function of P. It is known [1] that any modular lattice of finite length
is graded by its height function height(z).

Let L be a modular lattice of finite length, we can define a relation R on L as follows:
Va,y € L, (z,y) € R iff height(x) = height(y).

It is easily shown that R is an equivalence relation and then we have
I(L)
L=J L,
i=0
where L; = {« € L : height(z) =i}, for i = 0,...,l(L), are the equivalence classes of the relation R. Clearly,
Lo = {0} and L) = {1}, where 0 and 1 are the zero-element and the unit-element in L, respectively.
Motivated by a practical property of linguistic hedges, we introduce the following condition:
(Co) For any x € L;,y € L; and i # j, we have either z >y or < y.
As an illustration, the reader can verify that the graded classes of L given in Figure 2 (b) are Ly = {I}, L, =

{A,P,ML} and L3 = {S}, and the condition (Cp) holds.

It is not difficult to see that the following holds.

Proposition 2.1 Let L be a modular lattice of finite length satisfying (Co). Then the following statement
holds:



If |IL;| > 1 for an index i € {1,...,l(L) — 1} then |L;—1| = |Liy1| = 1, where |A| denotes the cardinality of
the set A. Moreover, if we denote e(L;11) and e(L;—1) the single element of L;y1 and L;_1, respectively, then
e(Liv1) = Vaer,x and e(L;—1) = NAgper,x, where V and A stand for the join and meet in L, respectively.

Now, let H be a set of linguistic hedges such that HT + I and H~ + I are finite lattices.

We will denote by NT and N~ the lengths of HT 4+ I and H~ + I, respectively. Suppose that gt and g~
are the graded functions of H* + I and H~ + I, respectively.

Unless stated otherwise, we shall always adopt in the sequel the assumption that HT + I and H~ + I are
finite modular lattices satisfying the condition (Cp). From now on, V and S stand for the unit-operations in
H* + 1 and H~ + I, respectively. Hence, we have g7 (V) = NT,¢g=(S) = N~ and

Nt
HT +1=|JH}, where H ={he H" +1/g"(h) =i},
=0

N-
H™ +I=|JH;, where H, ={he€ H +1I/g (h)=i}.
=0
Now, we are going to construct the lattices, which can be seen as being “freely” generated from HT + I and
H~ + 1 as follows.
Let us consider H* + I. Assume that for some index i € {1,...,NT},|H;"| > 1 and H;" = {hi,...,hi}. By

Proposition 2.1, the sets H;, | = {h"*1} and H;" | = {h"~'} are single-element sets. For such an ¢, the ordering

relationships between the elements of H;" |, H;, H}

i1 +r1 can be expressed as Figure 3. Note that there exists a

natural ordering relation between graded classes H;": H;” < H iff i < j; where H;" < H;" means that h < k
for every h € H;" and k € H;".

By LH;" = (L(H}"),V,A) we denote the free distributive lattice® generated from the incomparable elements
hi, ..., hi of H. Particularly, for an index i such that |H;"| = 1 we have LH;" = H;*. Put LHt = Uf\:; LH;
and LHT + [ = LHT U{I} = Uf\:; LH;". Then, LHT + I becomes a distributive lattice under the ordering
relation induced by the ordering relations on the lattices LH;™ and the one defined between classes LH;" (that
is we have LHi+ < LHf, for any 4, j such that i < j). The classes LHi+ are called also graded classes of LH T,
for convenience. Figure 4 shows a picture of a segment of the lattice LH + I, where |H; | > 1.

By an analogous way, we can construct the lattice LH ~ 41 generated from H ~+1I. Here, there is no confusion,

because H+ and H~ are assumed to be disjoint and hence, so are LH™ and LH~, where LH* = LH* + 1\ {I}
and LH~ = LH~ + I\ {I}. Thus, we have the following

Proposition 2.2 (LHT +1,A,V,1,V,<) and (LH™ + I,A,V,1,8,<) are finite distributive lattices with the

unit-elements V' and S, respectively, and the zero-element I.

3 see G. Birkhoff [1]



Example 2.2. Let us consider a set of hedges as in Example 2.1. Clearly, HT + I and H~ + I are finite
modular lattices and satisfy condition (Cp). By the way of constructing as above, the obtained distributive
lattices LHT + I and LH~ + I generated from HT + I and H~ + I, respectively, can be represented as in
Figure 5.

Now, let us turn back to the previous consideration of the given term-set Xy and the set H of hedges. Regard
H as a set of unary operations and construct the lattice LH as above. Let AX = (X,G, LH, <) be an abstract
algebra satisfying the following conditions: (i) G is the set of the primary terms occurring in X, and the
additional special constants 0, W and 1; (i) X = LH(G); (ii) < is a partially ordering relation on X such
that X and LH are semantically consistent. We treat it as an abstract algebra for the term set Xj.

Obviously, it is easy to find an abstract algebra AX fulfilling () and (i¢). By Proposition 3.5 in Section 3,
there exists a partially ordering relation < on X such that (ii7) satisfied. Therefore, given Xy we can always
define a corresponding abstract algebra AX for Xgy. The sets X and X are not identical, e.g. the composed
term containing connectives AND,OR, NOT in X like ‘Little App False OR Little Poss False’ do not occur
in X. However, it will be shown in Section 3 and 4 that they are very similar.

From now on we always denote H the set of primary hedges and LH the lattice of composed hedges con-

structed as above. However, the elements in H or LH are called simply hedges.

3 AN AXIOMATIZATION OF RH_ ALGEBRAS AND THEIR PROPERTIES.

3.1 An Axiomatization of RH_algebras and Basic Properties.

First of all we introduce the following notion.

Definition 3.1 Let AX = (X,G,LH,<) be an arbitrary abstract algebra and V be the unit operation in
LH™T + 1. The set H is said to have PN-homogeneous property, where PN is an abbreviation of Positive and
Negative, provided that for any graded class Hf, if V' is positive (or negative, resp.) w.r.t. a certain operation
h in Hf, then V is also positive (or negative, resp.) w.r.t. any other ones in Hf.

For example, it can be verified that the set H in Example 2.1 satisfies the PN-homogeneous property. This
property says that the elements in every H have the same positive or negative property. That is it describes
the homogeneity of the graded classes H{. In the end of Section 3 we shall give some statements which explain
more details the homogeneity of Hf. However, if we add in Example 2.1 a new hedge “Notso” denoted by N,
whose meaning can be determined by the term “not” in the sentence “He is not very tall’. It means that “He
s certainly tall but not so very tall”. Thus, “Notso” is a “local” negation and by its meaning we have N € H~

and V is positive w.r.t. N. Hence, the set Ly = {A, P, ML, N} is not PN-homogeneous. So, PN-homogeneity

is a hypothesis and hence it is a limitation of the paper.



Suppose that LHY + I and LH~ + I are distributive lattices, which are generated from H* + 1 and H~ +1,
respectively, as presented in the previous section.

Let IT ={0,1,...,N*}, 1= ={0,1,...,N"}and SIt = {i e I : |H}| > 1}, SI- ={ie I~ : |H7| > 1}.
That is the set ST consists of the indexes ¢ which are not single-element classes.

Recall that by ¢ we mean either ™ or ~. For instance, given the term “LH{ for some i € SI°”, the
statement presents two instances to be obtained by substituting ¢ in turn by T and ~. Here is an example of
a statement formulated with this convention: for any ¢ € SI¢, LHY is the free distributive lattice generated by
the incomparable elements of Hf and is a sublattice of LH®+1I; and for any ¢ € I°\ SI¢, LH{ is a single-element
set, i.e. LHS = H¢, and we have LH® = |JN| LH.

Let us denote by UOS (Unit Operations Set) the set of two unit-elements V and S of LHT + 1 and LH~ +1,
respectively. Further, denote by Nat the set of all non-negative integers.

Set LH=LH*"ULH™ and LH+1=LHYULH~ U{I}.

Consider an algebra AX = (X,G, LH, <), where G is a set of constants or zero-argument operations, LH is
a set of one-argument operations.

For every x € X, LH (z) denotes the set of all elements generated from z by means of operations in LH,
i.e. that elements of LH (x) are of the form h,, ...hjx, where h; € LH,i = 1,...,n. More generally, for any
Y € X and H' C LH,H'(Y) denotes the subset of X generated from the elements in ¥ by means of the
operations in H'. As usual, LH* denotes the set of all strings of hedges in LH. However, by H'[Y] we denote
the set {hz: h€ H and z € Y'}.

Remark 3.1 (a) From the way the lattices LH' + I and LH~ + I have been constructed, it can be seen that
lattices LHT + I and LH~ + I also satisfy condition (Cp), in which the notations L; and L; are replaced with
LH; and LHS, respectively.

(b) For easily understanding the axiomatization, we give the following intuitive explanation. Given a term

z. According to the above notations, we have
LH{[z] ={hz: h € LH{} and LH(LH{[z]) = |J LH(u)= |J LH(ha).
uELHE 2] heLH¢

Clearly,

LH(zx)={z}u |J {LH(LH{[z]):i=1,...,N°}.
ce{+,-}

The set LH (z) is called the term-set of x and the sets LH(LH{[z]) are called the graded term-sets of x,
because they are related to the graded class H;.
Analysing intuitive semantic properties of hedges, we can observe that Condition (Cp) will induce a linearly

ordering relation between the graded term-sets of z, for any z. For illustration, let us consider z = T'rue and



the graded classes, {S},{A, P, ML}, {I},{M} and {V'}, given in Figure 2. Intuitively, we have the following

ordering between the graded term-sets:
LH(LessTrue) < LH(L(App, Poss, M.orLess)[True]) < True < LH(MoreTrue) < LH(VeryTrue),

where L(App, Poss, M.orLess) denotes the lattice generated from generators App, Poss and M.orLess.

Now, we are ready to introduce an axiomatization that refines the structure of hedge algebras.

In [3] and [9], a system of axioms for hedge algebras and extended hedge algebras was introduced. In [6]
refined hedge algebras were defined by the assumption that they firstly are hedge algebras and, secondly, must
fulfil certain additional axioms.

In this paper, we establish a unified theory by introducing a unified system of axioms. It defines a class of

algebras called also refined hedge algebras.

Definition 3.2 An algebra AX = (X,G, LH,<) is said to be a refined hedge algebra (abbr. RH_algebra), if X

and LH are semantically consistent (Def.2.1) and the following conditions hold (where h,k € LH) :

(A1) Every operation in LH™T is converse to each operation in LH™.

(A2) The unit operation V of H' + 1 is either positive or negative w.r.t. any operation in H. In addition,

H should satisfy the PN-homogeneous property.

(A3) (Separateness or semantic heredity of independent terms) If u and v are independent, i.e. u ¢ LH(v)
andv ¢ LH(u), then x ¢ LH (v) for any x € LH(u) and vice-versa. If x # hx then x ¢ LH (hz). Further,
if hx # kx then hx and kx are independent.

(A4) (Semantic heredity: preserving comparability and incomparability of terms) If hx and kx are in-
comparable, then so are any elements w € LH(hx) and v € LH(kz). Especially, if a,b € G and a < b
then LH(a) < LH(b). And if hx < kx then
(2) In the case that h,k € LH{, for some i € SI, the following statements hold:

e Shx < dkx, for any d € LH*.
e 0hx and y are incomparable, for any y € LH (kz) such that y # dkz.

e 0kz and z are incomparable, for any z € LH (hz) such that z £ dhx.
(13) If {h,k} ¢ LH{ for everyi € SI¢ or hx = kz, then h'hx < k'kx, for any h', k' € UOS.

(A5) (Linear ordering between graded term-sets) Let us consider w € LH(xz) and suppose that u ¢
LH(LH{[x]) = Upepue LH(hx), for some i € I°. If there exists v € LH(hx), for some h € LH{ such

that w > v (or u < w), then u > h'v (or u < h'v, respectively), for any h' € UOS.



By comparing the two definitions, one for RH_algebras as defined above and the other for hedge algebras as
defined in [8, Definition 3], it can easily be seen that any hedge algebra can be embedded into an appropriate

RH_algebra as its sub-poset. In the other words, RH_algebra is an extension of hedge algebra.

Example 3.1. (a) Let us consider an algebraic structure AX = (X;,G, LH, <), where, as considered in
Example 2.1 previously, H is the set {V,M,S, A, P, ML}, G = {True, False}, but X is the set consisting of
the elements X1 = {ha : h € LH + I,a € G}, which are ordered as represented in Figure 6 (a). Recall that
L(A, P, ML) denotes the lattice generated from the incomparable A, P and ML and L(A, P, M L)[a] denotes
the set {ha : h € L(A, P, ML)}. Here, hz is defined as follows: for every hedge operation h in LH, hTrue and
hFalse are defined as the elements given in Figure 6(a); for  # True and x # False, we define hx = z. It
can easily be seen that the operations are well defined and AX satisfies the axioms in Definition 3.2.

(b) Consider an algebraic structure AXy, = (X»,G, LH, <), where G, LH are the same as given in (a) and
Xo = X1 U{kha: h,k € LH,a € G}. The operations of AX, are defined as follows: a, ha and kha, for any a, h
and k, are defined to be different each from other. And in addition, for any z = kha,k’ € LH and a € G it is
assumed that k'z = z. The elements in X will be ordered in the following way. The ordering relation <; on
X is defined the same as in the case (a). Now, we extend the relation <; to X5 step by step. It can be seen
that V (and hence all operation in LH+ = HT) is positive w.r.t. V, M, S and negative w.r.t. A, P, ML; S (and
hence all operation in LH ™) is positive w.r.t. A, P, M L and negative w.r.t. V, M and S.

(1) For each h € LH, the relation < on X3(h) = {kha : h,k € LH,a € G} is defined as follows. For
{k,k'} ¢ LH®, i.e. k and k' are converse, then kha and k'ha are defined to be comparable and the ordering
relationship between these elements is determined based on the fact that k (or k') is positive or negative
w.r.t. h. For the case k < k' (and hence {k,k'} C LH® for some c), if k is positive w.r.t. h then we define
ha < kha < k'ha whenever a < ha and ha > kha > k'ha whenever a > ha, and if k is negative w.r.t. h then
we define ha < kha < k'ha < a whenever a > ha and ha > kha > k'ha > a whenever a < ha.

(¢i) For any h and h' with h # k', the ordering relationships between Xo(h) and X2(h') will be established as
follows: If ha < h'a then for all h € LH we define kha < kh'a. The extension of <; to X, defined by (i) and
(i) is denoted by <.

(¢i7) Taking the reflexive and transitive closure of <, we obtain the required ordering relation <, .

Two elements z and y in X» are comparable if and only if it can be defined only by either (i), (i7) or (ii7).
Otherwise, they are incomparable. For example, if k and k' are incomparable, then it follows that kha and
k'ha are incomparable; or if ha and h'a are incomparable, then for any k, k' € LH we infer that kha and k'h'a
to be incomparable. For additional example, suppose that ha < h'a, h,h' € LH{ and ha < kha < k'ha. Then,

it can be seen that kha < kh'a, but the pair of elements kha and h'a as well as the one of ¥'ha and kha are



incomparable.
For illustration, we represent a segment of the poset X5 in Figure 6 (b). It can be verified that AX» is well
defined and fulfils all axioms in Definition 3.2.

For the sake of convenience, we recall some notions given in [8].

Definition 3.3 For any h,k € LH, we shall write hx << kx(hz << Iz) if for any b,k in UOS and any
m,n € Nat,V"h'he < V™k'kx(V"h'he < Ix). In the case that the last inequalities are always strict, then we
shall write hx < kz(hx < Ix).

As an example, the inequalities V*"VeryMoreTrue < V™ LittleVeryTrue, for all n and m, are accepted

intuitively, and so we can write MoreTrue << VeryTrue.

Definition 3.4 Let z and u be two elements of an RH_algebra AX = (X,G, LH,<). The expression h, ...hju
is said to be a canonical representation of x w.r.t. w in AX if (i) x = hy, ... hyu and (i) h; ... hyu # hi—1 ... hu
for every i <mn.

The easy proofs of all results presented in the rest of the section can be found in [7] with almost unchanged.

Theorem 3.1 Let AX = (X,G,LH, <) be an RH_algebra. Then, the following statements hold.
(3) If he << kx then hx < kz.
(ii) The operations in LH® are compatible .

(éd) If v € X is a fized point of an operation h in LH, i.e. hx = x, then it is also a fized point of any
other k in LH.

(iv) If £ = hy...hju, then there exists an index i such that the suffix h;...hiu of = is a canonical

representation of x w.r.t. u and hjx = x, for all j > i.
(v) If h # k and hx = kx then x is a fized point.

(vi) For any h,k € LH, if x < hx(z > hz) then Iz << hxz(Ix >> hx) and if he < kz,h # k and
{h,k} ¢ LH¢ for every i € SI¢, then hx << kz.

Because of statement (ii7) of Theorem 3.1, we can use terminology “a fixed point” instead of “a fixed point of
an operation”. In addition, although statement (iii) is simple but it describes an interesting intuitive property
of linguistic meaning: if hz = x, i.e. no proper new meaning can be generated from z by means of a hedge h,
then also no new meaning can be deduced from z by means of any other hedge k. It seems to be appropriate

to the intuition!



Theorem 3.2 For any h € LH, there exist two unit operations h™ and h™ such that h™ is negative and hT is

positive w.r.t. h and for any hy,...,h, € LH,x € X,
V"h~hx < hy ... hihe < V"htha, if he >z, and V"h™hx > h, ... hihe > V"hThe, if he < z.

Corollary 3.1 (i) Suppose that he < kx. If {h,k} ¢ LH¢ for every i € SI°, then for any two strings of hedges
0 and &', the inequality Shx < §'kz holds.

(ii) Let u be an arbitrary element in X and x € LH (u). Then, there exist always elements y,z € UOS(u), i.e.
z and y are generated from u by means of the unit operations, such that y > x > z. Furthermore, either one
of the equalities u < x < V™hu and u > x > V"™hu holds, for a suitably chosen h € LH and for a sufficiently

great number n € Nat.

3.2 Criteria for Determining the Comparability of Elements

It will be seen that the ordering of X is some what similar to the alphabetical one. The following theorem
establish criteria for determining the ordering relationship between elements of an RH_algebra. Here, the
notation z; is defined as follows: if x = h,, ... hiu, then z.; denotes the expression hj_; ... hju, for 1 < j <

n + 1, with a convention that z.; = u.

Theorem 3.3 Let £ = hy,...hiu and y = k,, ...k1u be two arbitrary canonical representations of © and y

w.r.t. u, respectively. Then
I.z=y iff m=n and h; = k; for all j < n.

2. If © # y then there exists an index j < min{m,n} + 1(here as a convention it is understood that if
j = min{m,n} + 1, then either h; = I for j =n+1<m ork; =1 for j =m+1 < n) such that
hjr = kj, for all j' < j and

(a) z <y iff one of the following conditions holds
o hjxe; < kjre; and dkjx<j < d'kjrc; or Shjxe; < 0'hjx<j, if hj, k; € LH{ for some i € SI¢(
and hence h; # I and kj # I), where 6 = hy, ... hj11,8 = km .. kjt1.
o hjxe; < kjx<j, if otherwise ( i.e. either j < min{m,n} and, for every i € SI¢,{h;, k;} ¢ LHf
or j =min{m,n} + 1 and one of hj, k; is the identity I).
(b) x and y are incomparable iff there exists i € SI° such that both h; and k; together belong to LHf

and one of the following conditions holds

e hijr.; and kjx; are incomparable,



. hj$<j < k]'56<]' and 5kj£l7<]' £ 6’kj£l7<j,

. hj$<j > k]'56<]' and 5lh]'£l7<]' £ 6h]'£l7<]'.

Remark 3.2. 1) At first glance, one may think that the theorem is meaningless, because it leads from the
comparison of two elements to the comparison of two other elements: The comparison between x = dh;z;
and y = 0'kjz<; is moved to that between =’ = Jk;z<; and y' = 0'kjx<; or between z' = dh;x; and
y' = ¢'hjx<;. But, notice that the length of the common suffix of =’ and y' is greater than that of z and y. It
leads to a procedure by which in a finite number of steps one can decide whether the given elements x and y
are comparable and which one is greater than the other.

2) If = is not a fixed point and w is an arbitrary element in X, then the canonical representation of z w.r.t. u
is unique, if it exists.

The proofs of Propositions 3.1-3.4 below will be omitted. Their similar proofs can be referred to [7].

Proposition 3.1 For any x € X and i € SI°. If there exists a hedge h € LH{ such that hx is a fized point,
then so is kz, for any k € LH{.

As a consequence of Proposition 3.1 and (A4), we have the following.

Proposition 3.2 For any x € X and h,k € LH;, for some i € SI° and for any § € LH*,6hx is a fived point
iff 0kx is a fized point.

Recall that the RH_algebra is constructed from a given PN-homogeneous hedge algebra. Naturally, one may
ask whether the PN-homogeneous property of LH™ + I (but not of Ht + I) still holds if we replace Hf with

LH? in Definition 3.1. The following proposition gives the answer to this question.

Proposition 3.3 If the unit operation V in LHC + I is positive (negative, resp.) w.r.t. a certain h in Hf, for

some i € SI°, then V is also positive (negative, resp.) w.r.t. any operations in LHY.

Proposition 3.4 For any h,k € LH{, with i € SI¢, and for any x € X. The following statements hold:
(1) Odhx >z (6hx < x) iff 0kx > x (dkx < x), for any § € LH*.
(¢i) If hx # kx, then 0hx and 0'hx are incomparable iff 6kx and §'kx are incomparable, for any §,6' € LH*.

(tit) Ohx > §'hx iff Skx > 6'kx, for any §,8' € LH*.

Proposition 3.5 Let us consider an abstract algebra AX = (X,G,LH), where X = {oc:c € {aT,a"},|o] <
p} U{1,W,0}, p is a positive integer, G = {1,a™,W,a™,0} with 1 > a™ > W > a~ > 0, and LH is the
set of unary operations constructed as in Section 2. Let mpy is an arbitrary mapping mpy : LH — {+,—}
(it means that if mpy(h) = + or mpy(h) = —, then V (and hence all operations in LH™ ) is positive or

negative w.r.t. h, respectively), which satisfies Proposition 3.3, i.e. mpyn restricted on each graded class of LH



is constant. Then there exists a semantically ordering relation < over X such that X and LH are semantically

consistent.

Proof. Based on Theorem 3.3, we shall construct step by step a semantically ordering relation < over X. Note
that X = XT U X~ U{1,W,0}, where X* = {oa™ : |o| < p} and X~ = {oa™ : |o| < p}.

(1) For every z = ga®™ € X, set S(x) = {0'a™ : ¢’ is a suffix of 7, i.e. ¢ = ¢”0'}. On S(x) we introduce a
semantically ordering relation (S(x), <) defined recursively as follows:

For |u| = 2, i.e. u = ¢'a™ = ha™ € S(z), we define ha®™ > a* if h € LHY and ha™ < a* if h € LH™.
Now suppose that the ordering relation between hu and u has been defined for all z = hu € S(z) such that
|hu| < j < p. Consider element 2z’ = khu € S(z). In the case mpn(h) = +, for k € LH™" (intuitively, it means
k is positive w.r.t. h), we define v < khu < hu if v < hu < uw and v > khu > hu if v > hu > u, where v € S(x)
and |v| < j; for k € LH~ (intuitively, it means that k is negative w.r.t. h), we define u < khu < hu if u < hu
and u > khu > hu if v > hu; In the case mpn(h) = —, for k € LH~ (intuitively, it means k is positive
w.r.t. h), we define v < khu < hu if v < hu < u, and v > khu > hu if v > hu > u, where v € S(z) and
|v| < j; for k € LH™ (intuitively, it means that k is negative w.r.t. h), we define u < khu < hu if u < hu and

u > khu > hu if u > hu.

It can be verified that (S(z),<) is linearly ordered, for every x € XT. Clearly, X+ = U{S(z) : = €
X+ and |z|] = p+ 1} and it is easily seen that the defined in such a way ordering relations on S(z) and S(y)
are consistent, that is they are identical on S(z) N S(y).

(2) Now let us consider two arbitrary elements z,y € X1 and suppose that * = chu and y = Tku, where
h# I and k # I and v is a maximal common suffix of x and y, and hence h # k. Obviously, for all u € X,
{z,y} ¢ S(u), i.e. we have not defined an ordering relationship between x and y, yet. Now, we define it by

induction on |u.

For |u| = p, we have 0 = 7 = € (the empty string) and ¢ = hu and y = ku. If {h, k} ¢ LH* for any superscript
¢, i.e. h and k are converse, then x,y must be defined to be comparable and the ordering relationship between
x and y is induced by the ordering relationships between hu and u and between ku and w, which have been
defined in (1) already. If {h,k} C LH® for a suitable superscript ¢, then there are two possibilities. The
first one: h and k are comparable, say, h < k. In the case that v < hu, we define hu < ku, and in the case
u > hu, we define hu > ku. The second one: h,k are incomparable. In this case we define hu and ku to be

incomparable.

Suppose that the ordering relationships between two elements z and y have been defined for any = and y,
whose maximal common suffix u satisfying |u| > j. Consider two arbitrary elements 2’ = o'hu’ and y' = 7'ku’

such that |u'| = j.



If {h,k} ¢ LH® then o'hu’' and 7'ku’ are comparable and the ordering relationship between z' and y' is
defined similarly as in the corresponding case above. Suppose that {h,k} C LH® and, furthermore, h and k
are comparable, say, h < k. If h and k belong to two different graded classes LH; and LH of LH®, then we
define o'hu’ < 7'ku’ whenever ku’ > u' (note that this inequality has been defined already), and ¢'hu' > 7'ku'’
whenever ku' < u'. Now let h,k belong together to a certain graded class. For ¢',7" such that ¢’ = 7’ we
define o'hu’ < T'ku’ if v’ < ku', and o’hu’ > T'ku’ if w' > ku'. For ¢/, 7" such that ¢’ # 7' we define z < y
if it can be found that either hu' < ku' and o'ku’ < 7'ku’ together hold or hu' < ku' and o'hu’ < 7'hu'
together hold; and similarly we define z > y if it can be found that either hu' > ku' and o’ku’ > 7'ku’ hold
or hu' > ku' and o’hu’ > 7'hu’ hold. Note that the comparability of hu' and ku' (with ¢/ = 7' =€) and the
ordering relationships between o’'hu’ and 7hu’ and between o'ku’ and 7'ku’ have been defined already, since
|hu!| = |ku'| =7+ 1 > j.

(3) It can easily be verified that the just constructed ordering relation is antisymmetric. Therefore, the desired
semantically ordering relation on X is obtained by taking its reflaxive and transitive closure and denoted also
by < . By an analogous way, we can define the semantically ordering relation on X~ = {oa™ : |o| < p}.

The desired semantically ordering relation on X is now induced by those have been defined on X+ and X~
and by the inequalities 1 > Xt > W > X~ > 0.

Now, we can verify that LH and X are semantically consistent. Indeed, suppose that h < k, and so
{h,k} C LH* for a suitable c. It can be deduced from the above construction of < on X, that for all z € X
we always have hz < kz if z < kx and hx > kz if £ > kz. On the other hand, if A and k& are incomparable,

then so are hx and kz, whenever kx # z, (by Step (1)and (2) above).

4 LATTICE STRUCTURE OF RH_ ALGEBRAS.

In this section, we shall study some main properties of RH_algebras. It will be shown that RH_algebra is a
distributive lattice if the set of the primary generators is a chain. Before proving distributivity of RH_algebras,
we show first that every RH_algebra with a chain of the primary generators is a lattice and, moreover, we give

a recursive formula for computing the meet and the join of any two elements of the algebra.

Theorem 4.1 Let AX = (X,G,LH,<) be an RH_algebra and G be a chain of generators. Then AX is a
lattice. Moreover, if x and y are incomparable, then they can be represented in the form x = dhw and y = vkw,

where h,k € LH{, for some i € SI¢, and §,v € LH*, and we have
zUy(=dhw Uvykw) = dw' Uvyw' and z Ny(= dhw Nykw) = 62" N2/,

where w' = (hV k)w and z' = (hAk)w if hw > w; w' = (hAk)w and 2/ = (hV k)w if hw < w and U,N stand

for join, meet in AX, while V,\ stand for join and meet in LH® + I.



Proof. See Appendix A.
For any z € X, let us denote LH[z] = {hxz : h € LH+1TI}. As a consequence of Theorem 2.1 and Theorem 4.1,

it follows directly the following.
Corollary 4.1 Let AX = (X,G,LH, <) be an RH_algebra and G is a chain. The following statements hold:
(i) LH(x) is a sublattice of AX.

(i) LH[z] is a distributive sublattice of AX. Furthermore, for any © € X and for any two compatible
hedges h and k in LH, we have

(hVE)x ifhe >z,
(hAK)x, if he <u,

(hAE)x  if he >z,

}“”U’“”:{ (hV k)z, ifhe <.

and hxNkx = {

Proposition 4.1 Let AX = (X,G,LH,<) be an RH_algebra and G is a chain. Then, for any h,k € LHf,
where i € SI¢, and for any x € X such that hx # kz, there exists a lattice isomorphism f from LH (hz) onto
LH (kz) defined as follows: f(dhx) = k.

Proof. By Proposition 3.4.

Before proving the distributive property of RH_algebra, it may be useful to recall the following characteri-

zation of distributivity for lattices.

Theorem 4.2 [2] Let L be a lattice. Then L is a non-distributive lattice iff Ms or N5 can be embedded into
L as its sublattices, where My or Ns are two five-element lattices depicted in Figure 7.

We now prove the distributivity of RH_algebras with a chain of the primary generators.

Theorem 4.3 Let AX = (X,G,LH, <) be an RH_algebra. If G is a chain then the lattice AX is distributive.

Proof. See Appendix B.
5 SYMMETRICAL RH_ ALGEBRAS.

In natural languages there are many linguistic variables, which have only two distinct primary terms. These
terms have intuitive contradictory meaning such as ‘true’ and ‘false’, ‘old’ and ‘young’, ‘large’ and ‘small’, ‘tall
and ‘short’, etc. This suggested the authors of [9] to investigate extended hedge algebras with exactly two
primary generators, one of which is called positive generator, denoted by ¢, and the other is called negative
generator, denoted by f. The positive and negative generators are characterised by Vit > ¢,V f < fand t > f.
Under such a normalization, it seems reasonable to consider ‘true’, ‘old’, ‘large’ and ‘tall’ as positive generators
and ‘false’; ‘young’, ‘small’ and ‘short’ as negative ones. Therefore, in this section we shall examine RH_algebras
AX = (X,d, LH, <) with exactly one positive ¢, one negative f, the special constants 0,1 and the neutral W,
ie. G ={1,t,W, f,0}.



For every x in X, we now define a so-called contradictory element of z as follows.

Assume that & = h,, ... hia, where a € {t, f}, is a representation of z with respect to a. An element y is
said to be a contradictory element of z if it can be represented as h, ...hid', with o' € {¢t, f} and a’ # a. The
contradictory element of 1 is 0 and, conversely, the contradictory element of 0 is 1. In the case where x = W,
we define contradictory element of W to be just itself. For example, y =‘very very false’ is a contradictory
element of x =‘very very true’; v =‘very little bad’ is a contradictory element of u = ‘very little good’. By the
definition, it is obvious that the positive generator is a contradictory element of the negative one and vice-versa

and if y is a contradictory element of = then z is a contradictory element of y.

Definition 5.1 An RH_algebra AX = (X,G, LH, <), where G is defined as above, is said to be a symmetrical
RH_algebra provided every element x in X has a unique contradictory element in X, denoted by ™.

We now give a characterization of symmetrical RH_algebras.

Theorem 5.1 An RH_algebra AX = (X,G, LH, <) is symmetrical iff AX satisfies the following condition:

(SY M) For every element x € X,z is a fized point iff x~ 1is a fized point.

Proof. To prove the necessity, assume the contrary that z is a fixed point and =~ # hz ™, for some h € LH.
By definition, (z7)~ = z and the contradictory element of u = hz~ is the element u~ = hz = z. This shows
that u and =z~ are two distinct contradictory elements of z, a contradiction to the definition of symmetrical
RH_algebras.

To prove the sufficiency, we assume that AX satisfies the condition (SYM). By the definition of the contra-
dictory elements, each element 1 and 0 has, evidently, a unique contradictory element. Now, let us consider
an arbitrary element z € X \ {1, W, 0} and let v and v be contradictory elements of z.

Suppose that u and v are expressed in the form v = h,...hj¢” and v = k,, ...k1c™, which are defined
based on two given representations h,, ...hic and ky, ...kic of z, where ¢,c™ € {¢t, f} and ¢ # ¢™. It is known
that there exists an index i < min{n, m} such that h;...h;cis the canonical representation of z w.r.t. ¢. This
implies that h; = k; for all j <. It is clear that if m = n =4 then u = v. If either ¢« < n or ¢ < m then z is
a fixed point, because = h; ... hyc = h;y1h; ... hic. By the condition (SYM), h;...hic™ is also a fixed point
and, hence, we have again u = v, which concludes the proof.

Notice that, by virtue of Theorem 4.3, every symmetrical RH_algebra AX = (X, G, LH, <) is a distributive

lattice. Moreover, we have the following,.
Theorem 5.2 For every symmetrical RH_algebra AX = (X,G, LH, <), the following statements hold.
(i) (hx)™ =hx~, for every h € LH and z € X.

(id) (z7)” ==z, for every z € X.



(ii) hx >z iff he— < x~, for every h € LH and x € X.
(iv) hx > kx iff ha— < kx~, for any h,k € LH and x € X.
(v) z<yiffx= >y, for any z,y € X.

(vi) (zUy)”" =z Ny~ and (xNy)” =z Uy, for any z,y € X, where U and N stand for join and

meet, respectively, in AX.

Proof. See Appendix C.

6 ALGEBRAIC STRUCTURES OF FINITE SYMMETRICAL
RH_ALGEBRAS.

It is well-known that to model logical operations, in investigations of [0,1]-valued fuzzy logics
(e.g. [12,15,13,16,26]) ones have extended respective Boolean logical operations to the unit interval [0, 1] mainly
by using ¢t-norms and ¢-conorms. For example, one way of extending the classical binary implication to the

interval [0, 1] by using a t-norm T is to define the residuation
Rr(z,y) = Sup{z €[0,1] : T(z,2) <y}.

An another extension of the implication is to take advantage of the equivalence between statements “NOT

A OR B” and “IF A THEN B” in Boolean logic to define the so-called S-implication
IT(I‘,y) = S(]' - a:,y) =1- T(l‘, 1- y):

where 7" is a t-norm and S is its dual ¢-conorm.

Several [0, 1]-valued propositional logics such as Lukasiewicz logic, Godel logic, and Product logic can be
axiomatised and their algebraic versions are algebraic structures of the interval [0,1] such as MV _algebra,
Heyting algebra and Product algebra, respectively, (cf [26]). It should be also emphasised that in dealing with
formalised mathematical theories, ones have discovered the close relation between logics and abstract algebras
(e.g., [31,32]).

Motivation by such a view, in this section we shall discuss some algebraic structures of finite symmetrical
RH_algebras. It is shown that in these algebras we are able to define operations, which, according to their
properties, may be used to model logical operations in a fuzzy linguistic logic.

Let us consider a symmetrical RH_algebra AX = (X,G, LH, <) with G = {1,a™, W,a™,0} where a™ is the

positive generator and a~ is the negative one.



It is known that the RH_algebra AX under consideration is a distributive lattice. Thus, the lattice operations
join and meet, can model the semantics of the logical disjunction and conjunction. Now, we show that the
operator ~ can be interpreted as a negation.

Let AX = (X,G, LH, <) be a symmetrical RH_algebra, where underlying set X is defined as follows.

First, we define LH,[G], for n > 0, by the following procedure:

LHy[G] = G,LH,[G] = LH[G] = | J{ha:h € LH +1},
a€G

LH, 1[G = LH[LH,[G]].
It is easily seen that
G CLH[G] C LH[G] C...C LH,[G] C ...

In general, this chain is infinite. However, in applications, we use only a bounded number of hedges in
concatenation and, hence, this chain of inclusions will be stationary. Thus, let p be a fixed positive integer
and assume that for any © € LHp[G] and x ¢ LH,_1[G], hz = z holds, for every h € LH and so, we have
G C LH|G] C LH,|G] C ... C LH,[G]. Let X = LH,[G]. Clearly, AX = (LH,|G|,G,LH, <) is well-defined.
It is known that this algebra AX is a complete distributive lattice.

As observed by Ho and Wechler in [9], the negation of vague concept may often be the concept having the
opposite meaning, if it exists. For example, ‘good’ and ‘true’ are vague concepts and they involve an intuitively
intended meaning. Refuting this meaning, one may often think of the meaning of the concepts ‘bad’ and ‘false’,
that have the opposite meaning (the antonym) to ‘good’ and ‘true’ and vice-versa. This interpretation was
adopted in many investigations of fuzzy reasoning (see, e.g., [28,35,38]). Certainly, it may still be possible to
discuss how to refute statements containing vague concepts which are not primary concepts such as ‘ Very little
true’. However, it is natural to regard the negation of ‘Very little true’ as to be a concept of ‘false’ and it
may most probably be the concept ‘ Very little false, which has the opposite meaning to the concept ‘ Very little
true’. This gives us a way to define the logical negation. However, the important thing is to show that the
negation defined in this way has sufficient properties to develop a fuzzy logic. Note that the hedge algebras
involve a fuzziness in their structure.

Therefore, analogous to the paper [9] by Ho and Wechler, we now define the negation of an element z in AX
to be its contradictory element, i.e. =& = . This operation — is called concept-negation operation, because the
elements of AX can be considered as linguistic terms, i.e. vague concepts. The concept-implication operation
in this algebra, denoted by =, is defined in this paper in a regular way, i.e. by means of the negation and the

join operations, as follows:

r=>y=-xUy, foranyxandyof AX.



Let AX = (X,G,LH,<), with G = {1,a™,W,a™,0} and underlying set X defined as above, be a finite
symmetrical RH_algebra. As examined above, the operations U, N, =, = can be derived in AX and so, we can

write
AX = (X7 G7 LH7 S) _‘7 U7 n) :>7 07 W7 1)'

We are now ready to establish some elementary properties of the negation operation and the implication

operation.

Theorem 6.1 Let AX be a finite symmetrical RH_algebra. Then
(i) —(hz) = h—zx, for every h € LH and z € X.
(it) —(—z) ==z, for all x € X.
(i) —(zUy)=—-zN-y and ~(xNy)=—-xzU-y, foral z,y € X.
(iv) zN-xz <yU-y, for all z,y € X.
(v) zN-xz<W <zU-uz, for all z € X.
(vi) =1 =0,-0=1 and "W =W.
(vit) x>y iff @ < -y, for al z,y € X.

Proof. It is immediately deduced from the definition of the operations defined above and Theorem 5.2.

It is worth to mention that the statements (i7) — (iv) of Theorem 6.1 show that the algebra AX is a Kleene
algebra in the sense of Skala [34] and (vi) shows that this algebra includes the 3-valued Lukasiewicz algebra
{0, W, 1} as its subalgebra. At the same time, the statements (ii) — (i7i) show that the triple (N,U, ) is a De
Morgan system and AX becomes a Morgan algebra?® in the sense of Negoita and Ralescu [29].

As a consequence of the definition of the concept-implication operation and Theorem 6.1, we have the

following.

Theorem 6.2 Let AX = (X,G,LH,<,—,U,N,=,0,W,1) be a finite symmetrical RH_algebra. Then,
() z=y=-y= -z,
(i) = (y=2)=y=(z=2),

(i) z=>y>a' =y ifz <z and/ory >y,

4 Also named Soft algebra



(iv) =>y=1iffx=0o0ry=1,
(v) 1=>z=zandz=>1=1;0=2=1and z = 0 = -z,
(vi) z=>y>W iffeithera <Wory>W,andz=y<W ifft >W andy <W.

The statement (iv) of Theorem 6.2 shows that the concept-implication operation = is an extension of the
implication operation in the two-element Boolean algebra {0,1}.

On the other hand, since the finite symmetrical RH_algebra AX = (X,G, LH, <) is a distributive lattice,
it is known [1,32] that AX is a relatively pseudo-complement lattice. That is, for any z,y € X, the pseudo-
complement of x relative to y, denoted by z — y, always exists, i.e. £ — y is the greatest element of the
set of elements z in X such that x Nz < y. We now formulate fundamental properties of the operation —
in finite symmetrical RH_algebras in the following theorem. The proof of the theorem can be found in [32]

(Theorem 12.2).

Theorem 6.3 Let AX be a finite symmetrical RH_algebra. Then,
Lz—y=1iffz<y,
221—-y=y;0—-y=1,

3. xN(z—y) <y,

4. If t1 < x5 then o >y < x1 — Y,
5 Ify1 <y thenx = y1 <z = Yo,
6. zN(x—y)=xzNy,

7. (x—y)Ny =y,

8 (z—-yN(z—2)=x—(ynNz),
9. (x—=2)N(y—2)=(xVUy) = 2,
10. 2> (y—2)=(@nNy) 2 2z2=y— (v — 2),
11. zoz<(z=>(x—>y) = (z2—>y),
12 (x> y)N(y—2)<z— 2z

13. z<y—(xNy),

Yz y—2z)<(z—y) = (z-—2),



15. zn((zNnz) = (zNy) =zN(z = y).

It is interesting to note that the statements 1) and 4)-7) of Theorem 6.3 show that the algebra AX =
(X,G,LH,<,U,N,—,0,1) is a Heyting (pseudo-Boolean) algebra. Furthermore, we are able to define another

negation operation, denoted by ~, via N-complement operation as follows
~zx=x— 0, for any z in X.

Consequently, by definition, we get

(1 ifz=0,
=91 0 otherwise.

The fundamental properties of the negation operation ~ in finite symmetrical RH_algebras are given in the

following theorem.
Theorem 6.4 In every finite symmetrical RH_algebra AX,
1. If x <y then ~y <~ ux,
2.~1=0,~0=1,
3. zN~x=0,~(zN~z)=1,
4. ~(@Uy) =~aN~y,~aU~y <~ (zNy),
b ~zUy<z—oy,x—oy<~y—o~rz,
6. 1 3>~y=~(xNy)=y >~ x,
7.~~~ (= y) <z =~y

The proof of theorem can follow directly from the proof of Theorem 12.3 [32].

To close this section, we shall point out that the class of the symmetrical RH_algebras and the class of
pseudo-complement, symmetrical RH_algebras are not included in class of BL_algebras.

Firstly we need a notion: a symmetrical RH_algebra AX = (X,G,LH,<,—,U,N,=,0, W, 1) is said to be
degenerated if H and H ™~ are not empty and hc = cfor every h € H and ¢ € {a™,a”} C G. In the symmetrical
algebras, it can easily shown that AX is non-degenerated if HY and H~ are not empty and hc # ¢ for some

he Handce {at,a" } CG.
Theorem 6.5 1) Each non-degenerated symmetrical RH_algebra

AX =(X,G,LH,<,-,U,N,=,0,W 1)



with the product e = N is not a residuated lattice.
2) Each non-degenerated pseudo-complement symmetrical RH_algebra AX = (X,G,LH,<,U,N,—,0,1) with
H~ containing at least two incomparable hedge operations, denoted for example by Poss(possibly) and
App(approximately), is not a BL_algebra.
Proof. It is known that a lattice L is residuated if the condition “Vz,y,z € L,z ey < z iff <y = 2” holds
(see [36]). Take three elements y = True,z = VeryFalse and x =y = z = -y U z = False U VeryFalse =
False, where G = {False, W, True} and Very € HT. Clearly, we have zey = xNy = False > VeryFalse = 2.
This shows that the statement 1) is valid.

To prove 2), without loss of generality we suppose that G = {False, W,True} and False < W < True.
Put © = AppFalse,y = PossFalse. Clearly, xt < W and y < W,z and y are incomparable and (x — y) U (y —

z) < W < 1. The last inequality shows (see [36]) that AX is not a BL_algebra.

7 CONCLUSIONS.

In this paper RH_algebras have been introduced and investigated. Many interesting properties of RH_algebra
have been examined. They show that RH_algebras have a rich enough algebraic structure and, therefore, these
algebras can be taken as an algebraic basis for a kind of fuzzy logic. It is worthwhile to emphasise that
the axioms of RH_algebras express natural properties of linguistic hedges and linguistic terms that can be
formulated in terms of a designed ordering relation (called semantically ordering relation). Thus, these axioms
can be considered as an axiomatization of linguistic domains of linguistic variables. If we agree that RH_algebras
can be taken as an algebraic foundation for a kind of fuzzy logic, then the important result of our approach is
that this logic structure can be constructed merely based on semantic properties of hedges and vague concepts
in natural language.

Since, as we have observed, there is a close relationship between the algebraic structure of sets of truth values
and characteristics of the logics based on these sets, RH_algebras may provide new characteristics of certain
fuzzy logics. It is shown [4,5] that RH_algebras can give a basis to study new methods in fuzzy reasoning and,

it can be observed, that these methods are qualitative.

APPENDIXES

Appendix A. The proof of Theorem 4.1

From (A4) it follows that if z and y are incomparable in X, then there exists an element a € G such that

x,y € LH(a), since G is a chain. Thus, there exist two canonical representations of z and y w.r.t. a, say



= hp...haand y = ky, ... k1a. On account of Theorem 3.3, there exists an index j < min{m,n} + 1 such
that h; = k;, for any i < j. Furthermore, there exists i € SI¢ such that hj, k; € LH{ . Let 0 = hp ... hjp1,7 =
km ... kj+1,h = hj, k = k;. With this notations we have © = dhw and y = ykw, where w = h;_1 ... hia.

Since the proof for the meet can be obtained by duality, we shall only prove the formulas for the join.

Let us first consider the case where hw > w. Then, we also have kw > w. It implies that (h V k)w > w and
hVvk € LHY , since LH;, is a sublattice of LH® + I. By Definition 3.2 and (A44), we have §(hV k)w > 6hw = =
and v(h V E)w > ykw = y.

Now, we shall prove that for any z € LH (a) such that z > {z,y}, the inequality z > {6(h V k)w,vy(h V k)w}
holds.

Suppose that z = ¢, ...%1a is the canonical representation of z w.r.t. a and suppose firstly that z € LH(w).
So, we have z = t,...t;1t;w. Since z > {z,y} it follows from Theorem 3.3 that ¢t;w > {hw, kw}. Remember

that hw > w, and hence, it implies that ¢; > hV k and t;w > (b V k)w. In the case that t; ¢ LH;

i)

by (v) of
Theorem 3.1 we obtain t;w > (h V k)w and so, we infer that z > {0(h V k)w,y(h V k)w}.

In the case that t; € LH{ , let the equality t;w = (hV k)w hold. If ¢; # (hV k), then by (iv) of Theorem 3.1,
w is a fixed point and hence w = hw, which is contrary to the just adopted assumption. Thus, t; = (hV k).
Since tjw > hw,tjw > kw and z > {z,y}, it follows from Theorem 3.3 the following desired inequalities
z > {6(hV Ek)w,y(hVk)w}.

Now, assume that tjw > (hV k)w. Thus, z = t,...t;w > t,...t41(h V k)w, by (A4). Since z > {z,y}
and, as it is easily verified, z = dhw < 0tjw,y = vkw < ~yt;w, we infer again by (A4), that z > {6t;w, vt;w}.
Applying Proposition 3.4 to the last inequalities, we obtain t,,...¢t;41 (hVE)w > {6(hV Ek)w,v(hV k)w}. Hence,
z > {6(hV k)w,y(h V k)w}, which are the desired inequality.

Now, we are going to suppose that z ¢ LH(w). Then, there exists an index j; < j — 1 such that h; = ¢; for
any i < ji, and tj, u > hj,u, whereu = hj, 1 ...hya. If there is no index i; € SI¢ such that both t;,, h;, € LH;,
then it follows from (¢) of Corollary 3.1 that z > {6(h V k)w,y(h V k)w}. In the case there exists i; € SI° such
that t;,,hj, € LH; , we shall prove the assertion by induction on the number s = j —j; — 1 of hedge operations
as follows.

For s =0,ie. j1 =j—1and w = hj_qu, it follows from (ii) of Theorem 3.3 that z > {dht;_1u, vkt;_1u},
because t;_iu > hj_ju. Since hw = hhj_i1u > hj_1u = w and the elements © = dhhj_1u and y = vkhj_1u
are incomparable, it follows from Proposition 3.4 that htj_iu > t;_1u and that dht;_iu and vktj_iu are
incomparable. Clearly, z € LH(t;_1u) and, analogously to the case where z € LH (w) and w = t;_1u, we can

prove that z > {6(h V k)tj_1u,y(h V k)t;_1u}. Moreover, it follows from (A4), that

d(hVE)ti_1u>d(hVEk)hj_yu=38hVEk)w and y(hV E)tj_1u > v(hV k)h;j_1u =v(h V k)w.



Thus, z > {6(h V k)w,y(h V k)w}.
Assume the induction hypothesis saying that the inequality holds for every s < i. For s = i + 1, we have
ji+i+l=35-1 and w = hj_l . hjl+1hj1u. Set w' = hj_l ... hj1+1tj1U- It follows from Proposition 3.4 that

hw' > w', since hw > w and t;,,h;, € LH;, . Using (A4) again, we get
z Z {(5hhj,1 e hj1+1tj1’ul,’)/khj,1 e hj1+1tj1’u}

and, by Proposition 3.4, hh;_1 ... hj, +1t;,u and ykhj_1 ... hj y1t; u are incomparable. If z € LH(w') then,

by the same argument as for the case z € LH(w), we obtain
z Z {5(}1 \Y k)hj_l . hj1+1tj1u,'y(h V k‘)hj_l e hj1+1tj1u}.

Hence, by (A4) applied to tj,u > hj,u, we have z > {§(h V k)w,y(h V k)w}.

If » ¢ LH(w') then there exists an index j, such that j; +1 < jo < j — 1,hy =ty for any 7' satisfying
jo >i > ji+1,and tj,u’ > hj,u', where u’ =t;,_1 ...t;, u. By a similar argument as in the previous case where
z ¢ LH(w), it can be seen that if there is no is € SI¢ such that t;,, hj, € LH{, then z > {§(hVE)w',y(hVE)w'}
and hence, z > {0(h V k)w,v(h V k)w}.

Conversely, if there exists io € SI° such that t;,,h;, € LH{, then, by the induction hypothesis, we have
2> {0(hV Ek)hj_1...hjp1tju',y(RV k)hj_y ... hj,11tj,u'}
Since tj,u' > hj,u’, we get
S(hV k)hj_1...hjpitpu' > 8(hV k)hj—1 ... hjyp1hju’ > 6(hV k)w
and
Y(hVE)hj_1 ... hjypat,u’ >RV E)hj_y ... hjyr1hju’ > y(hV E)w.

So, z > {d(h V k)w,v(h V k)w}, which is what we desire.

For the case where hw < w, we infer kw < w. In addition, we observe that §(h Ak)w > dhw and y(hAk)w >
vkw. By an analogous argument as above, we can prove that z > {6(h A k)w,y(h A k)w}, for any z € LH (a)
such that z > {z, y}.

Therefore, we have proved that if the join of the two elements on the right hand side exists, then so does the
join of z and y and we have x Uy = §hw U~vkw = dw' Uyw', where w' = (hV k)w if hw > w and w' = (hAk)w
if hw < w.

So, it remains to prove is that the joins on the right hand side of the equalities of the theorem always

exist. As an example, we shall prove the join in which w' = (h V k)w occurs. Indeed, we shall prove it by



induction on the length of string § of hedges. If |§| = 0 then the required assertion is evident, since (h V k)w
and y(h V k)w are comparable. Assume that the required assertion holds for all |§| < i. As previously, we
shall prove the induction conclusion for the case where hw > w. For |§| =i + 1, if 6(h V k)w and v(h V k)w
are comparable then the conclusion is clearly true. Let ' = §(h V k)w and y' = v(h V k)w be incomparable.
Then, we can use the same argument as in the proof for z and y to prove that for any z € X, if z > {z',y'}
then z > {01 (K V E")w',y1 (' V k" )w'}, where ', k' satisfy the same assumption like that adopted on h and k.
Because |01] < 4, by the induction hypothesis the join of §; (h' V k")w’ and 1 (k' V k")w’ does exist.

Since the proof for the case where hw < w is similar, the theorem is completely proved.
Appendix B. Proof of Theorem 4.3

Suppose the contrary that AX is not distributive. On account of Theorem 4.2, it implies that either N5 or
M; can be embedded into AX as its sublattice. Assume for example that it is Ns, i.e. there exist elements
x,y,2z € X such that  and y are comparable, say > y, but each pair of z and z,y and z is incomparable and
the following equalities hold: Nz =y Nz and £ Uz =y U z. It can be seen that there exists a € GG such that
all elements z,y,z,2 N z,z U z belong to LH (a).

Suppose that © = hy ... hia,y = kn,...k1a and z = t,...t1a are canonical representations of z,y,z w.r.t.
a, respectively. By Theorem 3.3, there exists an index j < min{n,m,p} + 1 such that h;y = k;; = t;
for any j' < j, and at least one of the two operations h; and k; is different from ¢;, say h; # t;. Since x
and z are incomparable, by Theorem 3.3, h; and ¢; must belong to the same LH{ , for some ig € SI°. Set
w=nhj_1...ha,0z =hp ... hj11,0y =k ... kjp1 and 6: =15 ... tj41.

If k; = t; then tjw < hjw, by Theorem 3.3. It follows from Theorem 4.1 that 2 Uz € LH(h;w) and
yUz € LH(t;w) and so x U z # y U z, which contradicts the adopted hypothesis. Thus, k; # ;. If k; ¢ LH,
then k;w < hjw and, by Remark 3.1, we also have k;w < hjw. Hence, by Theorem 3.3, we obtain y < z, which
contradicts to the comparability of y and z. Thus, k; € LH; . According to Theorem 4.1, it follows that if

hjw > w, then

zUz e LH((h; Vtj)w),yUz € LH((k; Vtj)w),z Nz LH((h; Atj)w),y Nz € LH((k; Atj)w),
and if hjw < w, then

zUz € LH((hj ANtj)w),yUz e LH((kj ANtj)w),zNz € LH((h; Vi;j)w),yNze LH((k;Vt;)w).

By virtue of (A44), it can easily be seen that (h; Vt;)w = (k; Vtj)w and (hj At;)w = (kj Atj)w, since Uz = yUz
and z Nz = y N z. Consequently, it follows from (i) of Corollary 4.1 that h; = k;.

Now, we shall show that the assumption that the existence of elements z,y and z such that the five-element



sublattice {z,y,z,2 Nz, Uz} of AX is isomorphic onto N5 will lead to a contradiction, by induction on the
length |d,| of the string J, described above.
We shall only prove for the case hjw > w, since the argument for the opposite case is similar. Assume that

|0,] = 0. Then, it follows from Theorem 4.1 that

zUz=(h; Vtj)wUd;(h; Vi;)w,yUz=0,(h; Vt;))wUd.(h; Vt;)w,
and

zNz=(h; Atj)wNd.(h; ANtj)w,yNz=70dy(h; ANt;)wNd.(h; Atj)w.

Suppose that (h; V tj)w is a fixed point. By Proposition 3.2, it implies that hw is a fixed point, for every
h € LHE . By virtue of Theorem 3.3, it follows that the five-element lattice {z,y,z,2 U z,y Nz} is isomorphic
to the five-element sublattice {h;w, k;jw, t;w, (h; V t;)w, (hj At;)w}, which contradicts the fact that LH[w] is
distributive by (i7) of Corollary 4.1. Now suppose that (h; V t;)w and (h; A t;)w are not fixed points. So, if
(hj Vtj)w = 6.(h; V t;)w then |6.| = 0, and hence, z U z = (h; V t;)w,z Nz = (h; At;)w. Since z > y and
hj = k;, it follows from (iii) of Proposition 3.4 that (h; V t;)w > 0,(h; V t;)w and (h; At;)w > §,(h; Atj)w.
Thus, by Theorem 4.1, y Nz = §,(h; At;)w and, hence, z Nz = (h; At;)w > y N 2z, which is contrary to the
structure of NVs.

If (hj Vitj)w > 6.(h; Vt;)w then, by (iii) of Proposition 3.4, (h; A t;)w > J,(h; A tj)w, and again by
Theorem 4.1, t U z = (h; Vt;)w and & Nz = 0.(h; A tj)w. On the other hand, since y Nz = d,(h; A t;)w N
d.(hj A tj)w = z Nz, it follows that d,(h; Atj)w > §.(h; A t;)w. Also by Proposition 3.4, it implies that
dy(hj Vtj)w > d.(h; Vt;)w, which yields y Uz = d,(h; Vtj)w < (h; Vtj)w = Uz, a contrary to the structure
of Nj.

By an analogous argument, the assumption (h; V t;)w < J.(h; V t;)w also leads to a contradiction. This
concludes the proof for the case where |d,] = 0.

Now suppose as the induction hypothesis that the adopted assumption will lead to a contradiction, for all
x,y and z such that |d,| < i. Let us consider any elements z,y and z, satisfying this assumption and |d,| = i.

It follows from Theorem 4.1 that

zUz=0,(h; Vtj))wUd.(h; Vitj)w,yUz=20d,(h;Vit))wUd.(h;Vt;w,
and

Nz =70.(hj ANtj)wNd.(h; Atj)w,y Nz =0dy(hj ANt;)wNd.(h; Atj)w,

because hjw > w.



Put 2’ = 6,(h;Vtj)w,y" = 6,(h;Vt;)w and 2’ = 6.(h;Vt;)w. On the account of Proposition 4.1, it can be seen
that the five-element sublattice {«',y’, z', 2’ N2’ 2" Uz'} is isomorphic to N5. Then, by an analogous argument
as at the beginning of the proof, it follows that there exists an index j; such that j < j1 < min{n,m,p} +1
and, for any j' < ji, we have hj = kj» = tji,t;, # h;j, = kj,, where t;,,h;, € LH{,, for some i € SI°.
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Set w' = hj,—1 ... hjp1(h; Vitj)w,8, = hn.. hj41,0, = km ... kj 11,00 = t,...t;,41. Note that |5} | < i,
and, hence, according to the induction hypothesis, it leads to a contradiction. This shows that N5 cannot be
embedded into AX as its sublattice.

Similarly, we can prove that M5 also cannot be embedded into AX as its sublattice. This concludes the

proof .
Appendix C. Proof of Theorem 5.2

First, by definition of the special generators 1, W and 0, it is easily seen that the assertions of the theorem
are evident if € {1, W,0}. So, we assume that both z,y € LH({a*,a™}).

The assertion (7) is a direct consequence of the definition of the contradictory elements. Assertion (i) follows
immediately from the fact that, for every x € X, ™ is uniquely defined and z is a contradictory element of z~.

Now we shall prove assertion (ii¢) by induction on the length of the canonical representations of z w.r.t. a
generator.

Let |z| = 1, where |z| denotes the length of the canonical representation of  w.r.t. a generator c. Clearly,
x=c€{at,a”}.If Ve > c and he > c then V and h are compatible. Thus, the inequality hc™ < ¢~ follows
from Ve~ < ¢ . If Ve < ¢ and he > ¢ then V and h are converse. Hence, Ve~ > ¢ implies he™ < ¢~ . Sine
the proof for the other cases is similar, the assertion (iii) is true for |z| = 1.

Assume that (iii) holds for all = satisfying |z| < i. Let v = hz with |u| = i and consider the case that
khx > hz. If k is positive w.r.t. h, then hz > x and, by the induction hypothesis, hz~ < 2. Hence, it implies
that khz~ < hz~ (note that the equality can not occur, by assumption (SYM)). Conversely, by the same
argument, it can be proved that ku~ < w~ implies ku > w. Since the remaining cases can be proved in a
similar way, the proof of (ii%) is completed.

Now, we prove (iv). If h and k are converse, then hx > = > kz and by (¢i7) it implies that hz™ <z~ < kz ™.
If h and k are compatible then hz > kx > x, which implies h > k in LH® 4+ I (by the assumption of the
semantic consistency). By (iii), we have kz~ < = and, hence, hz~ < kz~. Note that, as above, the equality
hx~ = kx~ does not occur, since in the contrary case z~ is a fixed point and, hence, so is its contradictory
element z, by (SYM).

The proof for the last two assertions will be more complicated. First, we prove (v). It is known that if

x € LH(¢) and y € LH(c'), with ¢ # ¢, then ¢ > ¢ follows from z > y. By the definition of the contradictory



elements, = € LH(c') and y~ € LH(c) and, hence, = < y~.

Now suppose that z,y € LH(c) and z > y,and z = h,, ... hyw,y = kp, ... kyw are, respectively, the canonical
representation of z and y w.r.t. w, where w € LH(c) and h; # k;. Note that one of h; and k; may be the
identity I and in the case, say, hy = I we should have h,, ... hy = €, the empty string of operations. From

x >y it follows that hyw > kyw, by Theorem 3.3. So by (iv), we have hjw™ < kyw™.

Since hy # ki, without loss of generality, we shall assume that hy # I and prove by induction on the length

|o| of the string o = h,, ... hy that 2= < y~.

First consider the case where |o| =1, i.e. £ = hyw > y = kyy, ... kyw. If there is no index 7 in SI¢ such that
both hy,ky € LHf, then from the inequality hjw~ < kyw™ above it follows by (1) of Theorem 3.3 that 2= =
hiw™ < y~. In the opposite case, i.e. there exists an index ¢ € SI¢ such that h;, k; € LH{, from the inequality
x >y, it follows again by (1) of Theorem 3.3 that hyw > ky, ... kaohjw. If the equality x = hyw = ky, ... kehjw
occurs, then z is a fixed point and, hence, kjw is also a fixed point, i.e. y = kyw. Then, by (SYM), hyw™ and
kyw™ are also fixed points. Thus, = = hyw™ < kyw™ =y~ . If hyw > k... kahjw, then ky # I and, by
Theorem 3.3, we have hyw > kohyw. Hence, it follows from (ii¢) that hyw™ < k2hjw™. Again by Theorem 3.3,
the last inequality implies hyw™ < kp, ... kahyw™. By (44), we infer ky, ... kehiw™ < kp, ... k2kyw™ and so,
T = hiw < km...kehiw™ < ky,...kekyw™ = y—, which is what we require and the proof for the case

|o| =1 is completed.

Now let us assume as the induction hypothesis saying that x = h, ... hyw > y = k, ... kyw implies that
7 = hyp...hiw™ <y~ = kp ... kiw™, for all strings of hedges o with || < p and for any w € LH(c). To

prove the induction conclusion let us consider & = h,, ... hiw, i.e. |[o| = p.

If there is no index 4 in SI€ such that hy, ky € LHf, then from hyw~ < kjw™ it follows that = < y—, by (1)

(2

of Theorem 3.3. If there exists an index ¢ in ST° such that both h; and k; together belong to LH{, then from
x=hy...hhw >y =ky,... kw, it follows again by Theorem 3.3 that z = h, ... hjw > ky, ... kohyw. Putting
Y1 = km ... kahyw, it is clear that y; > y, by (A4). Since hyw™ < kyw~, we have y;” <y~ as a consequence of
(A4). Applying Theorem 3.3 to two element x and y, it follows that there exists an index j such that 2 < j <
min{p,m} + 1 and hj = kj, for 2 < j' < j. If x = y; then we have p = m = j and hjw<; = kjw<;, where
wej = hj_1...hyw. Therefore, we have hjw_,; = kjw_,, by (iv). Hence, z~ = hjw_; = kjw_;, =y; <y .
Now assume that « > yi, by Theorem 3.3, it follows that hjw<; > kjw<;, and thus hjw_; < kjw_;, by
(iv). Note that the length of the string ¢’ = h,, ... hj41 is less than p. Therefore, by the induction hypothesis,
it follows that ©= = hy, ... hjihjw_; <y; = kn...kjp1kjw_;. Consequently, we have 2= < y~. On account

of (i7), it is evident that the sufficiency of (v) can be deduced directly from the necessity. This concludes the

proof of (v).



To prove (vi), we find first, by (v), that © = y iff z— = y~ and that z and y are incomparable iff = and y~
are incomparable. Since the proof for the equality (x Ny)~ = 2~ Uy~ can be obtained by duality, we shall
only prove the validity of (zUy)” =2~ Ny~.

If z and y are comparable then the assertion follows directly from (v). Suppose that z and y are incomparable
and x = hy, ... hiw,y = ky, ... kyw are the canonical representation of z and y w.r.t. w, respectively, such that
h1 # k1, where w € LH(c) for some ¢ € G \ {W}. We shall prove the assertion by induction on the length of
the string o = hy, ... h;, denoted by |o].

First, let us suppose that || = 1, i.e. x = hyw. By Theorem 3.3, it follows that there exists an index ¢ in

SI¢ such that hy,ky € LHE. By Theorem 4.1, we have

Uy = (hl\/kl)wukmkg(hl\/kl)w ifh1w>w,
T2Y=Y (AW Uk, . ky(hy AkDw  if hyw < w.

Recall that LHY is a sublattice of LH®+I. Hence, if hyw > w then (hyVk;)w > w. If hyw is a fixed point, then
so are (h1 Vk1)w and kyw, by Proposition 3.1. In this case, y = kyw and xUy = (hy Vki)w. By (SYM), it follows
that hyw™,kiw™, (hy V k1)w™ are also fixed points, i.e. x7 = hyw™,y~ = kyw™. On the other hand, by (i),
it follows from hjw > w that hyw™ < w™. Thus, by Theorem 4.1, we have z~ Ny~ = (b1 Vk1)w™ = (xUy) ™.

Now assume that hjw is not a fixed point. If ks is positive w.r.t. (hy V k1), then ka2 (hy V k1)w > (hy V k1 )w.
Notice that the equality can not occur, since if ko(hy V k1 )w = (hy V k1 )w, then (hy V k1 )w is a fixed point and,
hence, so is hjw, a contradiction. By Theorem 3.3, we have &, . .. ka(h1 Vk1)w > (hy Vk1)w, which yields zUy =
km ... ko(hy V k1 )w. By the definition of the contradictory elements, we have (x Uy)™ =k, ... ka(hy1 V k1)w ™.
On the other hand, by (iii), from ka(hy V k1)w > (hy V kp)w it follows that kz2(hy V kp)w™ < (b1 V Ep)w ™.
Consequently, ki, ...k2(h1 V k1)w™ < (hy V k1)w™, by Theorem 3.3. Thus, = Ny~ = ky, ... ka(hy V kp)w ™,
which is the requirement.

Since the proof for the case hjw < w is similar, it concludes the proof for the case |o| = 1.

Now, let us suppose that (x Uy)™ =z~ Ny~ holds for all z and y with |o| < p and w € LH(c). We shall
prove the induction conclusion for = h,, ... hiw and |o| = p.

Since = and y are incomparable, it follows from Theorem 3.3 that there exists an index ¢ in ST¢ such that

hi,k1 € LH{. Moreover, by Theorem 4.1, we have

rUy = hp...h2(h1\/kl)wUkm...kQ(hl\/kl)w ifh1w>w,

Y7 by ho(hy Ak))w Uk . ka(hy Akyw, if hyw < w.
First, assume that hyw > w. By (iii), hyw™ < w™ and by (v), 2z~ and y~ are incomparable. So, on the account
of Theorem 4.1, we have = Ny~ = hy, ... ha(h1 V k1 )w™ Nk, ... ka(hy V k1)w™, where 2~ = hp ... hyw™ and

Y~ =km...kiw™. If hy...ho(hy Vk1)w and ky, ... k2(hy V k1 )w are comparable, then it is obvious by (v) that



(xUy)” = (hp ... ha(hi VE ) WUky, ... k2(hi V1 )w)™ = hy .. ho(ha VED)W™ Nk . k(i VED)w™ =2~ Ny~
which is the desired equality.

If 21 = hy... ho(hi VEi)w and y1 = ku, . .. k2(h1 V k1 )w are incomparable then, by Theorem 3.3, there exists
an index j such that 2 < j < min{p,m} + 1 and h; = k; for all j’ satisfying 2 < j' < j, and there exists an

index i’ in SI° such that hj,k; € LH{;. Thus, it follows from Theorem 4.1 that

5 Ugy = { hp - Dy (hg V Ewe; Uk ki (h V kjwe; if hjweg > wej,
hp ce hj+1 (hj AN kj)U)<j Ukm ... kj+1 (hj A k:j)w<j if hjU)<j < Wgj,

where we; = hj_1...ha(hy V k1)w. Clearly, |o'| < p, where o' = hp...hjiq.
If hjwe; > we; then hjwZ;, < wZ;, by (#4i). Note that, as proved above, x; and y; are incomparable.

Therefore, again by Theorem 4.1,
TNy =hyohipa(hy VkjwZ; Ok, o ki (hy V EjwZ; =27 Ny
Now, combining the obtained equalities and taking into account the induction hypothesis, we obtain
(xUy) = (hp...hjr1(h; VEj)we; Ukpm ... kjp1(h; VEj)we;)” = (@1 Uy)” =27 Ny =2 Ny .

For the case hjw<; < wcj, the proof is similar. Since the proof for the case hjw < w, can be obtained by

duality, the theorem is completely proved.
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FIGURE 1. A poset of values of the linguistic variable Truth
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where

1‘1:P\/ML, Z’QZML\/A, 1’3:A\/P, Ulzl’g/\l'g; Uzzl’g/\l'l; ngl'l/\l’g;
y1=PANML; y2=MLAA; y3=AAP; vi=yaVuys; v2=y3Vyi; v3=y1Vys;

and E=(AVP)A(PVML)AN(MLVA)=(AANP)V(PAML)V (MLA A).
FIGURE 5. Lattices of hedges H® + I and ’freely’ generated lattices LH® + I.



VTrue

MTrue

True

(AANPAML)True

L(A, P, ML)[True]

(AVPV ML)True

¢ STrue

¢ SFalse

(AV PV ML)False

L(A,P,ML)[False

(AANPAML)False

False
M False

V False

a)

True

V(P A A)True

VPTrue VAT rue
YTrue
MPTrue MATrue
rue
PTrue ATrue

b)

FIGURE 6. The poset of Example 3.1, where f/(A, P, M L)True denotes the dual of L(A, P, M L)True.
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FIGURE 7. Lattices N5 and M3



