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Abstract

Word sense disambiguation (WSD) is the problem of determining the right sense of
a polysemous word in a certain context. This paper investigates the use of unlabeled
data for WSD within a framework of semi-supervised learning, in which labeled data
is iteratively extended from unlabeled data. Focusing on this approach, we first ex-
plicitly identify and analyze three problems inherently occurred piecemeal in the
general bootstrapping algorithm; namely the imbalance of training data, the confi-
dence of new labeled examples, and the final classifier generation; all of which will
be considered integratedly within a common framework of bootstrapping. We then
propose solutions for these problems with the help of classifier combination strate-
gies. This results in several new variants of the general bootstrapping algorithm.
Experiments conducted on the English lexical samples of Senseval-2 and Senseval-3
show that the proposed solutions are effective in comparison with previous studies,
and significantly improve supervised WSD.
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1 Introduction and Motivation

The automatic disambiguation of word senses has been an interest and con-
cern since the 1950s. Roughly speaking, WSD involves the association of a
given word in a text or discourse with a particular sense among numerous
potential senses of that word. As mentioned in (Ide and Véronis, 1998), this
is an “intermediate task” necessary in accomplishing most natural language
processing tasks, such as message understanding and human-machine commu-
nication, machine translation, information retrieval, etc. Since its inception,
many methods involving WSD have been developed in the literature (for a
survey, see, e.g., (Ide and Véronis, 1998)).

So far, many supervised machine learning algorithms have been used for the
task of WSD, including Naïve Bayes, decision tree, exemplar-based, support
vector machines, maximum entropy models, etc. (see, for example, (Lee &
Ng, 2002)). Due to the difficulty or the cost of obtaining labeled data, whilst
unlabeled data is abundant and cheap to collect, recently several WSD studies
have tried to utilize unlabeled data to boost the performance of supervised
learning, e.g. (Mihalcea, 2004a; Zheng et al., 2005; Su et al., 2004; Pham et
al., 2005). The process of using both labeled and unlabeled data to build a
classifier is called semi-supervised learning.

In the following, we first briefly introduce general approaches in semi-supervised
learning for WSD. Then, we explicitly describe problems that may occur in
the so-called general bootstrapping algorithm, which is used in this paper, and
then provide some ideas for tackling these problems.

1.1 Semi-Supervised Learning Approaches

As semi-supervised learning requires less human effort for preparing annotated
labeled data and potentially gives higher accuracy, it is of great interest both
in theory and in practice. Semi-supervised learning methods use unlabeled
data to either modify or re-prioritize hypotheses obtained from labeled data
alone. In our opinion, the methods in semi-supervised learning can be grouped
into two approaches, as follows.

In the first approach, the learners try to optimize parameters of the classifica-
tion model using both labeled and unlabeled data. Miller & Uyar (1997), and
Nigam et al. (2000) used a generative model for the classifier and used Ex-
pectation Maximization to estimate the model’s parameters trained on both
labeled and unlabeled data. Joachims (1999) used transductive inference for
support vector machines to optimize performance on a specific test set, while
Blum & Chawla (2001) constructed a graph based on the whole examples
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Fig. 1. A Scheme to Describe the Process of Iteratively Extending Labeled Data

and used a minimum cut on the graph to yield an optimal labeling for the
unlabeled examples.

In the second approach, learners follow a strategy in which the initial labeled
data is iteratively extended, and finally a larger set of labeled data is obtained
and used to generate the final classifier. From the literature review, we observe
that a common method for enlarging labeled data is to use the classifier trained
on the current labeled dataset to detect labels for unlabeled examples. Among
those new labeled examples, some highly accurate ones are selected and added
to the current labeled dataset. This process is iteratively repeated until there
is no unlabeled example left, or until the number of iterations reaches a pre-
defined threshold. Two well-known methods based on this approach are self-
training (Yarowsky, 1995) and co-training (Blum & Mitchell, 1998).

In this paper we follow the second approach because it seems intuitively ap-
propriate for WSD. Fig. 1 taken from Yarowsky (1995) illustrates an example
of extending labeled data in which the part (a) shows the initial contexts and
part (b) shows extended labeled contexts of the polysemous word “plant”. As
shown in this figure, at the beginning there are some initial training contexts
which contain seed collocations (i.e. features) including life for label “A” and
manufacturing for label “B”(as shown in part (a)). We then use these training
contexts to detect new contexts (as shown in part (b)) which contain new seed
features including animal, cell, employee, etc. The new contexts are then used
as training contexts to detect new features. This process can be repeated to
recognize more new contexts, i.e. to enlarge the training dataset. Note that
some new features may appear only after several extensions of training con-
texts, not at the first extension.
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1.2 Problems

As mentioned above, we follow the second approach in which the labeled data
is iteratively extended. This process is described in Algorithm 1, which can be
considered as the general bootstrapping algorithm for this approach.

Algorithm 1 – The General Bootstrapping Algorithm
Input: L (labeled data); U (unlabeled data); k = 0; K is the maximum
number of iterations
Output: H – the final classifier
1: repeat
2: k ← k + 1
3: generate classifier h trained on L
4: use h to label U , and obtain a labeled dataset UL

5: get L′ ⊂ UL consisting of high accuracy examples
6: L ← L ∪ L′; U ← U \ L′

7: until U = ∅ or k > K
8: use L to generate the final classifier H

We now explicitly identify three problems (subtasks) in the general framework
of semi-supervised learning which, according to our observation, may affect
the performance of semi-supervised learning systems in practical applications,
particularly in WSD. These problems are presented in detail below.

The first problem, denoted as P1, regards the imbalance of labeled (training)
data. We observe that if a classifier is built based on training data with a
bias on certain classes (i.e., one or several classes dominate others), then this
bias may become stronger at each extension of the labeled dataset. This is
because a classifier tends to detect examples of dominant classes with high
confidence, and consequently these examples are prioritized for a new set of
labeled examples. Through steps of extending labeled data, the imbalance of
labeled data is increased, which may result in decreasing the accuracy of the
initial classifier. Previous studies just solved this by fixing the number of new
labeled examples for each class, such as in (Blum & Mitchell, 1998; Pierce &
Cardie, 2001). However, this can not be implemented in certain circumstances,
for example in the case when we can not achieve enough confident new labeled
examples of a class for the corresponding number which is pre-defined. To
tackle this problem we will provide a procedure which can flexibly retain class
distribution and avoid fixing the number of new labeled examples. In addition,
the effects of using or not using this solution for this problem will be shown
through experiments on Senseval-2 and Senseval-3.

The second problem, denoted by P2, is that of how to determine a subset of
new labeled examples with high confidence. It is clear that adding a large
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number of misclassified examples into the labeled dataset will probably result
in generating a poor classifier in the end. Therefore, one aims at obtaining
new labeled examples with the highest accuracy possible. To reach this tar-
get, previous studies normally used the so-called threshold-based selection of
new labeled examples. In particular, given a new example which is assigned a
label with a probability of detection, a threshold value for this probability is
predefined to decide whether a new labeled example will be selected or not,
such as in (Yarowsky, 1995; Blum & Mitchell, 1998; Collins & Singer, 1999).
However, this threshold-based method of selection may lead to a situation
where choosing a higher threshold will create difficulty in extending labeled
data, while it does not always result in correct classification. By contrast, a
lower threshold may result in more misclassified examples, but allows more
new labeled examples to be added. Therefore, the determination of a “correct”
threshold in the approach becomes an important issue. In addition, determin-
ing a commonly used threshold for all unknown data is also inappropriate.
To address these issues, we propose a method that flexibly and dynamically
chooses an appropriate value for the threshold based on estimating the upper
bound of the classification error rate of the obtained labeled dataset. Moreover,
based on the observation that combining classifiers usually decrease the clas-
sification error rate, we aim at using different supervised learning algorithms
to generate different classifiers and then combine them under a combination
rule to increase the confidence of new labeled examples.

The third problem, denoted by P3, is that of how to generate the final clas-
sifier when the process of extending labeled data is completed. According to
the framework depicted in Algorithm 1, this process will be stopped when
the number of iterations reaches a pre-specified value, or when the unlabeled
dataset becomes empty. Normally, the classifier built on the labeled data ob-
tained at the last iteration is chosen as the final one. Some studies use a
development dataset to find the most appropriate value for the number of
iterations, such as in (Pham et al., 2005; Mihalcea, 2004a). As mentioned in
problem P2, the last classifier may be built based on new training data with
some misclassified examples, so both advantages and disadvantages are con-
currently brought to the last classifier. Thus, choosing the classifier trained
on the last labeled dataset as the final classifier is not always be a good solu-
tion. This observation suggests that we should combine the classifiers, which
are obtained at each extension of labeled data, under classifier combination
strategies to utilize advantages of these different classifiers.

By reviewing various related studies, especially regarding the WSD problem,
we found that most previous studies did not pay adequate attention to these
three problems. There has been no study to date that could simultaneously
consider these problems within a common framework of bootstrapping. In the
present paper, the proposed solutions of problems mentioned above are all
integrated into a common framework of bootstrapping algorithms, and as a
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result a new bootstrapping algorithm is proposed. The obtained results show
the effectiveness of the proposed solutions with a significant improvement
of accuracy in comparison with conventional bootstrapping and supervised
learning.

2 Classifier Combination

Before discussing solutions for the above-mentioned problems, it is necessary
to introduce commonly used rules for combining classifiers, which will be used
in the following sections.

Let L = {l1, . . . , lm} be the set of labels (classes) from which each example
can be assigned a label and D = {D1, . . . , DR} be a set of classifiers, each
of which provides a soft decision for identifying the label of an example e in
the form of a probability distribution over L. Alternatively, we can define the
output of i-th classifier to be a m-dimensional vector

Di(e) = [di,1(e), . . . , di,m(e)] (1)

where di,j(e) is the degree of “support” given by classifier Di to the hypothesis
that e comes from class lj. With this notation, it is convenient to arrange the
output of all R classifiers in the form of a decision matrix as follows.

D =




d1,1(e) . . . d1,j(e) . . . d1,m(e)

. . .

di,1(e) . . . di,j(e) . . . di,m(e)

. . .

dR,1(e) . . . dR,j(e) . . . dR,m(e)




(2)

With these notation, Table 1 presents commonly used rules for combining
classifiers, where lĵ denotes the label which should be assigned to the example
e according to the corresponding decision rule.

Also in this table, the function ∆ij in majority voting is defined by:

∆ij =





1, if di,j(e) = max
k

di,k(e)

0, otherwise

For the details of deriving these combination rules, the reader may refer to
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Table 1
Commonly Used Combination Rules

Rule Decision Function

Max Rule ĵ = arg max
j=1···m

[
maxR

i=1 di,j(e)
]

Min Rule ĵ = arg max
j=1···m

[
minR

i=1 di,j(e)
]

Median Rule ĵ = arg max
j=1···m

[
1
R

∑R
i=1 di,j(e)

]

Majority Voting ĵ = arg max
j=1···m

∑R
i=1 ∆ij

Kittler et al. (1998), in which the authors presented a theoretical framework
for combining classifiers using the Bayesian approach with several assump-
tions imposed on individual classifiers. It is worth noting that, as discussed
in (Le et al., 2005), these commonly used combination rules can be also gen-
erated based on the combination strategy making use of the notion of ordered
weighted averaging (OWA) operators. Further, as OWA weighting vectors can
be associated with linguistic quantifiers (Yager, 1988) without the strong as-
sumptions used in Kittler et al. (1998), the OWA-based combination frame-
work discussed in (Le et al., 2005) allows us to interpret generated decision
rules in terms of linguistic–quantifiers–based voting rules. For other decision
rules derived from OWA-based combination of classifiers, the reader could
refer to, e.g., (Kuncheva, 2001; Le et al., 2005).

3 Proposed Solutions to Problems

Previously, we have identified three problems that may occur in semi-supervised
learning methods, and observed that overcoming them may effectively enhance
the performance of learning algorithms in practical situations. In this section
we will discuss solutions for these problems one by one, in order to form the
basic for developing a new bootstrapping algorithm in the next section.

3.1 Imbalanced Data

Now we are concerned with situations in which class distribution of the original
labeled dataset is biased, i.e. one or several classes considerably dominate
the others. In such a case, adding new labeled examples in semi-supervised
learning may make this bias stronger. This is because following the strategy of
selecting new labeled examples based on classification probability, examples of
dominat classes have more chance to be selected. This is clearly an undesired
situation and has been considered in previous studies, e.g. (Blum & Mitchell,
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Procedure 2 – Resize(L0, L
′, ∆): Resizing class-based subsets

Input:
L0 is the original labeled dataset; L′ is the added labeled dataset
∆ – tolerance in retaining class distribution

Output:
N ′ = {n′1, . . . , n′m} – new sizes of class-based subsets for L

1: compute N0 = {n0
1, . . . , n

0
m} – sizes of class-based subsets of L0.

2: compute N ′ = {n′1, . . . , n′m} – sizes of class-based subsets of L′.
3: compute D0 = {d0

1, . . . , d
0
m} – the class distribution of L0

4: repeat
5: set N = {n1, . . . , nm} by ni = n0 + n′i, for i = 1, . . . ,m
6: compute D = {d1, . . . , dm} from N
7: if there exists l such that dl − d0

l > ∆ (*) then
8: compute r such that nl−r∑m

i=1
ni−r

= (do
l + ∆)

9: if n′l > (r + 1) then
10: n′l ← [n′l − (r + 1)]
11: else
12: n′l ← 0
13: end if
14: end if
15: until condition (*) does not hold

1998; Pierce & Cardie, 2001).

To tackle this problem, our solution is as follows. For a set of labeled examples,
we divide examples into subsets such that all examples in each subset have the
same label. We call these class-based subsets. From the new labeled examples
which are obtained at the extension step, we must resize its class-based subsets
such that the class distribution of the original labeled dataset can be retained.
However, we may not always strictly retain this class distribution, such as in
the case there are one or more class-based subsets which are empty. Therefore,
developing a procedure for maintaining the class distribution should take this
situation into account. In our case, we introduce a tolerance parameter by
which we can avoid fixing the number of new labeled examples of each class
is fixed, as in (Blum & Mitchell, 1998; Pierce & Cardie, 2001). The proposed
solution for retaining class distribution is described in Procedure 2.

3.2 Increasing Confidence of New Labeled Data

Regarding this task, a typical approach is to use a supervised learning al-
gorithm to train a classifier based on the labeled dataset, and then use this
classifier to detect labels for the examples in a subset U ′ of the current unla-
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beled dataset U . Formally, let L be the set of labels (classes), and h be the
supervised classifier. Given an example e, the classifier h applied to e yields a
probability distribution over L, denoted by Ph(·|e). Then it is suggested that
example e should be assigned to label l̂ satisfying

l̂ = arg max
l∈L

Ph(l|e)

If Ph(l̂|e) is greater than a threshold α, then example e associated with label
l̂ will be added to L.

As mentioned previously, using a classifier with threshold α for determining
new labeled examples may cause a tradeoff problem between the extendibility
and the accuracy of label detection. Furthermore, an increase in threshold
α does not always ensure an increase in accuracy of new labeled examples.
Note that the extendibility of labeled data is not only depicted by the number
of new examples added, but also by the “new information” brought by these
added examples. Heuristically, a new example whose label is correctly detected
with low confidence may bring richer and new information to the current
labeled data, and therefore it may be useful to detect labels for new examples.
Therefore, it would be helpful to find out such a way of extending labeled
data which can maintain the extendibility while still ensuring the accuracy
of labeled data. Here we also use a threshold-based method, but instead of
designing a fixed threshold, we design a set of threshold values from which
the best will be chosen based on estimating the upper bound of classification
error of labeled data using the approach presented in (Goldman & Zhou, 2000;
Zhou & Li, 2005). Particularly, this selection of a threshold value is based on
the evaluation of generated labeled datasets, which is done as follows.

As used in Goldman & Zhou (2000); Zhou & Li (2005), exploiting from (An-
gluin & Laird, 1988) we have a relationship between m - the size of a sequence
σ and its hypothesis worst-case accuracy (1− ε) as follows:

m ≥ 2

ε2(1− 2η)2
ln(

2N

δ
) (3)

where η is classification noise rate of the training data (η must be less than 0.5),
N is the number of hypothesis, and δ is the confidence such that a hypothesis
H that minimizes disagreement with σ will have the PAC property:

Pr[d(H, H∗) ≥ ε] ≤ δ

with d(, ) being the sum over the probability of elements from the symmet-
ric difference between hypothesis H and the ground-truth hypothesis H∗.
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Like Zhou & Li (2005), let c = 2µln(2N
δ

) with µ making Eq. (3) hold equality,
we obtain:

m =
c

ε2(1− 2µ)2

or equivalently

ε =

√
c

m(1− 2η)2
(4)

In the Eq. (4), we can simply set c to 1, and then ε can easily be estimated
through m and µ. the upper bound on the classification error rate ε will be
used for evaluating new labeled dataset and from which we can determine the
most appropriate α corresponding to the best new labeled dataset.

Procedure 3 – DataEvaluate(L0, Ladd): Evaluation of Generated Labeled
Data
Input: L0 is the original labeled data; Ladd is the added labeled data

1: m ← |Ladd|
2: train on Ladd to generate classifier h
3: use h to test on L0 and obtain classification error rate η
4: return q = m(1− 2η)2

Assume that we are standing at the iteration tth, denote by Lt the current
labeled dataset, Lt

add is the current added labeled dataset, and wt is the number
of examples in Lt ∪Lt

add that are mislabeled. Then 1/ε2 denoted by qt can be
estimated by

qt = |Lt ∪ Lt
add|

(
1− 2

2wt

|Lt ∪ Lt
add|

)2

The semi-learning process is continued if qt > qt−1, and the labeled dataset is
updated: Lt+1 ← Lt ∪ Lt

add.

Here we also accept this approach for evaluating the generated labeled datasets
(i.e. the generated classifiers), but with a difference regarding the estimation
of experimental classification error rate η. To estimate η, Goldman & Zhou
(2000) used a 10-fold test on Lt ∪ Lt

add, while Zhou & Li (2005) also trained
on the whole data (include original labeled data and new labeled data) but
just tested on the original labeled data.

Agreeing with the observation in (Zhou & Li, 2005) that it is difficult to esti-
mate the classification error on the unlabeled examples, we therefore compute
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classification error rate by testing on only the original labeled examples, with
a heuristic assumption that the unlabeled examples hold the same distribu-
tion as the labeled ones. Moreover, we use only the total number of labeled
examples added through iterations without the original labeled examples for
training while (Goldman & Zhou, 2000) and (Zhou & Li, 2005) used both
these kinds of labeled data. The reason for our choice stems from the follow-
ing observations:

• WSD always has the problem of over-fitting on training data, which means
if we train and test on the same data, we often receive a very high accuracy
(approximate 100%).

• It is natural that if the added labeled examples are correctly classified,
the classifier trained on them will give high accuracy when testing on the
original labeled examples.

The flexible and dynamic strategy for selecting values for the threshold α with
the help of Procedure DataEvaluate is used for the task of extending labeled
data and this procedure is sketched in Procedure 4.

Procedure 4 – Extendibility(L,U, Ω,A): Extend labeled data
Input:

L – the current labeled dataset
U – the current unlabeled data
Ω = {αi}n

i=1 – a set of threshold values of size n
A = {A1, . . . , AR} is the set of supervised algorithms, which is used in the

case of using multi–classifiers
1: set a pool of empty datasets, L = {Li = ∅}n

i=1

2: get classifier h trained on L
3: for all example e ∈ U do
4: use h to detect labels for e, obtain a new labeled example e′ with a

overall corresponding support degree P (e′);
5: for all αi ∈ Ω do
6: if P (e′) > αi then
7: add e′ to Li

8: end if
9: end for
10: end for
11: call Resize on Li and remove from Li a certain number of examples such

that it is appropriate to the new size, for i = 1, . . . , n.
12: evaluate Li by calling the procedure DataEvaluate , for i = 1, . . . , n,

and get the best Lk, where k = arg max
i

DataEvaluate(L,Li)

13: return Lk

Also regarding the problem P2, we propose a solution motivated from the ob-
servation that combining classifiers has significantly improved the performance
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of supervised learning systems. Especially in the context of semi-supervised
learning, where the relatively small amount of available labeled data would
not be enough to build good classifiers, combination of different classifiers
may hopefully enhance the quality of new labeled data by integrating comple-
mentary information extracted from individual classifiers about patterns to
be classified. If we use classifier combination for detecting labels for unlabeled
examples in the procedure of Extendibility, it is then called the use of multi-
classifier. Otherwise, if we use only one classifier then it is called the use of
single-classifier. Note that the use of either single classifier or multi-classifier
is stated at Step 2 and Step 4 of Procedure 4. In the case of multi-classifier,
we use a combination rule on a set of R classifiers to generate the classifier
h. In such a case, R different classifiers correspond to R different machine
learning algorithms taken from A trained on the current labeled data. For
each unlabeled example e, these R classifiers are combined to output overall
support degrees associated with corresponding labels in L. Then the highest
overall support degree is used in comparison with the threshold in such a way
that only the new labeled examples which have the highest overall support
degrees greater than the threshold α are added to the current labeled data.

3.3 Generating the Final Classifier

Now we will discuss about problem P3 of how to generate the final classifier.
Regarding this problem, there are two issues to be addressed. The first issue
is when we should stop the process of enlarging the labeled dataset, and the
second one is how to build the final classifier. In previous studies related to
WSD as in (Pham et al., 2005; Mihalcea, 2004a), the authors first design a
development dataset and then run the semi-learning algorithm on this dataset
several times to select a value for the iteration number which is used for test
datasets. After that the classifier built on the labeled data obtained at the
last iteration is chosen as the final one.

However, in our opinion, because the optimized value of iteration number
depends on each particular dataset as well as each polysemous word, it would
be better if this value can be dynamically determined by evaluating generated
labeled datasets. For this purpose, we can use the evaluation method described
previously in Procedure 3. In addition, as discussed above, we can also use
techniques of classifier combination for building the final classifier. The details
are shown below.

We first observe that during the process of extending labeled data in semi-
supervised learning systems for WSD, the following two situations may hap-
pen: the first one is the feature space may be also expanded concurrently, due
to some new features covered by new examples which have not been occurred
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in available examples previously; the second one is there may be some mis-
classified examples which were added to the labeled dataset at some steps of
extending labeled data. Both these situations may lead to the following conse-
quences: the generated classifiers may not much improve, or may even decrease
the labelling quality for test examples which could have been correctly labeled
by the initial supervised classifier; the generated classifiers may be better in
detecting labels for test examples which contain many new features covered
by new added labeled examples.

These observations suggest that the use of only one classifier built on the last
labeled dataset as the final classifier may not always be the best solution.
Again, we aim to apply strategies of combining classifiers for enhancing the
labelling quality of the final classifier in semi-supervised learning for WSD.
To this end, after each extension of labeled data we build the corresponding
classifier and then combine all of them according to a combination strategy
to obtain the final classifier. Note that, there is another alternative in which
we just combine the classifiers which are trained on the original and the last
labeled dataset.

4 A New Bootstrapping Algorithm

Algorithm 5 – A New Bootstrapping Algorithm
Input:L0 is the original dataset; A = {A1, . . . , AR} is the set of supervised
algorithms; A∗ is the primary supervised algorithm; C is a combination rule;
L is the set of obtained labeled datasets; ∆ is the tolerance which is used for
retaining class distribution ; M is maximum number of unlabeled examples
used at each iteration; Ω is a set of the threshold α.
Output: H – the final classifier
1: k ← 0; q0 ← 0; L ← {L0}
2: repeat
3: k ← k + 1;
4: randomly get M examples from U to obtain U ′ ⊂ U
5: L′ ← Extendibility(Lk, U

′, Ω,A)
6: Lk+1 ← Lk ∪ L′;
7: qk+1 ← DataEvaluate(L0, Lk+1)
8: if qk+1 > qk then
9: L ← L ∪ {Lk+1};
10: end if
11: until qk+1 < qk or L′ = ∅
12: train A∗ on L to generate a set of classifiers, h = {h0, . . . , ht}
13: apply the combination rule, C, on h to generate the final classifier H

On the basis of the above discussions, we develop a new bootstrapping algo-
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rithm as shown in Algorithm 5. In this algorithm, at each iteration firstl M ex-
amples are randomly extracted from the whole unlabeled dataset U , we denote
by U ′ the set of these unlabeled examples (this is necessary in the case that U
is very large). After U ′ is selected, the procedure Extendibility is called to
enlarge the current labeled dataset Lk (k is the current iteration number). In
this step, an added labeled dataset, L′, is generated, which is then combined
with the current labeled dataset to yield a new labeled dataset, Lk+1. Note
that when Extendibility has been carried out, procedure Resize is called to
retain class distribution for the new labeled dataset. After obtaining Lk+1, it
is evaluated by procedure DataEvaluate. This process is repeated until there
are no more new labeled examples to be discovered, or the new labeled exam-
ples do not improve the labeled dataset. When this process stops, we obtain
a set of new labeled datasets, namely L = {L0, . . . , Lt} (note that, here t = k
or t = k + 1 depends on the conditions for stopping the loop of the algorithm,
qk+1 < qk or L′ = ∅). Then, we use the supervised learning algorithm A∗

trained on L to obtain a set of different classifiers h = {h0, . . . , ht}. Finally,
the final classifier H is generated by applying the combination rule C on h .

Note that, at the final step of this algorithm we can also apply the combi-
nation rule for only the classifier trained on the original labeled dataset and
the classifier trained on the last new labeled dataset (i.e. L0 and LN). This
is suggested by the observation that intermediately generated classifiers par-
ticipating in the combination may decrease advantages of the last classifier.
Further, using only the initial and the last classifiers in combination is also
due to advantages in terms of time computation and storage space.

5 Experiment

5.1 Experimental Models

Actually, the proposed semi-supervised learning algorithm is the result of in-
tegrating solutions for problems P1, P2, and P3 into the general bootstrapping
algorithm. Therefore, to see how effective each of the proposed solutions or
their combinations is, in the sequence we develop several different experimen-
tal models of the proposed semi-supervised learning algorithm.

As in Procedure Extendibility, we use a set of values for α instead of a fixed
value. In particular, we define this set as Ω = {0.5, 0.6, 0.7, 0.8, 0.9}. The upper
bound (α = 0.9) and lower bound (α = 0.5) of these values are used for those
models which follow the conventional threshold-based method, which is based
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Table 2
Experimental Models of Bootstrapping

Model P1 Solution P2 Solution P3 Solution

M0, α = 0.9

M0, α = 0.5

M1, α = 0.9 x

M1, α = 0.5 x

Mflexible+single
2 x x (single classifier)

Mflexible+combined
2 x x (multiple classifiers)

M two
3 x x x (two classifiers)

Mall
3 x x x (all classifiers)

on a fixed threshold. Particularly, the experimental models are as follows.

• Call the general bootstrapping algorithm M0, without any proposed solu-
tions of P1, P2, and P3. In this model, we investigate two cases: α = 0.9 and
α = 0.5.

• To investigate problem P1, we design the model called M1, which is the
model M0 plus the procedure Resize, i.e the solution for P1. In this model,
we also investigate two cases: α = 0.9 and α = 0.5

• The following models are designed to test the solution of P2 in combina-
tion with the solution of P1, with and without using a strategy of classifier
combination. Here, the set of threshold values is Ω = {0.5, 0.6, 0.7, 0.8, 0.9}.

- M flexible+single
2 is the model in which we use a flexible and dynamic

selection over all values in Ω for α. Moreover, this model just uses a single
classifier, namely the NB classifier, to detect labels for unlabeled examples.

- M flexible+combined
2 is similar to M flexible+single

2 but instead of using one
classifier, here we use three classifiers including NB, MEM, and SVM, and
the median rule.

Note that all these models use procedure DataEvaluation as the condi-
tion for stopping the loop of the algorithm.

• Regarding problem P3, we design two experimental models as follows: in
model M two

3 we just combine the initial classifier and the last classifier; and
in model Mall

3 we combine initial classifier and all generated classifiers.

These models are intuitively summarized in Table 2
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5.2 Data

The experiments were carried out on the datasets of Senseval-2 and Senseval-
3, specifically on English lexical sample datasets. There are 73 lexical items
and 57 lexical items in Senseval-2 and Senseval-3, respectively. Note that the
data for each lexical item contains about 200 examples for training and 100
examples for test. For semi-supervised learning, we treat the training data as
labeled data, and unlabeled examples are collected from the British National
Corpus (BNC), with about 3000 examples for each lexical item. Note that the
English lexical samples are also retrieved from BNC, thus for a fair test, we
removed all examples from the obtained unlabeled datasets which also appear
in the training or test datasets.

5.3 Features

As we know, determining the kinds of information, which are considered as
evidences for disambiguating word senses, plays an important role in achieving
high accuracy of WSD systems. Here we use various kinds of information as
presented in (Lee & Ng, 2002), including topical context, collocations, ordered
words, ordered part-of-speeches, and syntactic relations. Particularly, features
used in this paper fall into the following groups:

- Topical context is represented by a set of content words that includes nouns,
verbs, and adjectives, in a certain context window. Note that after these words
are extracted, they will be converted to their root morphology forms for use.
We designed three sets of unordered words in contexts with different windows
including small, median, and large, corresponding to window sizes of 5, 10,
and 50 respectively.

- A set of collocations of words. Here we design 9 collocations: w−1w0, w0w1,
w−2w−1w0, w−1w0w1, w0w1w2, w−3w−2w−1w0, w−2w−1w0, w−1w0w1w2, and
w0w1w2w3, where w−i (wi) is the i-th word to the left (right) of the polysemous
word w0.

- A set of words assigned with their positions in a window size of 3.

- A set of part-of-speech tags of words assigned with their positions, also in
window size of 3.

- A set of syntactic features: to get syntactic information, we used shallow
parsing using the chunking tool obtained from (Tsuruoka & Tsujii , 2005).
From the output of this parser, we select verb-phrases and noun-phrases, and
then extract from them syntactic relations including verb-noun, adjective-
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Fig. 2. Test Problem P1 on Senseval-2 and Senseval-3

noun, and verb-adjective.

All these 7 feature sets are joined into a unique set aiming at obtaining high
accuracy baselines (supervised WSD).

5.4 Supervised Algorithms and Parameter Setting

Naive Bayes (NB), MEM (Maximum Entropy Model), and SVM (Support
Vector Machine) are chosen as supervised learning algorithms for procedure
Extendibility in the case that a combination strategy is integrated in the so-
lution of P2. Otherwise, in the case of using single classifier instead of combin-
ing multiple classifiers we will use the NB classifier. Further, the NB algorithm
is also used for A∗ in Algorithm 5.

For the parameters, we set M = 500 and ∆ = 0.01.

5.5 Results

The first test is for investigating the problem of the imbalance of training data,
i.e. P1, with the experiment carried out on Senseval-2 and Senseval-3. The
obtained results are shown in Fig. 2. In this experiment, we let the iterations
run from 1 to 5, and compute the ratio of the largest class to the whole dataset
(note that the result at iteration 0 corresponds to the original labeled data).
As seen in Fig. 2, the portion of the largest class (or dominated class) increases
according to the increase of iteration. This reflects the imbalance of training
data is increased as discussed above.

The second test is for investigating the problem of extending labeled data
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Fig. 3. Test Problem P2 of interest, line, hard, and server datasets (show average
result)

Table 3
Test Problem P1 and P2

Parameter Senseval-2 Senseval-3

Supervised Learning (NB) 64.05 71.96

M0 α = 0.9 62.07 71.50

M0 α = 0.5 62.97 71.07

M1 α = 0.9 63.89 71.65

M1 α = 0.5 64.19 71.65

Mflexible+single
2 α ∈ {0.5, 0.6, 0.7, 0.8, 0.9} 65.0 72.44

Mflexible+combine
2 α ∈ {0.5, 0.6, 0.7, 0.8, 0.9} 65.70 72.64

(problem P2). For this purpose, we tested the algorithm on the datasets of four
words including interest, line, hard, and serve. All examples in these datasets
were tagged with the right senses. The sizes of these datasets are 2369, 4143,
4378, and 4342, respectively. These datasets are large enough to be divided
into labeled and unlabeled datasets. We randomly selected 200 examples for
labeled data, 100 examples for test data, and the remaining examples are
treated as unlabeled examples. Note that, because we knew the tagged senses
of examples in unlabeled datasets, we are able to evaluate the correctness of
the new labeled examples (for problem P2). Fig. 3 shows experimental results
of the test, in which two solutions, corresponding to using a single classifier or
multiple classifiers, were investigated. As we can see in Fig. 3, using multiple
classifiers in combination yields a lower classification error rate.

Table 3 shows the results for the test of P1 and P2 problems, in which the
conventional self-training algorithm, denoted by M0, and the models M1 and
M2 were implemented, where NB classifier is used as the baseline. From these
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Table 4
Test for Problem P3

Max Min Med Majority vote

Sen-2 M two
3 66.27 66.30 66.25 65.35

Mall
3 66.04 66.27 65.74 65.70

Sen-3 M two
3 73.27 73.23 73.30 72.49

Mall
3 73.22 72.74 73.33 73.20

Table 5
A Comparison on Senseval-2 and Senseval-3

Supervised Learning M two
3

NB SVM MEM max rule best rule

Senseval-2 64.05 63.72 64.79 66.27 66.30

Senseval-3 71.96 70.87 71.91 73.27 73.30

results, we have the following conclusions.

• Better results given by model M1 in comparison with model M0 reflect that
using the procedure of retaining class distribution is effective.

• Models M2 give better results in comparison with models M1. This shows
that the proposed solutions for problem P2 are quite effective. In addition,
using flexible determination of α integrated with a strategy of classifier
combination gives the best result.

• Only model M2 yields better results in comparison with baseline results.
With the proposed solutions for P1 and P2, we have shown that unlabeled
data can significantly improve the performance of supervised learning.

Table 4 shows the results for the test of P3. As we have seen, the results from
these two models M two

3 and Mall
3 are not much different. Therefore, the model

M two
3 should be chosen, due to the costs of computation time and storage

space. Further, we also see that the max rule used for the combination of
generated classifiers gives acceptable results, which obtain the best results in
most cases.

In summary, Table 5 shows a comparison between the supervised learning al-
gorithms and the selected semi-supervised learning model, namely M two

3 . For
supervised learning, we implemented three algorithms including NB, MEM,
and SVM. The obtained results show that model M two

3 yields better results
in comparison with supervised WSD. In addition, these results are also bet-
ter than the state-of-the-art systems for the English lexical sample task of
Senseval-2 (see (Kilgarriff & Rosenzweig , 2000)) and Senseval-3 (see (Mihal-
cea, 2004b)) (66.27% in comparison with 64.2% for Senseval-2, and 73.27% in
comparison with 72.9% for Senseval-3).
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Table 6
p-values of t-test for the proposed bootstrapping algorithm against supervised
test(using MEM)

Algorithms Average accuracy t-test p-value

Senseval-2 Bootstrapping 66.22% 1.56537E-05

Senseval-3 Bootstrapping 73.25% 2.75019E-05

5.6 Significant Test and Computational Time

In order to validate the result obtained with the improved bootstrapping
method, we have conducted a significant test (t-test) as shown in Table 6,
where the model M two

3 with max rule for combination strategy selected as
the improved bootstrapping algorithm is tested against supervised algorithm
MEM. This experiment was carried out by running the selected bootstrapping
model 5 times on Senseval-2 and Senseval-3, respectively. Then the obtained
accuracies are used together with the accuracies of MEM algorithm taken from
Table 5 to do a t-test. It has been shown from Table 6 that the improvement
of the bootstrapping algorithm is confident as reported.

Concerning efficiency of the improved bootstrapping method, Table 7 shows
computational time (measured by seconds) of the proposed bootstrapping al-
gorithm and the supervised learning algorithm MEM. This experiment was
done on a PC with Pentium IV 3.00GHz processor and 1GB RAM. In the
table, numbers of sentences of labeled data, unlabeled data, and test data are
also specified to provide a view of data’s size. There are 73 and 57 ambiguous
words in Senseval-2 and Senseval-3, respectively, and each ambiguous word
has separately a training data and a test data. Note that computational time
of the test for Senseval-2 is longer than that for Senseval-3 due to the fact
that the data size of each ambiguous word in Senseval-3 is bigger than that
in Senseval-2. As shown in Table 7, the bootstrapping algorithm takes much
time for training. This is reasonable because of the bootstrapping algorithm
aims to enlarge the labeled dataset with much more examples. In terms of the
computational time in comparison with supervised learning using MEM, the
bootstrapping algorithm takes about 4 times longer for Senseval-2 (106 versus
26), and about 6 times longer for Senseval-3 (191 versus 31). However, in our
opinion, this computational cost may be acceptable for such a non-realtime
application as preparing data for information retrieval or information extrac-
tion.
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Table 7
Average computational time (measured by seconds) of the proposed bootstrapping
algorithm

Number of sentences for Computational time

labeled unlabeled test Supervised Bootstrapping

data data data (MEM) Training/Test

Senseval-2 8611 135705 4328 26 6895/106

Senseval-3 8522 160746 3944 31 6490/191

6 Related Work and Discussion

As a study of the bootstrapping approach for WSD considered in the present
paper, it would be worth to go into more details about the previously related
studies which have also applied the bootstrapping to WSD.

First, Yarowsky (1995) did use some labeled examples as seeds and extracted
from them the decision rules for sense disambiguation. These decision rules
were then used to detect senses for new examples based on decision list al-
gorithm. The process of detecting new labeled examples obeys the so-called
principle “one sense per collocation”. As a result, new labeled examples will
be added to the original set of labeled examples, and from them new decision
rules are extracted. This process is repeated until the algorithm converge.
In (Mihalcea, 2004a), the author carried out an investigation of applying co-
training and self-training to WSD, and discussed about the three parameters of
these algorithms, including: number of iterations, number of most confidently
labeled examples that are added at each iteration. In particular, various set-
ting of these parameters were validated on the training data to find the best
setting. Furthermore, Mihalcea (2004a) also proposed a smoothing technique
with majority voting, that is, during the bootstrapping process, the classifier
at each iteration is replaced with a majority voting scheme applied to all classi-
fiers built at previous iterations. The experiments conducted on Senseval-2 did
show an improvement with the global parameter setting and the smoothing
technique (average error reduction of 9.8%), and also a similar performance
for both co-training and self-training. Zheng et al. (2005) did investigate a
Label Propagation (LP) based semi-supervised learning algorithm proposed
in (Zhu & Ghahramani, 2002) for WSD. The authors also suggested an en-
tropy based method to automatically identify a distance measure that can
boost the performance of LP algorithm on a given dataset. Pham et al. (2005)
have made use of co-training in spectral graph transductive (SGT) (Joachims,
2003) for WSD in which, instead of directly computing the nearest neigh-
bor graph in SGT, the authors constructed a separate graph for each view,
and then combined them together to obtain the final graph. Their empirical
test on Senseval-2 showed a better performance in comparison to co-training,
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smoothed co-training (Mihalcea, 2004a), and origin SGT.

In addition, in (Abney, 2002) the author did a mathematical analysis of
Yarowsky’s bootstrapping algorithm considered as an optimization problem
and proposed some variants for it. This approach is different from our ap-
proach in the aspect that it just focuses on the final objective function, while
we directly address to particular problems which could have an impact on
the quality of the objective function. However, a further study focusing on an
integration of two approaches would be highly interesting to consider.

As already mentioned previously, all of these studies have not considered si-
multaneously all the above identified problems in a common framework of
bootstrapping. In the present paper, we have taken into account these prob-
lems integratedly in the bootstrapping framework and discussed solutions for
them. Regarding the novel aspect of discussed solutions, it would be worth
emphasizing the following points.

• For problem P1, we have proposed a procedure for flexibly retaining class
distribution of extended labeled data, while Mihalcea (2004a) and the others
fixed the number of class-based examples.

• For problem P2, we have proposed a flexible and dynamical procedure for
determining the threshold serving for the selection of new labeled examples.
This has not been considered in Goldman & Zhou (2000).

• For problem P3, while Mihalcea (2004a) did use classifier combination tech-
niques in the step of extending labeled data, we have applied these tech-
niques in both steps: extending labeled datasets and generating the final
classifier.

Finally, all of the above considerations have been integrated simultaneously
for the objective of improving semi-supervised learning.

Also, in order to have a better view of the experimental comparison between
the present paper and previous work about the improvement of proposed
bootstrapping classifier with respect to the basic classifier (supervised clas-
sifier trained on original labeled data), it would be helpful to mention here
experimental tests conducted in previous work. Particularly, Yarowsky (1995)
just tested on a polysemous word with few seed examples. Mihalcea (2004a)
conducted a test on English lexical sample of Senseval-2 and improved su-
pervised classifier from 53.84% to 55.67% (use co-training) and 54.16% (use
self-training), however, only some words in the Senseval-2 dataset were tested.
In (Pham et al., 2005), the authors carried out a test on English lexical sam-
ple of Senseval-2 and improved the supervised classifier from 62.9% to 65.0%,
and only nouns in the Senseval-2 dataset were considered. While Zheng et al.
(2005) tested on English lexical sample of Senseval-3 and got an improvement
of the supervised classifier from 69.7% to 70.3%.
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As such, the improvements over the basic classifier from these previous studies
are similar to our reported results. Further, because all of these studies, with
an exception of Zheng et al. (2005), conducted their tests only on a part of
Senselval-2 dataset, it is inappropriate to have a global comparison of the final
results; while in the comparison to (Zheng et al., 2005), our work gives a better
result.

7 Conclusion

In this paper, we have identified three problems that may occur in semi-
supervised learning methods, and particularly investigated them for WSD.
We proposed solutions for these problems, and these solutions form the basis
for developing a new bootstrapping algorithm. To test the effectiveness of the
proposed solutions, we have generated various models of the new bootstrap-
ping algorithm and tested them on Senseval-2 and Senseval-3. The experi-
mental results show that the proposed solutions are effective for improving
semi-supervised learning for WSD, and unlabeled data can significantly im-
prove supervised WSD as well.
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