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Abstract. In this paper, we revisit the evidential reasoning (ER) ap-
proach to multiple-attribute decision making (MADM) with uncertainty.
The attribute aggregation problem in MADM under uncertainty is gen-
erally formulated as a problem of evidence combination. Then several
new aggregation schemes are proposed and simultaneously their theoret-
ical features are explored. A numerical example traditionally examined in
published sources on the ER approach is used to illuminate the proposed
techniques.

1 Introduction

So far, many attempts have been made to integrate techniques from artificial
intelligence (AI) and operational research (OR) for handling uncertain infor-
mation, e.g., [1,4,5,8,9,11, 19]. During the last decade, an evidential reasoning
(ER) approach has been proposed and developed for MADM under uncertainty
in [20,21,23-25]. Essentially, this approach is based on an evaluation analysis
model [26] and the evidence combination rule of the Dempster-Shafer (D-S) the-
ory [14]. The ER approach has been applied to a range of MADM problems
in engineering and management, including motorcycle assessment [21], general

cargo ship design [13], system safety analysis and synthesis [17], retro-fit ferry
design [22] among others.

Recently, due to a need of developing theoretically sound methods and tools
for dealing with MADM problems under uncertainty, Yang and Xu [25] have
proposed a system of four synthesis axioms within the ER assessment framework
with which a rational aggregation process needs to satisfy. It has also been shown
that the original ER algorithm only satisfies these axioms approximately. At the
same time, guided by the aim exactly, the authors have proposed a new ER
algorithm that satisfies all the synthesis axioms precisely.

It is worth emphasizing that the underlying basis of using Dempster’s rule
of combination is the independent assumption of information sources to be
combined. However, in situations of multiple attribute assessment based on a
multi-level structure of attributes, assumptions regarding the independence of
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attributes’ uncertain evaluations may not be appropriate in general. In this pa-
per, we reanalysis the previous ER approach in terms of D-S theory so that
the attribute aggregation problem in MADM under uncertainty can be gener-
ally formulated as a problem of evidence combination. Then we propose a new
aggregation scheme and simultaneously examine its theoretical features. For the
purpose of the present paper, we take only qualitative attributes of an MADM
problem with uncertainty into account, though quantitave attributes would be
also included in a similar way as considered in [20, 21].

2 Background

2.1 Problem Description

This subsection describes an MADM problem with uncertainty through a tuto-
rial example taken from [25].
Let us consider a problem of motorcycle evaluation [6]. To evaluate the quality

of the operation of a motorcycle, the following set of distinct evaluation grades
is defined

H = {poor (H,), indifferent (Hs), average (Hs), good (Hy), excellent (H5)} (1)

Because operation is a general technical concept and is not easy to evaluate
directly, it needs to be decomposed into detailed concepts such as handling,
transmission, and brakes. Again, if a detailed concept is still too general to
assess directly, it may be further decomposed into more detailed concepts. For
example, the concept of brakes is measured by stopping power, braking stability,
and feel at control, which can probably be directly evaluated by an expert and
therefore referred to as basic attributes (or basic factors).

Generally, a qualitative attribute y may be evaluated through a hierarchical
structure of its subattributes. For instance, the hierarchy for evaluation of the
operation of a motorcycle is depicted as in Fig. 1.

operation

stopping power braking stability

Fig. 1. Evaluation hierarchy for operation

feel at contro
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In evaluation of qualitative attributes, judgments could be uncertain. For
example, in the problem of evaluating different types of motorcycles, the follow-
ing type of uncertain subjective judgments for the brakes of a motorcycle, say
“Yamaha”, was frequently used [6, 25]:

1. Tts stopping power is average with a confidence degree of 0.3 and it is good
with a confidence degree of 0.6.

2. Its braking stability is good with a confidence degree of 1.

3. Its feel at control is evaluated to be good with a confidence degree of 0.5 and
to be excellent with a confidence degree of 0.5.

In the above statements, the confidence degrees represent the uncertainty in
the evaluation. Note that the total confidence degree in each statement may be
smaller than 1 as the case of the first statement. This may be due to incomplete
of available information.

In a similar fashion, all basic attributes in question could be evaluated. Then
the problem is to generate an overall assessment of the operation of a motorcycle
by aggregating all uncertain judgments of its basic attributes in a rational way.

2.2 Evaluation Analysis Model

The evaluation analysis model was proposed in [26] to represent uncertain sub-
jective judgments, such as statements specified in preceding subsection, in a
hierarchical structure of attributes.

To begin with, let us suppose a simple hierarchical structure consisting of
two levels with a general attribute, denoted by y, at the top level and a finite set
E of its basic attributes at the bottom level. Let E = {e;,...,e;,...,er} and
assume the weights of basic attributes are given by W = (wy,...,w;,...,wg),
where w; is the relative weight of the ith basic attribute (e;) with 0 < w; < 1.

Given the following set of evaluation grades

H={H,...,Hp,...,Hy}

designed as distinct standards for assessing an attribute, then an assessment for
e; of an alternative can be mathematically represented in terms of the following
distribution [25]

S(e:) = {(Hp,Bns) |n=1,...,N}, fori=1,...,L (2)

where 3, ; denotes a degree of belief satisfying 3, ; > 0, and ZnN:1 Bns < 1. An
assessment S(e;) is called complete (respectively, incomplete) if 25:1 Bni=1
(respectively, SN B, < 1).

For example, the three assessments 1.-3. given in preceding subsection can
be represented in the form of distributions defined by (2) as

S(stopping power) = {(H3,0.3),(H4,0.6)}
S(braking stability) = {(H4,1)}
S(feel at control) = {(H4,0.5),(Hs,0.5)}
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where only grades with nonzero degrees of belief are listed in the distributions.

Let us denote (3, the degree of belief to which the general attribute y is as-
sessed to the evaluation grade of H,. The problem now is to how to generate
Bn, for n = 1,..., N, by combinating the assessments for all associated basic
attributes e; (i = 1,...,L) as given in (2). However, before continuing the dis-
cussion, it is necessary to briefly review the basis of D-S theory of evidence in
the next subsection.

2.3 Dempster-Shafer Theory of Evidence

In D-S theory, a problem domain is represented by a finite set @ of mutually
exclusive and exhaustive hypotheses, called frame of discernment [14]. Formally,
a basic probability assignment (BPA, for short) is a function m : 26 — [0,1]
verifying

m() =0, and Z m(A) =1

Ag20

The quantity m(A) can be interpreted as a measure of the belief that is commit-
ted exactly to A, given the available evidence. A subset A € 2€ with m(4) >0
is called a focal element of m.

Two useful operations that play a central role in the manipulation of belief
functions are discounting and Dempster’s rule of combination [14]. The discount-
ing operation is used when a source of information provides a BPA m, but one
knows that this source has probability «a of reliable. Then m is discounted by a
factor of (1 — a), resulting in a new BPA m® defined by

m*(A) = am(A), forany A C © (3)
m*(0) = (1 —a) +am(O) (4)

Consider now two pieces of evidence on the same frame @ represented by two
BPAs m; and ms. Dempster’s rule of combination is then used to generate a
new BPA, denoted by (m; @ m3) (also called the orthogonal sum of m; and ms)
defined as follows

Y

(m1 @ ma)(0) = 0,(m; & m2)(A4) = % > my(B)m2(C)  (5)
B,CCO:BNC=A

where

K=1- Y mi(Bma(C) (6)

B,CCO:BNC=0

Note that the orthogonal sum combination is only applicable to such two
BPAs that verify the condition K > 0.

As we will see in the following sections, these two operation essentially play
an important role in the ER approach to MADM under uncertainty developed
in, e.g., [20,21,25]. Although the discounting operation has not been mentioned
explicitly in these published sources.



Evidential Reasoning Approach to MADM under Uncertainty 5

3 The Evidential Reasoning Approach

Let us return to the two-level hierarchical structure with a general attribute y

at the top level and a finite set E = {ey,...,e;,..., e} of its basic attributes at
the bottom level. Denote (3, the degree of belief to which the general attribute
y is assessed to the evaluation grade of H,, forn =1,..., N.

3.1 The Original ER Algorithm

The original ER algorithm proposed in [20] has been used for the purpose of
obtaining 8, (n = 1,...,N) by aggregating the assessments of basic attributes
given in (2). The summary of the algorithm in this subsection is taken from [25].

Given the assessment S(e;) of a basic attribute e; (i = 1,...,L), let m,;
be a basic probability mass representing the belief degree to which the basic
attribute e; supports the hypothesis that the attritute y is assessed to the eval-
uation grade H,. Let my; be the remaining probability mass unassigned to
any individual grade after all the N grades have been considered for assessing
the general attribute y as far as e; is concerned. These quantities are defined as
follows

M, = Wilnq, forn=1,...,N (7)
N N

my; =1— Z Mp;=1—w; Z Bn,i (8)
n=1 n=1

Let Er;) = {e1,...,ei} be the subset of first i basic attributes. Let m,, r(;) be
a probability mass defined as the belief degree to which all the basic attributes
in Ej(;) supports the hypothesis that y is assessed to H,. Let ms ;;) be the
remaining probability mass unassigned to individual grades after all the basic
attributes in Ey(;) have been assessed. The quantities m,, r(;y and my 1(;) can
be generated by combining the basic probability masses m,, ; and my ; for all
n=1,...,N,and j=1,...,1.

With these notations, the key step in the original ER algorithm is to induc-
tively calculate my, r(;i4+1) and myy 1(;41) as follows

My 1(i4+1) = K1(i41) (M 1) Menyit 1 + Mo 1(yMait1 + Moy 1y Miniv1)  (9)
Mg 1Gi41) = Krgipr) (Mo rymagivt) (10)
forn=1,...,N,i=1,...,L—1, and Kj(;41) is a normalizing factor defined by
1
N N
Kiigy = |1- Mg, 1(5)Tj,i+1 (11)

t=1

o~ =

=
Ji#
Then we obtain

Bn =mu ), forn=1,...,N

N 12
Br =my ) =1- 21 Bn (12)
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3.2 Synthesis Axioms and the Modified ER Algorithm

Inclined to developing theoretically sound methods and tools for dealing with
MADM problems under uncertainty, Yang and Xu [25] have recently proposed a
system of four synthesis axioms with which a rational aggregation process needs
to satisfy. These axioms are symbolically stated as below.

Axiom 1. (Independency) If 8, ; =0 for alli=1,..., L, then 3, = 0.

Axiom 2. (Consensus) If f; = 1 and 8,; = 0, for all i = 1,...,L, and
n=1,....,.N,n#k,then gy =1, 8, =0,forn=1,...,N,n # k.

Axiom 3. (Completeness) Assume H* C H and denote It = {n|h, € HT}. If

S Bni(>0)=1, foralli=1,...,L, then Y B,(>0) =1 as well.
nelt nelt

N
Axiom 4. (Incompleteness) If there exists i € {1,..., L} such that Y 3, <1,

n=1

N
then Y A, < 1.
n=1

It is easily seen from (9-12) that the original ER algorithm naturally follows
the independency axiom. However, it has been shown in [25] that the original
ER algorithm only satisfies the consensus axiom approximately, and does not
satisfy the completeness axiom.

In [25], Yang and Xu proposed a new ER algorithm that satisfies all the
synthesis axioms. Its main features are summarized as follows

1) Weight normalization. In the new ER algorithm, the weights w; (i = 1,..., L)
of basic attributes are normalized such that: 0 < w; < 1 and Zle w; = 1.

2) Aggregation process. First, the probability mass my ; given in (8) is decom-
posed into two parts: my ; = ™yy,; + My, where

N
My, =1 —w;, and my; = w; (1 - Zﬁnz) (13)

n=1

Then, with the notations as in preceding section, the process of aggregating
the first ¢ assessments with the (i + 1)th assessment is recursively carried
out as follows

Moy 1(i+1) = K1(i41)[Mn, 1) Monsit1 + Mo 1) Mait1 + Mg 1(iyMin,iy1[14)

My, 15y = M) + My 1), 1= 1,...,N
M 1(i+1) = Krign) MM
Mg 1 ()M ie1 + My 106, ig1] (15)
Mo 1(i+1) = Kriipn) [Mag,10) + Minig] (16)

where Kp(;41) is defined as same as in (11).
For assigning the assessment S(y) for the general attribute y, after all L
assessments of basic attributes have been aggregated, the algorithm finally
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defines
Bn = Mn, (1) forn=1,....N (17)
1—-my JI(L)
My (L)

=7 18
Pr=1_ st 1(0) (18)

and then
S(y):{(Hnaﬁn)zn:L--'aN} (19)

The following theorems are due to Yang and Xu [25] that are taken for
granted to develop the new ER algorithm above.

Theorem 1. The degrees of belief defined by (17) and (18) satisfy the following

Oéﬁn:ﬂﬂélanzlz"w]\[

N
> Bt Bu=1

n=1

Theorem 2. The aggregated assessment for y defined by (19) exactly satisfies
all four synthesis azxioms.

Although proofs of these theorems given in [25] are somehow complicated,
however, by analysing the ER approach in terms of D-S theory in the next
section, we show that these theorems follow quite simply.

4 A Reanalysis of the ER Approach

Let us remind ourselves the available information given to an assessment problem
in the two-level hierarchical structure:

— the assessments S(e;) for basic attributes e; (i = 1,...,L), and
— the weights w; of the basic attributes e; (i = 1,..., L).

Given the assessment S(e;) of a basic attribute e; (i = 1,..., L), we now defines
a corresponding BPA, denoted by m;, which quantifies the belief about the
performance of e; as follows

mi(Hn)éﬂn,i, forn=1,...,N (20)
N N N
H)=1- Zmz(Hn) =1- Zﬂmi (21)
n=1 n=1

The quantity m;(H,) represents the belief degree that supports for the hypothe-
sis that e; is assessed to the evaluation grade H,,. While m;(H) is the remaining
probability mass unassigned to any individual grade after all evaluation grades
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have been considered for assessing e;. If S(e;) is a complete assessment, m; is
a probability distribution. Otherwise, m; quantifies the ignorance resulted in

As such with L basic attributes e;, we obtain L corresponding BPAs m; as
quantified beliefs of the assessments for basic attributes. The problem now is
how to generate an assessment for y, i.e. S(y), represented by a BPA m from m;
and w; (i =1,...,L). Formally, we aim at obtaining the BPA m that combines
all m;’s with taking weights w;’s into account in the form of the following

L

m = @(w’ ® m;) (22)

i=1

where ® is a product-type operation and & is a sum-type operation in general.
Under such a reformulation, we may have different schemes for obtaining the
BPA m represented the generated assessment S(y).

4.1 The Discounting-and-Orthogonal Sum Scheme

Let us first consider ® as the discounting operation and & as the orthogonal
sum in D-S theory. Then, for each ¢ = 1,..., L, we have (w; ® m;) is a BPA
(refer to (3—4)) defined by

>

(w; ® m;)(Hy)
(wi & mz)(H)

mj (Hyp) = wim;(Hyp) = wifBn;, fori=1,...,L (23)

(2

my(H) = (1 —w;) + wym;(H)

2

1>

N N
(1—w) +wi(l = Bui) =1+ w; Y Bu (24)
n=1 n=1

With this formulation, we consider each m; as the belief quatified from the infor-
mation source S(e;) and the weight w; as the “probability” of S(e;) supporting
the assessment of y.

Now Dempster’s rule of combination allows us to combine BPAs m;” (i =
1,..., L) under the independent assumption of information sources for generat-
ing the BPA m for the assessment of y. Namely,

m= @ my" (25)

where, with an abuse of the notation, @& stands for the orthogonal sum.
It would be worth noting that two BPAs m;" and m}”] are combinable,

i.e. (m{" @m}’) does exist, if and only if

N N

Z Z m;" (Hy)m;’ (H;) < 1
t=1 n=1
n#t



Evidential Reasoning Approach to MADM under Uncertainty 9

For example, assume that we have two basic attributes e; and ey with

S(el) = {(Hlao)s (H270)= (H?):O)a (H4= 1)7 (H5,0)}
5(62) = {(Hlvo)a (H270)a (H3a 1)7 (H4a0)7 (H5a0)}

and both are equally important, or w; = wsy. If the weights w; and wy are
normalized so that w; = ws = 1, then (m}™* & m3?) does not exist.

Note further that, by definition, focal elements of each m" are either single-
ton sets or the whole set . It is easy to see that m also verifies this property if
applicable. Interestingly, the commutative and associative properties of Demp-
ster’s rule of combination with respect to a combinable collection of BPAs m™
(t=1,...,L) and the mentioned property essentially form the basis for the ER
algorithms developed in [20, 25]. More particularly, with the same notations as
in preceding section, we have

m(Hp) = my (1), forn=1,...,N (26)
m(H) = My, 1(L) (27)
Further, by a simple induction, we easily see that the following holds

Lemma 1. With the quantity My, 1(r) inductively defined by (16), we have

L
WHJ(L) :K](L)H(]. —’U}Z‘) (28)

=1
where Kp(ry is inductively defined by (11).

Except the weight normalization, the key difference between the original ER
algorithm and the modified ER algorithm is nothing but the way of assignment

of B, (n = 1,...,N) and By after obtained m. That is, in the original ER
algorithm, the BPA m is directly used to define the assessment for y by assigning

Bn = m(H,) =m, ), forn=1,...,N (29)
Br =m(H) = may (1) (30)
While in the modified ER algorithm, after obtained the BPA m, instead of using

m to define the assessment for y as in the original ER algorithm, it defines a
BPA m' derived from m as follows

m(H,)

m'(H,) = — ,forn=1,...,N 31

(1) = ) @1
2 — N

! (M) = (m( )_mHJ(L)) L (09 (32)
1=y 1) 1=y 1)

Then the assessment for y is defined by assigning
Bn=m'(H,), forn=1,... N (33)
B =m'(H) (34)
By (31)-(32), Theorem 1 straightforwardly follows as m is a BPA.
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Lemma 2. If all assessments S(e;) (i =1,...,L) are complete, we have
L
m(?—[) my.l I(L H 1- ﬂ)z (35)
i=1

i.e., My () = 0; and, consequently, S(y) defined by (33) is also complete.

As if w; = 0 then the BPA m}" immediately becomes the vacuous BPA,
and, consequently, plays no role in the aggregation. Thus, without any loss of
generality, we assume that 0 < w; < 1foralli =1,..., L. Under this assumption,
we are easily to see that if the assumption of the completeness axiom holds, then

Fowi = {{ha}ln€ I*YUH), fori=1,... L (36)

where F,, wi denotes the family of focal elements of m;". Hence, by a simple
1nduct10n ‘we also have

Fon = {{hn}In € I} U {#} (37)

Note that the assumption of the consensus axiom is the same as that of the
completeness axiom with [IT] = 1.

Therefore, the consensus and completeness axioms immediately follow from
Lemma 2 along with (31)-(34) and (37).

It is also easily seen that

L

=1 i

[wim;(H) + (1 — w;)] (38)

—.

1

and in addition, if there is an incomplete assessment S(e;) then w;m;(H) > 0,
resulting in

ijRj(H) (1 — wi) >0

I=-

<o
Sl
L=

This directly implies m'(#H) > 0. Consequently, the incompleteness axiom follows
as (33)—(34).

4.2 The Discounting-and-Averaging Scheme
In this subsection, instead of applying the the orthogonal sum operation after dis-

counting m;’s, we apply the averaging operation over L BPAs m}" (i =1,...,L)
to obtain a BPA m defined by

h |

L
Z , for any H C H (39)
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Therefore, we have

~

=

<
Il
-

(40)

==
M

<
Il
-

N
<1—wi 5 ﬁn,z) i H=H
n=1

otherwise

=

After obtaining the aggregated BPA 7, the problem now is to use m for
generating the aggregated assessment for the general attribute y. Naturally, we
can assign

L
Bn =m(H,) = Zw,ﬂn,i, forn=1,...,N (41)

N
Bu=m(H) = I (1 - w; Z ﬂn7i> (42)

i=1

Then the assessment for y is defined by
S(y) = A{(Hn,B,)In=1,...,N} (43)

Regarding the synthesis axioms, we easily see that the first axiom holds for
the assessment (43). For the next two axioms, we have the following

Theorem 3. The assessment (43) defined via (41)-(42) satisfies the consensus
aziom and/or the completeness aziom if and only if w; =1 for alli=1,..., L.

The assessment for y according to this aggregation scheme also satisfies the
incompleteness axiom trivially due to the nature of discounting-and-averaging.

Unfortunately, the requirement of w; = 1 for all i to satisfy the consensus
axiom and the completeness axiom would not be appropriate in general. This is
due to the allocation of the average of discount rates

L
> wi
1_i=1
L

_A
a =

to H as a part of unassigned probability mass. This dilemma can be resolved in a
similar way as in the modified algorithms above. Interestingly, this modification
leads to the weighted sum scheme as shown in the following.

4.3 Weighted Sum as the Modified Discounting-and-Averaging
Scheme

By applying the discounting-and-averaging scheme, we obtain the BPA m as
defined by (40). Now, guided by the synthesis axioms, instead of making direct
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use of 7 in defining the generated assessment S(y) (i.e., allocating the average
discount rate @ to By as a part of unassigned probability mass) as above, we
define a new BPA denoted by m' derived from m by making use of (1 — @) as a
normalization factor. More particularly, we define

_ m(H,)
1-@

m(H) —a
1-@

,form=1,...,N (44)

m' (M) = (45)

Then by (40) and a simple transformation, we easily obtain

L
m'(H,) =Y Wifn, forn=1,...,N (46)

i? N
m(H) = Zmi (1 - Z 5n,z‘> (47)

where ,
w;=——, fori=1,...,L

w

L
> wi
i=1

Let us turn back to the general scheme of combination given in (22). Under
the view of this general scheme, the above BPA ™’ is nothing but an instance
of it by simply considering ® as the multiplication and & as the weighted sum.
Namely, we have

L
m'(H,) =Y _ wim;(H,), forn=1,...,N (48)

L
m (H) = Zm,»mi(m (49)

where relative weights W, are normalized as above so that ). @; = 1. It is of
interest to note that the possibility of using such an operation has previously
been mentioned in, for example, [18]. Especially, the weighted sum operation of
two BPAs has been used for the integration of distributed databases for purposes
of data mining [10].

Now we quite naturally define the assessment for y by assigning

L
B =M (H,) =Y Wmi(H,), forn=1,...,N (50)

=
By =m (M) = Zﬁimi(ﬂ) (51)

Appealingly simple as it is, we can see quite straightforwardly that the fol-
lowing holds.
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Proposition 1. The degrees of belief generated using (50)-(51) satisfy the fol-
lowing

0< BBy <1, forn=1,....N
N

Zﬂn'i'ﬂHZI

n=1

Furthermore, we have the following theorem.

Theorem 4. The aggregated assessment for y defined as in (50)-(51) exactly
satisfies all four synthesis axioms.

4.4 Expected Utility in the ER Approaches

In the tradition of decision making under uncertainty [12], the notion of expected
utility has been mainly used to rank alternatives in a particular problem. That
is one can represent the preference relation > on a set of alternatives X with
a single-valued function u(z) on X, called ezpected wutility, such that for any
z,y € X, x = y if and only if u(z) > wu(y). Maximization of u(z) over X
provides the solution to the problem of selecting x.

In the ER approach, we assume a utility function u’ : H — [0, 1] satisfying

' (Hpy1) > u'(H,) if Hyyq is preferred to H,.

This utility function u' may be determined using the probability assignment
method [8] or using other methods as in [20, 25].

If all assessments for basic attributes are complete, Lemma 2 shows that the
assessment for y is also complete, i.e. By = 0. Then the expected utility of an
alternative on the attribute y is defined by

N
u(y) =Y Bav! (Hy) (52)

An alternative a is strictly preferred to another alternative b if and only if
u(y(a)) > uly(d)).

Due to incompleteness, in general, in basic assessments, the assessment for y
may result in incomplete. In such a case, in [25] the authors defined three mea-
sures, called minimum, maximum and average expected utilities, and proposed
a ranking scheme based on these measures (see, e.g., [25] for more details).

In this paper, based on the Generalized Insufficient Reason Principle, we
define a probability function P,, on H derived from m for the purpose of making
decisions via the pignistic transformation [15]. Namely,

P, (H,) :m(H,J-%%m(H) forn=1,...,N (53)

That is, as in the two-level language of the so-called transferable belief model
[15], the aggregated BPA m itself represented the belief is entertained based on
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the available evidence at the credal level, and when a decision must be made,
the belief at the credal level induces the probability function P, defined by (53)
for decision making. Particularly, the approximately assessment for y for the
purpose of decision making is then defined as

B = PulHy) = ot 1o Bn, form=1,.., N (54)

Therefore, the expected utility of an alternative on the attribute y is straight-
forwardly defined by

N N 1
uly) =Y By’ (Hn) = (Bn + 580’ (Hn) (55)

n=1

In fact, while the amount of belief 3y (due to ignorance) is allocated either
to the least preferred grade H; or to the most preferred grade Hy to define
the expected utility interval in Yang’s approach [25], it is uniformly allocated
to every evaluation grade H,, guided by the Generalized Insufficient Reason
Principle [15], to define an approximately assessment for y and, hence, a single-
valued expected utility function.

5 An Example: Motorcycle Assessment Problem

The problem is to evaluate the performance of four types of motorcycles, namely
Kawasaki, Yamaha, Honda, and BMW.

The overall performance of each motorcycle is evaluated based on three major
attributes which are quality of engine, operation, general finish. The process of
attribute decomposition for the evaluation problem of motorcycles results in a
hierarchy graphically depicted in Fig. 2, where the relative weights of attributes
at a single level associated with the same upper level attribute are defined by
w;, w;j;, and wjji, respectively.

Using the five-grade evaluation scale as given in (1), the assessment problem
of motorcycles is given in Table 1, where P, I, A, G, and E are the abbreviations
of poor, indifferent, average, good, and excellent, respectively, and a number in
bracket denoted the degree of belief to which an attribute is assessed to a grade.
For example, E(0.8) means “ezcellent to a degree of 0.8”.

Further, all relevant attributes are assumed to be of equal relative important
[25]. That is

wy = we = wsz = 0.3333
Wi = Wi2 = Wiz = wig = wys = 0.2
Wo1 = Woo = waz = 0.3333
wa11 = W12 = Wa13 = Warq = 0.25
wa21 = Wazz = 0.5
Wa31 = Wa3s = wazz = 0.3333

w31 = w3z = w3z = w34 = wzs = 0.2



Table 1: Generalized Decision Matrix for Motorcycle Assessment [25]

General attributes

Basic attributes

types of motor cycle (alternatives)

Kawasaki (a1)| Yamaha (a2) | Honda (a3) | BMW (a4)
responsiveness E (0.8) G (0.3) E (0.6)] G (1.0) 1(1.0)
' fuel economy A(1.0) 1(1.0) 1(0.5) A(0.5) E(1.0)
engine quietness 1(0.5) A(0.5) A(1.0)  |G(0:5) E(0.3)]  E(1.0)
vibration G (1.0) 1(1.0) G(0.5) E(0.5) P(1.0)
starting G (1.0) A(0.6) G(0.3) G (1.0) A(1.0)
steering E(0.9) G(1.0) A(1.0) A(0.6)
handling bumpy bends A(0.5) G(0.5) G (1.0) G(0.8) E(0.1)| P(0.5) I(0.5)
maneuverability A(1.0) E(0.9) 1(1.0) P(1.0)
operation top speed stability E(1.0) G(1.0) G(1.0) G(0.6) E(0.4)
Overall performance . . clutch operation A(0.8) G(1.0) E(0.85) |1(0.2) A(0.8)
rstission gearbox operation | A(0.5) G(0.5) | I1(0.5) A(0.5) E(1.0) P(1.0)
stopping power G(1.0) A(0.3) G(0.6) G(0.6) E(1.0)
brakes braking stability | G(0.5) E(0.5) G(1.0)  |A(0.5) G(0.5)]  E(1.0)
feel at control P(1.0) G(0.5) E(0.5) G(1.0) G(0.5) E(0.5)
quality of finish P(0.5) 1(0.5) G(1.0) E(1.0) G(0.5) E(0.5)
seat comfort G(1.0) G(0.5) E(0.5) G(0.6) E(1.0)
general headlight G(1.0) A(1.0) B(1.0) |G(0.5) E(0.5)
mirrors A(0.5) G(0.5) | G(0.5) E(0.5) E(1.0) G(1.0)
horn A(1.0) G(1.0) G(0.5) E(0.5) E(1.0)

£Lyurejrgdun) ppun WAVIN 03 yoeoxrddy Suruoseay] reryuapiayg
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responsiveness (Wi)
fuel economy (wiz)

engine quietness (w;s)
(i)

vibration (Wi)

starting (ws)

steefing (Wai:)
bumpy bend (Ws2)
handiing
(War) manoeuvrability ( Wys)
top speed (W.u)
clutch operation (Waz;)
overall performance  ———  operation transmission
(W) (Wa2) gearbox operation (W)
stopping power (W.s,)
brakes braking stability ( W,s.)

(Was)
feel at control (W,s;)

quality of finish( ws,)

seat comfort (W)

general head light (wss)
(ws)

mirrors (Wsy)

horn (Wss)

Fig. 2. Evaluation hierarchy for motorcycle performance assessment [25]

In the sequent, for the purpose of comparison, we generate two different
results of aggregation via the modified ER approach (refer to (33)-(34)), and
the new approach taken in this paper (refer to (50)—(51)).

By applying the modified ER approach, the distributed assessments for over-
all performance of four types of motorcycles are given in Table 2. These four
distrubutions are graphically shown as in Fig. 3 (a).

At the same time, by applying the weighted sum aggregation scheme, we
obtain the distributed assessments for overall performance of four types of mo-
torcycles as shown in Table 3 (graphically depicted in Fig. 3 (b)).

As we can easily see, it is not much difference between the result obtained
by the modified ER algorithm and that obtained by our method, especially the
behavior of correspondingly assessment distributions as Fig. 3 has shown.

Now, as mentioned above, for the purpose of making decisions we apply the
pignistic transformation (refer to (53)) to obtain the approximately assessment
for overall performance of motorcycles given in Table 4 below.

Assume the same utility function u' : H — [0, 1] as in [25] defined by

W' (P) = 0,u'(T) = 0.35,u/(4) = 0.55,u'(G) = 0.85,u'(E) = 1
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Poor(P)|Indifference(I)|Average(A)| Good(G)| Excellent(E)| Unknown (U)
Kawasaki| 0.0547 0.0541 0.3216 0.4452 0.1058 0.0186
Yamaha 0.0 0.1447 0.1832 0.5435 0.1148 0.0138
Honda 0.0 0.0474 0.0621 0.4437 0.4068 0.0399
BMW | 0.1576 0.0792 0.1124 0.1404 0.5026 0.0078

Table 2. Aggregated assessments for four types of motocycles obtained by using the
modified ER approach [25]

°

2
°
2

-8~ Kawasaki -8 Kawasaki
=& Yamaha =& Yamaha
6~ Honda =6~ Honda
0.6H - BMW -6~ BMW

I L
° o °
= o >
T

Degrees of belief

°
©
T

Degrees of belief

I
o
~

L
°

; ; ; i
i3 A G E u A
Evaluation grades Evaluation grades

(a) The Modified ER Method (b) The Weighted Sum Method

Fig. 3. Overall Evaluation of Motorcycles

Using (55), we easily obtain the expected utility of motorcycles given as

u(Kawasaki) = 0.6733, u( Yamaha) = 0.7223
u(Honda) = 0.8628, w(BMW) = 0.6887

Consequently, the ranking of the four types of motorcycles is given by
Honda = Yamaha = BMW > Kawasaki
which exactly coincides with that obtained by the expected utility interval and

the ranking scheme by Yang and Xu [25].

6 Concluding Remarks

In this paper, we have reanalysed the ER approach to MADM under uncertainty.
Theoretically, the analysis provides a general formulation for the attribute ag-
gregation problem in MADM under uncertainty. With this new formulation, the
previous aggregation scheme becomes, as a consequence, a particular instance of
it, along with a simple understanding of the technical proofs. Furthermore, as
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Poor(P)|Indifference(I)|Average(A)| Good(G)| Excellent(E)| Unknown (U)
Kawasakz| 0.0703 0.0667 0.3139 0.3972 0.1247 0.0272
Yamaha 0.0 0.1611 0.2122 0.4567 0.1501 0.0198
Honda 0.0 0.0611 0.0796 0.4344 0.3922 0.0659
BMW | 0.1639 0.0917 0.1278 0.1685 0.437 0.0111

Table 3. Aggregated assessments for four types of motocycles obtained by using the
weighted sum aggregation scheme

Poor(P)|Indifference(I)|Average(A)| Good(G)|Excellent(E)
Kawasakz| 0.07574 0.07214 0.31934 | 0.40264 0.13014
Yamaha | 0.00396 0.16506 0.21616 | 0.46066 0.15406
Honda |0.01318 0.07428 0.09278 | 0.44758 0.40538
BMW |0.16612 0.09392 0.13 0.17072 0.43922

Table 4. Approximately assessments for four types of motocycles obtained by using
the pignistic transformation

another result of the new formulation, a new aggregation scheme based on the
weighted sum operation has been also proposed. This scheme of aggregation al-
lows us to handle incomplete uncertain information in a simple and proper man-
ner when the assumption regarding the independence of attributes’ uncertain
evaluations is not appropriate. For the purpose of decision making, an approxi-
mate method of uncertain assessments based on the so-called pignistic transfor-
mation [15] has been applied to define the expected utility function, instead of
using the expected utility interval proposed previously. A tutorial example has
been examined to illustrate the discussed techniques.
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