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Assessment Aggregation in the EvidentialReasoning Approa
h to MADM underUn
ertainty: Orthogonal Sum vs. Weighted SumVan-Nam Huynh, Yoshiteru Nakamori, and Tu-Bao HoS
hool of Knowledge S
ien
eJapan Advan
ed Institute of S
ien
e and Te
hnologyTatsunoku
hi, Ishikawa, 923-1292, JAPANEmail: fhuynh,nakamori,baog�jaist.a
.jpAbstra
t. In this paper, we revisit the evidential reasoning (ER) ap-proa
h to multiple-attribute de
ision making (MADM) with un
ertainty.The attribute aggregation problem in MADM under un
ertainty is gen-erally formulated as a problem of eviden
e 
ombination. Then severalnew aggregation s
hemes are proposed and simultaneously their theoret-i
al features are explored. A numeri
al example traditionally examined inpublished sour
es on the ER approa
h is used to illuminate the proposedte
hniques.1 Introdu
tionSo far, many attempts have been made to integrate te
hniques from arti�
ialintelligen
e (AI) and operational resear
h (OR) for handling un
ertain infor-mation, e.g., [1, 4, 5, 8, 9, 11, 19℄. During the last de
ade, an evidential reasoning(ER) approa
h has been proposed and developed for MADM under un
ertaintyin [20, 21, 23{25℄. Essentially, this approa
h is based on an evaluation analysismodel [26℄ and the eviden
e 
ombination rule of the Dempster-Shafer (D-S) the-ory [14℄. The ER approa
h has been applied to a range of MADM problemsin engineering and management, in
luding motor
y
le assessment [21℄, general
argo ship design [13℄, system safety analysis and synthesis [17℄, retro-�t ferrydesign [22℄ among others.Re
ently, due to a need of developing theoreti
ally sound methods and toolsfor dealing with MADM problems under un
ertainty, Yang and Xu [25℄ haveproposed a system of four synthesis axioms within the ER assessment frameworkwith whi
h a rational aggregation pro
ess needs to satisfy. It has also been shownthat the original ER algorithm only satis�es these axioms approximately. At thesame time, guided by the aim exa
tly, the authors have proposed a new ERalgorithm that satis�es all the synthesis axioms pre
isely.It is worth emphasizing that the underlying basis of using Dempster's ruleof 
ombination is the independent assumption of information sour
es to be
ombined. However, in situations of multiple attribute assessment based on amulti-level stru
ture of attributes, assumptions regarding the independen
e of



2 V.N. Huynh, Y. Nakamori, T.B. Hoattributes' un
ertain evaluations may not be appropriate in general. In this pa-per, we reanalysis the previous ER approa
h in terms of D-S theory so thatthe attribute aggregation problem in MADM under un
ertainty 
an be gener-ally formulated as a problem of eviden
e 
ombination. Then we propose a newaggregation s
heme and simultaneously examine its theoreti
al features. For thepurpose of the present paper, we take only qualitative attributes of an MADMproblem with un
ertainty into a

ount, though quantitave attributes would bealso in
luded in a similar way as 
onsidered in [20, 21℄.2 Ba
kground2.1 Problem Des
riptionThis subse
tion des
ribes an MADM problem with un
ertainty through a tuto-rial example taken from [25℄.Let us 
onsider a problem of motor
y
le evaluation [6℄. To evaluate the qualityof the operation of a motor
y
le, the following set of distin
t evaluation gradesis de�nedH = fpoor (H1); indi�erent (H2); average (H3); good (H4); ex
ellent (H5)g (1)Be
ause operation is a general te
hni
al 
on
ept and is not easy to evaluatedire
tly, it needs to be de
omposed into detailed 
on
epts su
h as handling,transmission, and brakes. Again, if a detailed 
on
ept is still too general toassess dire
tly, it may be further de
omposed into more detailed 
on
epts. Forexample, the 
on
ept of brakes is measured by stopping power, braking stability,and feel at 
ontrol, whi
h 
an probably be dire
tly evaluated by an expert andtherefore referred to as basi
 attributes (or basi
 fa
tors).Generally, a qualitative attribute y may be evaluated through a hierar
hi
alstru
ture of its subattributes. For instan
e, the hierar
hy for evaluation of theoperation of a motor
y
le is depi
ted as in Fig. 1.
operation

handling transmission brakes

stopping power braking stability feel at controlFig. 1. Evaluation hierar
hy for operation



Evidential Reasoning Approa
h to MADM under Un
ertainty 3In evaluation of qualitative attributes, judgments 
ould be un
ertain. Forexample, in the problem of evaluating di�erent types of motor
y
les, the follow-ing type of un
ertain subje
tive judgments for the brakes of a motor
y
le, say\Yamaha", was frequently used [6, 25℄:1. Its stopping power is average with a 
on�den
e degree of 0.3 and it is goodwith a 
on�den
e degree of 0.6.2. Its braking stability is good with a 
on�den
e degree of 1.3. Its feel at 
ontrol is evaluated to be good with a 
on�den
e degree of 0.5 andto be ex
ellent with a 
on�den
e degree of 0.5.In the above statements, the 
on�den
e degrees represent the un
ertainty inthe evaluation. Note that the total 
on�den
e degree in ea
h statement may besmaller than 1 as the 
ase of the �rst statement. This may be due to in
ompleteof available information.In a similar fashion, all basi
 attributes in question 
ould be evaluated. Thenthe problem is to generate an overall assessment of the operation of a motor
y
leby aggregating all un
ertain judgments of its basi
 attributes in a rational way.2.2 Evaluation Analysis ModelThe evaluation analysis model was proposed in [26℄ to represent un
ertain sub-je
tive judgments, su
h as statements spe
i�ed in pre
eding subse
tion, in ahierar
hi
al stru
ture of attributes.To begin with, let us suppose a simple hierar
hi
al stru
ture 
onsisting oftwo levels with a general attribute, denoted by y, at the top level and a �nite setE of its basi
 attributes at the bottom level. Let E = fe1; : : : ; ei; : : : ; eLg andassume the weights of basi
 attributes are given by W = (w1; : : : ; wi; : : : ; wL),where wi is the relative weight of the ith basi
 attribute (ei) with 0 � wi � 1.Given the following set of evaluation gradesH = fH1; : : : ; Hn; : : : ; HNgdesigned as distin
t standards for assessing an attribute, then an assessment forei of an alternative 
an be mathemati
ally represented in terms of the followingdistribution [25℄S(ei) = f(Hn; �n;i) j n = 1; : : : ; Ng; for i = 1; : : : ; L (2)where �n;i denotes a degree of belief satisfying �n;i � 0, and PNn=1 �n;i � 1. Anassessment S(ei) is 
alled 
omplete (respe
tively, in
omplete) if PNn=1 �n;i = 1(respe
tively, PNn=1 �n;i < 1).For example, the three assessments 1.{3. given in pre
eding subse
tion 
anbe represented in the form of distributions de�ned by (2) asS(stopping power) = f(H3; 0:3); (H4; 0:6)gS(braking stability) = f(H4; 1)gS(feel at 
ontrol) = f(H4; 0:5); (H5; 0:5)g



4 V.N. Huynh, Y. Nakamori, T.B. Howhere only grades with nonzero degrees of belief are listed in the distributions.Let us denote �n the degree of belief to whi
h the general attribute y is as-sessed to the evaluation grade of Hn. The problem now is to how to generate�n, for n = 1; : : : ; N , by 
ombinating the assessments for all asso
iated basi
attributes ei (i = 1; : : : ; L) as given in (2). However, before 
ontinuing the dis-
ussion, it is ne
essary to brie
y review the basis of D-S theory of eviden
e inthe next subse
tion.2.3 Dempster-Shafer Theory of Eviden
eIn D-S theory, a problem domain is represented by a �nite set � of mutuallyex
lusive and exhaustive hypotheses, 
alled frame of dis
ernment [14℄. Formally,a basi
 probability assignment (BPA, for short) is a fun
tion m : 2� ! [0; 1℄verifying m(;) = 0; and XA22�m(A) = 1The quantity m(A) 
an be interpreted as a measure of the belief that is 
ommit-ted exa
tly to A, given the available eviden
e. A subset A 2 2� with m(A) > 0is 
alled a fo
al element of m:Two useful operations that play a 
entral role in the manipulation of belieffun
tions are dis
ounting and Dempster's rule of 
ombination [14℄. The dis
ount-ing operation is used when a sour
e of information provides a BPA m, but oneknows that this sour
e has probability � of reliable. Then m is dis
ounted by afa
tor of (1� �), resulting in a new BPA m� de�ned bym�(A) = �m(A); for any A � � (3)m�(�) = (1� �) + �m(�) (4)Consider now two pie
es of eviden
e on the same frame � represented by twoBPAs m1 and m2. Dempster's rule of 
ombination is then used to generate anew BPA, denoted by (m1�m2) (also 
alled the orthogonal sum of m1 and m2),de�ned as follows(m1 �m2)(;) = 0; (m1 �m2)(A) = 1K XB;C��:B\C=Am1(B)m2(C) (5)where K = 1� XB;C��:B\C=;m1(B)m2(C) (6)Note that the orthogonal sum 
ombination is only appli
able to su
h twoBPAs that verify the 
ondition K > 0.As we will see in the following se
tions, these two operation essentially playan important role in the ER approa
h to MADM under un
ertainty developedin, e.g., [20, 21, 25℄. Although the dis
ounting operation has not been mentionedexpli
itly in these published sour
es.



Evidential Reasoning Approa
h to MADM under Un
ertainty 53 The Evidential Reasoning Approa
hLet us return to the two-level hierar
hi
al stru
ture with a general attribute yat the top level and a �nite set E = fe1; : : : ; ei; : : : ; eLg of its basi
 attributes atthe bottom level. Denote �n the degree of belief to whi
h the general attributey is assessed to the evaluation grade of Hn, for n = 1; : : : ; N .3.1 The Original ER AlgorithmThe original ER algorithm proposed in [20℄ has been used for the purpose ofobtaining �n (n = 1; : : : ; N) by aggregating the assessments of basi
 attributesgiven in (2). The summary of the algorithm in this subse
tion is taken from [25℄.Given the assessment S(ei) of a basi
 attribute ei (i = 1; : : : ; L), let mn;ibe a basi
 probability mass representing the belief degree to whi
h the basi
attribute ei supports the hypothesis that the attritute y is assessed to the eval-uation grade Hn. Let mH;i be the remaining probability mass unassigned toany individual grade after all the N grades have been 
onsidered for assessingthe general attribute y as far as ei is 
on
erned. These quantities are de�ned asfollows mn;i = wi�n;i; for n = 1; : : : ; N (7)mH;i = 1� NXn=1mn;i = 1� wi NXn=1�n;i (8)Let EI(i) = fe1; : : : ; eig be the subset of �rst i basi
 attributes. Let mn;I(i) bea probability mass de�ned as the belief degree to whi
h all the basi
 attributesin EI(i) supports the hypothesis that y is assessed to Hn. Let mH;I(i) be theremaining probability mass unassigned to individual grades after all the basi
attributes in EI(i) have been assessed. The quantities mn;I(i) and mH;I(i) 
anbe generated by 
ombining the basi
 probability masses mn;j and mH;j for alln = 1; : : : ; N , and j = 1; : : : ; i:With these notations, the key step in the original ER algorithm is to indu
-tively 
al
ulate mn;I(i+1) and mH;I(i+1) as followsmn;I(i+1) = KI(i+1)(mn;I(i)mn;i+1 +mn;I(i)mH;i+1 +mH;I(i)mn;i+1) (9)mH;I(i+1) = KI(i+1)(mH;I(i)mH;i+1) (10)for n = 1; : : : ; N; i = 1; : : : ; L�1, and KI(i+1) is a normalizing fa
tor de�ned byKI(i+1) = 26641� NXt=1 NXj=1j 6=t mt;I(i)mj;i+13775�1 (11)Then we obtain �n = mn;I(L); for n = 1; : : : ; N�H = mH;I(L) = 1� NPn=1�n (12)



6 V.N. Huynh, Y. Nakamori, T.B. Ho3.2 Synthesis Axioms and the Modi�ed ER AlgorithmIn
lined to developing theoreti
ally sound methods and tools for dealing withMADM problems under un
ertainty, Yang and Xu [25℄ have re
ently proposed asystem of four synthesis axioms with whi
h a rational aggregation pro
ess needsto satisfy. These axioms are symboli
ally stated as below.Axiom 1. (Independen
y) If �n;i = 0 for all i = 1; : : : ; L, then �n = 0.Axiom 2. (Consensus) If �k;i = 1 and �n;i = 0, for all i = 1; : : : ; L; andn = 1; : : : ; N , n 6= k, then �k = 1, �n = 0, for n = 1; : : : ; N , n 6= k.Axiom 3. (Completeness) Assume H+ � H and denote I+ = fnjhn 2 H+g. IfPn2I+ �n;i(> 0) = 1; for all i = 1; : : : ; L; then Pn2I+ �n(> 0) = 1 as well.Axiom 4. (In
ompleteness) If there exists i 2 f1; : : : ; Lg su
h that NPn=1�n;i < 1;then NPn=1�n < 1.It is easily seen from (9{12) that the original ER algorithm naturally followsthe independen
y axiom. However, it has been shown in [25℄ that the originalER algorithm only satis�es the 
onsensus axiom approximately, and does notsatisfy the 
ompleteness axiom.In [25℄, Yang and Xu proposed a new ER algorithm that satis�es all thesynthesis axioms. Its main features are summarized as follows1) Weight normalization. In the new ER algorithm, the weights wi (i = 1; : : : ; L)of basi
 attributes are normalized su
h that: 0 � wi � 1 and PLi=1 wi = 1:2) Aggregation pro
ess. First, the probability mass mH;i given in (8) is de
om-posed into two parts: mH;i = ~mH;i +mH;i, wheremH;i = 1� wi; and ~mH;i = wi 1� NXn=1�n;i! (13)Then, with the notations as in pre
eding se
tion, the pro
ess of aggregatingthe �rst i assessments with the (i + 1)th assessment is re
ursively 
arriedout as followsmn;I(i+1) = KI(i+1)[mn;I(i)mn;i+1 +mn;I(i)mH;i+1 +mH;I(i)mn;i+1℄(14)mH;I(i) = ~mH;I(i) +mH;I(i); n = 1; : : : ; N~mH;I(i+1) = KI(i+1)[ ~mH;I(i) ~mH;i+1+mH;I(i) ~mH;i+1 + ~mH;I(i)mH;i+1℄ (15)mH;I(i+1) = KI(i+1)[mH;I(i) +mH;i+1℄ (16)where KI(i+1) is de�ned as same as in (11).For assigning the assessment S(y) for the general attribute y, after all Lassessments of basi
 attributes have been aggregated, the algorithm �nally



Evidential Reasoning Approa
h to MADM under Un
ertainty 7de�nes �n = mn;I(L)1�mH;I(L) ; for n = 1; : : : ; N (17)�H = ~mH;I(L)1�mH;I(L) (18)and then S(y) = f(Hn; �n); n = 1; : : : ; Ng (19)The following theorems are due to Yang and Xu [25℄ that are taken forgranted to develop the new ER algorithm above.Theorem 1. The degrees of belief de�ned by (17) and (18) satisfy the following0 � �n; �H � 1; n = 1; : : : ; NNXn=1�n + �H = 1Theorem 2. The aggregated assessment for y de�ned by (19) exa
tly satis�esall four synthesis axioms.Although proofs of these theorems given in [25℄ are somehow 
ompli
ated,however, by analysing the ER approa
h in terms of D-S theory in the nextse
tion, we show that these theorems follow quite simply.4 A Reanalysis of the ER Approa
hLet us remind ourselves the available information given to an assessment problemin the two-level hierar
hi
al stru
ture:{ the assessments S(ei) for basi
 attributes ei (i = 1; : : : ; L), and{ the weights wi of the basi
 attributes ei (i = 1; : : : ; L).Given the assessment S(ei) of a basi
 attribute ei (i = 1; : : : ; L), we now de�nesa 
orresponding BPA, denoted by mi, whi
h quanti�es the belief about theperforman
e of ei as followsmi(Hn) 4= �n;i; for n = 1; : : : ; N (20)mi(H) 4= 1� NXn=1mi(Hn) = 1� NXn=1�n;i (21)The quantity mi(Hn) represents the belief degree that supports for the hypothe-sis that ei is assessed to the evaluation grade Hn. While mi(H) is the remainingprobability mass unassigned to any individual grade after all evaluation grades



8 V.N. Huynh, Y. Nakamori, T.B. Hohave been 
onsidered for assessing ei. If S(ei) is a 
omplete assessment, mi isa probability distribution. Otherwise, mi quanti�es the ignoran
e resulted inmi(H) > 0.As su
h with L basi
 attributes ei, we obtain L 
orresponding BPAs mi asquanti�ed beliefs of the assessments for basi
 attributes. The problem now ishow to generate an assessment for y, i.e. S(y), represented by a BPA m from miand wi (i = 1; : : : ; L). Formally, we aim at obtaining the BPA m that 
ombinesall mi's with taking weights wi's into a

ount in the form of the followingm = LMi=1 (wi 
mi) (22)where 
 is a produ
t-type operation and � is a sum-type operation in general.Under su
h a reformulation, we may have di�erent s
hemes for obtaining theBPA m represented the generated assessment S(y).4.1 The Dis
ounting-and-Orthogonal Sum S
hemeLet us �rst 
onsider 
 as the dis
ounting operation and � as the orthogonalsum in D-S theory. Then, for ea
h i = 1; : : : ; L, we have (wi 
 mi) is a BPA(refer to (3{4)) de�ned by(wi 
mi)(Hn) 4= mwii (Hn) = wimi(Hn) = wi�n;i; for i = 1; : : : ; L (23)(wi 
mi)(H) 4= mwii (H) = (1� wi) + wimi(H)= (1� wi) + wi(1� NXn=1�n;i) = 1 + wi NXn=1�n;i (24)With this formulation, we 
onsider ea
h mi as the belief quati�ed from the infor-mation sour
e S(ei) and the weight wi as the \probability" of S(ei) supportingthe assessment of y.Now Dempster's rule of 
ombination allows us to 
ombine BPAs mwii (i =1; : : : ; L) under the independent assumption of information sour
es for generat-ing the BPA m for the assessment of y. Namely,m = LMi=1 mwii (25)where, with an abuse of the notation, � stands for the orthogonal sum.It would be worth noting that two BPAs mwii and mwjj are 
ombinable,i.e. (mwii �mwjj ) does exist, if and only ifNXt=1 NXn=1n6=t mwii (Hn)mwjj (Ht) < 1



Evidential Reasoning Approa
h to MADM under Un
ertainty 9For example, assume that we have two basi
 attributes e1 and e2 withS(e1) = f(H1; 0); (H2; 0); (H3; 0); (H4; 1); (H5; 0)gS(e2) = f(H1; 0); (H2; 0); (H3; 1); (H4; 0); (H5; 0)gand both are equally important, or w1 = w2. If the weights w1 and w2 arenormalized so that w1 = w2 = 1, then (mw11 �mw22 ) does not exist.Note further that, by de�nition, fo
al elements of ea
h mwii are either single-ton sets or the whole set H. It is easy to see that m also veri�es this property ifappli
able. Interestingly, the 
ommutative and asso
iative properties of Demp-ster's rule of 
ombination with respe
t to a 
ombinable 
olle
tion of BPAs mwii(i = 1; : : : ; L) and the mentioned property essentially form the basis for the ERalgorithms developed in [20, 25℄. More parti
ularly, with the same notations asin pre
eding se
tion, we havem(Hn) = mn;I(L); for n = 1; : : : ; N (26)m(H) = mH;I(L) (27)Further, by a simple indu
tion, we easily see that the following holdsLemma 1. With the quantity mH;I(L) indu
tively de�ned by (16), we havemH;I(L) = KI(L) LYi=1(1� wi) (28)where KI(L) is indu
tively de�ned by (11).Ex
ept the weight normalization, the key di�eren
e between the original ERalgorithm and the modi�ed ER algorithm is nothing but the way of assignmentof �n (n = 1; : : : ; N) and �H after obtained m. That is, in the original ERalgorithm, the BPAm is dire
tly used to de�ne the assessment for y by assigning�n = m(Hn) = mn;I(L); for n = 1; : : : ; N (29)�H = m(H) = mH;I(L) (30)While in the modi�ed ER algorithm, after obtained the BPA m, instead of usingm to de�ne the assessment for y as in the original ER algorithm, it de�nes aBPA m0 derived from m as followsm0(Hn) = m(Hn)1�mH;I(L) ; for n = 1; : : : ; N (31)m0(H) = (m(H)�mH;I(L))1�mH;I(L) = ~mH;I(L)1�mH;I(L) (32)Then the assessment for y is de�ned by assigning�n = m0(Hn); for n = 1; : : : ; N (33)�H = m0(H) (34)By (31){(32), Theorem 1 straightforwardly follows as m is a BPA.



10 V.N. Huynh, Y. Nakamori, T.B. HoLemma 2. If all assessments S(ei) (i = 1; : : : ; L) are 
omplete, we havem(H) = mH;I(L) = KI(L) LYi=1(1� wi) (35)i.e., ~mH;I(L) = 0; and, 
onsequently, S(y) de�ned by (33) is also 
omplete.As if wi = 0 then the BPA mwii immediately be
omes the va
uous BPA,and, 
onsequently, plays no role in the aggregation. Thus, without any loss ofgenerality, we assume that 0 < wi < 1 for all i = 1; : : : ; L. Under this assumption,we are easily to see that if the assumption of the 
ompleteness axiom holds, thenFmwii = ffhngjn 2 I+g [ fHg; for i = 1; : : : ; L (36)where Fmwii denotes the family of fo
al elements of mwii . Hen
e, by a simpleindu
tion, we also have Fm = ffhngjn 2 I+g [ fHg (37)Note that the assumption of the 
onsensus axiom is the same as that of the
ompleteness axiom with jI+j = 1:Therefore, the 
onsensus and 
ompleteness axioms immediately follow fromLemma 2 along with (31){(34) and (37).It is also easily seen thatm(H) = KI(L) LYi=1mwii (H) = KI(L) LYi=1[wimi(H) + (1� wi)℄ (38)and in addition, if there is an in
omplete assessment S(ej) then wjmj(H) > 0;resulting in wjmj(H) LYi=1i6=j(1� wi) > 0This dire
tly impliesm0(H) > 0: Consequently, the in
ompleteness axiom followsas (33){(34).4.2 The Dis
ounting-and-Averaging S
hemeIn this subse
tion, instead of applying the the orthogonal sum operation after dis-
ounting mi's, we apply the averaging operation over L BPAs mwii (i = 1; : : : ; L)to obtain a BPA m de�ned bym(H) = 1L LXi=1mwii (H); for any H � H (39)



Evidential Reasoning Approa
h to MADM under Un
ertainty 11Therefore, we havem(H) = 8>>>><>>>>: 1L LPi=1wi�n;i; if H = fHng1L LPi=1�1� wi NPn=1�n;i� ; if H = H0; otherwise (40)After obtaining the aggregated BPA m, the problem now is to use m forgenerating the aggregated assessment for the general attribute y. Naturally, we
an assign �n = m(Hn) = 1L LXi=1 wi�n;i; for n = 1; : : : ; N (41)�H = m(H) = 1L LXi=1  1� wi NXn=1�n;i! (42)Then the assessment for y is de�ned byS(y) = f(Hn; �n)jn = 1; : : : ; Ng (43)Regarding the synthesis axioms, we easily see that the �rst axiom holds forthe assessment (43). For the next two axioms, we have the followingTheorem 3. The assessment (43) de�ned via (41){(42) satis�es the 
onsensusaxiom and/or the 
ompleteness axiom if and only if wi = 1 for all i = 1; : : : ; L:The assessment for y a

ording to this aggregation s
heme also satis�es thein
ompleteness axiom trivially due to the nature of dis
ounting-and-averaging.Unfortunately, the requirement of wi = 1 for all i to satisfy the 
onsensusaxiom and the 
ompleteness axiom would not be appropriate in general. This isdue to the allo
ation of the average of dis
ount rates� 4= 0BB�1� LPi=1wiL 1CCAto H as a part of unassigned probability mass. This dilemma 
an be resolved in asimilar way as in the modi�ed algorithms above. Interestingly, this modi�
ationleads to the weighted sum s
heme as shown in the following.4.3 Weighted Sum as the Modi�ed Dis
ounting-and-AveragingS
hemeBy applying the dis
ounting-and-averaging s
heme, we obtain the BPA m asde�ned by (40). Now, guided by the synthesis axioms, instead of making dire
t



12 V.N. Huynh, Y. Nakamori, T.B. House of m in de�ning the generated assessment S(y) (i.e., allo
ating the averagedis
ount rate � to �H as a part of unassigned probability mass) as above, wede�ne a new BPA denoted by m0 derived from m by making use of (1� �) as anormalization fa
tor. More parti
ularly, we de�nem0(Hn) = m(Hn)1� � ; for n = 1; : : : ; N (44)m0(H) = m(H)� �1� � (45)Then by (40) and a simple transformation, we easily obtainm0(Hn) = LXi=1 wi�n;i; for n = 1; : : : ; N (46)m0(H) = LXi=1 wi 1� NXn=1�n;i! (47)where wi = wiLPi=1wi ; for i = 1; : : : ; LLet us turn ba
k to the general s
heme of 
ombination given in (22). Underthe view of this general s
heme, the above BPA m0 is nothing but an instan
eof it by simply 
onsidering 
 as the multipli
ation and � as the weighted sum.Namely, we have m0(Hn) = LXi=1 wimi(Hn); for n = 1; : : : ; N (48)m0(H) = LXi=1 wimi(H) (49)where relative weights wi are normalized as above so that Pi wi = 1. It is ofinterest to note that the possibility of using su
h an operation has previouslybeen mentioned in, for example, [18℄. Espe
ially, the weighted sum operation oftwo BPAs has been used for the integration of distributed databases for purposesof data mining [10℄.Now we quite naturally de�ne the assessment for y by assigning�n = m0(Hn) = LXi=1 wimi(Hn); for n = 1; : : : ; N (50)�H = m0(H) = LXi=1 wimi(H) (51)Appealingly simple as it is, we 
an see quite straightforwardly that the fol-lowing holds.
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ertainty 13Proposition 1. The degrees of belief generated using (50){(51) satisfy the fol-lowing 0 � �n; �H � 1; for n = 1; : : : ; NNXn=1�n + �H = 1Furthermore, we have the following theorem.Theorem 4. The aggregated assessment for y de�ned as in (50){(51) exa
tlysatis�es all four synthesis axioms.4.4 Expe
ted Utility in the ER Approa
hesIn the tradition of de
ision making under un
ertainty [12℄, the notion of expe
tedutility has been mainly used to rank alternatives in a parti
ular problem. Thatis one 
an represent the preferen
e relation � on a set of alternatives X witha single-valued fun
tion u(x) on X , 
alled expe
ted utility, su
h that for anyx; y 2 X , x � y if and only if u(x) � u(y). Maximization of u(x) over Xprovides the solution to the problem of sele
ting x.In the ER approa
h, we assume a utility fun
tion u0 : H ! [0; 1℄ satisfyingu0(Hn+1) > u0(Hn) if Hn+1 is preferred to Hn:This utility fun
tion u0 may be determined using the probability assignmentmethod [8℄ or using other methods as in [20, 25℄.If all assessments for basi
 attributes are 
omplete, Lemma 2 shows that theassessment for y is also 
omplete, i.e. �H = 0. Then the expe
ted utility of analternative on the attribute y is de�ned byu(y) = NXn=1�nu0(Hn) (52)An alternative a is stri
tly preferred to another alternative b if and only ifu(y(a)) > u(y(b)).Due to in
ompleteness, in general, in basi
 assessments, the assessment for ymay result in in
omplete. In su
h a 
ase, in [25℄ the authors de�ned three mea-sures, 
alled minimum, maximum and average expe
ted utilities, and proposeda ranking s
heme based on these measures (see, e.g., [25℄ for more details).In this paper, based on the Generalized InsuÆ
ient Reason Prin
iple, wede�ne a probability fun
tion Pm on H derived from m for the purpose of makingde
isions via the pignisti
 transformation [15℄. Namely,Pm(Hn) = m(Hn) + 1Nm(H) for n = 1; : : : ; N (53)That is, as in the two-level language of the so-
alled transferable belief model[15℄, the aggregated BPA m itself represented the belief is entertained based on
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e at the 
redal level, and when a de
ision must be made,the belief at the 
redal level indu
es the probability fun
tion Pm de�ned by (53)for de
ision making. Parti
ularly, the approximately assessment for y for thepurpose of de
ision making is then de�ned as�0n = Pm(Hn) = �n + 1N �H; for n = 1; : : : ; N (54)Therefore, the expe
ted utility of an alternative on the attribute y is straight-forwardly de�ned byu(y) = NXn=1�0nu0(Hn) = NXn=1(�n + 1N �H)u0(Hn) (55)In fa
t, while the amount of belief �H (due to ignoran
e) is allo
ated eitherto the least preferred grade H1 or to the most preferred grade HN to de�nethe expe
ted utility interval in Yang's approa
h [25℄, it is uniformly allo
atedto every evaluation grade Hn, guided by the Generalized InsuÆ
ient ReasonPrin
iple [15℄, to de�ne an approximately assessment for y and, hen
e, a single-valued expe
ted utility fun
tion.5 An Example: Motor
y
le Assessment ProblemThe problem is to evaluate the performan
e of four types of motor
y
les, namelyKawasaki, Yamaha, Honda, and BMW.The overall performan
e of ea
h motor
y
le is evaluated based on three majorattributes whi
h are quality of engine, operation, general �nish. The pro
ess ofattribute de
omposition for the evaluation problem of motor
y
les results in ahierar
hy graphi
ally depi
ted in Fig. 2, where the relative weights of attributesat a single level asso
iated with the same upper level attribute are de�ned bywi, wij , and wijk , respe
tively.Using the �ve-grade evaluation s
ale as given in (1), the assessment problemof motor
y
les is given in Table 1, where P , I , A, G, and E are the abbreviationsof poor, indi�erent, average, good, and ex
ellent, respe
tively, and a number inbra
ket denoted the degree of belief to whi
h an attribute is assessed to a grade.For example, E(0:8) means \ex
ellent to a degree of 0.8".Further, all relevant attributes are assumed to be of equal relative important[25℄. That is w1 = w2 = w3 = 0:3333w11 = w12 = w13 = w14 = w15 = 0:2w21 = w22 = w23 = 0:3333w211 = w212 = w213 = w214 = 0:25w221 = w222 = 0:5w231 = w232 = w233 = 0:3333w31 = w32 = w33 = w34 = w35 = 0:2
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Table 1: Generalized De
ision Matrix for Motor
y
le Assessment [25℄General attributes Basi
 attributes types of motor 
y
le (alternatives)Kawasaki (a1) Yamaha (a2) Honda (a3) BMW (a4)

Overall performan
e
engine responsiveness E (0.8) G (0.3) E (0.6) G (1.0) I(1.0)fuel e
onomy A(1.0) I(1.0) I(0.5) A(0.5) E(1.0)quietness I(0.5) A(0.5) A(1.0) G(0.5) E(0.3) E(1.0)vibration G (1.0) I(1.0) G(0.5) E(0.5) P (1.0)starting G (1.0) A(0.6) G(0.3) G (1.0) A(1.0)

operation handling steering E(0.9) G(1.0) A(1.0) A(0.6)bumpy bends A(0.5) G(0.5) G (1.0) G(0.8) E(0.1) P (0.5) I(0.5)maneuverability A(1.0) E(0.9) I(1.0) P (1.0)top speed stability E(1.0) G(1.0) G(1.0) G(0.6) E(0.4)transmission 
lut
h operation A(0.8) G(1.0) E(0.85) I(0.2) A(0.8)gearbox operation A(0.5) G(0.5) I(0.5) A(0.5) E(1.0) P (1.0)brakes stopping power G(1.0) A(0.3) G(0.6) G(0.6) E(1.0)braking stability G(0.5) E(0.5) G(1.0) A(0.5) G(0.5) E(1.0)feel at 
ontrol P (1.0) G(0.5) E(0.5) G(1.0) G(0.5) E(0.5)general quality of �nish P (0.5) I(0.5) G(1.0) E(1.0) G(0.5) E(0.5)seat 
omfort G(1.0) G(0.5) E(0.5) G(0.6) E(1.0)headlight G(1.0) A(1.0) E(1.0) G(0.5) E(0.5)mirrors A(0.5) G(0.5) G(0.5) E(0.5) E(1.0) G(1.0)horn A(1.0) G(1.0) G(0.5) E(0.5) E(1.0)
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Fig. 2. Evaluation hierar
hy for motor
y
le performan
e assessment [25℄In the sequent, for the purpose of 
omparison, we generate two di�erentresults of aggregation via the modi�ed ER approa
h (refer to (33){(34)), andthe new approa
h taken in this paper (refer to (50){(51)).By applying the modi�ed ER approa
h, the distributed assessments for over-all performan
e of four types of motor
y
les are given in Table 2. These fourdistrubutions are graphi
ally shown as in Fig. 3 (a).At the same time, by applying the weighted sum aggregation s
heme, weobtain the distributed assessments for overall performan
e of four types of mo-tor
y
les as shown in Table 3 (graphi
ally depi
ted in Fig. 3 (b)).As we 
an easily see, it is not mu
h di�eren
e between the result obtainedby the modi�ed ER algorithm and that obtained by our method, espe
ially thebehavior of 
orrespondingly assessment distributions as Fig. 3 has shown.Now, as mentioned above, for the purpose of making de
isions we apply thepignisti
 transformation (refer to (53)) to obtain the approximately assessmentfor overall performan
e of motor
y
les given in Table 4 below.Assume the same utility fun
tion u0 : H ! [0; 1℄ as in [25℄ de�ned byu0(P ) = 0; u0(I) = 0:35; u0(A) = 0:55; u0(G) = 0:85; u0(E) = 1
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ertainty 17Poor(P ) Indi�eren
e(I) Average(A) Good(G) Ex
ellent(E) Unknown(U)Kawasaki 0.0547 0.0541 0.3216 0.4452 0.1058 0.0186Yamaha 0.0 0.1447 0.1832 0.5435 0.1148 0.0138Honda 0.0 0.0474 0.0621 0.4437 0.4068 0.0399BMW 0.1576 0.0792 0.1124 0.1404 0.5026 0.0078Table 2. Aggregated assessments for four types of moto
y
les obtained by using themodi�ed ER approa
h [25℄
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(a) The Modi�ed ER Method (b) The Weighted Sum MethodFig. 3. Overall Evaluation of Motor
y
lesUsing (55), we easily obtain the expe
ted utility of motor
y
les given asu(Kawasaki) = 0:6733; u(Yamaha) = 0:7223u(Honda) = 0:8628; u(BMW) = 0:6887Consequently, the ranking of the four types of motor
y
les is given byHonda � Yamaha � BMW � Kawasakiwhi
h exa
tly 
oin
ides with that obtained by the expe
ted utility interval andthe ranking s
heme by Yang and Xu [25℄.6 Con
luding RemarksIn this paper, we have reanalysed the ER approa
h to MADM under un
ertainty.Theoreti
ally, the analysis provides a general formulation for the attribute ag-gregation problem in MADM under un
ertainty. With this new formulation, theprevious aggregation s
heme be
omes, as a 
onsequen
e, a parti
ular instan
e ofit, along with a simple understanding of the te
hni
al proofs. Furthermore, as
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e(I) Average(A) Good(G) Ex
ellent(E) Unknown(U)Kawasaki 0.0703 0.0667 0.3139 0.3972 0.1247 0.0272Yamaha 0.0 0.1611 0.2122 0.4567 0.1501 0.0198Honda 0.0 0.0611 0.0796 0.4344 0.3922 0.0659BMW 0.1639 0.0917 0.1278 0.1685 0.437 0.0111Table 3. Aggregated assessments for four types of moto
y
les obtained by using theweighted sum aggregation s
hemePoor(P ) Indi�eren
e(I) Average(A) Good(G) Ex
ellent(E)Kawasaki 0.07574 0.07214 0.31934 0.40264 0.13014Yamaha 0.00396 0.16506 0.21616 0.46066 0.15406Honda 0.01318 0.07428 0.09278 0.44758 0.40538BMW 0.16612 0.09392 0.13 0.17072 0.43922Table 4. Approximately assessments for four types of moto
y
les obtained by usingthe pignisti
 transformationanother result of the new formulation, a new aggregation s
heme based on theweighted sum operation has been also proposed. This s
heme of aggregation al-lows us to handle in
omplete un
ertain information in a simple and proper man-ner when the assumption regarding the independen
e of attributes' un
ertainevaluations is not appropriate. For the purpose of de
ision making, an approxi-mate method of un
ertain assessments based on the so-
alled pignisti
 transfor-mation [15℄ has been applied to de�ne the expe
ted utility fun
tion, instead ofusing the expe
ted utility interval proposed previously. A tutorial example hasbeen examined to illustrate the dis
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