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mizuhito@jaist.ac.jp

Abstract. This paper presents a complete (infinite) axiomatization for
an algebraic construction of graphs, in which a finite fragment denotes
the class of graphs with bounded tree width.

1 Introduction

A graph is a flexible relational structure for describing problems. However, solv-
ing graph problems can be difficult, partially because graphs lack an obvious
recursive construction.

The algebraic construction of graphs opens the possibility for graph algo-
rithms that could be applied:

– efficient programming methodologies, such as depth-first search, divide-and
conquer, and dynamic programming, which would enable us to design a new
graph algorithm, and

– program transformation techniques, which are well-developed in the func-
tional programming community [FS96,Erw97,SHTO00].

This is especially true for graphs with bounded tree width [RS86]. The class
of graphs with bounded tree width is limited, but still contains interesting ap-
plication areas; for instance, the control flow graphs of GOTO-free C programs
have tree widths of at most 6 [Tho98], and those of practical Java programs
mainly have at most 3 [GMT02].

A notable feature is that many NP-hard graph problems for general graphs
are reduced to linear-time for graphs with bounded tree width [Cou90,BPT92].
This corresponds to the fact that algebraic constructions become finitely gen-
erated for a class of graphs with bounded tree width [BC87,ACPS93,OHS03],
though they are infinitely generated for general graphs.

However, the algebraic structures referred above are not initial, i.e., the same
graph could have several different expressions. Clarifying such equivalence could
lead

– a debugging opportunity of programs, i.e., programs must have no conflicts
with axioms, and

– efficient algorithm design for graph properties, such as graph isomorphism.



Our ultimate aim is to give a complete (finite) axiomatization for graphs with
bounded tree width. This is half done; this paper presents the complete (infinite)
axiomatization for an algebraic construction of general graphs, in which a finite
fragment denotes graphs with bounded tree width. The idea of the proof for
ground cases comes from [BC87]; our work further extends the completeness
result to non-ground cases.

This paper is organized as follows. Section 2 prepares basic notations. Sec-
tion 3 presents an algebraic construction of graphs with infinite signatures, which
is a variation of those in [ACPS93]. Section 4 gives the complete (infinite) axioms
for ground terms, and Section 5 extends them to non-ground terms. Section 6 is
a brief overview of related work, and Section 7 discusses future work.

2 Preliminaries

Let F be a set of function symbols and X a countably infinite set of variables.
Each function symbol f is supposed to have its arity ar(f). A function symbol
c such that ar(c) = 0 is called a constant symbol. The set of all terms, denoted
by T (F,X), built from F and X is defined as follows:

1. Constant symbols in F and variables in X are terms.
2. If t1, . . . , tn are terms, and f is a function symbol in F such that ar(f) = n,

then f(t1, . . . , tn) is a term.

V(t) denotes the set of variables occurring in a term t. A term without vari-
ables is called a ground term, and a term in which each variable occurs at most
once is called a linear term. The set of ground terms is denoted by T (F ) for the
set F of underlying function symbols.

Let � be a fresh special constant symbol. A context C[ ] is a term built
from F ∪ � and X . When C[ ] is a context with n �’s and t1, · · · , tn are terms,
C[t1, · · · , tn] denotes the term obtained by replacing the i-th � from the left in
C[ ] with ti for each i = 1, . . . , n.

Definition 1. A term rewriting system (TRS) is a set R of rewrite rules. A
rewrite rule is a pair of terms denoted by l → r satisfying two conditions: (1) l
is not a variable and (2) V(l) ⊇ V(r).

If t = C[lθ] and s = C[rθ] for l → r ∈ R and a substitution θ, t →R s is a
(one-step) reduction and lθ is called a redex.

A TRS R is terminating (or, strongly normalizing, SN for short) if there are
no infinite rewrite sequences t1 →R · · · →R tn →R · · ·.

Throughout the paper, we will use G,G′ for (k-terminal) graphs, S for a set,
X for a set of variables, s, t for terms, h, i, j, k, l for indices, and x, y for variables,
s, t for terms, α, β for maps, θ for a substitution, and σ, τ for permutations. k
is also often used for the number of terminals. l (resp. r) is sometimes used for
the left-hand (resp. right-hand) side of a rewriting rule in a TRS.



3 Algebraic construction of graphs

In this paper we consider graphs with undirected edges, with at most one edge
between any two vertices, and with no edge between a vertex and itself. (Ex-
tensions to multiple edges between vertices and to loops connecting a vertex to
itself are easy, and sketched in Remark 2 of Section 4.) A k-terminal graph G
is a graph with k distinguished vertices, called terminals, numbered 1 through
k. The set of vertices of G is denoted V (G), the set of edges of G is denoted by
E(G), and we write G[i] for the i’th terminal of G, where 1 ≤ i ≤ k. Ordinary
graphs are obtained as 0-terminal graphs.

A k-terminal graph G is a pair of a graph and a tuple of its k distinct vertices,
called terminals. The i-th terminal in a k-terminal graph G with 1 ≤ i ≤ k is
denoted by G[i] (like an array-like notation). Ordinary graphs are obtained as
0-terminal graphs after removal of terminals. For simplicity, we consider simple
graphs (i.e., undirected and without multiple edged) without loops; but, the
extensions to directed graphs, graphs with multiple edges, and/or graphs with
loops are straightforward. The set of vertices of G is denoted by V (G) and the
set of edges of G is denoted by E(G). The number of edges from a vertex v is
denoted by #e(v).

Definition 2. Let Bk be sorts for k ≥ 0. Let lik,⊕k, rk, σ
i
k, e

2,0 be function
symbols with sorts below{

e2: B2, lik : Bk−1 → Bk, ⊕k: Bk ×Bk → Bk,

0 : B0, rk: Bk → Bk−1, σj
k : Bk → Bk.

where i ≤ k, j < k, and k ≥ 0 (For readability, ⊕k is an infix operation and the
rest are prefix). Let Bn be the set of well-sorted ground terms in

T ({0, e2, lik, rk,⊕k, σ
j
k | 1 ≤ i ≤ k ≤ n, 1 ≤ j < k})

and B∞ = ∪∞
n=0 Bn.

A term t ∈ Bk is interpreted as a k-terminal graph (defined below) by inter-
preting function symbols lik,⊕k, rk, σ

i
k, e

2,0 as following operations. This inter-
pretation is denoted by ψ(t).

Definition 3. Let ψ(e2) be the edge with two terminals and ψ(0) be the empty
graph. We define operations among k-terminal graphs as

– ψ(lik(t)) is a lifting for 1 ≤ i ≤ k, i.e., insert a new isolated terminal (as a
new vertex) to ψ(t) at the i-th position in k − 1 terminals.

– ψ(rk(t)) removes the last terminal from ψ(t).
– ψ(s⊕k t) is a parallel composition for k ≥ 0, i.e., fuse each i-th terminal in
ψ(s) and ψ(t) for 1 ≤ i ≤ k.

– ψ(σi
k(t)) is a permutation, i.e., permute the i-th terminal and the i + 1-th

terminal in ψ(t) for 1 ≤ i < k.
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Fig. 1. An example of the algebraic construction

Example 1. Fig. 1 shows that the algebraic construction of a (0-terminal) graph.
Each operation, underlined in r1(r2(e2 ⊕2 r3(l13(e2 ⊕2 l

1
2(r2(e2))) ⊕3 l

2
3(e2)))), is

figured in lower columns.

Remark 1. Each permutation σ on {1, · · · , k} is generated from σi
k’s. For in-

stance, a circular permutation is generated as

σj−1
k · · ·σi

k =
(
i i+ 1 · · · j
j i · · · j − 1

)
for 1 ≤ i < j ≤ k.

Although we do not show the definition of graphs with bounded tree width,
the characterization of graphs with tree width at most k is given by the following
theorem. This theorem is obtained similar to that in [ACPS93].

Theorem 1. For k ≥ 0, ψ(Bk+1) is the set of graphs with tree width at most k
(by neglecting terminals).

4 Complete axiomatization of graphs : ground cases

A k-terminal graph could be denoted by different algebraic expressions; for in-
stance, see Example 2.

Example 2. Two terms below are equivalent and both denote the (0-terminal)
graph in Fig. 1.
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In this section, we show that the (infinite) set of axioms E∞ (in Fig. 3) is
sound and complete for ground terms (Theorem 2 and 3). The key of the proof
is the existence of a canonical form that denotes a graph in which all vertices are
terminals (see Example 3). Then, canonical forms denoting an isomorphic graph
are converted each other by the associativity and commutativity rules of the
parallel composition ⊕k’s (AC1 and AC2 in Fig. 3) and suitable permutations
σi

k’s among terminals.

Example 3. Fig. 3 shows a transformation to obtain a canonical form of the ex-
pression in Example 1, where R1 will be defined in Definition 6. The underlined
parts correspond to the rewrite steps. (The infix operation ⊕4 has the commuta-
tive associative axioms, and we omit parenthesis in the last line for readability.)

(1)

(2)

(3)

(4)

Increase

the number

of terminals

P [ ]

r1(r2(e
2 ⊕2 r3(l

1
3(e

2 ⊕2 l
1
2(r2(e

2))) ⊕3 l
2
3(e

2))))

→R1 r1(r2(e
2 ⊕2 r3(l

1
3(e

2 ⊕2 r3(l
1
3(e

2))),⊕3l
2
3(e

2))))

→R1 r1(r2(e
2 ⊕2 r3(l

1
3(r3(l

3
3(e

2) ⊕3 l
1
3(e

2))) ⊕2 l
2
3(e

2))))

→R1 r1(r2(e
2 ⊕2 r3(r4(l

1
4(l

3
3(e

2) ⊕3 l
1
3(e

2))) ⊕3 l
2
3(e

2))))

→R1 r1(r2(e
2 ⊕2 r3(r4(l

1
4(l

3
3(e

2)) ⊕4 l
1
4(l

1
3(e

2))) ⊕3 l
2
3(e

2))))

→R1 r1(r2(e
2 ⊕2 r3(r4(l

1
4(l

3
3(e

2)) ⊕4 l
1
4(l

1
3(e

2)) ⊕4 l
4
4(l

2
3(e

2))))))

→+
R1

r1(r2(r3(r4︸ ︷︷ ︸
R[ ]

(l44(l
3
3︸︷︷︸

L1[ ]

(e2)︸︷︷︸) ⊕4 l
4
4(l

1
3︸︷︷︸

L2[ ]

(e2)︸︷︷︸) ⊕4 l
2
4(l

1
3︸︷︷︸

L3[ ]

(e2)︸︷︷︸) ⊕4 l
4
4(l

2
3︸︷︷︸

L4[ ]

(e2)︸︷︷︸)))))

Fig. 2. Example of transformation to a canonical form (ground case)

Definition 4. k-terminal graphs G1, G2 are isomorphic if there exists a one-
to-one onto map α : V (G1) → V (G2) such that

– For v ∈ V (G1), if v is the i-th terminal of G1 with 1 ≤ i ≤ k, then α(v) is
the i-th terminal of G2, and vice versa.

– For v, v′ ∈ V (G1), if (v, v′) is an edge of G1, then (α(v), α(v′)) is an edge
of G2, and vice versa.

Definition 5. Two terms s, t of sort Bk are equivalent if the k-terminal graphs
ψ(s), ψ(t) are isomorphic.

Ek in Fig. 3 is the set of axioms indexed by k. Let E∞ = ∪∞
k=1 Ek and

E≤n = ∪n
k=1 Ek. By regarding each equation (axiom) as a left-to-right rewrite



t1 ⊕k t2 = t2 ⊕k t1 (Commut.) (AC1)

(t1 ⊕k t2) ⊕k t3 = t1 ⊕k (t2 ⊕k t3) (Assoc.) (AC2)

ljk(lik−1(t)) = lik(lj−1
k−1(t)) 1 ≤ i < j ≤ k (l-Com)

lik(t1 ⊕k−1 t2) = lik(t1) ⊕k l
i
k(t2) 1 ≤ i ≤ k (l-Dist)

lik−1(rk−1(t)) = rk(lik(t)) 1 ≤ i < k (E1)

t1 ⊕k−1 rk(t2) = rk(lkk(t1) ⊕k t2) (E2)

t⊕k l
k
k(· · · l11(0))) = t (E3)

e2 ⊕2 e
2 = e2 (E4)

σj
k(lik(t)) = lik(σj−1

k−1(t)) 1 ≤ i < j < k (σ1-a)

σi
k(lik(t)) = li+1

k (t) 1 ≤ i < k (σ1-b)

σi
k(li+1

k (t)) = lik(t) 1 ≤ i < k (σ1-c)

σj
k(lik(t)) = lik(σj

k−1(t)) 1 < j + 1 < i ≤ k (σ1-d)

σ1
2(e

2) = e2 (σ2)

σi
k(t1 ⊕k t2) = σi

k(t1) ⊕k σ
i
k(t2) 1 ≤ i < k (σ3)

σi
k−1(rk(t)) = rk(σi

k(t)) 1 ≤ i < k − 1 (σ4)

rk−1(rk(σk−1
k (t))) = rk−1(rk(t)) (σ5)

Fig. 3. Axioms Ek of the algebraic construction of graphs

rule), its reflexive symmetric transitive closure (i.e., the finite application of
axioms in E∞) is denoted by =E∞ .

It is easy to see that each axiom in E∞ is sound.

Theorem 2. (Soundness for ground terms) Let s, t be ground terms in B∞.
Then, s and t are equivalent if s =E∞ t.

Theorem 3. (Completeness for ground terms) Let s, t be ground terms in
B∞. Then, s =E∞ t if s and t are equivalent.

Definition 6. For axioms in E∞, let TRSs R1 and R2 be defined as{
R1 = {(E1), (E2), (E2)′, (l-Dist), (σ3), (σ4)},
R2 = {(σ1), (σ2),

where (E2)′ is rk(t1) ⊕k−1 t2 → rk(t1 ⊕k l
k
k(t2)) for each k.

Lemma 1. R1 and R2 are terminating.

Proof. Let δ(t, f) be the number of occurrences of a function symbol f in a term
t, and let ∆(t, g, f) be the sum of all δ(s, f) where s is a subterm of t such that
root(s) = g. We define the weight ω(t) of a term t by

ω(t) = (ω⊕,r(t), ωl,r(t) + ωl,⊕(t) + ωσ,r(t) + ωσ,⊕(t))



where
ω⊕,r(t) = Σj,k∆(t,⊕k, rj),
ωl,r(t) = Σi,j,i′,j′∆(t, lij , rj′ ),
ωl,⊕(t) = Σi,j,k∆(t, lij ,⊕k),
ωσ,r(t) = Σi,j,i′,j′∆(t, σi

j , rj′ ),
ωσ,⊕(t) = Σi,j,k∆(t, σi

j ,⊕k),

and define the lexicographic order on the weight. Then, for each reduction of
R1 the weight ω(t) decreases, and R1 is SN. Similarly, each reduction of R2

decreases the weight ωσ,l(t) = Σi,j,i′,j′∆(t, σi
j , l

i′
j′), and R2 is SN.

Definition 7. Let t ∈ B∞ be a ground term of sort Bk, n = |V (ψ(t))|, and
m = |E(ψ(t))|. t is a canonical form if either

t = rk+1(· · · rn(lnn(· · · l11(0)))),

or there exist

– Rn,k[ ] = rk+1(· · · rn[ ]) with 0 ≤ k < n,
– Pn[ , · · · , ] consists of ⊕n’s,
– Li[ ] has the form l

ui,n−2
n (· · · lui,1

3 [ ]) with ui,n−2 > · · · > ui,1 for 1 ≤ i ≤ m,

such that t = Rn,k[Pn[L1[e2], · · · , Lm[e2]]].

Lemma 2. For any term s, there exists a canonical form t ∈ Bn such that
s =E≤n

t where n = |V (ψ(t))|.
Proof. We first show that there exists t′ in the form t′ = Rn,k[P ′[L′

1[c1], · · · , L′
l[cl]]]

with s =E≤n
t′ where

– Rn,k[ ] = rk+1 · · · rn[ ],
– P ′[ ] consists of ⊕j ’s, and
– L′

1[ ], · · · , L′
l[ ] consist of lij ’s and σi′

k′ ’s.
– ci is either e2 or 0,

From Lemma 1, s has anR1-normal form t′ of the formRn,k[P ′[L′
1[c1], · · · , L′

l[cl]]].
Since all vertices in e2 are terminals and lij, σ

i
j preserves a set of terminals, all

vertices of each L′
i[e

2] are terminals. ri and ⊕j do not change the number of ver-
tices, thus each ⊕j in P ′[ ] satisfies j = n = |V (ψ(t))|. Further, from Lemma 1
each L′

i[ci] has an R2-normal form, i.e., a σj
k-free term.

If |E(ψ(s))| = 0, this means ψ(s) consists of isolated vertices and all ci’s are
0. Thus, L′

i[ ] = lkk(· · · (l11[ ])) by (l-Com) and s is reduced to a canonical form
Rn,k[L1[0]] by (AC1), (AC2), and (E3).

If |E(ψ(s))| > 0, we can sort each L′
i[ ] by (l-Com). Since there exists ci = e2,

we can erase 0’s by (AC1), (AC2), and (E3). Thus we assume ci = e2 for each
i. If L′

i[ci] and L′
j [cj ] are equal, we can eliminate redundant L′

i[ci]’s by (AC1),
(AC2), and (E4). Since each L′

i[ci] corresponds to an edge in ψ(s) (i.e., the
number of L′

i[ci]’s is the number of edges in ψ(s)), we obtain a canonical form
t = Rn,k[Pn[L1[e2], · · · , Lm[e2]]] by (l-Com) (from-right-to-left direction).



Definition 8. Let e(n, i, j) = lnn · · · lj+1
j+1 · (lj−1

j · · · li+1
i+2 · li−1

i+1 · · · l13(e2) for 1 ≤ i <
j ≤ n (here we omit apparent parenthesis for readability).

Lemma 3. Let s ∈ B∞. ψ(s) contains an edge between the i-th and the j-th
vertices, if, and only if, a canonical form of s contains e(n, i, j).

Sketch of proof of Theorem 3 Let s, t ∈ B∞ such that ψ(s) and ψ(t) are
equivalent. Assume that an isomorphism α : V (ψ(s)) → V (ψ(t)) satisfies the
conditions in Definition 4. If |E(ψ(s))| = |E(ψ(t))| = 0, they have the unique
canonical form from Lemma 2 and obviously the theorem holds. We assume
|E(ψ(s))| = |E(ψ(t))| > 0.

From Lemma 2, we can assume that both s and t are canonical. Let s =
Rn,k[Pn[L1[e2], · · · , Lm[e2]]] and t = Rn,k[P ′

n[L′
1[e

2], · · · , L′
m[e2]]] where n =

|V (ψ(s))| = |V (ψ(t))| and m = |E(ψ(s))| = |E(ψ(t))|. Thus, α can be regarded
as the permutation σ on {k + 1, · · · , n}.

Non-trivial permutation needs at least two elements, so we can assume k ≤
n− 2. Then from (σ4) and (σ5), rk+1

k+1(· · · rn
n(σi

n(t)) = rk+1
k+1(· · · rn

n(t)) for k+ 1 ≤
i ≤ n − 1. Since a permutation over {k + 1, · · · , n} is generated by σi

n’s for
k+1 ≤ i ≤ n−1, rk+1

k+1(· · · rn
n(σ(t)) = rk+1

k+1(· · · rn
n(t)). Thus, it is enough to show

σ(Pn[L1[e2], · · · , Lm[e2]]) =E≤n
P ′

n[L′
1[e

2], · · · , L′
m[e2]].

Since ψ(s) and ψ(t) are isomorphic, if there is an edge between the i-th and
j-th vertices of ψ(s), there is an edge between the α(i)-th and α(j)-th vertices of
ψ(t), and vice versa. Thus, if there is an edge between the i-th and j-th vertices
in ψ(s), then, form Lemma 3, there uniquely exist Lk[e2] and L′

k[e2] such that
Lk[e2] =E≤n

e(n, i, j) and L′
k[e2] =E≤n

e(n, α(i), α(j)).
Since σ(e(n, i, j)) = e(n, α(i), α(j)),

σ(Pn[L1[e2], · · · , Lm[e2]]) =E≤n
P ′

n[L′
1[e

2], · · · , L′
m[e2]]

holds from (AC1), (AC2), (σ2), and (σ3).

Remark 2. The extensions to directed graphs, graphs with multiple edges, and/or
graphs with loops are as follows:

– The removal of (E4) in Fig. 3 gives the sound and complete axioms for
graphs with multiple edges.

– By adding a constant l1 as a 1-terminal graph that consists of the unique ter-
minal and the unique edge from the terminal to the terminal itself, we obtain
the algebraic construction of graphs with loops. The axioms are preserved
for this extension.

– For digraphs, instead of an edge e2, we use e2+ and e2−, where e2+ is the
directed edge from the first terminal to the second, and e2− is opposite. Then,
the replacement of σ1

2(e2) = e2 (σ2) with σ1
2(e2+) = e2− and σ1

2(e2−) = e2+ lead
the sound and complete axioms for directed graphs.



5 Complete axiomatization of graphs : non-ground cases

In this section, we extend the result of soundness (Theorem 2) and complete-
ness (Theorem 3) for ground terms to general terms. In this extension, we need
additional axioms (Σ1) and (Σ2) in Fig. 4, which present the defining relation
of the permutation group [Wey39].

Lemma 4. [Wey39] For any permutation σ and σ′ that are expressed as prod-
ucts of σi

k’s with 1 ≤ i < k, they are equivalent as a map if and only if σ =Gk
σ′,

where Gk consists of (Σ1) and (Σ2) axioms in Fig. 4.

σi
k · σi

k(G) = G 1 ≤ i < k (Σ1)

(σi−1
k · σi

k)3(G) = G 1 < i < k (Σ2)

Fig. 4. Additional axioms Gk of the algebraic construction of graphs

Example 4. Consider the permutation of 1 and 3 among {1, 2, 3}(
1 2 3
3 2 1

)

which is represented as σ2
3 · σ1

3 · σ2
3 or σ1

3 · σ2
3 · σ1

3 . This equivalence is obtained
by =Gk

as

σ2
3 · σ1

3 · σ2
3 =Σ2 σ

2
3 · σ1

3 · (σ1
3 · σ2

3)3 · σ2
3

= σ2
3 · (σ1

3 · σ1
3) · σ2

3 · σ1
3 · σ2

3 · σ1
3 · (σ2

3 · σ2
3)

=Σ1 (σ2
3 · σ2

3) · σ1
3 · σ2

3 · σ1
3

=Σ1 σ
1
3 · σ2

3 · σ1
3

Remark 3. For ground terms, (Σ1) and (Σ2) in Fig. 4 are not required, because
the same can be performed by (σ1-d) and (σ2) in Fig. 3.

Let Xk be a set of variables with sort Bk. The i-th terminal of x is denoted
by x[i]. Let X = ∪k Xk. The set of well-sorted terms in

T ({0, e2, lik, rk,⊕k, σ
j
k | 1 ≤ i ≤ k ≤ n, 1 ≤ j < k}, X)

is denoted by B∞(X). Define a substitution θ0 by xθ0 = lkk · · · l11(0) for each
variable x ∈ Xk.

Definition 9. For s, t ∈ B∞(X), s and t are equivalent if, for each ground
substitution θ, ψ(sθ) and ψ(tθ) are isomorphic.

The next theorem is immediate.



Theorem 4. (Soundness) Let s, t be terms in B∞(X). Then s and t are equiv-
alent if s =E∞ ∪ G∞ t.

Difficult part is completeness.

Theorem 5. (Completeness) Let s, t be terms in B∞(X). Then s =E∞ ∪ G∞ t
if s and t are equivalent.

Similar to the ground case, we first consider a canonical form of a term t.
The set of variables that appear in a term t in B∞(X) is denoted by V(t).

Definition 10. Let t (∈ B∞(X)) be a term of sort Bk, n = |V (ψ(tθ0))|, m =
|E(ψ(tθ0))|, and V(t) = {x1, · · · , xm′}. t is a canonical form if either

t = rk+1(· · · rn(lnn(· · · l11(0)))),

or there exist

– Rn,k[ ] = rk+1(· · · rn[ ]),
– Pn[ , · · · , ] consists of ⊕n’s,
– Li[ ] has the form l

ui,n−2
n (· · · lui,1

3 [ ]) with ui,n−2 > · · · > ui,1 for 1 ≤ i ≤ m,

– Lm+i[ ] has the form l
u′

i,n−di
n (· · · lu

′
i,1

di+1[ ]) with u′i,n−di
> · · · > u′i,1 for xi ∈

Xdi and 1 ≤ i ≤ m′,
– Gi is σi(xi) for some combination σi of σj

di
’s for 1 ≤ i ≤ m′,

such that

t = Rn,k[Pn[L1[e2], · · · , Lm[e2], Lm+1[G1], · · · , Lm+m′ [Gm′ ]]].

Define Center(t) = ψ(Rn,k[Pn[L1[e2], · · · , Lm[e2]]]). For a ground substitu-
tion θ, let Inner(t, θ) = V (Center(t)) and Outer(t, θ) = V (ψ(tθ)) \ Inner(t, θ).
We say a vertex is inner if it is in Inner(t, θ), and outer otherwise.

Lemma 5. Center(t) is isomorphic to ψ(tθ0).

Example 5. Fig. 5 shows the conversion of

t = r2 · p2(e2, r3 · p3(l13 · p2(e2, l12 · r2(e2)), σ2
3 · σ1

3 · σ2
3 · l23(x)))

to a canonical form. The circle expresses a substitution to a variable x, and the
parenthesis for σi

k and the commutative associative operator ⊕4 are omitted.

The next lemma is similarly proved as the proof of Lemma 2.

Lemma 6. For any term s ∈ B∞(X), there exists a canonical form t ∈ Bn such
that s =E≤n

t where n = |V (Center(t))|.
When terms s and t are equivalent, without loss of generality, we can assume

that s and t are canonical forms. Let us fix canonical forms s and t.

Lemma 7. If s and t are equivalent, V(s) = V(t).
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Fig. 5. Example of transformation to a canonical form (non-ground case)

Proof. Assume V(s) �= V(t). Without loss of generality, we can assume that
x ∈ V(s) and x �∈ V(t). From Lemma 5, Center(s) and Center(t) are isomorphic.
Let n = |V (Center(s))| = |V (Center(t))|.

Consider a ground substitution θ that substitutes a term denoting Kn+1

(complete graph with n + 1 vertices) to x, and lkk · · · l11(0) otherwise (for those
that in Xk). Then, |V (ψ(sθ))| > |V (ψ(tθ))| = n, and the contradiction.

Lemma 8. If s and t are equivalent, each variable x occurs the same times both
in s and t.

Proof. Assume that x occurs in s more than in t. Similar to Lemma 7, consider
a ground substitution θ that substitutes a term denoting Kn+1 (complete graph
with n+1 vertices) to x, and lkk · · · l11(0) otherwise (for those that in Xk). Then,
|V (ψ(sθ))| > |V (ψ(tθ))|, and the contradiction.

For notational clarity, we consider conditional linearization of a term.

Definition 11. Conditional linearization of a term t is obtained by renaming
different occurrences of the same variable x to distinct variables x′, x′′, · · ·, as-
sociated with the side condition C = {x′ = x′′ = · · ·}.
Example 6. Conditional linearization of a term p3(l13(p2(x, y)), l23(x)) is

p3(l13(p2(x′, y)), l23(x′′)) with {x′ = x′′}.
From now on, we consider conditional linearization of canonical forms s and

t. Let us fix V(s)(= V(t)) as {x1, · · · , xm} with the side condition C : {xi = xj}.
Note that from Lemma 7 and 8, such C is well-defined.

Next we define xi[t, j], which is the vertex in Center(t) that corresponds to
the j-th terminal in ψ(xθ) for each ground substitution θ.



Definition 12. We borrow the notation from Definition 10. Let t be a canonical
form t = Rn,k[Pn[L1[e2], · · · , Lm[e2], Lm+1[G1], · · · , Lm+m′[Gm′ ]]] and let
(v1, v2, · · · , vn) be the tuple of terminals of

ψ(Pn[L1[e2], · · · , Lm[e2], Lm+1[G1], · · · , Lm+m′ [Gm′ ]] θ0).

Assume that a variable xi in t is of the sort Bdi and let

Lm+i[Gi] = lun−d
n (· · · (lu1

di+1[σi(xi)]))

with un−di > · · · > u1. Define xi[t, j] = vσ−1
i

(wj)
where

{w1, · · · , wdi} = {1, · · · , n} \ {u1, · · · , un−di}

with w1 < · · · < wdi .

Example 7. In Example 5, x[t, 1] = v3 and x[t, 2] = v1.

Below, we define a marker substitution θM, which distinguishes each ter-
minal xi[t, j] by the pair of its outer neighborhoods; these neighborhoods are
distinguished each other by the number of edges in ψ(t θM).

Since the number of edges and the neighborhood relation are preserved by
an isomorphism, an isomorphism between ψ(st θM) and ψ(t θM) induces the
isomorphism between Center(s) and Center(t) that maps xi[s, j] to xi′ [t, j] with
xi = xi′ ∈ C.

Definition 13. Let term1, · · · , termd be vertices, and let ch0, · · · , chd be their
children. A rooted tree with the root vertex v and its m children is denoted by
br(v,m). For d ≤ h, a marker forest MF (h, d) is a d-terminal graph such that

V (MF (h, d)))

=

⎧⎨
⎩
φ if d = 0
V (br(ch0, h− d)) ∪ (

⋃
1≤i≤d V (br(chi, h+ 2i− 2))

∪ {termi}) otherwise

and

E(MF (h, d))

=

⎧⎨
⎩
φ if d = 0
E(br(ch0, h− d)) ∪ (

⋃
1≤i≤dE(br(chi, h+ 2i− 2)))

∪ {(termi, chi−1), (termi, chi), (ch0, chi)} otherwise

A marker term Mt(h, d) is a term that denote MF (h, d).

Lemma 9. In MF (h, d), h+ 1 ≤ #e(chi) ≤ h+ 2d+ 1 for each 0 ≤ i ≤ d and
#e(chi) < #e(chj) if i < j. More precisely, #e(chi) = h+ 2i+ 1 for 0 ≤ i < d
and #e(chd) = h+ 2d.



2 ≤ |edges| ≤ n + 2

{
|edges| > n + 2

{
|edges| = 1

{

term1

ch0

︸︷︷︸
h−d

ch1

︸ ︷︷ ︸
h

term2

ch2

︸ ︷︷ ︸
h+2

termd−1

· · ·

· · ·

chd−1

︸ ︷︷ ︸
h+2d−4

termd

chd

︸ ︷︷ ︸
h+2d−2

Fig. 6. d-terminal graph MF (h, d)

Definition 14. Without loss of generality, we can assume that x1, · · · , xl are
the representatives under the side condition C of t (i.e., x1, · · · , xl are mutually
distinct and for each x ∈ V(t) there exists some xi such that C contains x = xi

with 1 ≤ i ≤ l). Let xi ∈ Xdi .
Let n = |V (ψ(t θ0))|. The marker substitution θM (see Fig. 6) is a ground

substitution such that{
x1 θM = Mt(n+ 2, d1)
xi+1 θM = Mt(n+ 2 +Σi

j=1 dj , di+1) for 1 ≤ i < l.

Example 8. In Example 5, xθM = Mt(6, 2) (see Fig 7).

Fig. 7. Substitute MF (6, 2) to x in Example 5

Lemma 10. Let v ∈ ψ(tθM) and n = |V (Center(t))|. If v is inner, 2 ≤
#e(v) ≤ n+ 2. If v is outer, either #e(v) = 1 or #e(v) > n+ 2.

Lemma 11. If s and t are equivalent, an isomorphism α between ψ(s θM)) and
ψ(t θM)) satisfies :

– α is an isomorphism between Center(s) and Center(t).
– For each xi, there exists xi′ with xi = xi′ ∈ C, α(ψ(xiθM)) = ψ(xi′θM), and
α(xi[s, j]) = xi′ [t, j].

Proof. From Lemma 10, α(V (Center(s)) = V (Center(t)).
Let n = |V (Center(s))|. For ch0 in ψ(xiθM), there exists xi′ and with

xi = xi′ ∈ C and ψ(xi′θM) such that α(ch0) = ch′0 for ch′0 in ψ(xi′θM) by con-
struction. Since the unique neighborhood of ch0 satisfying 2 ≤ #e(ch0) ≤ n+ 2
is term1, α(term1) = term′

1 with term′
1 in ψ(xi′θM). Since ch1 is the unique

neighborhood of ch0 that has more then n + 2 edges, α(ch1) must be ch′1. Re-
peating similar construction, Lemma is proved.

Sketch of proof of Theorem 5 By using the isomorphism α in Lemma 11,
similar to the proof of Theorem 3, we obtain the proof of Theorem 5.



6 Related Work

There are many works on algebraic constructions of graphs, including

– [FS96,Erw97] for functional programming,
– [CS92,Has97] from the categorical view point,
– [MSvE94,AA95] for term graphs,
– [Gib95] for directed acyclic graphs, and
– [BC87,ACPS93,OHS03] for graphs with bounded tree width.

Among them, only [BC87,ACPS93,OHS03] characterize the class of graphs
with bounded tree width. Bauderon and Courcelle presented the complete axiom-
atization for ground terms [BC87,Cou90] in their formalization. Their algebraic
construction consists of the function symbols⎧⎨

⎩
⊕m,n : Bm ×Bn → Bm+n, e2 : B2 (edge),
θi,j,n : Bn → Bn, 1 : B1 (vertex),
σα : Bm → Bn, 0 : B0 (empty),

where their interpretation ψ is

– ψ(⊕m,n(t1, t2)) is a disjoint union of ψ(t1) and ψ(t2),
– ψ(θi,j,n(t)) fuses i-th and j-th terminals for 1 ≤ i < j ≤ n, and
– ψ(σα(t)) renumbers α(i)-th terminal as i-th terminal for α : [1..m] → [1..n].

and their complete axiomatization is shown in Fig. 8.
This paper gives the complete axiomatization for the variation of the alge-

braic construction given in [ACPS93]. Our choice of formalization comes from its
compatibility with SP Term, since SP Term seems the most suitable data struc-
ture for programming on graphs with bounded tree width [OHS03]. The idea for
the proof of the completeness for ground cases (Section 4) comes from [BC87];
this paper further extends the result to non-ground cases (Section 5).

7 Conclusion and Future Work

This paper presents the complete axiomatization for the variation of the algebraic
construction given in [ACPS93]. Compared to the original algebraic construction
in [ACPS93], we add σi

k (which is needed for completeness; the parallel compo-
sition pk has the different infix notation ⊕k for readability), and omit sk, which
is defined as

sk(t1, · · · , tk) =

{
r2(e2 ⊕2 l

1
2(t1)) if k = 1,

rk+1
k+1(l1k+1(t1) ⊕k+1 · · · ⊕k+1 l

k
k+1(tk)) if k ≥ 2.

Our final goal is to give the complete (finite) axiomatization of SP Term
SPk [OHS03], which precisely denotes graphs with tree width at most k. SP
Term would be the most desirable algebraic construction for writing a functional



(s⊕ t) ⊕ u = s⊕ (t⊕ u) (R1)

σβ · σα(t) = σα·β(t) (R2)

σid(t) = t (R3)

θi,j,n · θi′,j′,n(t) = θi′,j′,n · θi,j,n(t) (R4-1)

θi,j,n · θj,k,n(t) = θi,j,n · θi,k,n(t) (R4-2)

θi,j,n · θj,k,n(t) = θi,k,n · θj,k,n(t) (R4-3)

θi,i,n(t) = t (R5)

σα(s) ⊕ σα′(t) = σ(⇁m·α)⊕(α′·↼p)(t⊕ s) (R6)

if α : [p] → [n], α′ : [p′] → [m]

θi,j,m(s) ⊕ θi′,j′,n(t) = θi,j,m · θm+i′,m+j′,m+n(s⊕ t) (R7)

θi,n+1,n+1(t⊕ 1) = σid↓[n]⊕(n+1 �→i)(t) (R8)

θi,j,n · σα(t) = σα · θα(i),α(j),n(t) if α : [n] → [n] (R9)

σα · θi,j,n(t) = σβ · θi,j,n(t) (R10)

if α(m), β(m) ∈ {i, j} or α(m) = β(m) for each m.

t⊕ 0 = t (R11)

where α·↼p (i+ p) = α(i) and ⇁m ·α(j) = m+ α(j).

Fig. 8. Axioms of algebraic construction of graphs in [BC87,Cou90]

program on graphs with bounded tree width, because it has only 2 functional
constructors: the series composition sk and the parallel composition ⊕k (though
it has relatively many constants ek(i, j) and k, which can be treated in a homo-
geneous way). We will use two approaches, one from rewriting and another from
graph theory.

– We already know the complete axioms on B∞, which consist of terms con-
structed from lik,⊕k, rk, σ

i
k, e

2,0. We can define sk, ek(i, j),k like “macros”.
Can we deduce equations on “macros” from equations on terms constructed
from original function symbols?

– Minimal separator of a graph is essential for graphs with bounded tree width.
We hope that the Menger-like property [Tho90] would help.
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