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A Two-Microphone Noise Reduction Method in Highly
Non-stationary Multiple-Noise-Source Environments*

Junfeng LI'®, Nonmember, Masato AKAGI™, and Yoiti SUZUKI™, Members

SUMMARY In this paper, we propose a two-microphone noise reduc-
tion method to deal with non-stationary interfering noises in multiple-
noise-source environments in which the traditional two-microphone algo-
rithms cannot function well. In the proposed algorithm, multiple interfering
noise sources are regarded as one virtually integrated noise source in each
subband, and the spectrum of the integrated noise is then estimated using
its virtual direction of arrival. To do this, we suggest a direction finder for
the integrated noise using only two microphones that performs well even
in speech active periods. The noise spectrum estimate is further improved
by integrating a single-channel noise estimation approach and then sub-
tracted from that of the noisy signal, finally enhancing the desired target
signal. The performance of the proposed algorithm is evaluated and com-
pared with the traditional algorithms in various conditions. Experimental
results demonstrate that the proposed algorithm outperforms the traditional
algorithms in various conditions in terms of objective and subjective speech
quality measures.

key words: noise reduction, non-stationary noise, multiple-noise-source
environments, virtually integrated sound source

1. Introduction

Performance and robustness of hands-free speech applica-
tions are dominantly degraded by acoustical noise, espe-
cially multiple highly non-stationary noises. Dealing with
multiple non-stationary noise signals is today one of chal-
lenging research topics in speech research field. Com-
pared with single-channel noise reduction technique, multi-
channel technique has demonstrated the great potential in
suppressing noise signals and enhancing speech quality us-
ing the spatial information of signals and acoustical environ-
ments [1]. In some applications, e.g., hearing aids, the num-
ber of microphones is strictly limited because of the practi-
cal requirements (e.g., the limited space and low energy ca-
pacity). Therefore, only small-size noise reduction systems
are preferred to these applications. Two-microphone noise
reduction, which is the smallest multi-microphone noise re-
duction system, has been a promising technique and at-
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tracted more attention recently [1], [2].

Among various multi-microphone approaches, beam-
forming technique has widely been used for noise reduc-
tion and speech enhancement [1]. The simplest beamform-
ing technique is known as delay-and-sum (DAS) beamform-
ing where the time-domain sensor signals are first delayed
and then summed to give a single-channel output [3]. How-
ever, the low directivity of DAS beamformer results in low
noise reduction performance. Another class of beamform-
ing techniques is superdirective (SD) beamformer which
calculates the channel filters by maximizing the array fac-
tor of directivity [4]. However, the beam pattern of SD
beamformer is traditionally designed for diffuse noise con-
dition and time-invariant, demonstrating degraded perfor-
mance in non-diffuse or time-varying conditions. To deal
with the problems (e.g., fixed directivity) of DAS and SD
beamformers, therefore, adaptive beamforming techniques
are called for [1]. A commonly used adaptive beamform-
ing technique, referred to as generalized sidelobe canceller
(GSC), was proposed to reduce the interfering noises [5].
Bitzer et al. theoretically analyzed the performance of the
GSC algorithm and showed that the GSC algorithm is suc-
cessful to suppress coherent noise when the number of noise
source is less than that of microphones [6]. Moreover, to
deal with time-varying noises, adaptive signal processing
techniques (e.g., least mean square (LMS)) are normally
exploited in the implementation of the GSC beamformer
[5]. The problems associated with the traditional adap-
tive beamformer (e.g., GSC beamformer) are the inability
in suppressing highly non-stationary noises due to the low
convergence rate of adaptive signal processing and the low
noise reduction performance when the number of the noise
is larger than or equal to that of the microphones [5], [6],
[9]. Recently, Kim et al. proposed a two-channel beam-
former based on short-time spectral amplitude estimation
[7]1. However, its performance goes down for the multiple
highly non-stationary interfering signals, because of the re-
cursive estimation of transfer function using the long-time
averaged spectrum of the observed signals and noise signals.
More recently, Takahashi et al. introduced to estimate noise
power spectrum based on independent component analysis
(ICA) and further to suppress the spatially-distributed inter-
fering signals [8]. This method involves the high compu-
tational cost due to the iterative estimation of the unmixing
matrix and suffers from the inherent problems of the ICA
algorithms, such as the violation of the independence as-
sumption between sound sources in real environments.

Copyright © 2008 The Institute of Electronics, Information and Communication Engineers
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To deal with the problems of the traditional algo-
rithms mentioned above, in this paper, we propose a two-
microphone noise reduction algorithm to reduce highly non-
stationary multiple-source interfering signals. In the pro-
posed algorithm, the interfering signal is analytically esti-
mated and subtracted from the observed noisy signal. No
adaptive signal processing technique (e.g., LMS) is used,
which avoids the problems suffered from the low conver-
gence rate of adaptive signal processing and is expected to
offer the high ability in reducing highly non-stationary inter-
fering signals. Furthermore, to suppress the multiple-source
interfering signals, we perform the interfering signal spec-
trum estimation in each subband based on its virtual DOA
instead of the real DOAs of each interfering sources in the
entire band. To do this, we develop a novel direction finder
for the virtual interfering signal using only two microphones
that is successful in estimating the DOA of interfering signal
even in speech active periods. Moreover, the spectrum es-
timation accuracy of interfering signal is further improved
by combining a single-channel noise estimation approach,
which mitigates the sidelobe problems of the small-size two-
microphone system. Compared with the traditional two-
microphone arrays, the superiority of the proposed algo-
rithm is finally confirmed in reducing non-stationary mul-
tiple interfering noises in various conditions.

2. Signal Model

Consider that in a noisy environment, two microphones are
positioned arbitrarily with the inter-element spacing of d for
noise reduction. The observed signal on each microphone
consists of desired speech signal s(f) coming from the di-
rection such that the time delay between two microphones
is &, and interfering noise signals n,,(f),m = 1,2,.... M
coming from the directions such that the time delays are
omsm = 1,2,..., M. Hence, the signals x;(#) and x,(f) ob-
served on two microphones can be represented as

M
010 = s+ ) (o), ()
m=1
M
0(0) = 5 =€)+ ) Mt = 6p). @)
m=1

The time delay of the desired speech signal can be com-
pensated using the coherence based time delay estimation
technique [10]. In this paper, we assume that the array has
been calibrated and pre-steered to the direction of the de-
sired speech source beforehand. Thus, the observed signals
on two microphones can be reformulated by simply setting
¢ = 01in Eq. (2). This pre-steering may be omitted in some
applications such as for hearing aids. For hearing aid users,
the time delay compensation is generally accomplished by
the fact that users unconsciously move their heads to the di-
rection of the desired speech source before listening to the
desired speech signal.
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3. Proposed Noise Reduction Algorithm

The basic concept of the proposed noise reduction system
is that noise components are first estimated in each tempo-
ral frame and each frequency subband, and then subtracted
from the observed noisy signal. To estimate the interfering
noise spectrum, we present a noise direction estimator us-
ing two microphones which shows good performance even
when speech is present. To improve noise estimation accu-
racy, we suggest a hybrid noise estimation technique as well
by combining a single-channel noise estimation approach.

The proposed two-microphone noise reduction system
consists of four components: cancellation of the desired
speech signal, noise direction estimation, noise spectrum es-
timation and noise reduction. The block diagram of this pro-
posed algorithm is shown in Fig. 1.

3.1 Cancellation of the Desired Signal

Cancellation of the desired signal is achieved by subtracting
the observed signal on the second microphone from that on
the first microphone. The speech-cancelled signal U(w) in
the frequency domain is given by

U(w) = X1(w) = Xo(w)
M s 6
=2 ) Nu(w)e ™% sin (a)T) 3)
m=1

where X|(w) and X,(w) are the short-time Fourier transform
(STFT) of the observed signals x;(¢) and x,(¢). Ny (w) is the
STFT of the m-th interfering noise n,,(¢). Note that after the
microphone has been calibrated and steered to the desired
direction, the speech-cancelled signal U(w) does not include
any desired speech component that has been cancelled.

Since that the sum of sinusoidal waves becomes a sinu-
soidal wave in a narrow subband (see Appendix for detail),
we divide the full frequency band into several subbands [9].
Then we can further assume that the multiple noise sources
can be regarded as one integrated interfering noise source in
each subband [9]. Consequently, the speech-cancelled sig-
nal in each subband can be represented as

, 5
U(@®) = 2jNu(@)e 7% sin (a)?k)

5 ()
FFT

L ] 8| Noise 0
Direction finding ™ Teompensation IFFT—~

Fig.1 Block diagram of the proposed two-microphone noise reduction
system.
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Wi Sl <wi, k=1,2,...,K 4)

where N (@) is the spectrum of the integrated noise signal in
the k-th subband, and & is its virtual arrival time difference.
K denotes the number of subband.

3.2 Noise Direction Estimation—A Two-Microphone
Noise Direction Estimator

In order to derive the noise spectrum, as shown in Eq. (4),
we have to first estimate the direction of the virtual inte-
grated noise signal in each subband. To estimate noise di-
rection, Mizumachi et al. [11] proposed a three-microphone
noise direction finder by integrating two subtractive beam-
formers which were built using three microphones and the
traditional cross-correlation DOA estimation method. How-
ever, this estimator fails to estimate the noise direction when
only two microphones are available, such as in the proposed
two-microphone noise reduction algorithm.

To provide noise direction information for estimating
noise spectrum in the proposed system, we propose a noise
direction estimator which exploits two microphones and is
able to estimate noise direction even in speech active peri-
ods.

Let us assume that the desired speech signal and inter-
fering noise signals are uncorrelated, which is a widely sup-
posed assumption for speech enhancement [2], [4], [6], [12],
[13]. With this assumption, the cross spectrum between the
speech-cancelled signal and the observed signal on a refer-
ence microphone (e.g., the first microphone) in each sub-
band can be written as

U(@)X; (@) = N(@)N;(@)(1 - e/*)
= 2JN(@)N;(@)e ¥ sin (w%k) 5)

where X (@) is the STFT of x;(¢) in the k-th subband and the
superscript * denotes conjugation operator. Note that this
cross spectrum is independent of speech presence/absence
state, since it includes noise-only components. With the
cross spectrum in Eq. (5) and using the generalized cross-
correlation based DOA estimation technique [14], the esti-
mate of the virtual noise direction & of the k-th subband can
be calculated as

. l { U(@)X; (@) }
O = 20, = 2arg max |IFFT | ————— ||,
: |U@)IX;(@)|

Wi-1 S0l <w, k=1,2,...,K (6)

where 3}( is the half of the difference estimate in the virtual
arrival time between two microphones in the k-th subband.

It should be noted that the band width of each sub-
band should be appropriately determined. This is because
that very narrow subbands are needed for Eq. (4). However,
Eq. (5) requires that the subbands cannot be very narrow
since the assumption of zero correlation between speech and
noise might be violated in too narrow subbands. Therefore,
there is a trade-off in choosing the band width.
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3.3 Noise Estimation — A Hybrid Noise Estimation Tech-
nique

Equation (4) indicates that the spectrum of the integrated
noise can be estimated from that of the speech-cancelled
signal U(®) with the help of the already estimated noise di-
rection Sk.

To estimate the noise spectrum on the first microphone,
the speech-cancelled signal has to be compensated. To do
this, with the use of the estimated noise direction &z, we con-
struct a noise compensator for matching noise components
on the first microphone as

5
JW >

Hy (@) = . (7

o (8
2jsin (w 7‘)
Consequently, the spectral estimate of the integrated noise
Ny (@) in the k-th subband on the first microphone using
this multi-channel (i.e., two-channel) estimation approach,

can be obtained by weighting the speech-cancelled signal
U(@) with the noise compensator Hy(®), given by

Nouu(@) = U(@)Hy(&) 8)

Note that as @b approaches 27, Eq.(7) approximates
infinity because of the too small value of the denominator
in Eq. (7). In this case, the multi-channel estimation ap-
proach in Eq. (8) overestimates the noise spectrum, which
corresponds to the sidelobe problem of the small-size multi-
microphone systems. To mitigate this problem and im-
prove the noise estimation accuracy, we present a hybrid
noise estimation technique by combining a single-channel
noise estimation approach. Using the hybrid noise estima-
tion method, the spectral estimate of the integrated noise in
the k-th subband is given by [15]

Nu(@)| = [Ni@), 'sin(a,%k)
k Ns,k([[))|, otherwise

> &

€))

where ¢ is a small positive value; Z\A/m,k(w) and Z\A/S,k(w) are
the estimated noise spectrum by the multi-channel approach
in Eq. (8) and the soft decision based single-channel noise
estimation approach, given by [16]

Vs (@)
= ulN7E@)P + (1= E [INy(@)P X1 @)P ], (10)
where 1 (0 < u < 1) is a forgetting factor controlling the
update rate of noise estimation, Ni + (@) indicates the esti-
mated noise spectrum in the previous frame and E[-] is the
expectation operator. Under speech presence uncertainty,

the second term in the right side of Eq. (10) can be estimated
as

E[INs(@)P[1X: (@)
= (@IX (@) +(1-qr@)INTE @), (11)
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where g (@) denotes the speech absence probability that is
calculated as in [16].

Finally, the spectral estimate of the integrated noise
N(w) on the first microphone can be calculated over the en-
tire frequency region as

K

@) = > [R@)]. w1 < 1@] < oy (12)
k=1

3.4 Noise Reduction

After estimating the noise spectrum, the desired speech sig-
nals are enhanced by subtracting the estimated noise from
the noisy observation on the first microphone by non-linear
spectral subtraction, given by [13]

o o IXi)I - N, 1X1(w)] > alN(w),
IS (W)l = ,
BXi(w)l, otherwise,
(13)

where « is the subtraction factor and 3 is the flooring factor.
4. Experiments and Results

The performance of the proposed two-microphone noise re-
duction algorithm was examined in various acoustic envi-
ronments and further compared to that of the conventional
algorithms, including the delay-and-sum (DAS) beam-
former [3], the superdirective (SD) beamformer [4] and the
standard generalized sidelobe canceller (GSC) algorithm
[5].

4.1 Objective Evaluation Measures

To evaluate the studied noise reduction methods for speech
enhancement, two objective speech quality measures were
used: perceptual evaluation of subjective quality (PESQ)
and log-spectral distance (LSD).

The first measure is perceptual evaluation of speech
quality (PESQ) [17], which is able to predict subjective
quality with good correlation in a very wide range of condi-
tions specified by the ITU-T as recommendation P.862 [17].
Note that a higher PESQ means the higher speech quality of
the enhanced signal.

The other measure is log-spectral distance (LSD),
which is often used to assess the distortion of the desired
speech signal [18],[19]. LSD is defined as the difference
between the log spectrum of clean speech and that of the
noisy signal or enhanced signal by the studied algorithms,
given by

LSD

1OL—I 1W—l
_Ow E;[mgwﬂs[(w)—1ogmﬂsf<w>]2 .14

2
sz

where AS (w) £ max{|S(w)|, ) is the clipped spectral
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Room dimensions: Parameters:
L=L,=52m, [ =23m dy=10m
Array position: anol .15 m
(2.7m,1.0m, 1.0 m) =0.Im

&\0-‘@3

27m |

L |
[ 1

Fig.2  Geometrical configuration of experiments in a soundproof room
environment.

power in the w-th frequency bin and the £-th frame such that

the log-spectrum dynamic range is confined to about 50 dB

(that is, 6 = 107>%/10 max {IS ¢(w)*}) [20]. Note that a lower
w,

LSD level indicates the lower speech distortion.
4.2 Experimental Configuration

To evaluate the performance of the studied algorithms, we
have done the experiments in both simulated conditions
and real environments with the same configuration shown
in Fig.2. Two microphones with the inter-element spac-
ing of 10cm were placed in a room whose dimension is
52mXx52mx23m. Four loudspeakers were used for
one target sound source and three interfering sound sources.
Both loud speakers and microphones were set 1.0m from
the floor. The target source was 1.0m in the front of two
microphones (e.g., 0 degree), and three interfering noise
sources were 1.5 m apart from the microphones with DOAs
of 60, 40, —40 degrees, respectively.

In the simulated environments, the impulse responses
between sound sources and microphones were simulated us-
ing the image method [21] with the reverberation time of
0.1 ms to simulate the anechoic room. The observed target
and interfering signals on each microphone were generated
by convoluting the “dry” target and interfering signals with
the simulated impulse responses. In the real acoustic envi-
ronments, we recorded the sound data in a soundproof room
with the same configuration shown in Fig.2 and the rever-
beration time of about 0.25 s, at Research Institute of Elec-
trical communication, Tohoku University.

For the simulated and real acoustic environments, two
noise acoustic conditions, one-noise-source and three-noise-
source conditions, were generated and used to examine the
performance of the studied algorithms. In the one-noise-
source condition, the noisy signals were obtained by sum-
ming the interfering signals with DOA of 60 degrees and
the target signals at different global SNR levels [-5,20] dB
with the step of 5dB. In the three-noise-source condition,
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the integrated interfering signals at two microphones were
first generated by mixing three interfering signals, and the
observed noisy signals were finally created by adding the
integrated interfering signals into the target signals at two
microphones at different global SNR levels, as in the one-
noise-source condition. Note that since the duration of tar-
get signals might be different from that of interfering sig-
nals, the signals having longer durations were truncated to
the one of the shorter duration when generating the observed
noisy signals.

All evaluations in both simulated and real environ-
ments were done under the following condition. The sam-
pling frequency is set to 12kHz. The frame length was
42.6 ms (512 samples) with the frame shift of 21.3 ms, and
the window function was Hamming. Other implementation
parameters were experimentally optimized in the simulated
acoustic conditions.

4.3 Performance Evaluation in Simulated Conditions

In the first experiment, we optimize the implementation
parameters (e.g., € and bandwidth) used in our proposed
noise reduction algorithm and evaluate the effectiveness of
the studied algorithms in the simulated anechoic room with
the configuration shown in Fig.2. In this simulated con-
dition, both target signals and interfering signals were se-
lected from TIMIT speech database [22]. For target sig-
nal, we chose 200 utterances spoken by 20 speakers, and for
three interfering signals, different 600 utterances spoken by
60 speakers (20 speakers with 200 utterance for each inter-
fering source). The simulated target and interfering signals
were first re-sampled to 12 kHz and then mixed to obtain the
observed noisy mixture signals.

4.3.1 Parameter Optimization

As described in Sect. 3, the proposed two-microphone noise
reduction algorithm involves several implementation param-
eters, that is, € in Eq.(9), bandwidth of subband in fre-
quency dividing, @ and g in Eq. (13). Since the noise spec-
trum is analytically estimated, it is expected to give much
more accurate noise spectral estimate. Therefore, the pa-
rameters « is set to 1.0 and 8 is empirically set to a small
value 0.001. In this subsection, we thus optimize the param-
eters: bandwith of each subband and ¢ in Eq. (9).

To optimize the parameters bandwidth and &, half data
set (100 utterances for target signals and 300 utterances for
interfering signals) was used and the other half data set was
exploited for evaluating the effectiveness of the tested algo-
rithms in the one- and three-noise-source conditions. In the
optimization procedure, the objective measure PESQ is cal-
culated for each utterance, and then averaged across all ut-
terances and all SNR levels. The optimized bandwidth and
€ are derived as the ones which result in the highest average
PESQ results.

The averaged PESQ results as a function of bandwidth
in the one- and three-noise-source environments are plot-
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A--BAnl pA

PESQ

- A- One-noise-source condition
—E6— Three—noise—source condition D

4 8 16 32 64 128
Subband bandwidth [sample]

2.7

Fig.3  Average PESQ results as a function of different bandwidth in the
one- and three-noise-source conditions.

3.15

2.8+ -A- One-noise-source condition
—©- Three-noise-source condition

7 L L L L L L L L L
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
¢ value

Fig.4  Average PESQ results as a function of different ¢ in the one- and
three-noise-source conditions.

ted in Fig.3. As Fig.3 shows, the PESQ results demon-
strate a high degree of dependence on the bandwidth of sub-
band in two noise conditions. The highest PESQ results are
achieved when the bandwith is set to 2 samples, correspond-
ing to approximately 47 Hz, which is used in the following
evaluations.

The averaged PESQ results as a function of & in the
one- and three-noise-source environments are plotted in
Fig. 4. From these results, we can see that the & of 0.08 leads
to the highest average PESQ results in both one- and three-
noise-source conditions. In the later experiments, therefore,
the & is set to 0.08.

As a result, the following evaluations were done with
the following optimized implementation parameters. The
factors @ and B for spectral subtraction were set to 1.0 and
0.001, respectively. The bandwidth in the proposed algo-
rithm was set to 47 Hz.
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Fig.5  Perceptual evaluation of speech quality (PESQ) of the noisy input
(O), the delay-and-sum (DAS) beamformer (A), the superdirective (SD)
beamformer (¢), the standard GSC beamformer () and the proposed algo-
rithm (o), in the simulated one-noise-source acoustic condition (a) and the
simulated three-noise-source acoustic condition (b).

4.3.2 Evaluation Results

The averaged results of PESQ and LSD are shown in Figs. 5
and 6. The performance was evaluated at the first micro-
phone, the traditional noise reduction algorithms (i.e., DAS,
SD and GSC) output and the proposed algorithm output.
The average PESQ results across remaining 100 utterances
in two simulated conditions, shown in Fig. 5, indicates that
our proposed noise reduction algorithm produces the high-
est PESQ results, corresponding to the highest quality of
enhanced signal, in comparison of the tested traditional al-
gorithms in both the simulated one-noise-source condition
and three-noise-source condition.

The average LSD results are plotted in Fig. 6. From
Fig. 6, we can observe that the traditional noise reduction
algorithms provide the relatively small degree of LSD de-
crease. Among the tested noise reduction algorithms, our
proposed algorithm leads to the lowest LSDs especially in
the low SNR conditions. This further indicates that the pro-
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Fig.6  Log-spectral distance (LSD) of the noisy input (0O0), the delay-and-
sum (DAS) beamformer (a), the superdirective (SD) beamformer (¢), the
standard GSC beamformer (x) and the proposed algorithm (o), in the simu-
lated one-noise-source acoustic condition (a) and the simulated three-noise-
source acoustic condition (b).

posed algorithm produces the lowest speech distortion com-
pared with the traditional algorithms.

4.4 Performance Evaluation in Real Environments

To evaluate the performance of the studied algorithms in real
acoustic environments, we used the recorded sound data for
target and interfering signals. Both target signals and in-
terfering signals were selected from ATR speech database
[23]. Specifically, eight Japanese sentences uttered by one
female and one male were used as target signals. Other dif-
ferent twelve Japanese sentences uttered by one female and
two males were used as interfering noise signals. The dura-
tions of these utterances were ranged from about 5 s to 10 s.
In our experiments, target signals were played back through
the loudspeaker speech, and interfering signals were played
back through the loudspeakers noisel, noise2, noise3, as
shown in Fig. 2. To facilitate the following objective evalu-
ations, either target signal or interfering signal was recorded
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Fig.7  Perceptual evaluation of speech quality (PESQ) of the noisy input
(0), the delay-and-sum (DAS) beamformer (A), the superdirective (SD)
beamformer (¢), the standard GSC beamformer (x) and the proposed al-
gorithm (o), in real one-noise-source acoustic condition (a) and real three-
noise-source acoustic condition (b).

by two microphones separately with the sampling frequency
of 48kHz at 16 bit accuracy. Thus, the target utterance
and the interfering utterances might not start simultaneously.
The target and interfering signals were first re-sampled to
12 kHz and then mixed to obtain the observed noisy mixture
signals.

4.4.1 Evaluation Results

The experimental results of PESQ and LSD are shown in
Fig. 7 and Fig. 8, respectively. As shown in Fig. 7, all stud-
ied noise reduction algorithms provide consistent PESQ
improvements compared to the noisy inputs in both one-
noise-source and three-noise-source conditions. Further-
more, with respect to the traditional DAS, SD and GSC, the
proposed two-microphone noise reduction algorithm offers
much higher PESQ improvements in both one- and three-
noise-source conditions, especially at the low SNR levels.
The highest PESQ improvements indicate the proposed al-
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tic condition (b).

gorithm offers the enhanced signal with the highest speech
quality.

Concerning the results of LSD, shown in Fig.8, it is
seen that all tested noise reduction algorithms show some
degree of LSD decreases, especially in low SNR conditions.
Compared to the traditional algorithms (i.e., DAS, SD and
GSC), the proposed two-microphone noise reduction algo-
rithm gives the markedly decreased LSD in all tested noise
conditions at all SNR levels. The lowest LSDs achieved
by the proposed algorithm reveal that the proposed algo-
rithm involves the lowest speech distortion with respect to
the tested traditional algorithms. Moreover, it also can be
seen that the performance improvements in terms of LSD
decreases as the input signals become “clean.”

4.4.2 Subjective Evaluations
All the tested noise reduction algorithms were also assessed

with the listening tests. Four sentences were selected and
used to evaluate the tested algorithms at three SNR levels
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(0dB, 5dB and 10dB) in the one-noise-source real condi-
tion and the three-noise-source real condition. The resulting
24(4 x 3 x 2) noisy speech sentences were then processed
by the four algorithms: DAS, SD, GSC and the proposed
algorithm. Eight graduate students with normal hearing at-
tended the listening tests. The tested speech materials were
randomly presented to each listener through a headphone at
a comfortable loudness level in a sound-proof room. The
listeners were instructed to rate the quality of the enhanced
output signals based on their preference in terms of mean
opinion score (MOS): 1 = bad, 2 = poor, 3 = fair, 4 = good,
5 = excellent.

The MOS results, plotted in Fig.9, demonstrate that
all studied noise reduction algorithms result in higher MOS
rates compared with the noisy input signals in all tested con-
ditions except at 5 and 10dB in the one-noise-source real
conditions where the GSC beamformer shows slightly lower
MOS values. The achieved higher MOS rates indicate that
all the studied algorithms produce the enhanced signal of
the higher speech quality which is preferred by the listen-
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ers. Furthermore, among the tested algorithms, the pro-
posed noise reduction algorithm results in the significantly
improved and highest MOS rates in all conditions, corre-
sponding to the “cleanest” output signal with the highest
quality. Moreover, comparing the MOS rates in the one- and
three-noise-source real conditions, we can find that the per-
formance of the traditional algorithms (DAS, SD and GSC)
markedly degrades when the number of interfering signals
increases from one to three, while the MOS results of the
proposed algorithm are only slightly different in the one-
and three-noise-source real conditions. That is, the proposed
noise reduction algorithms is successful in reducing the mul-
tiple interfering signals even if for the highly non-stationary
interference (e.g., speech signal as used in our experiments).

5. Discussions

From the experimental results presented in the last section,
the superiorities of the proposed noise reduction method to
the other traditional methods are discussed in the following
paragraphs.

The proposed method outperforms the DAS beam-
former. For the DAS beamformer, the acceptable noise re-
duction performance can be obtained only when a number of
microphones are available. In contrast, the proposed method
exploits only two microphones and still achieves the high
noise reduction performance. This superiority can be at-
tributed to the low directivity of DAS beamformer and the
highly accurate noise estimation and high noise reduction
performance of the proposed method.

The proposed method outperforms the SD beamformer.
The SD beamformer was implemented with an assumption
of a diffuse noise field. However, the noise field in which
multiple noise sources are present cannot be regarded as a
diffuse noise field. This inconsistence results in the low per-
formance of the SD beamformer. On the other hand, the pro-
posed method estimates the spectrum for the multiple noises
dependent on the virtual DOA in each subband, which leads
to high noise-estimation accuracy and further high noise re-
duction performance in such adverse conditions. This supe-
riority can be attributed to the diffuse noise field assumption
of the SD beamformer and the analytical noise estimation
approach of the proposed noise reduction method.

The proposed method outperforms the GSC beam-
former. The traditional GSC beamformer suffers from the
low noise reduction performance in dealing with the non-
stationary noises, e.g., the interfering speech signals, due to
the utilization of adaptive signal processing technique (e.g.,
LMS). In contrast, the proposed method is able to reduce the
non-stationary noises by analytically estimating the spec-
trum of the non-stationary interfering noises and then sub-
tracting it from that of the noisy observations. The use of
the analytical scheme instead of the adaptive signal process-
ing technique provides the proposed noise reduction method
the ability in dealing with the non-stationary noises. Fur-
thermore, the performance of the GSC beamformer signifi-
cantly decreases when the number of noise sources is larger
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than that of the microphones. While, it is possible for the
proposed method to suppress the multiple interfering noises
because of the use of the subband signal processing.

Additionally, the proposed two-microphone noise re-
duction algorithm should be effective in suppressing the in-
terfering signals even when more than three noises exist and
the interfering noises are changed. This is because that the
noises can still be considered as one integrated virtual noise
signal in each subband when the number of noises is more
than three, as derived in Appendix. Moreover, the inte-
gration of multiple interfering signals is regardless of their
“real” positions, e.g., for the case where the positions of the
interfering signals change.

As a result, the proposed noise reduction method pro-
vides the highest performance (e.g., suppressing the noise
signals as much as possible while keeping speech distortion-
less) among the studied noise reduction algorithms under
all tested experimental conditions, as shown in Sects. 4.3.2,
4.4.1and 4.4.2.

6. Conclusions

This paper presented a two-microphone noise reduction
method to reduce highly non-stationary multiple interfer-
ing noises. The proposed method analytically estimates the
spectrum of interfering signal in each subband upon its vir-
tual DOA and a single-channel estimation approach, and
subtracts the spectral estimate from that of the noisy obser-
vation, enhancing the target signal. To determine the DOA
of interfering signal, we developed a noise direction esti-
mator using two microphones that shows good performance
even when speech is present. The effectiveness and superi-
ority of the proposed noise reduction algorithm were con-
firmed by experiments in real room acoustic environments.
The small physical size, computational efficiency and prac-
tical effectiveness of the proposed algorithm might be the
preferable points for many applications, such as, hearing
aids.

Though the proposed two-microphone noise reduction
algorithm has in this paper been proven to be effective in
dealing with highly non-stationary multiple-source interfer-
ing signals, its performance will be degraded in the presence
of reverberation in practical conditions, especially when the
reverberation time is long. Therefore, in the future work
along this research, we will study on further improving this
two-microphone noise reduction algorithm by integrating a
dereverberation technique to cope with the reverberation ef-
fects in real-world environments, finally building up an in-
tegrated noise-reduction/dereverberation algorithm for real-
world applications.
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Appendix

In this appendix, we give the theoretical evidences for the
assumption, the sum of sinusoidal waves becomes a sinu-
soidal wave in a narrow subband, used in the procedure of
virtual noise direction estimation.

Let us assume two sinusoidal waves, y;(®) and y»(®),
are given by

y1(@) = Ay sin (@t + 61) ; (A1)
Y2(®) = Az sin (@t + 6,), (A-2)
where A; and 0; denote the amplitude and phase of y;(®) at
the frequency @, wy-1 < |®| < wi, k= 1,2,...,K; and A,

and 6, are those of y,(®).
Thus, the sum of these two sinusoidal waves will be

Y1 (@) +yr(0) = Ay sin (@t + 01) + A, sin (0t + 6,)

A1( sin (&t) cos 61 +cos (@) sin 91)

+ Az( sin (@t) cos B, + cos (@t) sin 92)

sin (@t) (A1 cos8; + A, cos 62)

+ cos (@t) (Al sin 8 + A, sin 92)
A sin (&t) + B cos (@t)

B
VAZ + B2 sin (d)t + arctan ( K)) ,

(A-3)

where A and B are defined as
A =Ajcosf +A;cosbs; (A-4)
B =A;sin0; + A, sin6,. (A- 5)

Here, we can see that the amplitude and phase of the
summed signal are given by VA2 + B2 and arctan (f), re-
spectively. As a result, the sum of two sinusoidal wave sig-
nals has been proven to be still a sinusoidal wave signal.
Following the similar deviation procedure, this result can be
further generalized as: the sum of several sinusoidal waves
becomes a sinusoidal wave signal in a narrow sunbband,
which was assumed in our method.
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