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Abstract

Imbalanced data learning has recently begun to receive considerable attention from the re-
search and industrial communities. Imbalanced data is problematic as traditional machine
learning methods fail to achieve satisfactory results due to the skewed class distribution.
Solutions to the problem generally use traditional machine learners to make a bias decision
in favor of the smaller class. To make a bias decision, one need to have a good assumption
of some kind of data distribution. The thesis proposes two methods to learn imbalanced
data problem, one is a rule learner for categorical data using local data distributions and
another is a family of sampling algorithms for numerical data using manifold modeling.

For categorical data, we deal with imbalanced data problem using example weighting to
make a bias decision. Higher weights are assigned to small class examples to avoid being
overshadowed by the large class ones. In this work, we introduce a scheme to weight
examples of small class based solely on local data distributions. A rule learning algorithm
is constructed taking the weighting scheme into account. The approach proves favorable
performance to other rule learning systems. We conclude that local data distributions
contain information that would be useful for the imbalanced data problem.

For numerical data, we explicitly model the distribution of small class data to make
a bias decision. We utilize the flexibility of manifold modeling for the small class data
distribution. Based on recent advances in manifold learning algorithms, we design basic
sampling strategies to account for skewed class distribution by generating synthetic small
class data. We combine these strategies to create a family of three sampling algorithms.
Experimental evaluation shows that the proposed algorithms can learn effectively imbal-
anced data sets. We conclude that manifold is flexible and useful enough to account for

the imbalanced data problem.
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Chapter 1
Introduction

There is a large number of applications of the fields of Machine Learning, Data Analysis
and the like that emerged recently and encountered various theoretical difficulties. One of
such difficulties is the problem of imbalanced data. In medical data analysis, it is common
to have a few patients which are cancerous while the number of healthy ones are large. In
network intrusion detections and fraudulent transaction detections, most of activities are
regular while only a few are suspicious. In Information Retrieval, one is only interested
in a piece of information in the ocean of available data. To learn those events with small
number of occurrences is challenging but of primary interest. The problem is regarded as
one of the ten challenges in Data Mining as compiled from opinions of many experts in
the fields [3].

Traditionally, decision makers, including human and computer programs, would use
statistical and computational models to describe the concepts underlining those events.
However, when those events are rare compared to non-interested events, building models
for the concepts becomes difficult. The reason is that most models for the concept of rarely
occurred events render statistically insignificant due to the prevalence of other events.
This phenomenon poses challenges to the community to develop theoretical foundations,
methods and systems tailored to this type of applications.

Most methods for learning imbalanced data modify the existing traditional classifiers
to adapt to this problem. In general, they have classifiers made a bias decision in favor
of the small class. Researches on this problems usually focus on how to make such a bias
decision, concretely on grounds and techniques to make such a decision. Various works
have been proposed, but none of them becomes a de facto standard. Most of them work
in isolation, based on different grounds and use different techniques but none of them

proves successful in a wide range of domains.



Motivated by the challenges, the objective of this work is to derive machine learning
approaches that deal with the imbalanced data problem in some concrete settings, trying
to overcome drawbacks faced by previous works. Specifically, the scope of this work is
to enhance classification methods in the application where the imbalanced data problem
occurs. We design methods to make classifiers learn better the imbalanced data.

The contributions of this thesis are two works for two types of data representation.
In these works, the proposed methods for classifying imbalanced data are meant to be

general purposed, not bound to any specific application domains.

1. For categorical data, we introduce a rule learning algorithm of IDL for imbalanced
data . The algorithm induces rules from data and is capable of weighting examples
of the small class in order to account for the imbalanced data effect. The key point
of this algorithm is that it assumes the imbalanced data effect occurs locally; local
data distributions are used to estimate weights small class examples. The work
shows that local data distributions are useful source to account for the imbalanced
data effect [4].

2. For numerical data, we propose to use the notion of manifold learning [5] to model
small class data distribution. The reason of using manifold modeling is that it is
flexible, does not make any strict assumption but yet still useful enough. Based on
the data distribution model, we derive a family of three algorithms that perturb
training data by inflating the data distribution. This proves the utility of manifold

notion in the imbalanced data problem.

The organization of this thesis is as follows. First we review some core background
of the problem in Chapter 2. We then introduce our IDL algorithm to induce rule from
imbalanced data in Chapter 3. Chapter 4 describes the sampling algorithms for numerical

data. We sum up the thesis in Chapter 5.



Chapter 2
Background

In this section, we review some background knowledge of the main theme and provide
insight into the problem we try to solve in a top down way. We first present the field
of machine learning with two flavors of data and hypothesis representation. That is rule
learning, which learns a set of rules. Its advantage is the expressiveness and human
readability of the learnt concept. The second is Support Vector Machines, among the
best off-the-shelf classification methods. Then we review some typical works dealing with
imbalanced data problem, to highlight the problem’s pervasiveness and the scatter of

solutions.

2.1 Machine Learning

Ever since the computers were invented, people have wondered whether they may be
able to learn. If we can program them to learn, the impact might be dramatic. One
can imagine the effect if a computer can scan through patients’ records and learn to
be the best doctors. The houses could optimize energy usage and safety. Vehicles can
autonomously drive us around. Softwares can help an human expert with rich knowledge
base and intelligent assistance. Robot can do all the jobs that human can do. We can
communicate with devices in natural languages. The perspective of computers can learn
would be extremely promising.

Broadly speaking, machine learning is the study of computer programs that can learn
though experiences. To be more precise, it is defined in [6] as follows.

Definition: A computer program is said to learn from experiences E with respect to
some class of tasks T and performance measure P, if its performance at tasks in T, as

measured by P, improves with experiences E.



Table 2.1: Play tennis example

Day | Outlook | Temperature | Humidity | Windy | PlayTennis
1 sunny hot high weak No
2 sunny hot high strong No
3 | overcast hot high weak Yes
4 rain mild high weak Yes
5 rain cool normal weak Yes
6 rain cool normal | strong No
7 | overcast cool normal | strong Yes
8 sunny mild high weak No
9 sunny cool normal weak Yes
10 rain mild normal weak Yes
11 sunny mild normal | strong Yes
12 | overcast mild high strong Yes
13 | overcast hot normal weak Yes
14 rain mild high strong No

The scope of machine learning is vast, but here we limit to some concrete settings. They
are rule learning and the Support Vector Machines. We narrow ourselves to a specific task.
We will work with the supervised classification problem. The type of experiences is in
vector form (including categorical vectors). Performance measure is usually accuracy or

F measure in the following chapters.

2.1.1 Rule Learning

When we are interested in the knowledge learnt by computers to be expressive and human
readable, rule learning is a favorite choice. In this part, we review the algorithms to learn
a set of if-then rules from categorical data.

Training data, which is the experience for computers to learn is in the form of categorical
vectors. We take an example as in Table 2.1.

The first row in the table is the set of attributes of the data. The last attribute is
the class attribute while the rest are descriptive attributes. Each of the following rows
represents a training example. The computers are expected to learn from this data set
to create a set of rules. The target is that the values of all descriptive attributes, the
computers should be able to tell the value of the class attribute. In this case, we simplify
the concept by introducing only learning propositional conjunctive rules. The rule set

may look like follows.



e [F Outlook=overcast THEN PlayTennis=yes.
e [F Outlook=sunny and Humidity=high THEN PlayTennis=No.
e [F Outlook=rainy and Rain=weak THEN PlayTennis=yes.

How can the rule set be generated? Technically, the computers (programs) need to search
though a space of possible rule sets (hypothesis space). Ideally, it should examine all rule
sets, give a score to each set and finally return the highest score. There are two main
ways of searching: sequential covering and simultaneous covering.

Sequential covering is described as follows. The program searches to learn only one rule
at a time. Usually, the rule learnt is expected to cover a large enough number of examples
with large enough precision (that is the correctly predicted cases over the total coverage).
After a rule is learnt, the rule is put into the rule set, and covered examples are removed
from training data. The process is repeated for the remaining training examples until
some conditions hold. A representative technique of sequential covering is CN2 [7].

Simultaneous covering learn the entire set of rules as part of the single search. A
common search procedure is divide and conquer as in decision tree induction. The training
data are split into small data sets until each small data set is homogeneous according to
some measures. Representative techniques in this line are C4.5 [8] and Ripper [9].

There are various issues involving any rule learning system. First is how to evaluate the
goodness of a rule to stop searching for rules or to prefer one rule to another. The goodness
of a rule is usually based on its coverage and purity (percentage of a class). Popular
goodness measures are precision, coverage, information gain, gain ratio etc. Inductive
bias, which is defined as the assumptions made on the ideal hypothesis, is used to choose
one hypothesis instead of another. In rule learning algorithms, simple rule sets are usually
preferred. The notion of simplicity comes from Occam’s razor, minimum description
length principle or so on.

In practice, it is exponentially expensive to search exhaustively the whole hypothesis
space. Therefore, most of rule learning systems search for the rule set in a greedy manner.
It is expected that greedy searches are stuck in some local minima. As a result, rule
learning does not give high performance in general, specially in high dimensional domains

as the expense for its expressiveness and understandability.



2.1.2 Support Vector Machines

Recently, most of major advances in the field of machine learning come from kernel meth-
ods in which Support Vector Machines algorithm (SVMs) is the most popular one. There
are extremely huge number of publications related to SVMs. We recommend serious read-
ers to the two books, one of Schlkopf and Smola [10] and the other of Showe-Taylor and
Critianini [11]. Here we only revise the fundamental ideas behind the algorithm, omitting
the mathematical and logarithmical sophistication.

At the first glance, SVMs can be viewed as using kernel methods for large margin
classification. Kernel methods is a technique that provide efficient computation together
with nonlinear transformation. A kernel function is used to transform data into the so-
called feature space, and represent data not in vectorial form but as pairwise comparisons.
This allows linear classification algorithms to work efficiently and can be made large
margin. The algorithm can be summarized as follows.

Given a data set x; € R" is the set of training examples, which are vectors in an
Euclidean space. An example x; corresponds to a label y;. In case y; € {41, —1}, this
is a binary classification problem, and if y; € R, this becomes a regression problem. The
algorithm is expected to learn a function f such that f(x;) = y;. Ideally, f is expected to
predict correctly label (or value) of future examples.

We start with the simplest case of f is a linear function of the examples for classification.
flx)=wlz +b (2.1)

In the formula, w € R", sign(z) = 1if 2 > 0 and sign(z) = —1 if x < 0. We can visualize
f in Figure 2.1. It is said from the figure that the point A is farthest from the decision
boundary (the line in the figure), so it has the largest margin. In contrast, C is closest,
so it has the lowest margin.

The intuition of margin is formalized as follows: Given a training example (z;,y;),

functional margin 7; of decision boundary of f with respect to the examples is:
i = yi(wz +b) (2.2)

In the margin, the term class labels y; are included as decision values as well as class labels
of f are negated through the decision boundary. As y; € {+1, —1}, including y; into the
margin would means: positive margin for correctly classified examples and negative for

the incorrect ones. Functional margin of a set of examples is defined to be the worst
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Figure 2.1: A linear classifier and margin intuition

margin with respect to all examples. Functional margin is sensitive to the scale of w
and b. For example, if we use 2 x w and 2 * b, we still get the same decision boundary
with margins with respect to examples are all doubled. To measure the goodness of a
classification, one needs to normalize this functional margins, called geometrical margin
defined as follows:

Vi =Yi— (2.3)

Margin is an intuition of confidence. When the margin is large, for the case of A in Figure
2.1, it is more confident that A belongs to the class, unlike C. Therefore, given a data set
S = {(x4,yi)}I",, it is natural to look for the classification function that has the largest
margin, corresponding the fittest decision on the data. The optimal margin intuition in
the computational learning theory is interpreted as the low capacity of the learnt function.
One may find common philosophy of low capacity with Occam’s razor of simplicity [12],
Minimum Description Length principle [13], Kolmogorow complexity [14] and so on. The

problem is then posed as a optimization problem as:

MATIMLZ .y py Y
sty (wa; +b) =v,i=1,..m (2.4)
Jw[| = 1.

In this formula, we directly maximize the geometrical margin. The problem can also be
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casted into:

5wl
2 (2.5)
st.oy(w'z; +0) = 1,i=1,..m

MANIMIZ Eyp )

Now the problem becomes an optimization problem with convex quadratic objective func-
tion and linear constraints. There are many off-the-shelf QP solvers can do this task.

Using Lagrange’s multiplier method, the Lagrangian is defined as:
1 m
L(w,b,a) = 5 flw] - EQi[yi(wai +b) —1]. (2.6)
Then, the maximal margin is now viewed as follows:

m 1 m
maz, W(a) = Zai ~3 Z yiyjaiozj(xiT * 1)
i=1

t,j=1

st.a; =20,i=1,..m (2.7)
Z oy = 0.
i=1

In fact, the formula 2.4 and 2.7 should give the same result. The former is called the
primal problem and the latter is the dual problem. The key difference is as follows. The
primal problem search for w and b. w is of the same dimension as input’s. The dual
problem search for o which has the dimension of number of training examples. In the
space with too high dimension, the dual problem would be more efficient. However, that
is not the key advantage of the dual problem, as so far we only mention the large margin
aspect of SVMs. The key advantage of the dual problem is that it can be made to use
kernels.

The role of kernels in the dual problem is that instead of using ! * x;, one can use a
T

kernel function k(x;, x;). If k(z;, z;) = x; * x; then there is no differences. In this case, k
is called a linear kernel. But one can make different k£, which is proved to be equivalent
to nonlinearly transforming data into another space, called feature space. The application
of SVMs to practical problems is at how to choose a good kernel. Some general kernels

of usual practice are:
1. Polynomial kernel: k(z;,z;) = (af * x; + 1)%

2. Radial basis function kernel (RBF): k(z;, z;) = e:cp(—M)

202
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One may curious if these kernels work in practice. One glimpse of their utilities is as
follows. If we use RBF kernel, the data set S’s classes are always linearly separable in
feature space.

SVMs can be refined to use soft margin to make it robust, accepting some training
errors by introducing slack variables. In this case, SVMs algorithm no longer searches for
the optimal margin, it has the name large margin. More details on SVMs can be looked
up in the books.

One may notice the key distinction that makes SVMs algorithm perform well is that it
has a global optimal solution, unlike aforementioned rule learning, which is greedy and
likely to converge to local optimal of some objective functions. Another distinction of
SVMs is that it can integrate capacity control into the optimization process, resulting in

a regularized optimal solution.
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2.2 Imbalanced data problem

Imbalanced dataset is one with very a skewed class distribution. For instance, in a binary
classification problem, when one class accounts for only 2%, the other class has 98% of
the examples. In such a situation, traditional classifiers would classify every example to
the large class with an overall accuracy of 98%. However, the small class is not leant at
all. In practice, the problem is encountered in various domains, for example, diagnoses of
rare diseases [15], fraudulent transaction detection [16], oil spills in satellite images [17],
rooftop detection [18], biological data [19], network intrusion detection [20], etc. In these
examples, the small class is usually of primary interest; hence, an overall accuracy of 98%
does not make any sense.

When class distribution is skewed, it is problematic as traditional classification methods
usually make the fundamental assumption of equal class distribution. To deal with im-
balanced date effect, one usually needs to make a bias decision in favor of the small class.
The question remains is how to make a bias decision. Some examples of the ways to make
a bias decision are: examples weighting and cost sensitive approaches, data perturbations
by adding, removing or generating data and bias decision thresholds.

There are a number of works that deal with the imbalanced data problem. However,
in our view, most of these works are conducted in isolation, based on different theory
and use different assumptions. From that, they give different solutions. They study the
imbalanced data problem in different domains. They give some insights into the problem
but they fail the claim for the scope of their insights. For experimentation, in this line
of research, there is not yet a standard benchmarking data resource. So far, there are
no de facto standard methods to study comparatively. Most works solve some aspects of
the problem, but to what extent is still a question. We review some of those works to let
readers feel the scatter of this research direction.

Kubat and Matwin [17] selectively under-sampled the majority class while keeping the
original population of the minority class. They have used the geometric mean as a perfor-
mance measure for the classifier, which can be related to a single point on the ROC curve.
The minority examples were divided into four categories: some noise overlapping the pos-
itive class decision region, borderline samples, redundant samples and safe samples. The
borderline examples were detected using the Tomek links concept. Another related work
proposed the SHRINK system that classifies an overlapping region of minority (positive)
and majority (negative) classes as positive; it searches for the best positive region” [21].

Japkowicz [22] discussed the effect of imbalance in a dataset. She evaluated three

14



strategies: under-sampling, resampling and a recognition-based induction scheme. We
focus on her sampling approaches. She experimented on artificial 1D data in order to easily
measure and construct concept complexity. Two resampling methods were considered.
Random resampling consisted of resampling the smaller class at random until it consisted
of as many samples as the majority class and focused resampling” consisted of resampling
only those minority examples that occurred on the boundary between the minority and
majority classes. Random under-sampling was considered, which involved under-sampling
the majority class samples at random until their numbers matched the number of minority
class samples; focused under-sampling involved under-sampling the majority class samples
lying further away. She noted that both the sampling approaches were effective, and she
observed that using the sophisticated sampling techniques did not give any clear advantage
in the domain considered.

Solberg and Solberg [23] considered the problem of imbalanced data sets in oil slick
classification from SAR imagery. They used over-sampling and under-sampling techniques
to improve the classification of oil slicks. Their training data had a distribution of 42
oil slicks and 2,471 look-alikes, giving a prior probability of 0.98 for look-alikes. This
imbalance would lead the learner (without any appropriate loss functions or a methodology
to modify priors) to classify almost all look-alikes correctly at the expense of misclassifying
many of the oil slick samples. To overcome this imbalance problem, they over-sampled
(with replacement) 100 samples from the oil slick, and they randomly sampled 100 samples
from the non oil slick class to create a new dataset with equal probabilities. They learned
a classifier tree on this balanced data set and achieved a 14% error rate on the oil slicks
in a leave-one-out method for error estimation; on the look-alikes, they achieved an error
rate of 4%.

Another approach that is of Domingos [24]. He compares the metacost approach to each
of majority under-sampling and minority over-sampling. He finds that metacost improves
over either, and that under-sampling is preferable to minority over-sampling. Error-based
classifiers are made cost-sensitive. The probability of each class for each example is
estimated, and the examples are relabeled optimally with respect to the misclassification
costs. The relabeling of the examples expands the decision space as it creates new samples
from which the classifier may learn.

A feed-forward neural network trained on an imbalanced dataset may not learn to dis-
criminate enough between classes (DeRouin, Brown, Fausett, & Schneider, 1991). The
authors proposed that the learning rate of the neural network be adapted to the statis-

tics of class representation in the data. They calculated an attention factor from the
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proportion of samples presented to the neural network for training. The learning rate of
the network elements was adjusted based on the attention factor. They experimented on
an artificially generated training set and on a real-world training set, both with multiple
(more than two) classes. They compared this to the approach of replicating the minority
class samples to balance the data set used for training. The classification accuracy on the
minority class was improved.

Lewis and Catlett (1994) examined heterogeneous uncertainty sampling for supervised
learning. This method is useful for training samples with uncertain classes. The training
samples are labeled incrementally in two phases and the uncertain instances are passed
on to the next phase. They modified C4.5 to include a loss ratio for determining the class
values at the leaves. The class values were determined by comparison with a probability
threshold of LR=(LR + 1), where LR is the loss ratio.

SMOTE is an up-sampling technique that can improve accuracy of classifier when used
with down-sampling the large class [25]. It adds more examples to the small class to
account for the imbalanced data effect. The synthetic examples are generated in the
line segments between neighbor points randomly. In effect, this will increase the density
within the small class region. When using with down-sampling, experimental evaluation
shows improvements on accuracy as well as AUC measure. This work is related to our
sampling technique, to be elaborated more later on.

Adaptive Conformal Mapping is used to make bias feature space transformation for
SVMs [26]. This algorithm works directly on feature space by modifying the kernel func-
tion. The kernel function is modified using Conformal Mapping; the mapping that pre-
serves local angles between elements and at the same time keeps the kernel to be valid
(positive semidefinite). The transformation inflates spatial resolution around the small
class examples. It is claimed that by doing so, classes are more separated and decision
boundary are moved toward the large class.

As we claimed earlier, this research direction is quite scattered. However, in our two
works in Chapter 3 and 4, we will try to distill the fundamental ideas behind these related

works to compare and contrast to our proposed solutions.
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Chapter 3
Rule Induction for Categorical Data

In this chapter, we introduce the work on rule induction from imbalanced categorical data.
We first review the literature on how related works use weighting for the imbalanced data
problem, then start describing our proposed algorithm from the next section.

As above, the reason that standard classifiers no longer give satisfying performance on
such data sets is that they make a fundamental assumption of frequencies of classes being
equally distributed. Adaptations to imbalanced data sets are usually by giving small class
examples higher weights (maybe implicitly). A simple way is resampling, which duplicates
small class examples or selects only a subsets of large class ones. Such approaches do
not have high performance, as studied in [22], because examples are affected by class
imbalance problem differently. SMOTE [25] combines synthetic example generation with
downsampling, but the resampling degree is still not specified. Resampling to reflect
relative weights between examples or classes remains an art.

It is believed to be more promising to weight examples differently, and various ap-
proaches have been proposed. Kubat et al. [21] insists large class examples in a mixed
region are weighted zero as long as that increases performance measure. Learning on
cluster basis is used [27] to weight examples accordingly. Learning decision trees (DT)
28] is made independent of class frequencies by using the Area Under the ROC Curve
(AUC) as splitting criterion, which is equivalent to example weighting according to their
distribution in the set of examples covered by the splitting nodes. A general way to weight
examples optimally (in Bayes risk minimization sense) is using MetaCost [24], by bagging
and then probability estimation. However, in highly imbalanced data sets, examples of
small class are rarely to learn, making their optimal costs infinity or similarly high. Again,
it is still a challenge to weight examples optimally for imbalanced data problem.

We propose a method to estimate the optimal weight of each small class example basing

17



solely on local data distributions. The intuition is that by looking more closely into local
data distribution, we have more chance to reveal useful information about the effect of
class imbalance. To this end, we first define the concept of vicinity that characterizes local
data distribution and then determine examples’ weights aiming at maximizing AUC! on
the vicinity. The weight is integrated into a rule induction algorithm at rule pruning
process.

The chapter is organized as follows. Section 1 is the foundation and formulation of
our locally adaptive weighting scheme. Integration of the weighting scheme into our
rule learning algorithm is described in section 2. In section 3, we show experimental
evaluation of the scheme to other imbalanced data classifiers. Relation of the work to

others is analyzed in section 4. Conclusions and future works are discussed in section 5.

'Our work on rule induction utilizes the current emerging research direction in machine learning of
Receiver Operating Characteristics analysis (ROC analysis). The ROC analysis has appeared in the fields
of signal detection and medical decision making for some time. It was introduced into machine learning
community quite recently. In essence, ROC analysis is used to visualize performance of a classifier at
all possible decision thresholds. Area under the ROC curve (AUC), calculated using ROC analysis, is
one of a popular metric for classification in cost-sensitive setting and imprecise environments. Interested
readers are recommended to read the following works for recent advances: [29], [30], [31] and [28].
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3.1 Locally Adaptive Weighting Scheme

We approach the imbalanced data problem by giving a weight adaptively for each small
class example, while keeping weights of large class examples a default value (i.e. 1). The
key idea to weight each small class based on its local neighborhood (hence, it is locally
adaptive), which is defined as the vicinity of the rule covering it. This section will define
the concept of vicinity and derive the formulation of example weighting basing on vicinity
using AUC as the criterion.

Vicinity: The intuition behind vicinity is as follows. Consider two rules R;,i = 1,2
with the same coverage for every class (R; covers n;, p; examples from large and small class

respectively, ny = ng, p; = p3). Conventionally, the two rules are evaluated as the same

goodness (e.g., precision for small class pi’fm). Assume that we have some way to define
a surround of a rule called neighborhood. If R; is likely to be pruned to a better one,
then in its neighborhood, there must be some examples of the same class as the predicting
class of Ry. On the other hand, R is surrounded with examples from other classes, hence
cannot be pruned to a better one. Our idea is to evaluate the two rules differently, R,
to be higher than R,, reflecting their abilities to be pruned. This different evaluation is
based on the ground that, there is a set of examples in each rule’s neighborhood, which
makes the difference in pruning ability. Vicinity is meant to be this set of examples. We
define vicinity based on the concept of k-vicinity.

Definition: The distance from a rule to an example is the minimum number of attribute
value pairs in body of the rule that need to be removed in order to make the rule cover the
example.

Definition: A k-vicinity of a rule R for a training data set D is the set of ezamples in

D that are of less or equal to a distance of k to the rule.
k-vicinity(R) = {x | x € D, Distance(R,z) < k} (3.1)

K-vicinity is a subset the training data set, which is potentially covered by the rule after
k steps of generalization. The smaller k is, the higher influence the examples in k-vicinity
may have on generalization (pruning) ability of the rule. For example, O-vicinity is the
set of examples covered by the rule, m-vicinity is the whole data set if m is number of
attribute-value pairs in the rule body. Set of all k-vicinities is a nested chain of subsets of
the data set, meaning: 0-vicinity C 1-vicinity C ... C m-vicinity. We define vicinity using

this chain with weights. Formally, vicinity is a function f over k-vicinities (assuming there
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exist up to m-vicinities).
vicinity = f{1-vicinity, 2-vicinity, ..., m-vicinity } (3.2)

Estimating vicinity is a difficult task. However, there is a way around, which is to
let vicinity of a rule remain a virtual concept. We only need to calculate ratio of class
distribution in the vicinity for example weighting in the next section.

Example Weighting and Rule Evaluation: As vicinity is expected to contain ex-
amples that influence pruning ability of a rule, we use this assumption to define the best
rule as the one giving optimal classification within its vicinity. Out idea is to weight exam-
ples in the vicinity such that optimal classification coincides with lowest misclassification
cost. Defining optimal classification on a vicinity results in a locally adaptive weighting
scheme.

We define that optimal classification is the one that gives largest AUC. AUC is a
popular metric to compare classifiers’ performance [32, 29] when misclassification costs
are unknown. When a classifier is a set of rules, as in Figure 3.1 (a), the ROC curve
contains a set of line segments. Here, the classifier is assumed to have four rules, sorted
in decreasing order of rules’ precisions for a class. For simplicity, we assume that there is
only one rule for small class in a vicinity. Then, the ROC curve of a classifier (by R or
R2) in its vicinity would look like in Figure 3.1 (b). The classifier here consists of a rule
(say R) and the default rule predicting large class. Suppose that R covers p small and n
large class examples, and the vicinity contains P small and N large class examples. The
rule evaluation metric, defined to be AUC above, is calculated [28] as:

p n 1

AUC(R) = 55 = 5+ 3 (3.3)

The above formula implies that, the weight of a small class example in this vicinity is %
when the weight of a large class example is the default value 1.

The rule evaluation metric is used to compare different rules for search bias. However,
it is not natural to compare AUC in different contexts (vicinities). Hence, we propose a
comparison strategy that rule R; is considered better than rule R if and only if it gives
higher AUC in the vicinity of R. Equivalently, R; is considered better than R if their
AUC difference (in formula 3.4) is positive.

AUC(Ry) — AUC(R) = 5(M52 — 7%) = 5[(p — )5 — (m —n)ly (3.4)
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Figure 3.1: The ROC space: (a) plot of a rule learner. (b) for rule comparison in a vicinity

For the purpose of comparing rules for search bias, it is sufficient to know %. This is the
reason we allow vicinity to remain an abstract concept, while we heuristically estimate
% directly. From equation 3.2, we propose to estimate class distribution ratio % in the
vicinity to be (m is the number of k-vicinities):

N Ny
— = Wy * — 3.5
F=2 Ut (3.5)
k=1
In this formula, ]I\Df—]’: is class distribution ratio in k-vicinity and wy, is its associated weight,

with ) wy = 1. This just smooths out class distribution ratios of different k-vicinities to
estimate that of the vicinity, in similar fashion to shrinkage estimator, to make it robust.
The definition of vicinity is tunable by its weighting scheme, namely the set {wy}. If wy, is
large for small k, vicinity reflects more local information. If wy is large for large k, vicinity
is more global. If we want to define vicinity to be the whole data set, then set w,, = 1.
Having tunable set of {wy} is a generalization of simple cost sensitive classification. In
this algorithm, by default, we fix (but still can be changed by user):

wy=—,k=1,m (3.6)

1
m Y
Discussion: The key point to make this example weighting scheme suitable to imbal-

anced data is the use of local neighborhood. Having a myopic view around a rule, we

may have a better picture of how much the imbalance may hinder classification rules.

21



Examples far away from boundary of classes may not participate in any vicinity, also not

affecting class discrimination (this is similar to the idea behind SVMs).

22



Input: D is training data.
Output: Rule sets.

IDL
1. Generate a candidate rule set
2. Prune rules from high coverage to low

GenerateRuleSet

1. Generate a decision tree

2. Stop when leaf nodes contain only example from one class

3. FEaxtract the set of leaf nodes that contain only examples of small class
4 Conwvert those nodes into rules and return

PruneRules

1. Sort rules according to coverage

2. From high to low coverage rule do
3. Remowve best attribute value pair
4 Until no more AUC is gained

5. Return pruned rules

Figure 3.2: IDL algorithm

3.2 IDL: Imbalanced Data Learner

IDL is a rule induction algorithm, which follows one-sided selection strategy to learn rules
only for small class. It takes into account example weighting to effectively learn small
class. Example weighting is integrated into rule induction process by using above rule
evaluation metric (Formula 3.3). The algorithm consists of two steps. First, it generates
a set of candidate rules for small class, which are meant to be complete and of high
precision. This set is generated by growing a decision tree. Then it prunes these rules
by greedily removing attribute value pairs to make them robust. The overall strategy is
depicted in Figure 3.2.

In the candidate rule set generation step, IDL grows a decision tree and only stops when
leaf nodes contain examples from one class. IDL uses recommendation from [33] to take
impurity (24/p(1 — p)) gain as splitting criterion. After fully grown, the set of leaf nodes
that contain only small class examples are collected, turn into a set of rules. In the second
step, the collected rules for small class are sorted in decreasing order of coverage. Starting

from high coverage one, each rule is pruned by removing the best attribute value pair
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(having highest AUC difference), according to formula 3.4. It stops when removing does
not give improvement on either AUC or precision of the rule (calculated without taking
weights into account) falls under certain threshold. The examples covered by a rule are
marked to avoid the other rules to focus on them. If marked examples are covered again,
only half of their weights are retained. This makes the rules to overlap, and obtains a
large improvement on recall of the classifier. The threshold represents minimum precision
a rule can get, reflecting the amount of noise in data. This is generally set by user. It
is estimated in IDL as follows. First, set it to 80%, then do a 10-fold stratified cross-
validation on the data set to estimate its difficulty to learn. Taking the F-measure on the
small class, say f (in percent), then the threshold takes the value max (50, f — 10).

In the first step, IDL constructs an unpruned decision tree, which is of O(ea) time
complexity, where e is number of examples and a is that of attributes. In the second step,
suppose it generates k rules, each has maximum n; attribute value pairs. As each pruning
operation requires a pass of database to calculate class distribution ratio in vicinity, time

complexity of this step is at most O(ekny).
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3.3 Experimental Evaluation

We empirically evaluate IDL on its ability to learn the small class. We compare it to
other well known approaches. First is SMOTE-NC [25], nominal categorical version of
the arguably best method (SMOTE) for learning imbalanced data. SMOTE is based on
(C4.5, as in its original report. As SMOTE is sensitive to its degree of sampling parameters,
we run SMOTE on three degrees of small class upsampling, namely N=100%, N= 300%
and N=700%, corresponding to multiplying the number of examples to two, four and eight
(2, 2% and 23) times. We also compare to a general classifier of C4.5, with or without cost
sensitive setting. In cost sensitive setting (C.S.), the relative cost is just the ratio of class
distribution of the data set. Boosting is not only a general way to improve a performance
of classifiers, it is also capable of enhancing imbalanced data learners [34], then AdaBoost
over C4.5 is also compared. We use these classifiers from WEKAZ. All algorithms run
with their default parameters. We use F-measure on small class as performance criterion,
instead of AUC measure because our algorithm does not attempt to learn rules for the
large class, using AUC would be unfair. In the formula 3.7, pr is precision and rc is recall

of the classifier.
prokre

pr+rc

(3.7)

F — measure = 2

We evaluate those algorithms on selected fifteen UCI data sets ?, where smallest class
is chosen to be the small class; the other classes are merged to be the large class. All
missing values in data are filled. As the algorithm is for categorical data, all data sets are
discretized. We split data sets with a ratio of 75-25 randomly in a stratified manner. Large
parts are used for training and small parts are for testing. To be fair, all training and
testing data sets are common to all classifiers. The Table 3.1 shows the result of testing
on the small part of data. Columns are names, percentage of small class proceeded with
class index and then classifiers (SMOTE is tested with three parameters). All numbers
are in percentage. The last line shows average performance of on all data sets.

The table shows that our approach outperforms general classifiers by a large margin,
beats three different parameters for SMOTE, and is better than SMOTE on average. IDL
improves 11.74% in term of F measure on small class comparing to a standard classifier
of C4.5. For cost sensitive setting of C4.5 (C.S), it also improves 3.81%. Comparing
to AdaBoost over C4.5, IDL is 2.85% higher. This means that IDL is more suitable

for imbalanced data than general classifiers. Comparing IDL to an imbalanced data

Zwww.cs.waikato.ac.nz/ml/weka/

3http://www.ics.uci.edu/ mlearn/MLRepository.html
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SMOTE
NAME % C4.5| C.S. 100 300 790 | AVERAGE A.Boost IDL
ANNEALING1 | 11.0 | 73.9 62.3 77.4 71.0 66.7 71.7 70.6 96.2
CAR3 3.7 | 66.7 84.2 77.4 80.0 80.0 79.1 80.0 76.9
FLARE4 8.0 0.0 36.9 30.4 36.1 38.6 35.0 32.7 29.0
GLASS3 13.5 | 93.3 73.7 93.3 82.4 82.4 86.0 80.0 85.7
HYPOO 5.0 85.7 81.9 85.7 83.1 83.1 84.0 84.6 84.6
INFO 6.3 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 100.0 100.0 | 100.0
KRKOPT16 0.9 85.7 82.8 88.4 88.4 90.1 89.0 84.1 87.1
KRKOPT4 0.7 58.0 69.1 66.7 71.8 66.7 68.4 61.3 75.9
LED7 8.4 59.8 59.9 63.9 61.6 50.5 58.7 50.7 62.4
LETTERO 3.9 91.0 90.0 92.0 91.8 89.7 91.2 96.0 92.0
SATIMAGE3 9.7 51.5 52.8 57.9 51.8 51.3 53.7 57.9 50.3
SEGMENTH 14.1 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 100.0 100.0 | 100.0
SICK1 6.5 82.8 69.6 82.8 81.8 73.8 79.5 82.8 80.9
VOWELDH 9.1 0.0 75.2 67.8 69.4 65.5 68.2 80.0 60.0
YEAST4 3.4 0.0 30.8 33.3 44.4 | 40.0 39.2 21.1 43.5
AVERAGE 6.94 | 63.23 | 71.16 | 74.59 | 74.24 | 71.89 73.57 72.12 | 74.97

Table 3.1: Comparison of Classifiers on UCI data

learner of SMOTE (SMOTE-NC version), on average, IDL is also competitive to three
parameter settings. The average performance of SMOTE in the three parameter settings
is 1.40% lower than IDL. It is noteworthy that there is no systematical ways to determine
resampling degree for SMOTE.

It is interesting to look into improvement of IDL over C4.5 in comparison with average
improvement of that of SMOTE with the three parameters in Figure 3.3. X axis of is
performance improvement of SMOTE (averaging all parameters) while y axis is for IDL.
The set of points shows a near linear relation. This means that improvement of IDL is
proportionate with that of SMOTE, meaning that IDL is consistently similar to SMOTE.

In summary, IDL gives superior performance over standard classifiers (including an
ensemble method), which are not specialized for imbalanced data. Comparing to SMOTE,
IDL performance is consistently similar, and slightly higher on average of all data sets.
IDL also outperforms a boosting, a cost sensitive and a general classifier. This proves

that IDL is strong for learning imbalanced data.
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Figure 3.3: Improvement of IDL versus SMOTE

3.4 Related Works

A number of works also used data distribution in some sense to infer useful information for
making decision. Ferri et al [28] propose a method to build DT, integration of cost model
to make DT cost sensitive. It differentiates the process of tree growing, which is considered
cost model independent, to the process of tree leaves labeling, which is inherently cost
sensitive. Tree growing uses a splitting criterion of AUCSplit, that chooses the split that
maximizes Area Under the ROC Curve within the considering node’s context. After fully
growing, decision trees are made cost sensitive in process of labeling leaves. The vicinity
in our language can be viewed in this work to be the set of examples covered by the
splitting nodes.

Nickerson et al [27] deal with the imbalanced problem by utilizing clustering. The
guided resampling method is to equalize numbers of instances in each cluster. It is similar
to our approach if we define vicinity to be cluster. Instead of guided sampling, we classify
examples in a cost sensitive manner within the vicinity.

An in-depth analysis of the question why imbalanced data may prone error is conducted
by Jo and Japkowicz [35]. They argue that it is not the class imbalance itself to degrade
classifiers’ performance. However, it is the likely cause for the problem of Small Disjuncts,
which in turn causes degradation. In our approach, vicinity of examples in a small disjunct

would contains a small number of examples of small class. This would likely leads to highly
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skewed class distribution in this vicinity. Thus, the concept of vicinity can be used to
detect small disjuncts. To some extent, the idea from our approach is implicitly aware of
small disjunct problem.

Boosting uses the feedback of each round of learning to update weights accordingly
[36, 34]. Initially, all weights are set equally. On each round of learning, the weights of
incorrectly classified examples are increased so that, the learner is forced to focus on hard
examples in the training set. Our approach estimates the weights based on their vicinity.
In the end, either way also gives different weights to examples, the higher to the more
difficult to be learnt. The difference is at how to measure the difficulty of learning each
example, by trials in boosting or by a heuristics in ours. Our approach only produces one

classifier instead of many in boosting.
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3.5 Conclusion

We have proposed a method to weight examples for small class utilizing their local neigh-
borhood information. A local is defined as a virtual concept of vicinity, while computation
is based on k-vicinities. The algorithm is clearly better than general classifiers, including
AdaBoost and C4.5, competitive to SMOTE while having the advantage of no resampling
parameters required. From this, we can conclude that the local information around an
example, like vicinity in this algorithm, is useful to weight it, in order to compensate to
imbalanced data.

The clear limitation of this method is how to define weighting scheme for a vicinity. For
the moment, its computational complexity is the main problem, which should be reduced
for large data sets. Applying the weighting scheme to other classifiers for imbalanced data
is a natural extension. Whether local data distribution can be used to improve classifiers

in general is an open question.
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Chapter 4

Sampling Algorithms for Numerical
Data

This work is a family of sampling algorithms that add more synthetic examples to the
small class in the data set. We first review the literature, unlike the last chapter, we
describe in a different way. In this part, we review the assumptions behind related works,
point out their limitations and proposed solutions for the imbalanced data problem.

The reason that traditional classifiers fail to learn the small class is that they tend to
make the fundamental assumption of an equal class distribution. When dealing with im-
balanced data, most approaches bend this assumption by introducing bias into traditional
classification methods. The ground, on which bias is introduced, is usually some form
of data distribution. One of the assumptions on the effect of skewed class distribution
is that small class data is simply sparser. In this case, rebalancing class distribution,
either by adding examples to small class (upsampling) or removing examples from the
large class (downsampling), would be sufficient. Japkowicz in [22] observed that these
sampling methods did not give a good performance. Simple cost-sensitive method, which
gives distinct costs to classes, does not make much difference in various classification
methods [33]. Similarly, SMOTE [25] generates synthetic data to add to the small class
relies basically on this assumption.

Other methods make different assumptions to account for the imbalanced data problem.
Nickerson et al in [27] claimed the imbalanced data effect happens within clusters in the
data; rebalancing class distribution on clusters would solve the problem. The concept
of Tomek link is used to downsample the large class [17]. Imbalanced data effect is
attributed to small disjuncts, the ones with only a few small class examples [35]. Higher

spatial resolution in feature space is given to small class [26] as small class is thought
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Figure 4.1: A manifold of small class

to occupy a small region. The common point among these methods is that one needs to
make a good assumption of data distribution and design algorithms to make bias decisions
accordingly.

In search of a good assumption for small class data, we used the notion of manifold.
Manifold is a way to model nonlinear data distribution and to reveal hidden structures.
The key distinction from previous approaches is that manifold is a flexible framework,
which does not impose strict assumptions on small class data distribution. It does not
require data to lie in clusters, linear subspaces or small disjuncts. Figure 4.1 demon-
strates a manifold modeling of the small class. Having assumed the manifold structure
of small class data, we deal with the imbalanced data problem by generating synthetic
examples with two sampling strategies. Combining the strategies in different ways, we
design three algorithms for imbalanced data. Empirical results show the significance of
sampling strategies and merits of the algorithms.

In this work, we first review the fundamental idea behind manifold learning in Section
2. We then design two sampling strategies for imbalanced data by strengthening and
expanding manifold structures in Section 3. In Section 4, we describe a family of three
algorithms using those strategies in different ways. Then we evaluate those algorithms
in comparison with other classifiers in Section 5. We then conclude the paper with some

outlooks.
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4.1 Manifold Learning

The driving force of manifold learning is for the problem of intrinsically low dimensional
data that lies in a high dimensional space. Such problems are encountered across domains
like Artificial Intelligence, Information Retrieval, Data Mining, Image Processing, Cogni-
tive Science and so on [37]. The target of manifolds learning algorithms is to discover the
low and meaningful dimensional representation of data [1]. The fundamental assumption
in manifold learning algorithms is that data should lie on a manifold M, which is viewed
as a Riemannian submanifold of the ambient Euclidean space and is globally isomorphic
to a convex subset of a low dimensional space [38]. In this section, we review the key idea
behind the manifold assumption and borrow it for the imbalanced data problem.

Recently, a new family of manifold learning algorithms has been proposed to character-
ize the intrinsic geometric structure of a manifold and embed it into a low (and hopefully
meaningful) dimensional space. Representative algorithms are Isometric Feature Map-
ping (ISOMAP) [1] and Locally Linear Embedding (LLE) [2]. The frameworks of these
algorithms are quite similar and can be unified as: constructing a neighborhood graph
and distill information, then embedding the data into a low dimensional space preserving
the information. The first step in the framework extracts information characterizing the
manifold. After the abstraction process, the information is used to construct a low dimen-
sional space representation of the original manifold. Various algorithms extract different
information for computational purposes, but basically, the information is based on some
neighborhood graphs. The ISOMAP algorithm, as in Figure 4.2, can be described as
follows:

Given a data set {z;}?,,2; € R, we wish to find a mapping ¢ : R* — R? such that

the mapping preserves some desired information.

1. Determine which points are neighbors in the manifold based on distance between
pairs of points d(z;, z;). Two simple methods are connecting point within some fixed
radius € or connecting all k-nearest neighbors. The connections form a weighted

graph G.

2. Estimate the geodesic distances dps(z;, z;) between all pairs of points on the mani-

fold by the shortest path distances dg(z;, z;) from the graph G.

3. Use the Multidimensional Scaling method to construct an embedding in the lower
dimensional space y; = ¢(z;) € R¥ by minimizing an error function, which tries to

preserve geodesic distances.
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Figure 4.2: The ISOMAP algorithm [1]

LLE is slightly different that instead of preserving pairwise distances, it preserves linear
coefficients that reconstruct each data point from its neighbors. The LLE algorithm can
be viewed in Figure 4.3.

What can we learn from these manifold learning algorithms? The algorithms directly
model the manifold of data points by constructing a neighborhood graph. Information
on the graph, such as geodesic distances or linear coefficients to reconstruct each data
point, characterizes the manifold. These algorithms are capable of modeling nonlinear
manifolds. Manifold modeling is flexible in the sense that it does not make any strict
assumption of data distribution like clusters, linear subspaces, Gaussian mixtures and so
on. This motivates us to use manifold to model the small class in imbalanced data. The
reason is that in imbalanced data, the small class is difficult to learn due to its shortage
of data and may not exhibit any regularity. Therefore, the manifold assumption would

be weak enough to for imbalanced data.
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Figure 4.3: The Locally Linear Embedding algorithm [2]

4.2 Sampling Strategies

Having assumed that small class examples lie in a manifold, the first step in a manifold
learning framework could be used to extract relevant information of the manifold to deal
with imbalanced data. As the small class is short of training examples, it is expected that
the manifold would be represented by an inefficient number of examples. Therefore, we use
the manifold assumption to generate more synthetic training examples to add to the small
class in order to account for the imbalanced data problem. This section describes two
ways to generate synthetic examples: in-class sampling to enhance the manifold structure

and out-class sampling to expand the manifold structure.

4.2.1 In-class Sampling

Our method for modeling the manifold of the small class follows the common framework
of manifold learning as ISOMAP and LLE. To enhance the manifold structure, the strat-
egy generates synthetic examples for the small class with the requirement that synthetic
examples should lie in the manifold. Therefore, it is natural to choose synthetic examples
as points in the line segment connecting nearest neighbors. The in-class sampling strategy
is described in Figure 4.4.

The strategy is different from SMOTE [25] in the sense that it is fully deterministic,
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Input: D7 is set of small class examples, z; € D
Parameter: £ is number of nearest neighbors,

n is sampling degree
Output: Synthetic examples ST

1. Look for x;’s k-nearest neighbors in DT :
NB+($1) c Dt ,’NBJF(:L'I)’ =k

2. Choose from its k-nearest neighbors n examples
with the largest distances to x;:
nNBT(x;) C NB*(z;), [nNB*(x;)| =n

3. For each chosen neighbor, generate a synthetic
examples the middle point of the line segment

between it and x;:

V."L‘j S nNB+(17i),l‘ij = CEi;l’j — Tjj € ST

Figure 4.4: In-class Sampling Strategy

while SMOTE chooses among k-nearest neighbors randomly and generate synthetic exam-
ples randomly in the line segments. The idea of generating synthetic examples of to make
data denser was also used in [39]. However, in-class sampling suffers from two properties
that would be limitations for learning imbalanced data.

Property 1: The synthetic examples generated by in-class sampling always lie inside
the convexr Hull of the original small class examples.

The proof of this property is straight from the convexity of convex Hull: all line segments
connecting points inside the convex Hull lie entirely within the convex Hull. In case the
shortage of the small class data causes the shrinkage of the ideal convex Hull, only in-class
sampling strategy would be insufficient.

Property 2: The synthetic examples may reduce the expected (bias-corrected) variance
of small class data.

Proof: Denote the set of small class examples D™ = {z;}”_;. Then mean of the set
iy (@i=7)?

. Denote
n—1

n
P A . . .
is T = % and (bias-corrected) variance is: var; = var(DT) =

the set of p generated synthetic examples is ST = {z;}n27. The new mean of all small
Yt @

= The variance of the new small class data is vary =

class examples now is ' =
/

n+ ‘77 J—
var(DTUST) = %ﬁ Denote d = min|z; — x|, 1 <i<j<nand = |z — 2.

The way in-class sampling generate synthetic examples is: @, = 222

2 Y

then for any
z,(r; — ) + (v, — 2)? = 2(Tpym — T)* + M > 2(Tpym — x)? + %. If we assume
p

that 4,7 are random indices in {1..n}, then the expected value of Y7 _ (z,1m — T)?* <
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EY (i —2)* — B,

Then we have:

n-+p

(n+p—1)*vary = Z(xl —1')?

i=1

i=1 (4.1)

n
=1
_ 2 | p2
vary < (n+p)(n 1)>I< Tl_(n—l—p)l + 2d
n(n+p—1) n+p—1
vary < (1 — P ) % vary (4.2)
nn+p-—1)

vary < vary. U

In-class sampling suffers from these limitations. They are unwanted for the imbalanced
data problem as for the shortage of data, the learnt manifold may be shrunken down, at
least in convex Hull and (bias corrected) variance senses. We need a sampling strategy to

account for these limitations.

4.2.2 QOut-class sampling

The previous section proves that in-class sampling does not increase the convex Hull,
or the (bias-corrected) variance of small class data. However, it is reasonable to think
that the shortage of data for the small class may shrink down the learned manifold.
It is necessary to introduce new synthetic examples to compensate for this effect and
hope it better reflects an ideal small class data distribution. The effect of shrinking a
manifold would move class boundary toward the small class, therefore we wish to expand
the manifold toward the boundary of classes. However, detecting the boundary of classes
would be hard and algorithm specific. A way around this is to look for nearest neighbors
from the other classes (the large class in binary classification problems). Therefore, we
expand the manifold of small class by generating synthetic examples linking each small
class example to its nearest neighbors in the large class. We call this out-class sampling
as in Figure 4.5.

By default, we set ¢ = % This means that the generated examples are at one third of

the way from the small class examples to their neighbors in the other class. The strategy
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Input: x; € DT is a small class examples,
D~ is set of large class examples.
Parameter: k is number of nearest neighbors,
n is sampling degree,
€ is expansion degree.
Output: Synthetic examples S™T.

1. Look for x;’s k-nearest neighbors in DT
NBf(iL‘Z) C Df,‘NBf(xi” =k

2. Choose from its k-nearest neighbors n examples
with the smallest distances to z;:
nBN~(x;) C NB™(x;), [InNB~(x;)| =n

3. For each chosen neighbor, generate a synthetic
example as a point in the line segment
between it and x;:

V.%'j € nNB’(wi),mij = (1 — 6)1‘1‘ +ex; — wy; € St

Figure 4.5: Out-class Sampling Strategy

generates examples in the line segment between a small class example and one of its
neighbors from the large class. This will push the class boundary toward the large class
and expand the small class region, overcoming the two limitations of in-class sampling.
In the next section, we will show how to combine these sampling strategies to learn

imbalanced data.
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Input: DT is set of small class examples,

D~ is set of large class examples.
Parameter: k is number of nearest neighbors,

inn is degree of in-class sampling,

outn is degree of out-class sampling.
Output: Synthetic examples S™

For each x; € Dt :
1. In-class sampling with sampling degree inn
2. Out-class sampling with sampling degree outn

Figure 4.6: Monolithic algorithm

4.3 Manifold Sampling Algorithms

In this section, we describe three algorithms that use sampling strategies for the im-
balanced data problem. The algorithms differ in the way they deploy those sampling
strategies. These are: the Monolithic, Adaptive and Selective algorithms. The Mono-
lithic algorithm simply combines in-class sampling and out-class sampling. The Adaptive
algorithm uses the two sampling strategies adaptively depending on the example being
considered. The Selective algorithm guesses when an example being considered needs to
be sampled. In all these algorithms, the sampling degrees of both in-class and out-class

are parameters to be set by users.

4.3.1 Monolithic Algorithm

A natural way to combine the two sampling strategies is to use both of them. The
Monolithic algorithm uses both in-class sampling and out-class sampling for each small
class example. It is summarized in Figure 4.6.

For each small class example, there will be inn + outn synthetic examples generated

around it.

4.3.2 Adaptive Algorithm

It may not be desirable to treat every small class example the same way. Some examples
may be on the boundary between classes, others may lie well inside the region of the class.

In such a case, it is better to sample them in different ways. Therefore, we present an
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Input: DT is set of small class examples,
D~ is set of large class examples.
Parameter: k is number of nearest neighbors,
n is total degree of sampling.
Output: Synthetic examples ST.

For each x; € DT :

1.Calculate average distances to nearest neighbors
pnd(z;) = d(z;, x;),x; € NBY(z;)
nnd(z;) = d(zs, x5), 25 € NB™(x3)

nnd )

inn = round(n * ond

outn =n —inn
2. In-class sampling with sampling degree inn
3. Out-class sample with sampling degree outn

Figure 4.7: Adaptive algorithm

adaptive way of generating synthetic examples, called the Adaptive algorithm, based on

the following criteria:

e [f a small class example is near the boundary of classes, use more out-class sampling

to expand the boundary of small class

e [f a small class example is well inside the class region, use more in-class sampling

to increase the density of the class region.

The algorithm is described in Figure 4.7. In the algorithm, there is only one parameter
(except for the number of nearest neighbors), which is the total degree of sampling for
each small class example. We use the relative ratio of average distance to the small and
the other class to determine how close an examples to the class boundary. The algorithm

calculates the degree of in-class and out-class sampling in an adaptive manner in step 1.

4.3.3 Selective Algorithm

Another method that does not treat every (small class) example in the same way is to
select only some of them for sampling. Some examples may lie inside the region of the
other class; they might be noise and should not be used for sampling. The Selective

algorithm is based on the criteria:
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Input: DT is set of small class examples,

D~ is set of large class examples.
Parameter: k is number of nearest neighbors,

inn is degree of in-class sampling,

outn is degree of out-class sampling.
Output: Synthetic examples ST.

For each x; € Dt :

1. Calculate average distances to nearest neighbors
pnd(z;) = d(x;, z;),z; € NBF (2;)
nnd(z;) = d(z;,z;),x; € NB™ (x;)

2. If nnd > pnd, continue next x

3. In-class sampling with sampling degree inn

4. Out-class sample with sampling degree outn

Figure 4.8: Selective algorithm

e If an example is near the boundary of classes or in the region of its class, use both

sampling strategies to enhance and expand the manifold structures
e [f an example is well inside the other class region, do not sample

The algorithm is described in Figure 4.8. The algorithm has two sampling parameters,
in-class and out-class sampling degrees as in the Monolithic algorithm. By default, we
use a heuristics to detect the examples lying closer to the large class than the small class
in step 1 and 2. The heuristics means that when an example is too close to the other

class, it is not used for sampling.
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4.4 Experimental Evaluation

We evaluate the ability of the proposed algorithms to learn imbalanced data , which could
also be the reasonability of assuming manifold structures in various domains. The base
learner in our experiments was Support Vector Machines [10], due to its high performance
on a vast number of domains. However, the approaches are meant to be general, not bound
to any specific classification method. We showed the ability to learn a small class with

Fl-measure. It is defined as:

2pr x rc
pr + pc

F measure = (4.3)
where pr and rc respectively are the precision and recall of the learner on the small class.
We deliberately choose domains in which data potentially has manifold structures.

1. Text data: Reuters-21578! and 20 newsgroups?

2. Image data: USPS optical character recognition data®

Text data is a popular test bed for manifold learning methods. In these databases, we
selected one class in turn to be the small class and merged all the other classes to create
the large class. USPS data is also a popular dataset for learning manifold.

We used SVMs from the LIBSVM* package. We evaluated the effectiveness of the
proposed algorithms by comparing their performance against SVMs itself and SMOTE
on top of SVMs. Table 4.1, Table 4.2 and Table 4.5 show the statistics of the data set
(number of the small class training examples, its percentage and number of the small
class testing examples). The F measure results of each algorithm in a column, namely the
plain SVMs, followed by the SMOTE, Monolithic, Adaptive and Selective algorithms.

Parameters for the algorithms were chosen as follows: For SVMs on text classifica-
tion, we chose linear kernel. Regularization parameter C' was selected from the highest F
measure using a cross-validation, C=10 for Reuters-21578 and C'=5 for 20 newsgroups.
For USPS, we used Gaussian (RBF) kernel with C=10, gamma=0.0075. The other al-
gorithms, i.e. SMOTE and our sampling algorithms, used the same SVMs parameters.
Number of nearest neighbors k=5 for all experiments. For the sampling degrees (in-class
and out-class sampling) of our approaches, as noted previously, they are free parameters;

we just run with all parameters and select the highest performance. In practice, one can

thttp:/ /www.daviddlewis.com /resources/
testcollections/reuters21578/
2http://people.csail.mit.edu/jrennie/20Newsgroups/
3http://kernel-machines.org/
4http://www.csie.ntu.edu.tw/ cjlin/libsvm/
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Table 4.1: Statistics of Reuters-21578 data. SVMs with linear kernel, C=10.

CLASS #TRAIN  %TRAIN #TEST
ACQ 1569 28.6 696
CRUDE 253 4.6 212
EARN 2840 51.8 1083
GRAIN 41 0.7 10
INTEREST 190 3.5 81
MONEY-FX 206 3.8 87
SHIP 108 2.0 36
TRADE 251 4.6 75
TOTAL 5485 100% 2189

select the best parameters by using cross-validation and the like.

4.4.1 Experimental Results on Text Domain

For the text classification databases of Reuters-21578 and 20 newsgroups, we carried out
standard preprocessing as follows. First, to simplify the experiments, we filtered out all
documents belonging to more than one class (multiple-labelled). Then, all non-letter
characters were filtered. Short words of less than three characters and stop words were
removed. We then applied Porter’s stemming® to the remaining words. The words that
appeared in fewer than three documents were also removed. These steps left Reuters-
21578 data with 4172 terms, and 20 newsgroups with 17835 terms. For Reuters-21578, in
the end, we chose only eight categories, which gave us large enough number of documents
for the experiment. Train-test splitting was recommended by our data sources. Finally,
documents were represented using TFIDF.

For the Reuters-21578 data in Table 4.3, on average, SMOTE gives a little higher
F-measure than plain SVMs (1.159% higher). However, all of the proposed algorithms
give much higher results than SVMs (8.747% for Monolithic, 8.310% for Adaptive and
5.880% for Selective). Moreover, our algorithms also show a significant improvement
over SMOTE (7.588%, 7.151% and 4.721%). This confirms our observation about the
limitations of SMOTE and proves that out-class sampling strategy is necessary.

Results for the 20 newsgroups data are shown in Table 4.4. We can see that, in most
cases, our proposed algorithms give some improvement over plain SVMs, and a slight

improvement over SMOTE. On average, the improvements of those algorithms over SVMs

http://www.tartarus.org/martin/PorterStemmer/
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Table 4.2: Statistics of 20 newsgroup data.

CLASS #TRAIN  %TRAIN #TEST
ATHEISM 480 4.3 319
GRAPHIC 584 5.2 389
MS-WINDOWS 572 5.1 394
PC.HARDWARE 590 5.2 392
MAC.HARDWARE 578 5.1 385
WINDOWS.X 593 9.3 392
FORSALE 9585 5.2 390
AUTOS 594 5.3 395
MOTORCYCLES 598 9.3 398
BASEBALL 597 5.3 397
HOCKEY 600 5.3 399
CRYPT 595 5.3 396
ELECTRONICS 591 5.2 393
MED 594 5.3 396
SPACE 593 5.3 394
CHRISTIAN 598 5.3 398
GUNS 545 4.8 364
MIDEAST 564 5.0 376
POLITICS 465 4.1 310
RELIGION 377 3.3 251
TOTAL 11293 100% 7528
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Table 4.3: F-measure results on Reuters-21578 data. SVMs with linear kernel, C=10.

CLASS SVMS SMOTE MONOLITHIC ADAPTIVE SELLECTIVE
ACQ 94.43 94.55 95.55 94.43 94.53
CRUDE 87.78 90.26 94.07 93.28 92.37
EARN 74.15 74.51 97.16 97.11 82.90
GRAIN 88.89 88.89 95.23 95.23 95.23
INTEREST 75.38 79.10 85.18 84.47 86.27
MONEY-FX 78.15 79.74 81.87 80.65 81.01
SHIP 70.18 70.18 82.86 82.26 81.01
TRADE 87.41 88.41 95.42 95.42 90.90
AVERAGE 82.046 83.205 90.793 90.356 87.926

are: SMOTE: 4.083%, Monolithic: 5.049%, Adaptive: 4.611% and Selective: 4.286%. One
may conclude that in these data sets, it is likely that out-class sampling may not be useful,
that only in-class sampling would be enough. However, using out-class sampling does not
damage performance as we can see that the approaches relying on it still give higher

F-measures.

4.4.2 Experimental Results on USPS

USPS data consists of normalized gray scale images of hand written digits from ”0” to ”9”.
It is a popular test bed for evaluating and benchmarking classifiers, often used in manifold
learning works. The data statistics and F-measures results on USPS are summarized in
Table 4.6. We can see that SMOTE improves 0.214% over plain SVMs, the Monolithic
algorithm improves 2.90%, the Adaptive algorithm improves 0.209% and the Selective
algorithm improves 0.410%. It is noteworthy that the accuracy of SVMs on USPS is very
high; therefore, it is unlikely that USPS data suffers heavily from the imbalanced data
problem. This explains why those improvements are quite marginal. However, one can
see the difference among algorithms and on average, our proposed algorithms also show
better F-measure results than SMOTE and plain SVMs.

4.4.3 Summary

In summary, we have compared our proposed algorithms with plain SVMs and a sampling
algorithm of SMOTE. We used the domains in which the data potential has manifolds,
as our method based on the manifold assumption. It was shown that our proposed

algorithms give improvements consistently over the plain SVMs. The algorithms can
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Table 4.4: F-measure results on 20 newsgroup data. SVMs with linear kernel, C'=5.

CLASS SVMS SMOTE MONOLITHIC ADAPTIVE SELECTIVE
ATHEISM 64.43 72.04 72.04 69.85 70.61
GRAPHIC 68.91 72.14 72.35 71.89 72.09
MS-WINDOWS 55.41 61.59 64.07 64.06 64.97
PC.HARDWARE 61.63 65.07 65.07 65.43 66.07
MAC.HARDWARE  68.98 72.23 72.66 72.84 72.27
WINDOWS.X 70.74  74.66 74.93 74.93 73.33
FORSALE 75.77 79.44 81.45 81.17 80.69
AUTOS 80.47  82.65 82.65 82.53 82.42
MOTORCYCLES 87.99 88.80 88.80 88.00 88.83
BASEBALL 85.47  86.59 87.86 87.60 86.84
HOCKEY 94.22 94.53 94.59 94.42 94.54
CRYPT 86.62 88.8 88.8 87.76 88.62
ELECTRONICS 56.36 65.28 65.28 64.19 65.71
MED 76.52 80.8 83.81 83.6 81.10
SPACE 83.76 86.58 86.58 86.16 86.78
CHRISTIAN 77.47 79.62 82.1 82.1 81.36
GUNS 70.83 73.48 74.73 74.27 73.93
MIDEAST 78 83.13 83.67 83.04 79.62
POLITICS 56.32 61.19 64.31 63.49 62.00
RELIGION 40.36 53.3 55.48 55.15 54.19
AVERAGE 72.013 76.096 77.062 76.624 76.299

Table 4.5: Statistics of USPS data

CLASS #TRAIN %TRAIN #TEST

0 1194 16.4 359
1 1005 13.8 264
2 731 10 198
3 658 9 166
4 652 8.9 200
5 556 7.6 160
6 664 9.1 170
7 645 8.9 147
8 542 7.4 166
9 644 9.1 177

TOTAL 7291 100% 2007
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Table 4.6: F-measure results on USPS data. SVMs with Gaussian kernel, C'=10,
gamma=0.0075.

CLASS SVMS SMOTE MONOLITHIC ADAPTIVE SELECTIVE
0 97.92  97.92 97.92 97.92 98.06
1 97.31 97.71 98.47 98.29 98.29
2 92.51  93.61 93.61 93.3 93.57
3 94.77  94.77 94.77 94.77 95.44
4 92.73  92.96 92.96 93.03 93.23
5 93.33  93.42 93.42 93.33 93.67
6 97.35 97.35 97.35 97.35 97.35
7 96.17  96.17 96.17 96.17 96.17
8 92.92  92.92 92.92 92.92 93.33
9 95.21  95.53 95.53 95.23 95.21
AVERAGE 95.022 95.236 95.312 95.231 95.432

also give significantly higher results than SMOTE. In the worst case, the algorithms still
comparable to SMOTE. These experiments confirm our claim for the limitations of in-class
sampling and SMOTE. They also show the merit of manifold assumption. As imbalanced
data is difficult due to the shortage of training examples, such an assumption is not too

strict but also beneficial.
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4.5 Conclusion

In this work, we used the flexible notion of manifold to represent small class data distribu-
tion. Relying on the manifold leaning methods, we developed sampling strategies, which
can be interpreted as strengthening or expanding the manifold to account for imbalanced
data. We designed a family of three algorithms using those sampling strategies. In evalu-
ation on the text and image domains, our algorithms showed significant improvements in
their ability to learn the small class compared with the base learner of SVMs and another
sampling method of SMOTE.

It is confirmed that the notion of manifold is flexible enough for data distribution of the
small class. When used appropriately, it can help to express some regularity in the data
distribution. It is also confirmed that the limitations of in-class sampling and SMOTE
are among the effects of imbalanced data, which is an insight into the problem. This work
inherits the limitations of manifold learning methods, relying on the success of manifold
learning methods to model data distribution. The current work can be refined adaptively
at the point of constructing neighborhood graphs. To go beyond the current work, we

think of using more generative models integrating with manifold learning algorithms.
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Chapter 5
Final Discussions

Imbalanced data is a challenging problem faced in many application domains of machine
learning and data mining. It is a classification problem when class distributions are
skewed. We proposed to two methods to learn imbalanced data in two settings. For
categorical data, we proposed the rule learning algorithm of IDL, which use an example
weighting technique to learn rules for the small class. For numerical imbalanced data, we
proposed a family of three algorithms that sample the data to account for the imbalanced
data effect. The methods show improvements on its ability to learn the small class in
comparison with sibling methods.

The two methods for the two settings are related, but not directly applicable to each
other. As discussed earlier, each method has its own drawbacks and future improvements.
For the future work, we try to generalize the two methods into a common framework.

Another future work is to apply these methods to concrete applications.
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Chapter 6
Publications
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