JAIST Repository

https://dspace.jaist.ac.jp/

K How innovative is open soprce soft w;
anal ysi s

Author(s) KLI NCWEI CZ, Krzysztof; MINAZAKI , Ku i

Citation ooobooooooo, 20: 419-422

Issue Date 2005-10-22

Type Conference Paper

Text version publ i sher

URL http:/7/7 hdl handle.net/ 10119/ 6101
00000000 DbODOO0O0OoOO0ObOOoDoOobOoog

Rights O00O00OThi s materi al i s popted here

d permi ssion of the Japan Spciety for
Policy and Research Managpment .

Description oooo

AIST

JAPAN
ADVANCED INSTITUTE OF
. SCIENCE AND TECHNOLOGY

Japan Advanced Institute of Science and Technology

1KO08

How innovative is open source software? Empirical analysis

OKLINCWEICZ, Krzysztof, MIYAZAKI, Kumiko (Tokyo Institute of Technology)

The paper addresses an ongoing debate about the
Innovativeness of open source projects and critically
evaluates the innovative potential of 500 most active
projects registered by SourceForge.net. The analysis
is based on a proposed framework, distinguishing
between radical inventions, technology / platform
modifications, and marketing innovations. Research
findings include relatively low levels of technical
newness in the studies sample, contrasting with high
interest of developers and users in the innovative
projects. The article discusses the underlying
mechanisms, restricting innovativeness of community-
driven open source efforts, and postulates the
establishment of an institution of “idea brokers”,
playing roles corresponding to venture capitalists in
the commercial software domain.

Open Source Software and innovation
Imagine an inventor, who has a promising idea,
which could be turned into a potentially successful
software application, but this would require
cooperation with experienced programmers. Can the
open source software (OSS) community offer him
compelling mechanisms, helping implement the
innovation? If so, what are the prospects for the OSS
to displace the current commercial efforts of
established software companies - is it an alternative
value creation mode, or is its current role restricted to
commoditization of established technological designs?

The popular view of open source movement
postulates that it leads to faster incorporation of
innovative ideas than the proprietary regime, pursued
by commercial companies (Tuomi 2005: 434). The
innovative opportunities are however not available to
every open source project, and development efforts
for many promising applications have been suspended
because of insufficient programmer contributions.
Selection and mortality rates of OSS projects are
higher than those of commercial initiatives, which are
often maintained because of existing user bases,
reputation effects, or sunk costs. The above view of
OSS innovation seems therefore idealistic - many
projects end up generating yet another “me-too”
product, focused on usability, support for a specific
platform and commoditization of features, so far
available from commercial vendors, and there are only
few open source projects venturing into new,
previously unexplored areas.

Many researchers tend to classify every open source
product as an innovation, thus using the terms “open
source development” and “open source innovation”

synonymously (comp. Harhoff, Henkel, et al. 2003;
Hippel, Krogh 2003; Krogh, Spaeth, et al. 2003). This
confusion results in a distorted image of the OSS
community the implicit assumption of the
innovativeness of every OSS project leads to the use of
value-bound statements in definitions of research
problems, and the term “innovation” faces the risk of
turning into a buzzword in the context of the software
industry. The Dbiased interpretation of OSS
innovativeness contrasts with other approaches,
attempting to introduce a distinction between
imitation and actual novelty — as Tuomi noticed, apart
from the unique development model, “there is nothing
particularly innovative in projects such as Linux,
which basically reimplements commercially available
operating-system functionality” (Tuomi 2005: 436),
and some authors prefer to enumerate certain
innovative achievements of the OSS community,
intentionally not generalizing the term to cover all
possible developments.

Innovations in the software industry

The question of innovativeness calls for a better
understanding of the term innovation, especially in the
context of the software industry. Roger's seminal work
on the diffusion of innovations defined an innovation
based on its perceived newness to users (Rogers 2003:
12), and his followers emphasized that “as long as the
idea is perceived as new to the people involved, it is
an «innovation», even though it may appear to others
to be an «imitation» of something that exists
elsewhere” (Van de Ven 1986: 592) - paradoxically,
products presented as innovative no longer need to be
new and unique.

«New» turns out to be a broad term in marketing
literature, referring to three categories of products:
new to the world (with no comparable alternatives
available), new to the firm, or improved .(through
changes to an existing product) (Kamel, Rochford, et
al. 2003). Apart from this “market newness”, one can
also identify technical product newness, when
products are based on newly developed technologies,
their unique combinations, or original applications of
a well-known technology (Loch 2000: 257). Creative
re-positioning of technically unchanged products
(marketing innovation) is also an effective mechanism
for improving sales in the software industry
(Klincewicz, Miyazaki 2004) — but aesthetic, usability
or conceptual changes are strikingly different from
the actual technology development. Innovative
products encompass therefore categories as diverse

—419—

as: radical innovations (with new technologies
addressing new markets or user needs), line
extensions (where established technical designs are
used to serve new customer segments), and
incremental projects (Loch 2000: 249) - the term
“product innovation” equals “product diversification”.
The fascination with innovations poses also a more
general problem, identified as “pro-innovation bias”,
an implicit assumption that an innovation should be
diffused and adopted by all potential users (Rogers
2003: 106), causing particular confusion in the
software and IT services markets.

The present study tries to return to the intellectual
roots of the concept of innovation by distinguishing
between original and “me-too” products. Some
authors made attempts to identify criteria
differentiating radical innovations from less important
changes - a notable effort by Dahlin and Behrens
(2005) offered operationalized criteria and verification
techniques. Radicalness results from technical
contents of a product, not its diffusion, and a radical
invention was defined as (Dahlin, Behrens 2005: 725):

(1) novel (dissimilar from previously available
inventions);

(2) unique (diverging from current interests of other
inventors);
(3) having an impact
(encouraging imitation).
The novelty and uniqueness criteria are satisfied
only if no functionally comparable products exist at
the launch date of a development project.

Application of the framework to software products
calls for an additional modification: software
applications are developed for specific underlying
platforms, and in most cases, an application built for
one platform cannot easily be ported to another
system. The interdependencies resulting from
technological standards stimulate the formation of
platforms (Cusumano, Gawer 2002), where individual
software firms do not compete directly against
supporters of incompatible platforms. In the OSS
community, many development efforts are focused on
improving and complementing the Linux platform.
Even though certain applications exist for Windows
users, they need to be “re-invented” for the other
operating system environment. These re-inventions
are not radical technological breakthroughs, as
similar benefits and functionality are already available
for alternative platforms. If their functionality is new
for a specific platform, they could nevertheless be
regarded as “local scale radical inventions” and will
later be referred to as “platform modifications”.

Consequently, in order to capture the complexity of
innovations in the software industry, the following
types of software innovation are distinguished:

radical inventions (breakthroughs) - products new to
the world,

*technology modifications - significant incremental
improvements of established technologies,

splatform modifications - products so far available
only for competing platforms,

on future technologies

*marketing innovations - resulting from original
positioning and new uses of existing technology
solutions.

Apart from product-related innovations, OSS
movement generates also numerous process and
organizational innovations, which are not included in
the present study.

Research methods

The present research analyzes the innovativeness of
OSS projects, registered in SourceForge.net - the
most comprehensive portal for open source
developers. In July 2005, the portal had over 100,000
projects and over 1 million registered users. Due to its
comprehensive coverage and querying potential,
SourceForge was a popular source of data for
research concerning the OSS community (Weiss 2005;
Hahsler, Koch 2005; Crowston, Howison 2005). The
present study analyzes a large-scale sample of 500
OSS projects, selected from SourceForge list of
projects with the highest activity (activity levels are
automatically registered by the portal based on
additions of messages, modified code and other
development efforts), and was facilitated by tech
mining software VantagePoint. Even though
SourceForge is the most representative collection of
0SS projects, it does not cover all relevant open
source communities. Certain visible projects maintain
independent developer websites, and many highly
active projects use SourceForge merely as a source
code repository, redirecting all other traffic (including
support requests) to own websites - this results in
relatively low activity statistics registered.

Population Selected sample
Number of 17,139 (*only
projects active) 500 (3%)
Number of
developers 34,393 6,106 (18%)

Table 1: SourceForge.net statistics (data for the entire
population from: Weiss 2005)

Research findings

Most of the analyzed projects rely on relatively small
teams of developers: 9% of them are maintained by
one person only, and 22% by 2-4 developers. The
average number of developers per project is however
12.21, significantly more than the mean of 2.0067,
computed for the entire SourceForge population
(Weiss 2005: 31). Surprisingly, all of the analyzed
projects were registered between the years 1999 and
2001 - none of the projects started in the following
four years gained enough popularity to join the most
active group.

Table 2 presents the results of the analysis, which
divided the 500 projects into distinctive groups, based
on the degree of newness. Only 64 projects (12.8%)
were not direct imitations of other existing solutions.
Descriptions of the 436 remaining projects, classified
as non-innovative, frequently use words such as
“similar”, “one of”, “enhancement of/based on
[another software]”, “yet another”, “replacement”.
Redundancy is a serious problem: “yet another”

—420—

application offering similar functionality - creates
unnecessary competition for scarce resources within
the developer community, reducing their effective
utilization. In the OSS world, mergers and acquisitions
do not occur, and joining forces by members of
competing projects is a rare phenomenon - whereas
among commercial software companies, similar
product lines from several vendors may eventually
merge into one system as a result of alliances, take-
overs or technology licensing agreements.

New for a
platform

New
technology

Existing
technology

New market

Existing
market

Table 2: Mes of pn:duct lmwvation among the 500
most active SourceForge projects

The findings reveal low overall share of unique OSS
projects - as Table 2 indicates, only 5 out of 500

SourceForge projects could be classified as
technological breakthroughs, 4 were technology
modifications, 3 - marketing innovations, and the

remaining 52 projects were platform modifications,
focused on implementing functionality new to a
specific platform, but already available for other,
incompatible systems. Among platform modifications,
Linux is the leading environment (contrary to the high
Windows' popularity, registered for the entire
sample), and projects in this group port new
functionality, popular among Windows users, or
improve support for specific standards and hardware
(e.g. USB, PMCIA, NTFS, IEEE 1394). Such projects
are characterized by a “self-service” mode of
development: end users “tweak the hardware support”
for their own systems in a way that resembles the
concept of prosumption, where consumers assume
responsibility for the production of consumed goods
(Toffler 1990). In spite of the disappointing results of
the survey, truly innovative OSS projects exist, but
many of them were implemented by individual
programmers, and not listed by SourceForge. In the
OSS community, there seem to be limited prospects
for the division of labor between inventors and
implementors: if you have a new idea, or need specific
complementary (and yet unavailable) functionality,
you have to implement it by yourself. Pioneering new
concepts is more difficult than implementing and
commoditizing proven designs, developed for other
platforms by commercial companies.

Table 3 presents comparative statistics for various
types of projects, in two cases excluding SourceForge
project (development of the portal is also an OSS
project, critical for all portal users and therefore
different from other open source efforts). New feature
requests represent suggestions and ideas coming
usually from software users, support requests concern
problems with using a product, while other messages
refer to various organizational and technical aspects

of development projects. Innovative projects are
significantly more popular among developers than
“me-too” solutions. Development of underlying
technology platforms attracts more attention than
platform modifications.

Stimulation of innovation is an additional challenge
for the OSS community. Follow-up content analysis of
the documentation of the identified innovative projects
revealed (Table 4) that 40% of breakthroughs came
from company-initiated projects, and 50% of
technology modifications grew out of academic
research, while community-driven initiatives were in
turn more focused on platform modifications and
marketing innovations.

Average A;zf‘zgfe Average Averag}e
. no. o no. o
Project type no. of new
developers | feature support | messa-
requests requests ges
All 12.21 79.47 207.84 902.13
All (excluding
SourceForge) 12.19 74.08 32.56 895.56
Non-
innovative 12.30 77.98 33.42 921.86
projects
Radical 3140 | s55.80 [17542.20 1317.00
. Radi(?al
zg;’gﬁfé‘l’r‘:; 85.00 10.00 39.00 2403.00
SourceForge)
Technology
modifications 38.50 236.25 0.00 0.00
Platform
modifications 8.79 35.83 31.65 795.23
Marketing 7.67 2867 | 167 | 228.00
innovations : ' : '

Table 3: Statistics for different types of projects

Project type | Companies | Academia | Community
Radical
inventions 2 (40.0%) 0 3 (60%)
Technology
modifications 0 2 (50.0%) 2 (50.0%)
Platform 5 9.5%) | 1 (2.0%) |46 (88.5%)
modifications . ’ :
Marketing o
innovations 0 0 3 (100%)
All innovative 7 (10.9%) 3 (4.7%) 54 (84.4%)
Table 4: Initiators of innovative projects

New functionality is often offered as “feature gifts”,
original code developed by individuals or companies
outside the OSS community and contributed upon
joining a project (Krogh, Spaeth, et al. 2003: 1233) -
but such inventions are not really generated within
the OSS development model itself. Similarly, “source
code opening” means that a commercial company
decides to share its innovations and let the community

—421—

maintain and modify them. Many companies use 0SS
licensing model and developer communities, while
pursuing parallel commercialization strategies, and
their innovativeness is linked to clear financial
motives, not present in typical OSS projects. One
should therefore not confuse efforts, where open
source licensing is incidentally used, with truly
community-driven developments: they differ in
technology control modes, decision making processes
about development directions, and motivations to
innovate.

Open source projects often originate from university
research or hobbies of individual programmers -~ many
of them implement novel ideas, but at the same time
have limited practical uses outside narrowly defined
fields of interest. In the case of university research,
the application of the open source licensing does not
need to be combined with a real community-driven
development model, as the actual research is financed
from other sources, and driven by objectives not
related to the OSS community. Many ideas coming
from academics are interesting, and could be inspiring
for other developers - but they usually do not reach
the developer community, which lacks open source
counterparts of “technology transfer” mechanisms,
requlating relations between academia and
commercial companies.

Discussion

Nobody keeps track of innovative open source
projects, abandoned by their founders, who were not
able to find sufficient support from other developers.
Lack of diffusion prospects for innovations may
discourage also their generation, and pioneers are
inclined to look for alternative ways to implement
their ideas. The analyzed statistics of OSS projects
indicated relatively low levels of innovativeness.
Large, established technology companies can afford
the luxury of limited innovativeness, acquiring new
ventures to extend own product portfolios - in
contrast, community movement can only generate
new value by own development, or by convincing
commercial vendors to open code of of their existing
applications and donate “feature gifts”.

The above discussion should not lead to a
conclusion, that the open source movement is entirely
stripped of innovative capabilities. There have been
truly innovative projects initiated by the OSS
community, but the actual problem is not the inflow of
ideas, inputs to new product development: it is the
ability to promote new ideas, gain support from other
community members and stimulate the diffusion of
new applications. While OSS developers have
excellent tools for software engineering, technical
support groups and mechanisms, stimulating code re-
use to shorten development cycles, they lack efficient
project promotion frameworks. Commercial software
developers can resort to venture capitalists to receive
funding, as well as marketing and networking support.
The OSS community desperately needs corresponding
“idea brokers”, helping launch innovative initiatives,
which do not necessarily fit into existing mainstream
developments. Due to the nature of open source
movement, funding is not as important as an

independent evaluation of concepts, business
consultancy (including advices on user needs, project
positioning and potential partnerships with other
projects), and promotion of promising projects to
create distributed developer communities. This role
could be taken by a dedicated open source foundation,
actively seeking sponsors for these activities.
Alternatively, one of large IT companies, showing its
commitment to the OSS community by opening often
low-end, obsolete technologies and expecting to have
their code maintained and improved, could instead
demonstrate support for truly innovative and open
initiatives.

Literature

Crowston, K., Howison, J. (2005) The social structure of free
and open source development. First Monday, 10, 2,
www.firstmonday.org/issues/issuelQ_2/crowston

Cusumano, M.A,, Gawer, A. (2002) The Elements of Platform
Leadership. MIT Sloan Review, 43, 3, pp. 51-58

Dahlin, K.B., Behrens, D.M. (2005) When is an invention
really radical? Defining and measuring technological
radicalness. Research Policy, 34, pp. 717-737

Hahsler, M., Koch, S. (2005) Discussion of a Large-Scale
Open Source Data Collection Methodology. Proceedings of
the 38th Hawaii International Conference on System
Sciences

Harhoff, D., Henkel, J., Hippel, E. von (2003) Profiting from
voluntary information spillovers: how users benefit by freely
revealing their innovations. Research Policy, 32, pp. 1753-
1769

Hippel, E. von, Krogh, G. von (2003) “Private-Collective”
Innovation Model: Issues for Organization Science.
Organization Science, 14, 2, pp. 209-223

Kamel, M., Rochford, L., Wotruba, T.R. (2003) How New
Product Introductions Affect Sales Management Strategy:
The Impact of Type of “Newness” of the New Product. The
Journal of Product Innovation Management, 20, pp. 270-283
Klincewicz, K., Miyazaki, K. (2004) Dilemma in Innovation.
The Case of Product Innovations versus Marketing
Innovations in the Software Industry. The Japan Society for
Science Policy and Research Management Yearbook, Tokyo,
pp- 107-110

Krogh, G. von, Spaeth, S., Lakhani, K.R. (2003) Community,
joining, and specialization in open source software
innovation: a case study. Research Policy, 32, pp. 1217-1241
Loch, Ch. (2000) Tailoring Product Development to Strategy:
Case of a Furopean Technology Manufacturer. Furopean
Management Journal, 18, 3, pp. 246-258

Rogers, E.M. (2003) Diffusion of innovations. Free Press,
New York

Toffler, A. (1990) The Third Wave. Bantam Book, New York
Tuomi, 1. (2005) The Future of Open Source, [in:] Wynants,
M., Cornelis, J (2005) How Open is the Future? VUB Brussels
University Press, Brussels, pp. 429-459

Van de Ven, A.H. (1986) Central Problems in the
Management of Innovation. Management Science, 32, 5, pp.
590-607

Weiss, D. (2005) A Large Crawl! and Quantitative Analysis of
Open Source Projects Hosted on SourceForge. Poznan
University of Technology, Poland, RA-001/05,
www.cs.put.poznan.pl/dweiss/site/publications/download/weiss-2005-
large-crawl-of-sourceforge.pdf

—422—

