JAIST Repository

https://dspace.jaist.ac.jp/

K On-the-fly Model Checking| of Secur i f
and Its I mplementation by| Maude

Author(s) Li, Guoqi ang; Ogawa, Mi zuhi to

o 00000o0oooOo: obooooo,

Citation
48(SI GL10O(PRO33)) : 50-75

Issue Date 2007-06-15

Type Jour nal Article

Text version publ i sher

URL http://hdl.handle.net/ 101009/ 7781
odo0ooOodoooboodd, Guogiang Li OMizuhito
Ogawa, gogopooogoo: gooboogo,
48(SI G10(PRO33)), 2007, 5p-75. 000001
0o0oooooooao: 0o0o0o0oooooo
000000000000 00O0b000O0oooon
goooooobooogooogobogogooog
000000000000 000ob0000oooon
00000000 00oOobo0o0ooooOoooonoo
Notice for the wuse of thip materi al
co ri ht of this materia i's retai.

Rights Py J _ . .
I nformation Processing Sofpiety of J:
This materi al i s published on this
the agreement of the authpr (s) and
Pl ease be complied with Cppyright L:
and the Code of Et hics of]|] the | PSJ |
wish to reproduce, make derivative \
di stribute or make availaple to the
part or whole thereof. Al Rights R
Copyright (C) I nformation| Processi nf¢
Japan.

Description

JAPAN
ADVANCED INSTITUTE OF

SCIENCE AND TECHNOLOGY

Japan Advanced Institute of Science and Technology

Vol. 48 No. SIG 10(PRO 33)

Regular Paper

IPSJ Transactions on Programming

June 2007

On-the-fly Model Checking of Security Protocols and
Its Implementation by Maude

GUOQIANG L1t and MIZUHITO OGAWAT

Trace analysis for a security protocol represents every possible run as a trace and analyzes
whether any insecure run is reachable. The number of traces will be infinite due to (1) infinitely
many sessions of a protocol, (2) infinitely many principals in the network, and (3) infinitely
many messages that intruders can generate. This paper presents an on-the-fly model checking
method by restricting/abstracting these infinite factors to a finite model. First, we restrict
a typed process calculus to avoid recursive operations, so that only finitely many sessions
are considered. Next, a bound variable is introduced as an index of a message to represent
its intended destination, so that an unbounded number of principals are finitely described.
Then, messages in which irrelevant parts are reduced in a protocol are unified to a parametric
message based on the type information. We implement the on-the-fly model checking method
using Maude, and automatically detect the flaws of several security protocols, such as the

NSPK protocol and the Woo-Lam protocol, etc..

1. Introduction

Trace analysis represents every possible run
of a protocol as a trace, and analyzes whether
any insecure state is reachable V~%). When ap-
plying a model checking as its execution engine,
the main difficulty is that the number of traces
is infinite. The reasons are:

e Each principal can initiate or act in re-
sponse in an unlimited number of sessions,
which causes unbounded length of each
trace.

e FEach principal may communicate with
an unlimited number of principals, which
causes infinitely many traces.

e Each intruder can produce, store, dupli-
cate, hide, or replace an unlimited num-
ber of messages based on the messages sent
in the network, following the Dolev-Yao
model®. This also causes infinitely many
traces.

In this paper, a finite parametric model
is proposed by restricting/abstracting the in-
finite factors of security protocols. Secu-
rity properties, such as authentication and se-
crecy, are checked automatically by on-the-
fly model checking. This model checking is
sound and complete under the restriction of the
bounded number of sessions, and implemented
on Maude.

To describe security protocols, we set a typed

t School of Information Science, Japan Advanced In-
stitute of Science and Technology

50

process calculus based on a variant of Spi
calculus®), in which new syntax, the binder
and the range are introduced. The calcu-
lus uses environment-based communication, in-
stead of the standard channel-based communi-
cation. Following the Dolev-Yao model, a de-
ductive system is used in the environment to
generate infinitely many messages 2).

To restrict ourselves to a bounded number of
sessions of a protocol, the calculus avoids re-
cursive operations, such as replication. To rep-
resent an unbounded number of principals, a
bound variable in a range is an index of a mes-
sage representing its intended destination. To
unify messages that cause the same behavior in
a protocol, they are abstracted to a parametric
message based on the type information, so that
only a finite number of parametric messages are
finally checked.

To represent an unbounded number of princi-
pals with which one may communicate, we as-
sume that a principal may send a message to
any of the principals. A binder is introduced
such that a bound variable in it is regarded as
an index of the possible destinations of the mes-
sage. The variable is ranged over a set of prin-
cipals’ names. The usual way to restrict this
kind of infinity is by bounding the number of
principals in the network, so that each princi-
pal is described as only explicitly communicat-
ing with finitely many principals, including an
intruder %),

Based on the type information, each sub-
expression whose type is a type variable will be

Vol. 48 No. SIG 10(PRO 33)

marked by a new kind of variable named a para-
metric variable. A parametric variable will not
be further instantiated, since substructures of
a message that are deeper than type variables
do not affect behaviors of a principal. Thus
the system is translated into a parametric sys-
tem, in which all possible messages generated
by each principal (including each intruder) can
be simulated by finitely many parametric mes-
sages. In comparison, Ref. 3) imposes an upper-
bound on the number of messages, restricting
the state space to be finite.

In a parametric system, not all parametric
traces have a corresponding trace, since a para-
metric trace may not have enough information
to decide an equality between two parametric
messages. Thus a refinement of the paramet-
ric trace procedure is proposed, in which if a
parametric trace can be deduced to a satisfiable
normal form, then it has a corresponding trace.
The deduction procedure is decided dynami-
cally. For this reason, we use on-the-fly model
checking and implement the parametric system
by Maude. The method successfully detects the
flaws of several security protocols, such as the
NSPK protocol and the Woo-Lam protocol, au-
tomatically. We use about 330 lines as the com-
mon part, and the protocol specific part for each
protocol is about fifty lines in Maude.

The rest of the paper is organized as fol-
lows. In Section 2, an overview is introduced
to illustrate how our system works. Section 3
presents the typed process calculus and its op-
erational semantics. In Section 4, we introduce
the parametric system, and prove its soundness
and completeness with respect to the original
system. In Section 5, we show how the security
properties, such as secrecy and authentication,
are represented and detected. Section 6 shows
how to implement the parametric system using
Maude. Section 7 presents related work, and in
Section 8, we conclude the paper.

2. Overview

Because of the complexity of the whole sys-
tem, we will illustrate how our system works
by analyzing the Needham-Schroeder public-
key protocol (referred to as NSPK protocol).
An informal description of the NSPK protocol
is given flow-by-flow as follows, in which N4
and Np are nonces generated by A and B, re-
spectively.

A— B: {Av NA}+KB (1)

On-the-fly Model Checking of Security Protocols 51
B— A: {Na,NB} ik, (2)
A— B: {NB}+Ks (3)

Our calculus is based on the Spi calculus®.
Unlike the standard Spi calculus, this uses
environment-based communication instead of
channel-based communication. Each process
sends messages to the environment and receives
messages from the environment. Thus a mes-
sage that a sender sends may be modified by in-
truders in the environment before the sender’s
intended receiver receives it.

In our calculus, the NSPK protocol is repre-
sented as follows:

A2 (vag : T)al{A, Na}ixz,]-02(Ya)-

case Yo of {yu}-xa) in

let (24,2)) =y, in

20 = Nal a3{2} 4x(z.)-0
B £ bl(xy).case x, of {x}}_xp) in
let (yo,yp) = 2 in [yp = A]
b2{y}, Na[A, B]} 1x47.b3(2).
case zp of {up}_x[p) in
[up = Np[A, BlJacc 2,.0
SYSVSPK & 4B

where

o (vx, :) is a range. x, represents the
possible destinations to which A may send
messages. It is ranged over the infinite set
7 of principals’ names.

e +k[zr,] and —k[A] are key binders to rep-
resent any public key and A’s private key,
respectively.

e Np[A4, B] is a nonce binder to represent the
confidential datum Np, which means that
B intends to send Ng to A.

e accz, represents that after a sequence of
checks, B asserts that the message accepted
by the b3 action comes from A.

A string of actions performed by principals,
named a trace, is used to describe any possible
run of protocols. In a trace, each variable in
an input action is instantiated by a message
that the environment generates. For example,
a trace that represents a run with only the first
two flows of the NSPK protocol, i.e., flow (1)
and (2) is:

al{A, NA}+k[B]~b1({A; NA}fk[B])-
b2{NA,NB[A,B]}+k[A].a2({NA,NB[A,B]},k[A])

It is well-known that the original NSPK pro-
tocol does not satisfy both secrecy and authen-

52 IPSJ Transactions on Programming

tication by a man-in-middle attack®), which is
given as:

AT (A, Na)ir, (A1)
I(A) — B: {AaNA}‘i‘KB (Bl)
B —)I(A) : {NA7NB}+KA (B2)
I— A (Na.Nptir. (A2)
A—T: {NB}—i-KI (AS)
14) — B {Nphixe (B3)

The confidential datum Np is leaked during the
flow (A3), and thus the NSPK protocol violates
the secrecy property. In (B3), B “thinks” the
message comes from A, while it actually comes
from I, so this violates the authentication prop-
erty.

In order to define these properties, some new
expressions are defined: For the secrecy prop-
erty, a guardian, check(z), which means that
any message that instantiates x is observable,
is introduced. The guardian can be inserted at
any position in traces, to be instantiated by any
messages leaked in each trace. Secrecy of Np
is specified as —check(Ng[A, B]). (The formal
definition can be found in Subsection 5.1.)

The property that A is authenticated to B is
specified as a3x « @ecx. The interpretation
is that (1) if @c¢ occurs in a trace, then the
label a3 must occur in the same trace before
ace, and (2) both a3 and a@cc are attached to
the same message. (The formal definition can
also be found in Subsection 5.1.)

When one tries to detect such flaws, the main
difficulty is that the number of runs is infinite.
Such infinite nature is caused by: (1) an un-
limited number of sessions of protocols, (2) an
unlimited number of principals in the network,
and (3) infinitely many messages that intruders
may generate.

Our ideas are: (1) For an unlimited number
of sessions, recursive definitions are avoided in
our calculus, and thus only bounded number of
sessions are considered. (2) For an unlimited
number of principals, ranges and binders can
represent communication with infinitely many
principals, and later such communication is ab-
stracted by a finite action. In comparison,
Refs. 2), 3) impose an upper-bound on the num-
ber of principals. (3) For infinitely many mes-
sages, a parametric system is proposed to sim-
ulate the infinitely many traces with a finite
number of parametric traces, while existing ap-
proaches impose an upper-bound on the num-
ber of messages).

For an unlimited number of principals, a prin-

June 2007

cipal communicating to infinitely many other
principals can be imitated by representing the
intended destination by a bound variable in a
range. The variable in the range later will not
be instantiated in the parametric system, thus
an unlimited number of principals can be ex-
tracted to a finite action. An alternative way to
describe the communication is by using infinite
process definition, such as replication, which is
difficult to abstract to a finite system.

We apply a type system to abstract some
unnecessary details of messages. Each sub-
expression whose type is a type variable will
be marked by a new kind of variable named
a parametric variable, which need not be fur-
ther instantiated. Because substructures of a
message that are deeper than type variables do
not affect behaviors of principals. The process
will not further decompose, decrypt or validate
these submessages. By this abstraction, the re-
sulting system is a parametric system (the for-
mal definition is in Subsection 4.1). The NSPK
protocol is translated into a parametric system
as follows.

Ay, £ (vi, : T)al{A, Nattufza)-
a2({Zas 2} —x[ay))-
case {Zq, 20 Y —x(an) Of {Za> 20} —x(a]
in let (24, 2,) = (24, 2) in
[2a = NaJa3{2,} 1x(z.)-0
By 2 b1({&0, 9} —x(ge))-
case {jbvgb}—k[l?k] of
{Zv, 9o} k() in let (2o, 95) =
(0, 5p) in [T = A]
02{ 0, N[A, B]} a7-b3({26} —(g)-
case {5b}—k[gk} of {5b}—k[B] n
(25 = Np[A, B)|@cc {2} —x[3,).0
SYS)PE £ A4, ||B,

In a parametric system, the number of para-
metric traces is finite. As Theorem 2 in Sub-
section 4.2 states, each trace in the original sys-
tem has a corresponding parametric trace in its
parametric system. However, not all paramet-
ric traces in a parametric system have a corre-
sponding trace in the original system. To find
whether a parametric trace has a corresponding
trace, a refinement of parametric trace proce-
dure is proposed, in which if a parametric trace
can be deduced to a satisfiable normal form,
then it has a corresponding trace (described by
Theorem 3 in Subsection 4.3).

Vol. 48 No. SIG 10(PRO 33)

The secrecy and the authentication proper-
ties defined in an original system can also be de-
fined equivalently in its corresponding paramet-
ric system and checked by performing a finite
search (Theorems 4 and 5 in Subsection 5.2).
For instance, in NSPK protocol, a counterex-
ample to the secrecy property

al{A, Na}ixs,-01({A, Na}).

b2{Na, Ng[A, B]} {x[]-

a2({Na,Ng[A, B} _xa))-

a3{Ng[A, B} {x[z,)-check(Ns[A, B]) (C1)
can be detected automatically. The counterex-
ample shows that in a3, A may send the mes-
sage he intends to send to B to other prin-
cipals (thus leaking the confidential message
Ng[A, B]). If we substitute &, for an intruder
name I, the same attack we have introduced in
(A1-A3, B1-B3) is specified.

Similarly, we can detect a counterexample to
the authentication

al{A, Na}ixiz,)-b1({A, Na} xp)-

b2{Na,Ng[A, B} k(4]

a2({Na,Ng[A, B} ya))-

a3{Ng[A, B} x[z,)-b3({Ns[A4, B]} —x(p])-

acc{N[A, B} _y(p] (C2)
which means that B thinks that he accepts the
message from A, while actually A can send the
message to any one of possible principals. Sim-
ilarly, if we substitute Z, for I, the trace also
represents the same attack we have introduced
n (A1-A3, B1-B3).

The fixed NSPK protocol®) revises flow (2)

to

B— A: {B7NA7NB}+KA (2I)
and avoids such attacks. In the flow (2'), A will
check whether the principal whom he intends to
communicate with is identical to the principal
name he has received. In an original system and

in a parametric one, A is represented as follows:
(We omit the representation of B here):

A" £ (vag : T)al{A, Na}ixz,)-02(Ya)-
case Yo of {y,} _x K[A4] N
let (zq, a) =yl in (24 = T4
let (wq,w)) =2 in
[wa = NA] a3{w;}+k[za].0

A, £ (viq : T)al{A, Na}iujz,)-
a2({Za, Wa, Wy} —x(3))-

case {Za, Wa, Wy} _x[z,] Of

On-the-fly Model Checking of Security Protocols 53

{:ﬁav uA)aa w;}—k[A] n

let (&g, g, 0,) = o

(.’i‘a, wCH wu,
[Tq = 4] let (g, W) = (W, W)
= Nala3{,}+x(ar)-0

With the match operation [z, = z,], when
we instantiate z, while generating a parametric
trace, x, will be instantiated at the same time.
Thus both the label a3 and the label @ce are
attached to the same message. So following the
same action order of the counterexample (C2),
the trace is not a counterexample any more.

H{A’ NA}-i—k[B]'bl({Aa NA}—k[B])'
b_Z{B,NA,NB[A,B]}+k[A].

a2({B, N4, Ng[A, B}}_k[A]).

a3{Ng[A, B]} yx5)-b3({Ns[A, B]} _x(B))-
acc{Ng[A, Bl} _yp

) in

in [

This means that A will not send the message
labeled a3 to any possible principal, because A
has accepted the communicator’s name via z,.

3. Process Calculus with Binders and
Types, and Its Trace

The syntax of our calculus is based on the
Spi calculus®. We also introduce new syntax,
binder and range.

3.1 Process and Trace

Assume four countable disjoint sets: L for
labels, N for names, B for binder names and
V for variables. Let a,b,c,... indicate labels,
m,n,k,... indicate names, m,n,Xk,... indicate
binder names, and z,y, z, . .. indicate variables.

Messages M, N, L... in a set M are defined
as follows:

M,N,L:=n|z|(M,N)|{M},
| m[M;, ..., M,]

(M, N) represents a pair of which each ele-
ment is a message. {M}, is an encrypted mes-
sage where M is its plain message and L is its
encryption key. A binder m[Mj, ..., M,] is re-
garded as a special name with some relation
to other messages. Mi,..., M, are parameters
of m. For simplicity, we usually use M to rep-
resent a tuple of messages, and thus a binder
m[Mj,...,M,] can also be denoted as M[M].
One usage of binders is to represent encryption
keys. For instance, binder k[A, S] represents a
symmetric key shared with principals A and S;
+k[A] and —k[A] represent A’s public key and
private key, respectively. +k[z] represents any

54 IPSJ Transactions on Programming

public key in the network. We say a message
M is in a message N, if M is a subterm of NV;
a message is ground, if it does not contain any
variable.

Let P be a countable set of processes which
is indicated by P,Q, R, The syntax of pro-
cesses is defined as follows:

P,Q,R:=
0 Nil
aM.P output
a(z).P input
[M = NP match
(vz: AP range

let (x,y)=M in P pair splitting

case M of {z}, in P decryption

P|Q composition
Intuitively understanding,

e 0 is Nil process that does nothing.

e aM.P sends message M to the environment
and then behaves like P.

e a(x).P awaits an input message M and be-
haves like P{M/x}.

o If M = N, [M = N] P acts as P; Otherwise
it will be stuck.

e (vz: A)P means that in P ranges over A
(C N), and acts as P{m/z}, where m € A.

e If M is apair (N, L), let (x,y) = M in P is
reduced to P{N/x, L/y}; Otherwise it will
be stuck.

e Process case M of {z}, in P is reduced to
P{N/z} when M is an encrypted message
{N}r that L can decrypt; Otherwise it will
be stuck.

e P||@ means that P and @ run concurrently.

Variables z and y are bound in a(x).P,
(v : AP, let (z,y) = M in P, and
case M of {z}, in P. We denote the sets
of free variables and bound variables in P by
fo(P) and b,(P), respectively. A process P is
closed if f,(P) = 0.

A process is used to represent behaviors of

each principal in a security protocol. Here, we
take a naive example; a more complex example
can be found in Subsection 3.4.
Example 1. (Wide-mouthed frog protocol) A
principal A shares a shared-key k[A, S| with
a server S, and another principal B shares a
shared-key k[B, S] with S. The purpose of the
protocol is to establish a new secret key k[A, B]
between A and B, which A may use to send
a confidential datum M to B. The protocol
flows and its representation by above syntax
SYSWME " ure described below:

June 2007

A—S: {KAB}KAS

S — B :{Kap}kps

A— B:{M}k,,

A2 al{k[A, Bl}x(a,s)-a2{M}x[a,5).0

B £ bl(z).case = of {y}up,s) in
b2(2).

S £ sl(xz).case © of {y}xag) in
s2{y}x(p,5)-0

SysWME & 4||S||B

Messages that the environment can generate
are started from the current finite knowledge,
denoted by S (C M), and deduced by a deduc-
tive system. Here, we presuppose a countable
set £ (C M), for those environmental names
and ground binders such as public keys, intrud-
ers’ names and their keys, etc. For example,
I,—Xk[I'],k[I,S],+k[A]... € £ Let > be the
least binary relation generated by the deduc-
tive system in Fig. 1:

An action is a term of form aM or a(M),

in which M is a message. Act is defined as
an action set. An action is ground if its at-
tached message is ground. A string of ground
actions can represent a possible run of the pro-
tocol when each input message can be deduced
by messages in its prefix string. We named such
a kind of string concrete trace, or a trace. rep-
resented by s. The messages in a trace s, repre-
sented by msg(s), are those messages in output
actions of the trace s. We use s > M to repre-
sent msg(s) > M.
Definition 1. A concrete trace” s is a ground
action string s € Act* such that s = s'.a(M).s"”
implies s > M for each ', s" and a(M). A
concrete configuration is a pair (s, P), in which
s 15 a trace and P is a closed process.

3.2 Operational Semantics

The transition relation of configurations is de-
fined by the rules in Fig. 2, in which each rule
has the following form: (s,P) — (s, P’) C,
meaning that if a condition C is satisfied,
(s, P) will transit to (s, P’). Note that in
rules LCOM and RCOM, no reaction is pro-
vided between two composed processes, and
both processes communicate with the environ-
ment. Furthermore, a function Opp is defined
for complementary key in decryption and en-
cryption. Thus we have Opp(+k[A]) = —k[A4],

case z of {u}, in.0

Y Before Section 4, a concrete trace is identified with
a trace, for simplicity.

Vol. 48 No. SIG 10(PRO 33) On-the-fly Model Checking of Security Protocols 55
<5 " €& Enw SS M MeS Az
S Z]l\f T M:SVJ\I;) N Pair_intro % Pair_elim1 % Pair_elim2
Sb {M}k[AéBli MS > k[A, B] Senc_ elim S DSAI/i {]\j}b[k[/?’ 5l Senc_intro
x[A,B
S > {M}ya) S D> Fk[A] , S>M S +k[A] ,
Penc_el Penc_int
S M enc_elim 55 (M} o enc_intro
Fig.1 Environmental deductive system.
(INPUT) (s,a(z).Py — (s.a(M), P{M/x}) s> M
(OUTPUT) (s,aM.P) — (s.aM, P)
(DEC) (s,case {M}, of {m}L/ in P) — (s, P{M/z}) L' = 0pp(L)
(PAIR) (s,let (z,y) = (M,N) in P) — (s, P{M/z, N/y})
(RANGE) (s, (v : .A)) — (s, P{m/x}) A
(MATCH) — (s,[M = M]P) — (s, P)
(5. P) — (s, ')
(LCOM) @ EIg = (7. Py
(5,Q) — (s, Q")
(RCOM) G, PIQ) — (<, PIQ7)

Fig.2 Transition rules.

Opp(—K[A]) = +[4] and Opp(k[A,B]) =
k[A, B].

The rules INPUT and RANGE may lead to
an infinite system. For the former, let’s take a
process A £ alM.a2(z).0 for example. (e, A)
will transit to (a1M, a2(z).0) by the OUTPUT
rule, which can then transit to infinitely many
configurations. Since the trace alM can deduce
infinitely many messages, and according to the
INPUT rule, each message can instantiate .
Thus it generates infinitely many traces. For
the latter, let’s take another process B £ (va :
T)bI{M} 4[4 to illustrate the infinity, where
is an infinite set of principals’ names. Accord-
ing to the RANGE rule, z will be instantiated
to any name in Z, which thereafter leads to in-
finitely many traces by OUTPUT rules.

3.3 Type

The type information of an input variable can
be inferred through looking up the process. A
message whose type cannot unify the type of
an input variable will be stuck when a protocol
runs. Stuck messages cannot attack a protocol,
so we will exclude such messages from being
checked.

Let 7 be the set of types. Its syntax is in-
ductively defined as follows:

Tu=a|b| T | O[T, ...] | ©OT | ©47 |
O_T| S |unit|T4+7|T—>T
e (« ranges over a countable set of type vari-
ables.

e b ranges over the set of base types, which
consists of an identity type ¢ for names of

e The binder type o[y, ...

principals, a nonce type n for nonces, and
other kinds of base types, for instance, int,
char, etc.

e The pair type 7 % 7 is given to a pair mes-

sage.
,Tn] 1S given to
a binder m[Mj,..., M,], where o ranges
over the set of binder name types, and
Ty,...,Tn are the types of the binder’s pa-
rameters M, ..., M,, respectively. For ex-
ample k, k4, k_,... are binder name types
for binder names k, +k, —k respectively, so
the type of a binder k[A, B] is k[, 4]. Since
given a binder name type, its parameters’
types will be fixed, for simplicity, we usu-
ally use a binder name type to represent
a binder’s type. For instance, the type of
k[A, B] can be abbreviated to k.

e The shared-key encryption type, ©7, is

given to an encrypted message encrypted
by a shared-key, and 7 is the type for its
plain message. Similarly, &7 is for a
public-key encrypted message, and ©_7 is
for a private-key encrypted message, say, a
digital signature. ©-7 is for an encrypted
message whose key cannot be decided stat-
ically.

e The type unit is a nil type for the 0 process.
o The disjoint type 71 + 72 is given to a com-

position process, P|Q.

e The arrow type 7 — 7 is given to an input

process, which is similar to the type of the
abstraction in A-calculus.
We use an expression e where e € M UP to

56 IPSJ Transactions on Programming

————— (x,7) € I' Msg_Variable
I'Fz:7 &

'kFn:b

June 2007

b = Type0f(n) Msg_Name

FI—M:Tl*...*Tn _ I'-M:m I'EN:m .
T F albT] ofr, 7] o = Type0f(m) Msg_Term TF (M, N) i %7 Msg- Pair
TFM:7 TFL:k* gTT 'kffi
r-{M}: " o' T = @J_rT k*:kt Msg_Enc
7T k* =«
X Df{x:m}-P:m _
T'FO:unit Nil 'k (vz: AP :1o 71 = Type0f(A) Range
T {z:m}FP:m T T'P:mm T'H-M:m
Tra(z).P:m — 1 tnput F'FaM.P:7 Output
PA{z:m,y:m}FP:m3 THFM:71 %71 Pair
T'klet (x,y) =M in P: T3 B
*
I {c:m}FP:m TFM:0%*n TFL:k* gTT z:’;
: - . + =k_
T'Fcase M of {x}; in P: 7 o' T = S Dec
O k* =«
'tM:mq THEN:1q T HP:7o Match 'tP:my T'EN:m Composition

THM = N|P:m

'FPlQ:71+ T2

Fig.3 Typing rules.

describe a message or a process. Let I' be a type
environment mapping from the set of variables
V, to the set of types 7. The typing inference
system has the form I' F e : 7, in which T is
a type environment, e is the expression whose
type will be inferred and 7 is the type of e. If
the type environment is an empty set, the form
will be abbreviated to - e : 7. Furthermore, we
assume a function Type0Of : Z(N)UFZ(B) - T
that assigns a type to a set of names or binder
names. Here TypeOf(n) is the abbreviation of
Type0f({n}). The typing rules for the expres-
sions are given in Fig. 3.

Among the transition rules in Fig.2, the
INPUT rule needs to be modified with a type
constraint, that is, a message M deduced by the
s in the configuration (s, a(z).P), whose type
can be unified with the type of x, will be in-
stantiated to x.

(TINPUT) (s,a(x).P:13 — To) —
(s.a(M), P{M/z})

s> M,FM:my

Even with the type constraint, the rule
TINPUT may also lead to an infinity of a sys-
tem, since a type variable can be unified to any
type, thus a variable whose type is a type vari-
able can be instantiated to any possible mes-
sage.

The typing system does not provide an easy
way to assign a type to an expression e. Thus a
type algorithm is provided and its correctness
is verified. In the algorithm, given a typing en-
vironment I and an expression e, a substitution
0 mapping from type variables to types and a

type 7 can be calculated, which satisfy
Mote:r

Before defining the algorithm, we provide a
type unification algorithm, which can be used
both in the type inference algorithm and the
message type matching in TINPUT rule. An
occurrence check function FTV(r,a) is pre-
supposed as usual, which satisfies that a does
not occur in 7 if FTV(r,a) = True. The
unification algorithm has the following form
Unify(7,7') = (0,0). That is, given two types
7 and 7/, it either returns a substitution 6 and
a type o that satisfy 70 = 7'6 = o, or raises
failure.

The Unify and Infer algorithms are given in
Appendix A.1.

We will prove that every type calculated by
the algorithm Infer can be inferred by the typ-
ing rules in Fig. 3.

Lemma 1. Let e be an expression, T be a type,

T" be a type environment and 0 be a substitution

mapping from type variables to types. IfI' e :

T, thenTOFe:T6.

Proof. Applying structural induction to the ex-

pression e, we only show the base cases and two

inductive steps here; the remaining cases are

quite similar.

(1) Case e=1z: Because I' - z : 7, we have
(x,7) €. Let T'y =T\{(z,7)}, s0 T'0 =
o U {(z,7)}0 = T10 U {(x,76)}, and
thus I'0 - z : 76 according to typing rule
Msg_ Variable.

(2) Case e =n: Because I' - n : 7, we have
7 = Type0f(n), and 70 = 7 for every sub-
stitution 6. By typing rule Msg_ Name,

Vol. 48 No. SIG 10(PRO 33) On-the-fly Model Checking of Security Protocols 57
- g”niTYPe(f]]\Z(?}\)[-) Be tooine ol T, + M : 7 (5)
ase e = ,N): y typing rules, .
' M :7 and ' - N : 7, are sat- Infer(I‘@l,L.) = (02,72) =
isfied. Given a substitution 0, we have If@ﬂ‘)z '; Lim (6)
T - M : 70 and T + M : m0 Unify(©*a,m102) = (9, 0) —
according to induction hypothesis. So S () = 11029 = o (7)
T+ (M,N) : (1 *72)0. Infer(I'610:9 U {(z, a)}021, P) =
(4) Case e = a(x).P: By induction hypothe- (05, 73) —

sis, TOU{x, 71 }0 = TOU{x, 10} - P : 126
is satisfied. Thus T'9 + a(z)P : (1, —
7'2)0.
|
Theorem 1 (Soundness of type inference).
Let e be an expression, ' be a typing environ-
ment and 0 be a substitution. If Infer(T',e) =
(0,7), TOF e: 7 can be inferred.
Proof. Applying structural induction to the ex-
pression e. one base step and three inductive
steps are proposed; the remaining cases are sim-
ple and similar. We use the same notations as
in the algorithm.
(1) Case e = x: We have Infer(T',z) =
(Id,), because I'Td =T and (z,7) € T,
I' - = : 7 is inferred by the typing rule
Msg_ Variable.
(2) Casee=(M,N): by induction hypothe-
sis, we have two derivations:

Infer(T, M) = (01,71) —

F91 M : 1 (1)
Infer(T0;,N) = (62, 72) —

F9192 FN: T2 (2)

By applying Lemma 1 to (1), we have

F9192 FM: ’7'192 (3)

By applying typing rule Msg_ Pair to (2)
and (3), we have
F916‘2 = (M,N) : 7'16‘2 * To
which is the expected result of
Infer(F, (]\47 N)) = (0192, (7'102) * 7’2)
(3) Case e =a(x).P: By induction hypothe-
sis, we get a derivation:

Infer(TU {(z,a)},P) = (0,7) —
rou{(z,a)}+-P:r (4)

By applying typing rule Input to (4), we
have

o+ a(x).P:ab >
which is the result of Infer(T',a(x).P) =
(0,00 — 1).

(4) Case e = case M of {z}, in P: By
the induction hypothesis, we have two
derivations and a unification:

Infer(T', M) = (61,71) —

T'6,05,905 U {(:L‘, a)1993} FP:13
(8)
By applying Lemma 1 to (5), we have
F9192’l993 FM: T1921993 (9)
Note that « does not occur in 67 and 65,
and thus {(z, a)}903 = {(z, a)}0102905.
So after unification, the type of x is a6,
and the type of {z}, is ©*(ad3). And
because of (7), we have
@*(a196‘3) = 11020903
and thus
F91921903 FM: @*(041993)
Furthermore, because of (7),
1—‘916‘2?993 FL: T21926‘3
So, using typing rule Dec, we have
I'0,62005 = case M of {x}, in P : 13
which is the result of

Infer(I', case M of {x}, in P) =
(01020963, 73)

|
3.4 Representation of Security Proto-
cols Using Binders
In this subsection, we will describe how to
represent a protocol with the purpose of model
checking some security properties. We assume
there are infinitely many principals in the net-
work, and consider two arbitrary principals A
and B who are willing to communicate with
each other, as well as with any other principals
by a protocol. The secrecy property means dur-
ing the communication, a confidential message
will not be leaked to other principals except
A and B. The authentication property means
that when B thinks it has received a message
from A, the message really comes from A.
According to these two properties, a princi-
pal who intends to send a message is supposed
to send the message to any one of the possible
principals in the network, if he cannot gain the
information about the principal to whom he in-
tends to send the message. An abstraction will
be employed by using a range and some binders
to finitely describe such an assumption. That
is, the principal may send the same message

58 IPSJ Transactions on Programming

to different principals, and such a sending pro-
cedure is performed only once. An alternative
way to describe the communication is by using
infinite process definition, such as replication.
By this way, a principal with intention to com-
municate with infinitely many principals can be
described as the principal that communicates
with each principal in different sessions. It is
difficult to abstract to a finite system.

As a receiver, we will fix its potential sender
to the sender we represented in one session.
That is, a receiver will “think” he has received
the message from some principal he has known.
Such an assumption is necessary when defin-
ing authentication and secrecy properties, since
otherwise the sender and the receiver we rep-
resented may have no connections with each
other, and thus these properties between them
can not be defined. For example, if A sent a
message to C, and B received a message from
D, it is certain that the message B received is
different from the message A sent. In Subsec-
tion 5.3, when we define the security properties
in multiple sessions, we will loosen the restric-
tion, assuming that other than in one session,
the receiver can communicate with any princi-
pal. With these assumptions, we define secrecy
and authentication properties in multiple ses-
sions.

Let’s consider Abadi-Gordon protocol intro-
duced in Ref.5) as an example. The informal
description of the protocol is given flow-by-flow
as follows:

A—>SZ A;{BaKAB}KAS
S—>B: {AvKAB}KSB
A—>BZ A,{A,M}KAB

Intuitively interpreting, the principal A
wants to send a message M to B encrypted by
a new key K,p that he generates. Firstly, he
sends the K 4 and B’s name to a trusted third
party(TTP) server S. After the TTP sends the
new key to B, A sends a message encrypted
by the key Kap to B. We will represent the
protocol as follows:

A £ (vz: T)al(A, {z,k[A, z]}xa,9)-
E(Aa {Av M}k[A,a;])'O

B £ bl(z).case & of {'}y(p,s) in
let (y,z) =2 in [y = Al b2(w).
let (w',w") =w in [w' = A]
case w" of {u}, in
let (u',u") =wuin [u' = A F(u")

June 2007

S £ sl(x).let (y,2) = x in
case z of {u}yly,s) in
let (u',u") =w in s2{y,u" }xju 5.0

SYSAY & A|S|B

A range and a binder are used when a prin-
cipal sends a message that contains the infor-
mation of its intended receiver, and the prin-
cipal cannot gain such information by previous
communications. For example, during the com-
munication of the Abadi-Gordon protocol, the
principal A cannot obtain any information of its
corresponding receiver. Thus a binder k[A, z] is
used to describe that A can communicate with
any one of principals in the network. Further-
more, a range (vz : Z) is used to bind the vari-
able = to an infinite set Z, which contains the
names of all principals in the network.

F(«") in (5) means that B runs a process F'
with the message that it “thinks” came from
A. Usually, we define the process F' as a decla-
ration of accepting a specific message from the
intended principal. For instance, in this proto-
col, we define F(u”) = @ccw.0, meaning prin-
cipal B thinks itself successfully accepting the
message through w from A.

4. Parametric System

The typed system has reduced the number of
traces by excluding messages whose type cannot
unify the type of an input variable. However,
the typed system may still be infinite, since a
variable (or a sub-expression) whose type is a
type variable can be instantiated to any possi-
ble message. For example, a process P is de-
fined as follows:

P £ al(x).a22.0

After inferring the type of P, the type of z is
a type variable a;, which means a configuration
(s, P) can transit to (s.al(M),a2 M.0) for any
message that satisfies s > M. However, these
messages have the same effect on the follow-
ing actions of the process, since the receiver
process will not further decompose, decrypt or
validate the message that was received, before
it sends the message through a2. To reduce
the system, a special variable named a para-
metric variable T is proposed to mark a sub-
expression with a type variable as its type. A
parametric variable will not be further instan-
tiated. In the above example, the trace will be-
come s.al(#).a22 when P transits to 0, which
is finite. According to the above approach, a

Vol. 48 No. SIG 10(PRO 33)

Abpz:a={z/z}
AT, z:b= {4y/a)
Fp@ T %... %7 = 0

Aty z:olm,...,] = {nd)]/z}
Abpa im =01 Abpz’ 1= 0o
Abpa:7T %12 = {(91(33/)792(33"))/5”}
Abpa’ :7=0
Abpz:07= {{9()}k[aca a1 /7}
Abpa’:7=0
Abpz: 647 = {0(2)} 1x(z,) /2}
Abpa :7=0
Abpz:o0_7= {{9(17,)}—1([%&]/3”}
Abpa :7=10
Abpz: 097 = {{0(z")}s,/2}

Nil

AFpCEZT1:>91

On-the-fly Model Checking of Security Protocols 59

& = NewParVar(A) Type_variable
Zp = NewParVar(A) Base_type

m = Binder(c),z’ = NewParVar(A) Binder_type
z', 2" = NewParVar(A)Pair_type

Za,%p,x’ = NewParVar(A) Sencryption_type
Za,x’ = NewParVar(A) Pencryption_type

Za,x’ = NewParVar(A) Signature_type

Za,x’ = NewParVar(A) Gencryption_type
A,Gl FpP:T2:>92

AFp0:unit = {} ~
AFp P:7=10

Abtpa(z).P:11 — 1m0 =01Ub
AbF, P:7=10

Input

AT, aM P70 oupu

A {N Jx, Majy}bp P 7 =6

Abp (ve: A)P:17=0U{%/x}

Ay let (z,y) =
A{M/z}bp P:7 =6
Atpcase M of{z}p in P:7=0U{M/z}

AtFp P:7=10 Match

M in P:1= 0U{M/z,Ma/y} (AM) =

(A

i = NewParVar(A) Range

(M1, M>))Pair

M) :{M}i)Doc
AFp P:1 =601

AFZ)Q:TQ:}QQ ~

A, [M=N]P:7=0

Abp PlQ: 11+ 712 =601 Ub

omposition

Fig.4 Inference rules for parametric process.

new system named a parametric system is in-
troduced to simulate the previous system.
4.1 Parametric Process and Paramet-
ric Trace
We use a new set V for parametric variables
and assume VNV = (). As convention, elements
in V are denoted by %, 9,.... Parametric mes-
sages in a set M and pammetmc processes in a
set P can be defined as follows:
M =% | n | (M,N) | {M}L
|III[M1,M2,. Ml}
P =0]a(M)P|aMP|[M N]P
| (v : AP | let (M,N) =L in P
| case M of {N}L in P|P|Q
Given a closed process P, we try to mark
each sub-expression whose type is a type vari-
able with a parametric variable. Thus P can be
translated into a parametric process P. For this
purpose, given a closed process P and its type
7, an inference system is proposed, which infers
a substitution # mapping from V to M. The
inference system has the form Ak, P:7 =0,
in which A is a context env1ronment mapping
from V to ./\/l P is a closed process and 7 is its
type. The corresponding parametric process P
is obtained by applying the substitution 6 to
the process P. We name P the abstraction of
P, and P the concretization of P. Note that

there do not exist any variables in a parametric
process, since each variable is substituted to a
parametric message.

In the inference system, some Afunctions are
predefined. NewParVar : A — V generates a
new parametric variable that does not occur in
Dom(A). Binder : 7 — 7 obtains the corre-
sponding binder name from a binder type. The
inference system is given in Fig. 4.

By the inference system, the formal definition
of Abadi-Gordon protocol described in Subsec-
tion 3.4 will be translated into the following
parametric processes:

A, £ (vi1: T)al(A, {21, %[A, 21] }xa,97)-
E(Aa {Av M}k[A,ﬁcl])'O

By = 01({91,21 Yufar n))- case {91,210 iy g4)
of {41, %1 }x(B,s) in let (41,21) =
(§1,21) in [§r = A b2(wr, {0y 0},).
let (1, (w0, {wy, @) };,)) =
(1, (w1, {0}, @Y },)) in
[ty = A] case {17}, of {07}z,
in let (w7, w)) = (W}, w7) in [} :A]
acc (wh {wlv w/ll 51)

Sy £ s1(&, {0, 2}e(an,s))-let (£, {0, 2 ufar,s))
=(Z49,2 Yx(zs,51) I case {7,2}x(z,,s)

60 IPSJ Transactions on Programming

Q'=Q0if 8 =30 else Q' =Q

June 2007

6 = Uni(M, M’)

(PINPUT) (3,a(M).P) —p (3.a(M), P)
(POUTPUT) (3,aM.P)y —, (3.aM, P)
(PDEC) (8, case {M}L of {M}ﬁ, k 4
(PPAIR) (3,let (M,N) = (M, N) in Py —, (5, P)
(PRANGLE) (3,(vi : A)P) —, (3, P)
(PMATCH) (3,[M = M'|Py —, (30, P0)
(8, P) —p (3", P')
(PLCOM) (8, PIlQ) —p (8, P'[|Q")
(3,Q) —p (5, Q")
(PRCOM) (8, PIIQ) —p (3", P'[IQ")

P =Poifs =30else P =P

Fig.5 Parametric transition rules.

Of {@7 é}k[i,S] in let (:ga 2) = (ya Z) in
SQ{f, é}k[g,S] .0
SYS,© £ 4,]1S,1 B,

Similar to a concrete system, a parametric ac-

tion is a term of form @M or a(M), in which
M is a parametric message. A parametric trace
is a string of parametric actions. Note that in
a concrete trace, any message in an input ac-
tion should be deduced by the prefix trace of
the input action. However, a parametric trace
may not have enough information to decide an
equality between two parametric messages, and
thus whether a parametric message is deducible
is unknown. Thus we loosen this restriction and
define a parametric trace as follows. Such a
loosening may lead to a divergence between a
trace and a parametric trace, which will be dis-
cussed later.
Definition 2. A parametric trace § is a string
of parametric actions. A pair (8, P) is a para-
metric configuration if 8§ s a parametric trace
and P s a parametric process.

Since parametric variables are not instan-
tiated during model transitions, the equality
check (in MATCH and DEC) of two messages
cannot be judged explicitly. Instead, a para-
metric message unification function Uni, whose
parameters enjoy the same type, is applied to
them. The transitions of a parametric system
are given in Fig. 5.

Given a parametric trace §, if there exists
a substitution ¢ that assigns each paramet-
ric variable to a ground message, and satisfies
s = §v, where s is a concrete trace, we say that
s is a concretization of § and § is an abstraction
of s. ¥ is named concretized ground substitu-
tion.

4.2 Sound and Complete Simulation

We hope that each concrete trace in a con-
crete system has an abstraction in its corre-
sponding parametric system, and that each

parametric trace in the parametric system has
at least one concretization, so a bisimulation
relation can be defined between them. How-
ever, although each concrete trace does have
an abstraction, some parametric traces may
have no concretizations. Let’s take a simple
example, suppose a process P is defined as
P £ al(x).]x = bla2x.0, in the concrete sys-
tem (e, P), a2 will never occur in traces during
transitions since any process will be stuck when
[x = b] is considered, since the trace cannot de-
duce the name b. However, a parametric trace
al(b).a2(b) is in its corresponding parametric
system.

However, a parametric system can still cover
its concrete one. That is, if a parametric trace
has a concretization, then the concretization is
a trace in its counterpart concrete system. Oth-
erwise the parametric trace cannot be instanti-
ated to any concrete trace. As shown in the
above example, parametric trace al(b).a2(b)
cannot be instantiated to any concrete trace
since € ¥ b. Here we explain the soundness
and completeness theorem.

Theorem 2. (Soundness and completeness)
Let (e, P) be a configuration, s’ be a trace, and
P be the abstraction of P, then (¢, P) —*
(s', P"y for some P, if and only if there exists
&, such that (e, P) — (8, P'Y for some P,
and s' is a concretization of §'.
Proof. “=": By an induction on the number of
transitions — and —, the proof is trivial in
the zero-step. We assume in the n-th step the
property holds. That is, for each trace s gained
in the n-th — step, there exists an § obtained
by the n-th —, step, and 39 = s holds for
some substitution ¥ from parametric variables
to ground messages. Now, we perform a case
analysis on the n + 1 step:
(1) Case (s,0): Obviously.
(2) Case (s,a(zx).P): If (s,a(z).P) —
(s.a(M), P{M/x}), then the type of the

Vol. 48 No. SIG 10(PRO 33)

ground message M can be unified with
the type 7 of z. So after applying the in-
ference system in Fig. 4 to the process, x
in the corresponding parametric process
will be substituted to a parametric mes-
sage M that can be unified by M. Let
¥ = Uni(M, M), and P be the abstrac-
tion of P, then we have (8, a(M) P) —p
<s.a(M),15> and s.a(M) = 5.a(M)(® U
9.

(3) Case (s,aM.P): Compared with the
transition (s,aM.P) — (s.aM, P), the
parametric configuration has the tran-
sition (§,aM.P) — (8.aM,P). Since
each parametric variable in M is already
in the domain of ¥, we have M = M4v

and s.aM = (8.aM)9.
(4) Case (s,let (z,y) = (M,N) in P): Ob-
viously.

(5) Case (s,case {M}y of {z}r in P): I
(s, case {M}p of {x}r in P) can tran-
sit to (s, P) where L' = Opp(L), and
its counterpart parametric configuration
is (3, case {M}; of {M};, in P), then
the parametric variables in L and L/ are
in the domain of . Thus L = L9
and L' = L'9. So s¢ = (80)9 where
6 = Uni(L,0pp(L")).

(6) Case (s,[M = M]P): If (s,[M =
M]P) — (s, P) and its counterpart con-
figuration is (3, [M = M}), then the
parametric variables in M and M’ are in
the domain of ¥, and MY = MY =M.
Thus if § = Un1(M M"), then § C 9
since theﬂA is the most general unifier of
M and M’ and 9 is a unifier of them. So
we have s = (56)9.

(7) (s,(vz : A)P): Then we have (s, (vz :
A)P) — (s, P{m/z}) for each m € A.
Its counterpart configuration is (8, (v& :
A)P) and s = 5(0 U {m/1}).

(8) Case (s, P||Q): Obviously.

“«<": By an induction on the number of tran-
sitions —, and —, the proof is trivial in the
zero-step. We assume in the n-th step the prop-
erty holds, that is, for each parametric trace §
gained by the n-th —, step, if there exists
a substitution 9 from parametric variables to
ground messages, and a trace s that satisfies
s = §¢, then s can be obtained by the n-th step
of —. Now, we perform a case analysis on the
n + 1-th step:

(1) Case (3,0): obviously.

On-the-fly Model Checking of Security Protocols 61

(2) Case (3,a(M).P P): If there exists a step
in which (8, a(M).P) —, (3.a(M), P),
and a ground substitution ¢ where 8¢
is a trace, then MY is a ground mes-
sage which can be deduced by s¥, and its
type can be unified by the type of = be-
cause of the inference system in Fig. 4. So
(s,a(x).P) — (s.a(M9), P{MV/zx}).

(3) Case (3,aM.P): We have (3,aM.P) —
(3.aM,P). Note that there exists a
ground substitution ¢, and there do
not exist any fresh parametric variables
in M due to Output rule in the in-
ference system in Fig.4, so we have

(89, aM9.Py — ((5. 6M)19 P).
(4) Case (8, let (M,N) = (M,N) in P): Ob-
viously.

(5) Case (8, case {M}L of {M}L, in]5) We
have (3, case {M}L of {M}L, in P)
(30, P6), where 6 = Uni (L, 0pp(L')), anfi
there exists a substitution 9. So in 30,
LY = Opp(L'H). Furthermore, in the in-
ference system in Fig.4, Dec rule does
not 1ntroduce any new parametmc vari-
ables in L and L', then LAY = 0pp(L'69)
and thus the counterpart transition can
be performed. o

(6) Case (§,[M = M'|P): cf. the former
case analysis, after applying the substi-
tution 6 = Uni (M, M') to both the para-
metric trace and process, MO = MO
will be the same, and there do not ex-
ist any new parametric variables in them.
By applying the ground substitution 1,
M6Y = M’'69. Thus the counterpart
transition will be performed successfully.

(7) The last two cases, New and Composi-

tion, are obvious.
|

4.3 Satisfiable Normal Form

Theorem 2 shows that each trace in a con-
crete system has an abstraction in its paramet-
ric system. However, a parametric trace may
not have concretizations. Let’s take a simple
example to show the reason for the divergence.
Example 2. Consider a naive protocol:

A— B: {AaM}KAB

In its parametric system, there exists a para-
metric trace b1({A, T }x[a,p]), while in its con-
crete system, since k[A, B] was not leaked in
the environment, before A sends the message
{A, M }y(a,B], B cannot accept any message en-
crypted by k[A, B]. Thus, the parametric trace

62 IPSJ Transactions on Programming

b1({A, T}xa,B)) has no concretizations.

We name a message like {A, Z}ya,5) a rigid

message. Intuitively interpreting, a rigid mes-
sage is the pattern of a requirement in an input
action. The requirement can only be satisfied
by the messages generated by a proper prin-
cipal, not by intruders. These messages are
contained in an output action of a paramet-
ric trace. If there are no appropriate messages
to satisfy the requirement, then the parametric
trace has no concretizations. The definition of
a rigid message is as follows:
Definition 3 (ngld message). Given a
parametric trace § = §.a(M).8" {N}L e M
is a rigid message zf the followmg conditions
are satisfied:

e L is a ground binder, and there exists a

name, a binder or a rigid message n N

. IfL 1s a shared key, then §' ¢ L and §' 1%
{]VA}L;

o If L is a private key, then there exists some
rigid message, or at least one name or
binder in N cannot be deduced by the §',
and 8" AN bopy 1))

o If L is a public key, then ' » Opp(L) and
" P AN Yopy i) -

Some researchers also regard an encrypted
message where a variable is encrypted by
shared key as a rigid message?, for ex-
ample, to represent a protocol through
which A sends to B an encrypted message,
{M}ya,5- One of the parametric traces will
be al{M }yia,p)-b1({Z}x(a,p))- It seems & can
only be substituted by M, and thus {Z}ya, B
is a rigid message. However, the communicated
messages are nothing but bit streams in the net-
work. In such a case, any bit stream with the
same length as { M}y, p] can fake the message,
since without comparing some plain message to
other messages already known, B cannot distin-
guish whether the plain message will be mean-
ingful after decrypting the message he receives.
So in our definition, {2 }x[a,p) is not a rigid mes-
sage.

A parametric trace with a rigid message needs
to be further substituted by trying to unify the
rigid message to the messages in output actions
of its prefix parametric traces. Such unification
procedures will terminate because each rigid
message can only be unified by the irreducible
messages in some output actions of its prefix
parametric trace, and the number of these mes-
sages is finite. We name these messages ele-

June 2007

mentary messages, and use el(§) to represent
the set of elementary messages in §. Here is the
definition of el(§).

Definition 4 (Elementary messages). Let
U be a set of parametric messages, dec(Z)) is a
minimal set that satisfies

o UC dec(Ul); R o R

o If (M,N) € dec(U), then M, N € dec(U);

o If {M}L € dec(d), L is ground, and

Opp(L) € dec(U), then M, L € dec(U);
o If {M}L € dec(Ul), and L is not ground,
then M € dec(U).
Given a parametric trace §, let out(s) be the set
of all parametric messages in output actions of
3, then el(8) is the set of minimal terms with
respect to the subterm relation in dec(out(§)).

Given a parametric trace § and a parametric

message N, we say N is p-unifiable in 3, if there
exists N’ € el(§) such that p = Uni(N,N’).
A parametric trace deductive relation between
two parametric traces, § ~ s’ is defined as fol-
lows:
Definition 5 (Deductive relation). Let ~~
be the least binary relation of two parametric
traces and 3 be a parametric trace such that § =
$1.a(M).82. If there exists a rigid message N
in M such that N & el(31), and N is p-unifiable
in 81, then § ~ §p.

For two parametric traces § and § ,1f § ~* &
and there is no §” that satisfies § ~~ 5", we
name $’' the normal form of 5. The set of normal
forms of § is denoted by nf..(3).

Remark 1. Given a parametric trace 8§,
nf . (8) is finite.

Example 3. One of the parametric traces gen-
erated by the Abadi-Gordon protocol described
in Subsection 3.4 is as follows. By the deduc-
tive relation, it has deduced to a normal form.

al(A, {#1,%[A, Z1]}xa,s)-

a2(A, {A, Myaz,))-

s1(z,{9, é}k[i,S])'

5342, 2 ugps DLA B Jagms)).
b2(A, {A, w1}y,)ace (A, {A, v };,)

al(A, {21, k[A, 21]}xa,5))-

@(Aw {A7 M}k[A,il])'

s1(A,{B, Z}y(a,s))-

s2{A, Z}p,s)-b1({A, 2}x(B,s))-
b2(A, {A,w)}z).aec (A, {A,0)}2)

o d

Vol. 48 No. SIG 10(PRO 33) On-the-fly Model Checking of Security Protocols 63
al(A, {B,k[A, Bl}xa.s])- s = §9. If § does not satisfy the first re-
— ’ quirement, there exists at least one rigid mes-
0/2(147 {Aa M}k[A,B])' \

81(*’47 {B7 k[A7 B]}k[A,S])'
E{Av k[Av B]}k[B,S]-
b1({A, k[A, Bl}xB,s))-b2
acc (Av {Aa w/ll}k[A,B])

o d

H(Av {Bv k[Av B]}k[A,S’])'

a2(A7 {Av M}k[A,B])'

Sl(Aa {B’ k[A’ B}}k[A,S])'

SQ{A, k[A7 B]}k[B,S]-

bl({Av k[Av B]}k[B,S])'b2(A7 {Av M}k[A,B])-
acc (Av {Aa M}k[A,B])

By the following lemma, we can see that a
concretization of a parametric trace § is still
the concretization of 8’ if § ~ §'. Thus, to de-
cide whether a parametric trace has concretiza-
tions just requires checking whether there ex-
ists some parametric trace in its nf..($) that
has concretizations.

Lemma 2. If § is a parametric trace, and s is
a concretization satisfying s = 59 where 9 is a
concretized ground substitution, then § is either
a normal form, or there exists an §' such that
5 ~» & with 59 = §'9.

Proof. Let § = §.a(M).§". If § is not a normal
form, there exists some rigid message {N} 7 in
M, such that {N}L ¢ el(§). Since s = §v
and s is a trace, and thus 570 > M9, then
{N}; 9 € el(§'). By the definition of a rigid
message, L ¢ el(§'), and thus LY & el(3)0.
Since {N};0 € el(309) = el(§')0, there exists
{]\Af’}ﬁ € el(§) such that {N}ﬁﬂ = {Z\?’}ﬁ?.
Thus {N}L and {N,}i are unifiable. Let
p = Unl({N}L,{N }i), then 8 ~» 5p. Since
{N}Lﬁ = {N’}Lﬁ each corresponding para-
metric variable in two messages will be as-
signed to the same ground message. Thus,
§9 = §p. |
Lemma 3. Let § be a parametric trace, and
§" be a normal form in nf..(8). § has a con-
cretization, if and only if, for each decomposi-
tion 8" = 81.a(M).85,

e cach rigid message N in M satisfies N e

el(8}), and } R
e cach namen, and ground binder m[N] in M
in P, satisfies n,m[N] € el(8}), where P, is

the process containing label a.
Proof. “=": Prove by contradiction. Assume
a normal form §’ has concretizations s such that

(A7 {Aa w/ll}k[A,B])'

sage {N}p in & that is not p-unifiable in its
prefix §. Thus {N}p0 & el(8))9. By def-
inition of a rigid message, §19 ¥ L, then
§19 ¢ {N}r9. This contradicts the definition
of a trace. If & does not satisfy the second re-
quirement, that is, there exists either a name
n, or a ground binder n[N] in M that is local in
P, and n m[N] € el(3}). Then 8,9 ¥ n,m[N],
and thus 8]0 ¥ M. This again contradicts the
definition of a trace.

“<”. Since the first occurrence of a para-
metric variable is in an input action, let ¥ be
an arbitrary concretized ground substitution
that assigns each parametric variable in § to
a name in EN, then for each decomposition
§'0 = 810.a(M9).859, §19 > MY is satisfiable.
Thus §'¥ is a trace, and also a concretization of
8 |

We name a normal form of § that satisfies
the requirements in Lemma 3 a satisfiable nor-
mal form, and use snf..(8§) to denote the set of
satisfiable normal forms of §. Since snf.,(8) C
nf..(8), the set is finite.

Remark 2. Given a parametric trace 3,
snf..(8) is finite.

The following theorem shows that a paramet-

ric trace has a concretization if snf..(8) # 0.
Lemma 4. Let § be a parametric trace, and
s be a trace. s is a concretization of § if and
only if s is a concretization of some § with §' €
snf.,($).
Proof. “=" If s is a concretization of 3, then
there exists a concretized ground substitution
with s = §¢. By Lemma 2 we can get either §
is a normal form or § can be deduce to a para-
metric trace §' by ~» such that s = §'9. If § is
a normal form and it has a concretization s, so
§ is also a satisfiable normal form according to
Lemma 3 . If § is not a normal form, the num-
ber of rigid messages in § is finite, so §9 = §'9,
where §' is a normal form, by repeatedly apply-
ing lemma 2. Since 5’ has the concretization s,
§ € snf..(3).

“="Ifsis a concretization of the satisfiable
normal form §’ such that § € snf.,(8), we have
s = §'Y for some concretized ground substitu-
tion 9. & is a normal form of §, so § = §p for
some p, in which s = §'¢ = §p9. Thus s is a
concretization of §. O
Theorem 3. A parametric trace § has a con-
cretization if and only if snf..(8) # 0.

64 IPSJ Transactions on Programming

The theorem is a corollary of Lemma 4.

5. Representing and Checking Secu-
rity Properties

The security properties, such as secrecy and
authentication, can be defined in a concrete sys-
tem, and be detected equivalently in the corre-
sponding parametric system. In Subsection 5.1,
we propose two definitions in the concrete sys-
tem for secrecy and authentication properties,
then characterize how to define secrecy and
authentication for NSPK protocol (described
in Section 2) and Abadi-Gordon protocol (de-
scribed in Subsection 3.4), respectively. In Sub-
section 5.2, we interpret how to detect these
properties in the parametric system, and prove
the methods are equivalent to those defined in
the corresponding concrete system.

5.1 Representing the Security Proper-

ties

5.1.1 Secrecy

The secrecy property intuitively means that
the environment should never learn a confiden-
tial data the principals communicate. For ex-
ample, in the Abadi-Gordon protocol described
in Subsection 3.4, a confidential datum is M,
which should be guaranteed never to occur in
the environment without any protection. A
usual way to define the secrecy property is by
proposing a guardian to the system, checking
at any time whether a confidential datum is
leaked, as shown in Ref.1).

In our system, the secrecy property cannot
be defined so easily, since a sender may send
a message to any possible principal, if he can-
not gain the information about his destination
from previous messages. Thus we cannot con-
firm whether the message is sent to the spe-
cific receiver we represented. In order to de-
fine the secrecy property, we will use a binder
instead of a name to represent a confidential
datum M in the Abadi-Gordon protocol, that
is, M[A, B], which means that the datum is
only shared by A and B. With this modifi-
cation, the message labeled a2 should be modi-
fied to a2(A, {A,M[A, z]}a,4]) in the represen-
tation of Abadi-Gordon protocol (in Subsec-
tion 3.4). The modified system is defined as
SY SAG . Thus we define the system with a
guardian as follows:

SYSAC & SYSAG/Hcheck(a:).O
To define the secrecy property of protocols,
we have the following definition:

June 2007

Definition 6. Let a be an action and s be a
trace. We define s |= —a if for each ground sub-
stitution p from a variable to a ground message,
ap does not occur in s. We say that a configu-
ration satisfies ~«, denoted by (s, P) E —a, if
s' E —a for each concrete trace s' that