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Adaptive Self-configurable Robot Swarms Based on Local Interactions
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Abstract— This paper presents a motion planning framework
for a large number of autonomous robots that enables the robots
to configure themselves adaptively into an area of an arbitrary
geometry. A locally interacting geometric technique provides
a unique solution that allows the robots to converge to the
uniform distribution by forming an equilateral triangle with
their two neighbors. The basic idea underlying the proposed
solution is that robots can be thought of as liquid particles
that change their relative positions conforming to the shape
of the container they occupy. Specifically, it is assumed that
robots are not allowed to have the identification number,
a pre-determined leader, a common coordinate system, and
communication capabilities. Under such minimal conditions,
the convergence of the algorithm is mathematically proved and
verified through extensive simulations. The results validate the
feasibility of applying the algorithm to self-configuration of
mobile sensors across the constrained environment.

I. INTRODUCTION

Swarm robotics [1] is gaining increasing attention because
a robot swarm is expected to perform a variety of real
applications such as environmental or habitat monitoring,
exploration, search-and-rescue, and so on. In order to enable
a robot swarm to perform the aforementioned tasks adapting
to an environment, a motion planning framework is needed
for the robots to determine their relative positions from an
arbitrary initial distribution. Such frameworks mostly use a
balance between inter-individual interactions based on the
observations from an organism of animals and insects, or
physical phenomena in nature, that we call respectively
behavior-based [2-3] and physics-based [4-11] approaches.

Balch and Hybinette [2] suggested the notion of social
potentials to achieve robot formations mimicking the process
of forming a crystalline structure that holds the molecules
into place. Martison and Payton [4] proposed the virtual
line force to deploy robots into a regular lattice. Spears
et al. [5] developed a physics-based framework to achieve
the desired deployment using the gravitational force model.
Shucker and Bennett [6] introduced the virtual spring forces
to maximize coverage and uniformity using the acute angle
algorithm. Likewise, many algorithms for mobile sensor
network deployment use different types of force, including
electromagnetic forces [7], inter-molecular forces [8], and
virtual potential fields [9]. These approaches require an effort
to adjust parameters to obtain the desired behavior of self-
configuration. Most importantly, to the best of our knowl-
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Fig. 1. Concept of adaptive self-configuration in an unknown environment

edge, no research has been performed under the geometric
constraint of the environment.

In this paper, we address adaptive self-configuration of
a robot swarm that enables a large number of robots with
limited ranges of sensing to configure themselves into a
2-dimensional plane from an arbitrarily initial distribution.
Through local interactions between individual robots that
attempt to form an equilateral triangle, a robot swarm can
eventually be deployed conforming to the shape of the
environment as illustrated in Fig. 1. This will provide a
systematic approach to adapting to an unknown environment
regardless of limited sensing and communication capabilities
of the robots. In practice, this adaptive self-configuration
enables a robot swarm to strive toward achieving its mission
in the presence of changes in environments. For instance,
a robot swarm can maintain local geometric configurations
while navigating through an environment populated with ob-
stacles [12]. The main contribution of this paper is to provide
a simple, distributed swarm self-configuration algorithm that
exhibits self-organizing and self-stabilizing features.

The rest of this paper is organized as follows. Section
IT presents the assumptions about the robot and the defi-
nitions of the adaptive self-configuration problem. Section
IIT describes the fundamental concepts in local interaction
and the convergence properties of the algorithm. Section IV
addresses the proposed adaptive self-configuration algorithm
and its properties under geometric constraints. Section V
provides the results of the simulations and discussions.
Section VI draws conclusions.

II. PROBLEM STATEMENT

We consider a swarm of autonomous mobile robots
{r1,-++,7n}. Each robot is modeled as a point, that freely
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moves on a 2-dimensional plane with limited ranges of
sensing. The robots have no leader and no prior knowledge of
their identification number. They do not share any common
coordinate system, and do not retain any memory of past
actions. They can detect the position of other robots in close
proximity, but are not allowed to communicate explicitly
with them. Instead of the direct communication method,
robots are able to locally interact by observing locations of
other robots. Each of the robots executes the same algorithm,
but acts independently and asynchronously from other robots.
Time is represented as an infinite sequence of discrete
instants t;,ts,---. At a time instant, one of the following
three actions will be taken by the robots:

e Observation: The robot r; detects the position
{p1,p2,---} of other robots located within its sensing
range SB, and makes the observation set O; of the
obtained positions with respect to its local coordinate
system.

o Computation: r; performs the computation according
to the local interaction algorithm to be proposed, yield-
ing the target position py;.

o Motion: r; moves to p;; and returns to the observation
state.

Each of the robots repeats an endless activation cycle of
observation, computation, and motion. Now the adaptive
self-configuration problem of a swarm of mobile robots in
this work can be stated as follows.

Given that a swarm of robots ry,---,r, located at
arbitrarily distinct positions in a two-dimensional plane,
how can the robots configure themselves into equilateral
triangular lattices adapting to the environment?

It is assumed that the robots can exactly determine the
position of other robots using sonar [13] or infrared detectors
[5], and distinguish between other robots and obstacles in the
environment.

III. LoCcAL INTERACTION

This section describes our local interaction algorithm
that enables to generate an equilateral triangular lattice by
cooperation of three neighboring robots (See ALGORITHM-

1).
A. Description of the Local Interaction Algorithm

All robots are initially located at distinct positions. Among
them, consider a robot 7; and its two neighbors sl and
52 located within r;’s sensing boundary SB. Hereafter, we
denote the constant uniform distance interval by d,,, and the
position of r;, s1, and s2 by p;, ps1, and psa, respectively.
As shown in Fig. 2-(a), three robots configure into a triangle
whose vertices are p;, ps1, and pso, respectively. Fig. 2-(b)
illustrates that r; finds the centroid p.; of the configured
triangle Ap;ps1pso with respect to its local coordinates,
and measures the angle ¢ between the line connecting two
neighbors and r;’s horizontal axis. Using p. and ¢, r;
calculates its target position py;.

ALGORITHM-1 LOCAL INTERACTION (code executed by the robot
r; at the point p;)

constant d,, := uniform distance

FUNCTION Pinteraction ({psl 3 p52}, pz)

(ctz,cty) := centroid({ps1,ps2,Pi})

¢ = angle between ps1ps2 and r;’s local horizontal axis
targety 1= cty + dy cos(¢p + 7r/2)/\/§

targety = cty + dy sin(¢ £ 7/2)/V/3

pei = (targets, targety)

A W=

SB (Sensing Boundary)

SB (Sensing Boundary)

(b)

Fig. 2. TIllustration of ALGORITHM-1 (a) triangular configuration, (b) target
point computation

Consider a triangle with three vertices p,, py, and p.
that represent the position of three robots A, B, and C
as shown in Fig. 3. Let «, 3, and 7 denote the internal
angles of the triangle, respectively. Each robot located at
the vertex of Apgppp. may move to the new position py,
D, and py. computed by ALGORITHM-1. The internal
angles of Api.pupic are o, B, and +/, respectively. Let
pet denote the centroid of Ap,pyp.. Also, let p denote the
point projected from p.; onto p,pp. Similarly, let ¢ indicate
the point projected from p. onto p,p.. If we consider a
quadrangle p,pp.:q, the angles of p and g are right angles.
Therefore, /pp.+q becomes 180° —a. From Fig. 3, ZpippetPic
is equal to Zppeiq. ApypetDic 1S an isosceles triangle since
PeiPy and PP is identical (dy, /v/3 = V/3/2 x dy x 2/3).
Hence, o of Ap.ppp. is equal to 2a in the figure. With
the same manner, § and  become 2b and 2¢, respectively.
Moreover, we see that o of Apipwpic is (8 + 7)/2 (or
equal to (b + ¢)). Likewise, 8’ indicates (a + v)/2 and
does (a+/3)/2. Accordingly, o is given by (5+7)/2. Now
the relation between internal angles can be rewritten as a
function of time to give the following equation:

a(t+1) = (B() +~(1))/2, (1)

where ¢ and ¢ + 1 represent the current time instant and
the next time instant. Thus, the internal angle of r; at
t + 1 is obtained by dividing the sum of internal angles
of two neighbors observed at ¢ with 2. Intuitively, »; may
maintain d,, with two neighbors. In other words, each robot
attempts to form an isosceles triangle at each time instant,
and by repeatedly doing this, three robots configure into an
equilateral triangle with a side length d,,.
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Fig. 3. Robots attempt to form an isosceles triangle

B. Convergence of Local Interactions

Let’s consider the circumscribed circle of an equilateral
triangle whose center is p.; of Ap;ps1pse configured from
three positions occupied by three robots and radius is d,, /v/3.
Under the local interaction algorithm, motion planning for
the robots is performed by controlling the distance from p.;
and the internal angle (See Fig. 4-(a)).

First, the distance is controlled by the following equation

di(t) = —a(di(t) - dr), 2)

where a is a positive constant and d, represents the length
d../+/3. Indeed, the solution of (2) is d;(t) = |d;(0)|e~* +d,
that converges exponentially to d,. as ¢ approaches infinity.

Secondly, the internal angle is controlled by the following
equation

aalt) = K(Bi(t) +7(t) — 204(0) ), )

where k is a positive number. Because the total internal angle
of a triangle is 180°, (3) can be re-written as

() = k' (600 - ai(t)), )

where k' is 3k. Likewise, the solution of (4) is «;(t) =
la; (0)|e~*"* 4 60° that converges exponentially to 60° as ¢
approaches infinity.

Note that (2) and (4) imply that the trajectory of r;
converges to d, and 60°, an equilibrium state shown in Fig.
4-(b). This also implies that three robots eventually form an
equilateral triangle with d,,. In order to prove the correctness,
we will take advantage of stability based on Lyapunov’s the-
ory [14]. The stability theorem states if there exists a scalar
function f; ; of the state x = [d;(t) «;(t)]T with continuous
first order derivatives such that f;; is positive definite, fu
is negative definite, and f;; — oo as || x ||— oo, then
equilibrium at a specific state [d, 60°]7 is asymptotically
stable. The desired configuration is one that minimizes the
energy level of the scalar function.

(b) desired equilateral triangular configuration

Fig. 4. Tllustration of two control parameters in local interaction

Consider the following scalar function:

L ave e Leoe — a2
fl,l_ 2(dz d'r‘) +2(60 az) (5)

This scalar function is always positive definite except d; #
d, and «; # 60. The derivative of the scalar function is given
by

fri=—(di = d)* = (60° — )7, (6)

which is obtained by differentiating f; ; using (2) and (4)
to substitute for d; and c. Eq. (6) is negative definite. The
scalar function f;; is radially unbounded since it tends to
infinity as || x ||— oco. Therefore, the equilibrium state is
asymptotically stable, implying that r; reaches a vertex of
the desired triangle.

Now we prove the convergence of the algorithm for n
robots. The n-order scalar function F is defined as

F‘=:;§;fhi<dxt% ai@))- (7

It is straightforward to verify that F is positive definite and
F is negative definite. F is radially unbounded since it tends
to infinity as ¢ approaches infinity. Consequently, n robots
move toward the equilibrium state.
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SB (Sensing Boundary)

(a) detecting an environment

Fig. 5.

(b) approaching an environment

Tllustration of uniform adaptation algorithm

Finally, as mentioned earlier, the robots have no mem-
ory (oblivious). Hence, the algorithm uses the function
Pinteraction Whose arguments consist of the position set of
the robot and its two neighbors at the current time instant.
The return value is the target position of the robot at the next
time instant. It has been proven that the oblivious strategy
yields a self-stabilizing algorithm ! [15].

IV. ADAPTIVE SELF-CONFIGURATION

This section describes how to deploy the robots at a uni-
form interval conforming to the geometry of the environment
using local interactions. We assume that the geometry of the
environment can be represented by a continuous function.

A. Description of Adaptive Self-Configuration Algorithm

At the time instant ¢, r; detects the first neighbor sl
located the shortest distance. First of all, we assume that the
surface geometry of an environment can be represented by a
continuous function e(t) without discontinuity. As illustrated
in Fig. 5-(a), when detecting the environment, r; defines a
point p, projected from p; onto the environment surface with
the minimum distance d. and computes the tangent e’(t)
to the environment surface at p.. It is obvious that e’(t)
is perpendicular to the vector p;p,, termed the environment
direction. Let A(l.) denote the area in the environment
direction within SB. That is, A(l,) is the area between the
surface of the environment and the line passing through p;
and parallel to €’(t). If no neighbors exist in A(l.) or if the
condition d., < @ is satisfied, in order to approach the
environment, r; computes the midpoint p,, of p;ps; from
which the virtual point p, is projected onto ¢'(t). Now p,
is considered as pgo as illustrated in Fig. 5-(b). Otherwise,
to approach other robots, s2 is selected such that the total
distance from pg; to p; through pgs is minimized. Now with
ps1 and psa, T; can compute the next target point p;; by
Pinteraction 1N ALGORITHM-1. When three robots are all
aligned, the centroid p.; is set to the center point of the
line segment between ps; and pge. If r; is located on the

line segment, py; is set to the point ‘/%d“ away from pc.
Otherwise, py; is set to the point % away from pg;.

Fig. 6. Uniform adaptation to shapes of surfaces

(a) initial distribution (b) final convergence

Uniform distance
Internal angle [deg]

0 5 10 15 20 25 30 0 5 10 15 20 25 30
Time step Time step

(c) distance variation

Fig. 7.

(d) internal angle variation

Simulation results of self-configuration for three robots

B. Uniform Adaptation Property

It is verified in Section III that three neighboring robots are
able to form an equilateral triangle with distance d,,. Without
loss of generality, r; can converge into an isosceles triangle
with a neighbor and a virtual point. Now we show that the
robots maintain a constant uniform distance d, with each
other while conforming to the geometry of the environment.
As shown in Fig. 6, this requires that, the vector p;ps; with
distance d,, should be parallel to Pg;pesi, Where p.; (or
Des1) indicates the point projected from p; (or ps;) onto the
environment surface.

We first consider the case of the indented wall in Fig. 6.
Let p,; and p,s1 indicate the virtual point for r; and sl,
respectively. Note that, due to the limited ranges of SB, r;
is not able to identify whether p;pe; is parallel to Ps1Pesi-
According to the geometry of the environment, p,; may

I'Self-stabilization is the property of a system which, started in an arbitrary
state, always converges toward a desired behavior [16] [17].
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(a)initial distribution (b) 3.68 [sec]

(c) 6.60 [sec] (d) dyg: 25.55 [sec]

Fig. 8. Simulation results of self-configuration for 100 robots

vary since €’(t) changes. Thus, p,; and p,s; may not be
coincident.

By the convergence of local interactions, it is obvious
that Ap;ps1pvi and Apsipipys1 are the isosceles triangles
with d, (the length of P;ps1, Pipvi» and Ps1pys1 are the
same). Since the two triangles have the same height of @,
they are congruent. Also, since /ps1p;pyi and Zp;psiPosis
and /ps1pvsipm and Zp;pyipm have the same measure,
L PuiPiPei and /pys1Ps1Pes1 have the same measure. Hence,
ApyiDiPei and Apys1Ps1Pes1 are congruent. Since p;pe; and
Ds1Pes1 have the same length and Zps1p;pe; and Zp;ps1Pesi
have the same measure, the quadrangle p;psiPesiPei 1S an
isosceles trapezoid. Thus, it is readily evident that p;ps7 is
parallel to Pg;Desi. The conformity condition for the case of
the flat wall can be satisfied with the same manner.

V. SIMULATION RESULTS

The proposed self-configuration algorithm terminates
when all robots converge into the distance d,, + 1% with
their two neighbors, which is denoted as d;¢;. Fig. 7 shows
that how three robots converge into an equilateral triangle,
where Fig. 7-(a) and (b) display the initial and the final
position of the robots. Fig. 7-(c) and (d) indicate the varia-
tions in the distance and the internal angle that eventually
converge into d, and 60°. Fig. 8 shows that 100 robots
configure themselves into a uniformly distributed pattern
with distance interval d, over the empty plane. We tested
extensive simulations in a variety of initial distributions and
compared the total deployment time. For 30 kinds of initial
distributions, the deployment time is summarized as follows:
27.36 [sec] for dqo, 42.86 [sec] for dy 19, and 61.48 [sec]
for dg.g19. Specifically, each robot interacts with only two
neighbors, which ensures that the motion of the robot is less

(a) 4.53 [sec] (b) 9.75 [sec]

(c) 12.38 [sec] (d) dyg: 32.02 [sec]

Fig. 9. Simulation results of self-configuration over a flat surface

(b) 7.63 [sec]

(a) 3.57 [sec]

(c) 13.64 [sec]

Fig. 10. Simulation results of self-configuration over a curved surface

(d) dyg: 41.54 [sec]

affected than other approaches employing a large number of
neighbors and the computational load decreases.

Figs. 9 and 10 show that how 100 robots self-configure
into a geometrically-constrained environment. As mentioned
in Section IV, all robots could eventually converge to the
uniformly distributed position conforming to the environment
geometry. It is evident from Fig. 10 that even the robots
that do not detect the environment was able to conform to
the geometry of the environment by just interacting with
their neighbors. Fig. 11 shows the simulation results when
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Fig. 11. Surface conforming of Fig. 10 according to the changes in distance

TABLE I
COMPARISON OF GRADIENT OF LINE SEGMENTS IN FIG. 11 [DEG]

Fig. 11-(a) Fig. 11-(b) Fig. 11-(c)

order grad. grad. grad. grad. grad. grad.

of pe of p; of pe of p; of pe of p;
1-2 78.055  77.186 78.055  77.946 90.000 89.607
2-3 67.071 67.871 67.028 66.688 90.000 89.956
3-4 77.983 76.983 84.868 84.492 87.938 87.395
4-5 -63.524  -63.520 | -56.535 -57.197 | 70.676  71.112
5-6 -49.474  -50.151 | -48.831 -49.309 | 75.748  75.723
6-7 -50.205  -51.387 | -52.975 -53.566 | -59.991 -59.801
7-8 -58.213  -58.116 | -66.250  -67.583 | -49.421  -49.693
8-9 -86.746  -87.205 | -58.376  -57.714
9-10 -78.585  -78.331
10-11 74.721 75.175
11-12 55.529  56.340

the uniform distance is changed to (a) 3.5, (b) 5.5, and (c¢)
7.5, respectively. In the figure, the black bold line shows
the outline of the environment. The blue dots indicate p;
of the robot and the red dots on the outline display p.
projected from p; (see Fig. 5 in Section IV). The red dotted
and blue solid line segments represent Pe;Pes1 and p;ps1,
respectively, illustrated in Fig. 6. As expected, each robot
could be distributed uniformly regardless of the changes in
the uniform distance while conforming to the environment.
Table I shows that the average error rate over the entire set
of gradients is about 0.84 [%]. It is readily evident from
the table that p;p,1 is closely parallel to pg;pesi- If we take
the nonuniform curvature of the outline into consideration,
the robots was able to conform as closely as possible to the
uneven surface.

VI. CONCLUSION

In this paper, we presented a local interaction algorithm
between neighboring robots, enabling a large-scale swarm of
robots to self-configure into various two-dimensional planes.
The robots were assumed to have no individual identification,
no determined leader, no common coordinates, no memory
for past actions, and no communication capability. They

were allowed to interact with two dynamically selected
neighbors by observing other robots in their sensing range.
Based on the geometric approach to forming an equilateral
triangle, the swarm could be uniformly self-deployed, and
moreover adapt to an unknown environment. The proposed
algorithm featuring decentralized, self-organized, and self-
stabilizing design was proved mathematically and verified
by simulations. Our analysis and simulation results show
that the proposed adaptive self-configuration is a simple and
efficient approach to uniform deployment of a robot swarm
in a changing environment. As a first step toward real-world
implementations, we intend to apply this algorithm to build
an ad hoc mobile robotic sensor network with uniform spatial
density where measurement errors exist.
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