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Abstract 

The scheduling of real-time tasks with fault-tolerant 
requirements has been an important problem in 
multiprocessor systems. Primary-backup (PB) approach is 
often used as a fault-tolerant technique to guarantee the 
deadlines of tasks despite the presence of faults. In this 
paper we propose a PB-based task scheduling approach, 
wherein an allocation parameter is used to search the 
available time slots for a newly arriving task, and the 
previously scheduled tasks can be rescheduled when there 
is no available time slot for the newly arriving task. In 
order to improve the schedulability we extend the existing 
PB-overloading and the Backup-backup (BB) overloading. 
Our proposed task scheduling algorithm is compared with 
some existing scheduling algorithms in the literature 
through simulation studies. The results have shown that the 
task rejection ratio of our real-time task scheduling 
algorithm is lower than the compared algorithms. 

1. Introduction 
In a real-time multiprocessor system, fault-tolerance 

can be provided by scheduling multiple copies of tasks on 
different processors [1-8]. Primary-backup based 
scheduling is one of fault tolerant scheduling techniques. 
In the PB-based task scheduling two versions of a task, 
primary version and backup version, are scheduled on two 
different processors and the acceptance test is used to 
check the correctness of the execution result [4-8].  

In order to improve the schedulability, overloading 
techniques are often used. PB-overloading is defined to 
schedule the primary of a task onto the same or 
overlapping time slot with the backup of another task on a 
processor [8]. BB-overloading is defined to schedule the 
backups of multiple tasks onto the same or overlapping 
time slot on a processor [4, 7, 8]. In [8], R. Al-Omari et al. 
drew a conclusion that the PB-overloading is able to 
achieve better performance than BB-overloading, and 
BB-overloading algorithm is better than no-overloading 

algorithm.  
In this paper, we address a PB-based scheduling of 

non-preemptive aperiodic real-time tasks with 
fault-tolerant requirements. In this PB-based scheduling, 
both PB-overloading and BB-overloading exist, and an 
extended overloading strategy is used to make the 
overloading more flexible and efficient. Our scheduling 
algorithm can reschedule the previously scheduled tasks on 
one processor. For simplicity, we assume that, at any time, 
at most one single processor can be crashed. In other 
words, we consider 1-timely-fault tolerant schedules, 
where a k-timely-fault-tolerant (k-TFT) schedule is defined 
as the schedule in which no task deadlines are missed, 
despite k arbitrary processor failures [10]. The objective of 
the paper is to decrease task rejection ratio. 

2. Related work 

In PB-based task scheduling a backup is deallocated 
when its primary is finished successfully [4, 6, 8]. In [7], 
resource reclaiming, which refers to the problem of 
utilizing resources left unused by a task version [11], is 
used to improve the processor utilization. Thus there might 
be some empty time slots in history schedules due to the 
resource reclaiming. The empty time slots should be reused 
by new tasks. 

Backups are scheduled as late as possible or overloaded 
on other backups as much as possible, and a function is 
used to control the overlapping length between overloaded 
backups in [4]. When scheduler can not find a proper time 
slot for a new task, a primary will be rescheduled by 
moving it forward while any backups can not be 
rescheduled. However, sometimes it is necessary to move 
tasks backward.  

In [6, 8] the scheduling algorithms are based on the 
Spring scheduling approach [9], which is a heuristic 
algorithm and dynamically schedules tasks with resource 
requirements. The algorithms in [2, 3, 6-8] can not 
reschedule tasks.  

In [8], PB-overloading chain will not contain more than 
two tasks at the same time, for example the chain A in 
Figure 1. But, in theory, as long as the time between the 
first task and the last task in the PB-overloading chain is 
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less than the minimum time interval of faults, a PB 
overloading chain can contain more than two tasks, for 
example the chain B in Figure 1, for a PB-overloading 
chain can only tolerate one failure [8]. Moreover, 
PB-overloading chain should be opened but looped, and 
the looped PB-chain will fail eventually, for example the 
looped chain C, will fail, if Processor 4 fails.  

 

Figure 1: PB-overloading chains. 
Considering these existing problems, our task 

scheduling algorithm can reschedule primary and backup 
tasks by moving them forward or backward within the 
reasonable scope. Because of the large time cost to 
reschedule tasks on all processors, the rescheduling only 
takes place on one processor and the relationship of 
overloaded tasks can not be changed. The two overloading 
techniques are extended to contain more tasks and can 
co-exist in our algorithm.  

3. Models 

3.1 Scheduler model 

The scheduler model used in this paper is similar with 
those in [2, 6-8]. All processors have identical computing 
capability and are connected through a shared medium. 
The scheduler is running in parallel with the processors. 
Each processor has its own task queue. A tuner is in front 
of a local processor task queue and in charge of inserting a 
new task into this task queue or changing the previous 
schedule. The structure of scheduler is shown in Figure 2. 
It is assumed that the scheduler has been made fault 
tolerant by other fault tolerant technique, for example, 
modular redundancy technique [8].  

 

Figure 2: System structure. 

3.2 Task model 

Tasks have the following attributes:  
1. Tasks are aperiodic, i.e., task arrivals are not known 

in advance. Each task Ti has the numeric 
characteristics: arrival time (ai), ready time (ri), 
worst case computation time (ci), actual 
computation time (aci) and deadline (di). The actual 
computation time is the true time that a processor 
takes to finish a task. The worst case computation 
time is assumed always larger than the actual 
computation time.  

2. Each task has two identical versions. The version to 
be scheduled earlier in a schedule is marked as 
primary (pri) and the other one is marked as backup 
(bki). When a primary is finished successfully, its 
backup will be deallocated at once. The outputs of 
the primary and its backup are absolutely identical 
for ever. 

3. Tasks are independent and non-preemptable.  

3.3 Fault model 

Each processor, except the scheduler, may fail due to 
hardware or software faults which result in task failures. 
The faults can be transient or permanent. Each fault is 
independent to the others and exists in one processor.  

MTBF is defined to be the expected time between two 
failures. TTSF is defined to be the time to the second 
failure, i.e., the critical time between two failures. The 
longer TTSF means the weaker reliability. The maximum 
number of processors that are expected to fail at any time 
point is assumed to be one, because only 1-TFT is 
considered in this paper. We also assume that )( iii rdT −∀  
is much less than MTBF. If any overloading does not 
happen, in the worst case, TTSF will be equal 
to )max( ii rd − .  

A fault-detection is assumed to announce failures in 
time. The scheduler will not schedule tasks to a known 
failed processor. 

3.4 Definitions 

1. st(·) is the start time of pri or bki. ft(·) is the finish time of 
pri or bki. 
Constraint 1: ( ) ( ) ( ) ( ) iiiiii dbkftbkstprftprstr ≤<<<≤ .  

2. proc(·) is the processor on which the primary or backup 
is scheduled.  
Constraint 2: ( ) ( )ii bkprocprproc ≠ . 

3. ti(·) is the time interval from st(·) to ft(·) on which the 
primary or backup is scheduled. 
Constraint 3: ( ) ( ) φ=ii bktiprti I . 

4. ncascade is the cascade number of overloaded tasks within 
a time slot. m is the number of processors. when ncascade = 
1, it means the task is scheduled without overloading; 
when ncascade = m, it means no task can be overloaded on 
this time slot again. 
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Constraint 4: mncascade ≤≤1 .  
5. toverload is the part time of a task overloaded on other 

tasks.  
Constraint 5: ioverload ct ≤≤0 .  

6. A set of tasks which are overloaded with each other 
within a time slot is named an overloading task set. This 
task set is denoted as τ. st(τ) is the start time of the first 
task to be executed, and ft(τ) is the finish time of the last 
task to be finished in τ. A single task is also a task set 
with only one task. 

7. The shift window Wins(·)< back, for > is the time 
interval on which a previously scheduled task can move. 
for is the time of a task being moved forward. back is the 
time of a task being moved backward. All tasks in an 
overloading task set (τ) have the same Wins , which is the 
Wins(τ). 

8. A single PB-chain is defined to be that any primary in 
this chain exists in only one overloading task set. If a 
primary in a PB chain and a primary in another PB chain 
are in the same overloading task set, the two chains are 
coupled. 

9. The maximum space length Ls of a single 
PB-overloading chain is defined to be the maximum 
number of primaries. The maximum time length Lt of a 
single PB-overloading chain is defined to be the time 
interval between the earliest start time of tasks and the 
latest finish time of tasks in this chain. 

Some definitions are shown in Figure 3. The detailed 
example of the overloading task set and the shift window 
will be shown in Section 4.4 with the scheduling 
algorithm.  

In this paper, the overloading techniques are extended. 
An example of overloading in this paper, in Figure 4, 
illustrates a single PB-overloading chain and two coupled 
PB-overloading chains. Chain A is a single PB chain. 
Chain B and Chain C are coupled on Processor 2. Lt of 
each chain is shown in the figure. B and C have the same 
Lt. When pr5 is finished, B and C will be decoupled. 

 
Figure 3: Illustration of definitions 

 
Figure 4: Examples of a single PB overloading chain 

and two coupled PB overloading chains. 
BB-overloading will not increase TTSF dramatically. 

Thus, Lt will decide TTSF at most time. Usually TTSF is 
expected to be as small as possible. The smaller the TTSF, 
the better the fault-tolerant technique is. However, as long 
as the overloading exists, TTSF will increase. It is a 
tradeoff between reliability and schedulability. The 
scheduler can know the minimum time interval of faults 
from the history. In this paper, Lt is set simply to be half of 
the minimum time interval between faults in the system 
history. 

4 Proposed task scheduling algorithm 

The proposed task scheduling approach in this paper 
consists of the validity checking, the chief scheduling 
algorithm and the rescheduling algorithm. The validity 
checking module is used to guarantee the allocation and 
overloading are valid. The chief scheduling algorithm is 
used when it is easy to find available time slot for new 
tasks. If the chief scheduling algorithm can not find 
available time slots for new tasks, then the previously 
scheduled tasks will be rescheduled. 

What time to start the new task and on which processor 
to allocate the task is a common problem for real-time task 
scheduling algorithms. In this paper, an allocation 
parameter (AP) is used to evaluate every possible task 
allocation.  

4.1 Allocation parameter (AP) 

For a new primary pri to be allocated on processor j, 
AP[pri, pj, ft(pri)] of each possible allocation (possible 
ft(pri)) is defined as follows: 

( )
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For a new backup bki to be allocated on processor j, 
AP[bki, pj, st(bki)] of each possible allocation (possible 
st(bki)) is defined as follows: 

( )[ ]
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and AP(bki, pj) is defined as: 
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Thus, we define the allocation parameter for a new 
task: 
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the value of AP is between 0 and 1. 
Because of the deallocation of backups, the larger the 

distance between a primary and its backup, the smaller 
influence of backups on task rejection is. The primary is 
scheduled as early as possible that is st(pri) tries to be 
closer to ri; the backup is scheduled as late as possible that 
is ft(bki) tries to be closer to di, i.e., Eq.6 and Eq.7. In order 
to decrease rejection ratio, an overloading task set is 
scheduled to contain as many tasks as possible, and the 
time slot occupied by an overloading task set is scheduled 
as short as possible. Thus, the larger ncascade and toverload, the 
better schedulability is. Eq.8 and Eq.9 can represent these. 

4.2 Validity checking and overloading constraints  

The validity checking consists of all constraints 
mentioned in Section 3.4 and the following overloading 
constraints. 
1. Backups can be overloaded on any task. Primaries can 

be overloaded only on backups.  
2. If a primary pri is overloaded on a backup bkj, st(pri) 

must be later than ft(prj).  
3. A new task can only be overloaded on one task set.  
4. If the number of processors is m, the maximum Ls is 

m-1. 
5. The maximum Lt is equal to or larger than max(di-ri) 

and much less than MTBF. 
6. A single PB-overloading chain should be opened but 

looped, that is the task sets of a chain can not exist on 
the same processor (a PB chain can also be looked as a 
chain of overloading task sets, see Definition 6). A 
looped chain has been shown in Figure 1.  

4.3 Scheduling algorithms 

In our scheduling algorithm, a new task Ti will be 
scheduled on its arrival, i.e., FCFS. The APs of both the 
primary and the backup of a new task are calculated, and 
the primary and the backup of this task are scheduled to 
the corresponding allocations. It is possible that a 
processor has the same AP value with the other one. If two 
same AP values exist, the processor on which the task can 
achieve larger ncascade is selected. If the two ncascade are still 
identical, the processor on which the task can achieve 
larger toverload is selected. If they are also identical, then a 
processor will be selected randomly. For the task, which 
can not be allocated by the chief scheduling algorithm, the 
rescheduling algorithm will try to move the previously 
scheduled tasks and find available time slots. If a task still 
can not find its available allocation, it will be rejected. 
Before scheduling a task, the validity checking is 
performed to guarantee the validity of allocation.  
4.3.1 Chief scheduling algorithm 
1. On a new task arrival 

1) Within [ri, di], on each processor, if the AP of the 
primary pri and the AP of the backup bki for the new 
task Ti exist and pass the validity checking,  

i.schedule pri and bki to the corresponding locations.  
ii. set Wins( pri) and Wins(bki), and if the new task is 

overloaded on a previously scheduled task set τ, 
update Wins(τ). 

2) If any one AP does not exist, 
i.call rescheduling algorithm  

ii. if both the AP of pri and the AP of bki exist after the 
rescheduling and pass the validity checking,  

a. pri and bki are scheduled, 
b. set Wins( pri) and Wins( bki), and if the new task 
is overloaded on a previously scheduled task set τ, 
update Wins(τ). 

iii.if the AP of pri or the AP of bki does not exist after 
rescheduling, or any one of them can not pass the 
validity checking, 

9898

Authorized licensed use limited to: Japan Advanced Institute of Science and Tech. Downloaded on October 24, 2008 at 04:28 from IEEE Xplore.  Restrictions apply.



a. reject the task Ti. 
2. Set and update shift window 

1) If the task Ti is not overloaded on any other tasks,  
i.if the task is a primary pri, 

a. ( ) ( ) ( ) ( )iiiiis prftbkst,rprstprWin −−= . 

ii. if the task is a backup bki, 

a. ( ) ( ) ( ) ( )iiiiis bkftd,prftbkstbkWin −−= . 

iii.the size of overloading task set is 1 for each task 
and the shift window of each task set is the same as 
that of this task. 

2) If the task is overloaded on an overloading task set τ, 
and Wins(τ)  is <back, for> 

i.if the task is a primary pri,  
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ii. if the task is a backup bki; 
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iii.update the shift window of the other task in τ. 
4.3.2 Rescheduling algorithm 

In the rescheduling algorithm, an overloading task set 
is moved as a whole. After the rescheduling, the 
relationship of the overloaded tasks can not be changed. 
1. Re-scheduling 

1) Ti is the task to be scheduled; τj is a previously 
scheduled overloading task set between ri and di. τj can 
include one or more tasks. The Wins(τj) is <backj, forj>. 
The number of all τj is s, that is sj ≤≤1 . 
2) If ijj cforback <+ +1 , then enlarge properly the 
interval between two neighboring task sets τj and τj+1 by 
moving them backward and forward respectively to find 
a time slot for Ti. (If st(τ1) is less than ri, or ft(τ s) is 
larger than di , then move τ1,  τs both forward or 
backward to find an available time slot.) 

3) If a time slot is available, calculate AP(pri, pj) of this 
processor. 
4) repeat 1) to 3) on each processor for all τj and τj+1. 
5) If AP exists, then return AP. Otherwise, reject Ti. 

2. Moving 
1) If try to move the overloading task set τj forward and 
the forward time is t. 

i.if ⎟
⎠
⎞⎜

⎝
⎛≥+⎟

⎠
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⎝
⎛

+1jjs  stt .forWin ττ , iteratively move τj+1 

forward with the forward time 
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⎠
⎞⎜

⎝
⎛

+1jjs  stt .forWin ττ , the moving forward is 

successful. Otherwise the moving is failed. 
2) If try to move the overloading task set τj backward 
and the backward time is t. 

i. if ⎟
⎠
⎞⎜

⎝
⎛≤−⎟

⎠
⎞⎜

⎝
⎛

−1jjs  ftt .backWin ττ , iteratively move τj-1 

backward with the backward time 

t.backWinftt jsj +⎟
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⎝
⎛−⎟

⎠
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⎝
⎛= − ττ 1 , 

ii. if ⎟
⎠
⎞⎜

⎝
⎛>−⎟

⎠
⎞⎜

⎝
⎛

−1jjs  ftt .backWin ττ , the moving is 

successful. Otherwise, the moving is failed. 
3) If the moving is successful eventually, change the 
previous schedule. Otherwise, keep the previous 
schedule and return. 

4.4. Examples 

 
Figure 5: An example of the scheduling with AP. 

Example 1.  
T1, T2, T3, and T4, are previously scheduled tasks. Now, 

T5 is going to be scheduled. After T5 is scheduled, the 
schedule is shown in Figure 5. c5 is 1. r5 is 1.5. d5 is 4. All 
the other values follow the scale in the figure. The primary 
pr5 can be scheduled on Processor 1 and Processor 2 and 
has three candidate locations, on Processor 1 within the 
time 1.5 to 2.5 (A:pr5), on Processor 2 within the time 1.75 
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to 2.75 (B: pr5), and on Processor 2 within the time 1.5 to 
2.5(pr5). pr5 can not be scheduled on Processor 2 within 
the time 2 to 3 because of the overloading constraint 3. The 
three results of Eq.1 are 
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Thus AP of pr5 is 0.4, and pr5 is finally scheduled to 
Processor 2 with its finish time 2.5.  
Example 2.  

 
Figure 6: Examples of task set and shift window. 
The task set and the change of shift window when a 

new task T2 is allocated are shown in Figure 6.  In the 
case of A, before T2 is scheduled, the shift window of pr1 is 
<0, 0.75> and the shift window of bk1 is <0.75, 0>. After 
T2 is scheduled, bk1 and bk2 form an overloading task set 
and have the same shift window. The shift window of bk1 
and bk2 is also same with the shift window of the task set, 
which is <0.5, 0>. In the case of B, pr2 and bk1 form the 
task set. Before overloading, the shift window of bk1 is 
<0.5, 0>. After overloading, the shift window of bk1 is <0, 
0>. The more overloading, the smaller the shift window is. 
Example 3.  

 
Figure 7: An example of the rescheduling. 

An example of the rescheduling is shown in Figure 7. 
Because of the task deallocation, there exists an empty 
time slot before pr2. This is reasonable because the 
deallocated task in front of pr2 might be a backup which is 
the tail of a PB chain with the maximum length or a task 
whose actual computation time is much less than its worst 
case computation time, so in the previous schedule pr2 can 

not be overloaded on this empty time slot. The newly 
arriving task is T7. The pr7 can not be scheduled without 
the rescheduling. The ready time, deadline, and the shift 
window are displayed in the figure. The rescheduling is the 
only choice for pr7. Therefore, pr2 is moved to the time slot 
from 0 to 0.5 and pr7 is scheduled to the time slot from 0.5 
to 1. bk7 has many choices for its allocation. 

5. Analysis of the algorithm 

In the proposed scheduling algorithm, the main work is 
to search the best valid AP. Hence, the time complexity of 
our scheduling algorithm is the complexity of searching 
AP for a new pri and its bki. The worst case of searching 
AP for a new task is  
1. to search on all processors and fail to find a valid AP in 

the chief scheduling algorithm, then to move the 
previously scheduled tasks on each processor and find 
a valid AP for pri.  

2. to search on all processors and fail to find a valid AP in 
the chief scheduling algorithm, then to move the 
previously scheduled tasks on each processor and find 
no valid AP or only one AP for bki. 

The search operation in the chief scheduling algorithm 
always takes less time than that in rescheduling algorithm, 
since in the worst case the search operation in the chief 
scheduling algorithm only need to check if there are 
previously scheduled task sets which can be overloaded 
and the intervals between task sets are large enough to 
contain the new task.  

Let m denote the number of processors. Let N denote 
the average number of previously scheduled task sets on a 
processor. The worst case computation time follows 
uniform distribution within [Min_c, Max_c]. Let l denote 
task laxity. For task i, we have 

iiii clrd ⋅=− . 
In this paper, l follows uniform distribution within [lmin, 
lmax]. Because tasks are always scheduled to overload with 
each other tightly, we assume the time slot occupied by a 
task set is approximately same with a time slot occupied by 
a task. Thus, the maximum N can be represented as  

cMaxcMin
cMaxlcMinl

N
__

__ maxmin
max +

⋅+⋅
= . 

We assume in the worst case the N previously scheduled 
task sets distribute within [ri, di] of the new task Ti as in 
Fig. 8.  

 
Figure 8. Previously scheduled tasks on a processor. 

When the rescheduling algorithm is invoked, it means 
the search operation in the chief scheduling algorithm is 
failed. In the worst case, the primary will search all m 
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processors and the backup will search m-1 processors 
because of the constraint 2. A version of a new task will be 
inserted into the intervals between τi in Figure 8. For a new 
primary the number of intervals is N, since the last interval 
after τn can not be used by a primary (if a primary is 
inserted into this interval its backup can not be scheduled 
for constraint 3). It is similar for a new backup that only 
the last N intervals can be used except the first one. Only if 
the rescheduling algorithm finds a valid AP for the new 
primary and a valid AP for its backup successfully, the 
previous schedules, only on one processor, will be changed. 
For an available time interval, the moving operation only 
need to check if this time interval can be enlarged to 
contain the new task according to the shift windows of 
those previous task sets. Since the shift windows are 
known in advance, we assume this operation only take one 
unite time. 

Finally, we represent the time cost for rescheduling a 
new primary on m processor as mN ⋅ , and the time cost for 
rescheduling a new backup on m-1 processor as 

( )1−⋅ mN .The time complexity of proposed task scheduling 
algorithm is 

( )⎥⎦
⎤

⎢⎣
⎡ −⋅⋅ 12 mmNO . 

6. Simulation studies 

To evaluate our task scheduling presented above, we 
have performed a series of simulations. We use the 
performance metric, Task Rejection Ratio [4, 12], to 
evaluate the experimental results. Rejection Ratio (RR) is 
defined to be the ratio of the number of tasks rejected to 
the total number of tasks that arrive at the system. 

arrivedtasksofnumberthe
rejectedtasksofnumbertheRR
    
    

=      (10) 

The parameters used in our simulations are summarized 
in Table 1. 

Table 1: Parameters of simulations 
Parameter Description Value 
n number of tasks 10000 
m number of processors 2,3,…,10 
l task laxity 3,4,…,10 
Max_c maximum computation time of tasks 100s 
Min_c minimum computation time of tasks 20s 
ac_ratio ratio of the actual to the worst case 

computation time 
0.5~1 

load task load 0.5,0.6,…,1

Some parameters are generated as follows: 
♦ ci is a random number following uniform distribution 

between Max_c and Min_c. 
♦ aci is the multiple of ci and ac_ratio which follows 

uniform distribution. 
♦ The deadline of a task Ti is uniformly chosen 

between ri + 2·ci and ri + l·c. ri = ai + δ. δ is a 
random number between 1s and 10s. 

♦ The time interval of faults follows exponential 
distribution with the mean (MTBF). The minimum 
value is 2l·Max_c. 

♦ The interval between task arrivals follows 
exponential distribution. 

♦ The task load is defined as the expected number of 
task arrivals per mean service time and its value is 
approximately equal to the ratio of the mean 
computation time of tasks to the mean time interval 
of task arrivals. 

According to the introduction of Section 2, we compare 
our task scheduling algorithm with the algorithms in [4] 
and [8], which are named SG and RA. Because 
PB-overloading and BB-overloading exist in two 
algorithms in [8], RA includes RAPB and RABB. In order 
to make a fair comparison, all algorithms will share the 
parameter setting with our algorithm and the parameter 
weight in [4] is set to be 0. Our task scheduling approach 
with the rescheduling algorithm is denoted as OR. The 
rescheduling algorithm can be reduced in our task 
scheduling approach, and this reduced algorithm is denoted 
as ONR. 

 
Figure 9: The relationship between RR and m.  

(l = 5, ac_ratio = 0.5, load = 0.5) 

 
Figure 10: The relationship between RR and l.  

(m = 5, ac_ratio = 0.5, load = 0.5) 
The effect of varying the number of processors on RR 

is shown in Figure 9. As the increase of the number of 
processors, RR decreases and tends to be close to 0. This is 
a commonness of most scheduling algorithms. The larger 
task laxity leads to the more flexible allocation of tasks. 
Hence, the larger task laxity, the smaller RR is. This effect 
is shown in Figure 10. In Figure 11, RR increases as task 
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load does. OR and ONR have the lower RR due to the 
higher processor utilization. The rescheduling can help to 
squeeze more empty time slots from the previous schedule, 
so OR is better than ONR.  

 
Figure 11: The relationship between RR and load.  

(m = 5, ac_ratio = 0.5, l = 0.5) 
The maximum time length of PB chain is affected by 

MTBF. Moreover, when a fault happens, the scheduler will 
not schedule tasks to the failed processor. Thus, MTBF has 
the effect on RR. Under different task load, the effect is 
different. The effect of MTBF and load is shown in Figure 
12. Whether OR can find and squeeze more empty time 
slot or not is affected by ac_ratio. The effect is shown in 
Figure 13. 

 
Figure 12: Effect of MTBF and load.  

(m = 5, ac_ratio = 0.5, l = 5) 

 
Figure 13: RR and different ac_ratio. (m = 5, l = 5) 

7 Conclusion 

In this paper, we have proposed a fault tolerant 
dynamic real-time task scheduling approach, which is 
based on the Primary-backup fault tolerant technique. The 
overloading technique in this paper is the extension of the 
existing ones. The scheduler uses the allocation parameter 
to search the proper time slots for a new task, and uses the 
rescheduling algorithm to change the previous task 
schedule for possible empty time slots by moving 
previously scheduled tasks on one processor. The 
simulations have shown that our approach is better than the 

others. The theoretical analysis of this scheduling approach 
is shown in [12]. 
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