
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
Real-time Task scheduling Using Extended

Overloading Technique for Multiprocessor Systems

Author(s)
Wei Sun; Yu, Chen; Zhang, Yuanyuan; Defago,

Xavier; Inoguchi, Y.

Citation

11th IEEE International Symposium Distributed

Simulation and Real-Time Applications, 2007. DS-

RT 2007.: 95-102

Issue Date 2007-10

Type Conference Paper

Text version publisher

URL http://hdl.handle.net/10119/7804

Rights

Copyright (C) 2007 IEEE. Reprinted from 11th IEEE

International Symposium Distributed Simulation

and Real-Time Applications, 2007. DS-RT 2007.

This material is posted here with permission of

the IEEE. Such permission of the IEEE does not in

any way imply IEEE endorsement of any of JAIST's

products or services. Internal or personal use of

this material is permitted. However, permission

to reprint/republish this material for

advertising or promotional purposes or for

creating new collective works for resale or

redistribution must be obtained from the IEEE by

writing to pubs-permissions@ieee.org. By choosing

to view this document, you agree to all

provisions of the copyright laws protecting it.

Description

Distributed Simulation and Real-Time

Applications, 2007. DS-RT 2007. 11th IEEE

International Symposium

*This research is conducted as a program for the "21st

Century COE Program" by Ministry of Education, Culture,
Sports, Science and Technology, Japan

Real-time Task Scheduling Using Extended Overloading Technique for
Multiprocessor Systems*

Wei Sun1, Chen Yu1, Yuanyuan Zhang2, Xavier Defago1 and Yasushi Inoguchi1, 3
1Graduate School of Information Science,

3Center for Information Science,
Japan Advanced Institute of Science and Technology,

1-1, Asahidai, Nomi, Ishikawa, 923-1292 Japan
{sun-wei, yuchen, defago, inoguchi}@jaist.ac.jp

2 Fujitsu Laboratories Ltd.
Kawasaki, Kanagawa, 211-8588, Japan

zhang.yuanyuan@jp.fujitsu.com

Abstract

The scheduling of real-time tasks with fault-tolerant
requirements has been an important problem in
multiprocessor systems. Primary-backup (PB) approach is
often used as a fault-tolerant technique to guarantee the
deadlines of tasks despite the presence of faults. In this
paper we propose a PB-based task scheduling approach,
wherein an allocation parameter is used to search the
available time slots for a newly arriving task, and the
previously scheduled tasks can be rescheduled when there
is no available time slot for the newly arriving task. In
order to improve the schedulability we extend the existing
PB-overloading and the Backup-backup (BB) overloading.
Our proposed task scheduling algorithm is compared with
some existing scheduling algorithms in the literature
through simulation studies. The results have shown that the
task rejection ratio of our real-time task scheduling
algorithm is lower than the compared algorithms.

1. Introduction
In a real-time multiprocessor system, fault-tolerance

can be provided by scheduling multiple copies of tasks on
different processors [1-8]. Primary-backup based
scheduling is one of fault tolerant scheduling techniques.
In the PB-based task scheduling two versions of a task,
primary version and backup version, are scheduled on two
different processors and the acceptance test is used to
check the correctness of the execution result [4-8].

In order to improve the schedulability, overloading
techniques are often used. PB-overloading is defined to
schedule the primary of a task onto the same or
overlapping time slot with the backup of another task on a
processor [8]. BB-overloading is defined to schedule the
backups of multiple tasks onto the same or overlapping
time slot on a processor [4, 7, 8]. In [8], R. Al-Omari et al.
drew a conclusion that the PB-overloading is able to
achieve better performance than BB-overloading, and
BB-overloading algorithm is better than no-overloading

algorithm.
In this paper, we address a PB-based scheduling of

non-preemptive aperiodic real-time tasks with
fault-tolerant requirements. In this PB-based scheduling,
both PB-overloading and BB-overloading exist, and an
extended overloading strategy is used to make the
overloading more flexible and efficient. Our scheduling
algorithm can reschedule the previously scheduled tasks on
one processor. For simplicity, we assume that, at any time,
at most one single processor can be crashed. In other
words, we consider 1-timely-fault tolerant schedules,
where a k-timely-fault-tolerant (k-TFT) schedule is defined
as the schedule in which no task deadlines are missed,
despite k arbitrary processor failures [10]. The objective of
the paper is to decrease task rejection ratio.

2. Related work

In PB-based task scheduling a backup is deallocated
when its primary is finished successfully [4, 6, 8]. In [7],
resource reclaiming, which refers to the problem of
utilizing resources left unused by a task version [11], is
used to improve the processor utilization. Thus there might
be some empty time slots in history schedules due to the
resource reclaiming. The empty time slots should be reused
by new tasks.

Backups are scheduled as late as possible or overloaded
on other backups as much as possible, and a function is
used to control the overlapping length between overloaded
backups in [4]. When scheduler can not find a proper time
slot for a new task, a primary will be rescheduled by
moving it forward while any backups can not be
rescheduled. However, sometimes it is necessary to move
tasks backward.

In [6, 8] the scheduling algorithms are based on the
Spring scheduling approach [9], which is a heuristic
algorithm and dynamically schedules tasks with resource
requirements. The algorithms in [2, 3, 6-8] can not
reschedule tasks.

In [8], PB-overloading chain will not contain more than
two tasks at the same time, for example the chain A in
Figure 1. But, in theory, as long as the time between the
first task and the last task in the PB-overloading chain is

11th IEEE Symposium on Distributed Simulation and Real-Time Applications

1550-6525/07 $25.00 © 2007 IEEE
DOI 10.1109/DS-RT.2007.12

95

11th IEEE Symposium on Distributed Simulation and Real-Time Applications

1550-6525/07 $25.00 © 2007 IEEE
DOI 10.1109/DS-RT.2007.12

95

Authorized licensed use limited to: Japan Advanced Institute of Science and Tech. Downloaded on October 24, 2008 at 04:28 from IEEE Xplore. Restrictions apply.

less than the minimum time interval of faults, a PB
overloading chain can contain more than two tasks, for
example the chain B in Figure 1, for a PB-overloading
chain can only tolerate one failure [8]. Moreover,
PB-overloading chain should be opened but looped, and
the looped PB-chain will fail eventually, for example the
looped chain C, will fail, if Processor 4 fails.

Figure 1: PB-overloading chains.
Considering these existing problems, our task

scheduling algorithm can reschedule primary and backup
tasks by moving them forward or backward within the
reasonable scope. Because of the large time cost to
reschedule tasks on all processors, the rescheduling only
takes place on one processor and the relationship of
overloaded tasks can not be changed. The two overloading
techniques are extended to contain more tasks and can
co-exist in our algorithm.

3. Models

3.1 Scheduler model

The scheduler model used in this paper is similar with
those in [2, 6-8]. All processors have identical computing
capability and are connected through a shared medium.
The scheduler is running in parallel with the processors.
Each processor has its own task queue. A tuner is in front
of a local processor task queue and in charge of inserting a
new task into this task queue or changing the previous
schedule. The structure of scheduler is shown in Figure 2.
It is assumed that the scheduler has been made fault
tolerant by other fault tolerant technique, for example,
modular redundancy technique [8].

Figure 2: System structure.

3.2 Task model

Tasks have the following attributes:
1. Tasks are aperiodic, i.e., task arrivals are not known

in advance. Each task Ti has the numeric
characteristics: arrival time (ai), ready time (ri),
worst case computation time (ci), actual
computation time (aci) and deadline (di). The actual
computation time is the true time that a processor
takes to finish a task. The worst case computation
time is assumed always larger than the actual
computation time.

2. Each task has two identical versions. The version to
be scheduled earlier in a schedule is marked as
primary (pri) and the other one is marked as backup
(bki). When a primary is finished successfully, its
backup will be deallocated at once. The outputs of
the primary and its backup are absolutely identical
for ever.

3. Tasks are independent and non-preemptable.

3.3 Fault model

Each processor, except the scheduler, may fail due to
hardware or software faults which result in task failures.
The faults can be transient or permanent. Each fault is
independent to the others and exists in one processor.

MTBF is defined to be the expected time between two
failures. TTSF is defined to be the time to the second
failure, i.e., the critical time between two failures. The
longer TTSF means the weaker reliability. The maximum
number of processors that are expected to fail at any time
point is assumed to be one, because only 1-TFT is
considered in this paper. We also assume that)(iii rdT −∀
is much less than MTBF. If any overloading does not
happen, in the worst case, TTSF will be equal
to)max(ii rd − .

A fault-detection is assumed to announce failures in
time. The scheduler will not schedule tasks to a known
failed processor.

3.4 Definitions

1. st(·) is the start time of pri or bki. ft(·) is the finish time of
pri or bki.
Constraint 1: () () () () iiiiii dbkftbkstprftprstr ≤<<<≤ .

2. proc(·) is the processor on which the primary or backup
is scheduled.
Constraint 2: () ()ii bkprocprproc ≠ .

3. ti(·) is the time interval from st(·) to ft(·) on which the
primary or backup is scheduled.
Constraint 3: () () φ=ii bktiprti I .

4. ncascade is the cascade number of overloaded tasks within
a time slot. m is the number of processors. when ncascade =
1, it means the task is scheduled without overloading;
when ncascade = m, it means no task can be overloaded on
this time slot again.

9696

Authorized licensed use limited to: Japan Advanced Institute of Science and Tech. Downloaded on October 24, 2008 at 04:28 from IEEE Xplore. Restrictions apply.

Constraint 4: mncascade ≤≤1 .
5. toverload is the part time of a task overloaded on other

tasks.
Constraint 5: ioverload ct ≤≤0 .

6. A set of tasks which are overloaded with each other
within a time slot is named an overloading task set. This
task set is denoted as τ. st(τ) is the start time of the first
task to be executed, and ft(τ) is the finish time of the last
task to be finished in τ. A single task is also a task set
with only one task.

7. The shift window Wins(·)< back, for > is the time
interval on which a previously scheduled task can move.
for is the time of a task being moved forward. back is the
time of a task being moved backward. All tasks in an
overloading task set (τ) have the same Wins , which is the
Wins(τ).

8. A single PB-chain is defined to be that any primary in
this chain exists in only one overloading task set. If a
primary in a PB chain and a primary in another PB chain
are in the same overloading task set, the two chains are
coupled.

9. The maximum space length Ls of a single
PB-overloading chain is defined to be the maximum
number of primaries. The maximum time length Lt of a
single PB-overloading chain is defined to be the time
interval between the earliest start time of tasks and the
latest finish time of tasks in this chain.

Some definitions are shown in Figure 3. The detailed
example of the overloading task set and the shift window
will be shown in Section 4.4 with the scheduling
algorithm.

In this paper, the overloading techniques are extended.
An example of overloading in this paper, in Figure 4,
illustrates a single PB-overloading chain and two coupled
PB-overloading chains. Chain A is a single PB chain.
Chain B and Chain C are coupled on Processor 2. Lt of
each chain is shown in the figure. B and C have the same
Lt. When pr5 is finished, B and C will be decoupled.

Figure 3: Illustration of definitions

Figure 4: Examples of a single PB overloading chain

and two coupled PB overloading chains.
BB-overloading will not increase TTSF dramatically.

Thus, Lt will decide TTSF at most time. Usually TTSF is
expected to be as small as possible. The smaller the TTSF,
the better the fault-tolerant technique is. However, as long
as the overloading exists, TTSF will increase. It is a
tradeoff between reliability and schedulability. The
scheduler can know the minimum time interval of faults
from the history. In this paper, Lt is set simply to be half of
the minimum time interval between faults in the system
history.

4 Proposed task scheduling algorithm

The proposed task scheduling approach in this paper
consists of the validity checking, the chief scheduling
algorithm and the rescheduling algorithm. The validity
checking module is used to guarantee the allocation and
overloading are valid. The chief scheduling algorithm is
used when it is easy to find available time slot for new
tasks. If the chief scheduling algorithm can not find
available time slots for new tasks, then the previously
scheduled tasks will be rescheduled.

What time to start the new task and on which processor
to allocate the task is a common problem for real-time task
scheduling algorithms. In this paper, an allocation
parameter (AP) is used to evaluate every possible task
allocation.

4.1 Allocation parameter (AP)

For a new primary pri to be allocated on processor j,
AP[pri, pj, ft(pri)] of each possible allocation (possible
ft(pri)) is defined as follows:

()

()

()

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

≤<

⋅⋅
−

−
−

=⋅
−

−

=⎥⎦
⎤

⎢⎣
⎡

g.overloadin
,mn for

c

t
m

n
rd
prftd

goverloadinnon

,n for
mrd

prftd

prft,p,prAP

cascade
i

overloadcascade

ii

ii

cascade
ii

ii

iji

1

11

 (1)

and AP(pri, pj) is defined as:

() .prft,p,prAPmaxp,prAP ijiji
⎭
⎬
⎫

⎩
⎨
⎧

⎥⎦
⎤

⎢⎣
⎡=⎟

⎠
⎞⎜

⎝
⎛ (2)

9797

Authorized licensed use limited to: Japan Advanced Institute of Science and Tech. Downloaded on October 24, 2008 at 04:28 from IEEE Xplore. Restrictions apply.

For a new backup bki to be allocated on processor j,
AP[bki, pj, st(bki)] of each possible allocation (possible
st(bki)) is defined as follows:

()[]

()

()

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

≤<

⋅⋅
−

−
−

=⋅
−

−

=

g.overloadin
,mn for

c
t

m
n

rd
rbkst

g,overloadinnon

,n for
mrd

rbkst

bkst,p,bkAP

cascade
i

overloadcascade

ii

ii

cascade
ii

ii

iji

1

11

 (3)

and AP(bki, pj) is defined as:

() .bkst,p,bkAPmaxp,bkAP ijiji
⎭
⎬
⎫

⎩
⎨
⎧

⎥⎦
⎤

⎢⎣
⎡=⎟

⎠
⎞⎜

⎝
⎛ (4)

Thus, we define the allocation parameter for a new
task:

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

≤≤⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞⎜

⎝
⎛

≤≤⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞⎜

⎝
⎛

=

 . scheduledbe to is backup a when

 ,m j for p,bkAPmax

, scheduledbe to isprimary a when

 ,m j for p,prAPmax

AP

ji

ji

1

1

 (5)

Since we have
()

10 <
−

−
<

ii

ii
rd

rbkst , (6)

()
10 <

−
−

<
ii

ii
rd
prftd , (7)

10 ≤<
m

ncascade , (8)

and 10 ≤<
i

goverloadin

c
t

, (9)

the value of AP is between 0 and 1.
Because of the deallocation of backups, the larger the

distance between a primary and its backup, the smaller
influence of backups on task rejection is. The primary is
scheduled as early as possible that is st(pri) tries to be
closer to ri; the backup is scheduled as late as possible that
is ft(bki) tries to be closer to di, i.e., Eq.6 and Eq.7. In order
to decrease rejection ratio, an overloading task set is
scheduled to contain as many tasks as possible, and the
time slot occupied by an overloading task set is scheduled
as short as possible. Thus, the larger ncascade and toverload, the
better schedulability is. Eq.8 and Eq.9 can represent these.

4.2 Validity checking and overloading constraints

The validity checking consists of all constraints
mentioned in Section 3.4 and the following overloading
constraints.
1. Backups can be overloaded on any task. Primaries can

be overloaded only on backups.
2. If a primary pri is overloaded on a backup bkj, st(pri)

must be later than ft(prj).
3. A new task can only be overloaded on one task set.
4. If the number of processors is m, the maximum Ls is

m-1.
5. The maximum Lt is equal to or larger than max(di-ri)

and much less than MTBF.
6. A single PB-overloading chain should be opened but

looped, that is the task sets of a chain can not exist on
the same processor (a PB chain can also be looked as a
chain of overloading task sets, see Definition 6). A
looped chain has been shown in Figure 1.

4.3 Scheduling algorithms

In our scheduling algorithm, a new task Ti will be
scheduled on its arrival, i.e., FCFS. The APs of both the
primary and the backup of a new task are calculated, and
the primary and the backup of this task are scheduled to
the corresponding allocations. It is possible that a
processor has the same AP value with the other one. If two
same AP values exist, the processor on which the task can
achieve larger ncascade is selected. If the two ncascade are still
identical, the processor on which the task can achieve
larger toverload is selected. If they are also identical, then a
processor will be selected randomly. For the task, which
can not be allocated by the chief scheduling algorithm, the
rescheduling algorithm will try to move the previously
scheduled tasks and find available time slots. If a task still
can not find its available allocation, it will be rejected.
Before scheduling a task, the validity checking is
performed to guarantee the validity of allocation.
4.3.1 Chief scheduling algorithm
1. On a new task arrival

1) Within [ri, di], on each processor, if the AP of the
primary pri and the AP of the backup bki for the new
task Ti exist and pass the validity checking,

i.schedule pri and bki to the corresponding locations.
ii. set Wins(pri) and Wins(bki), and if the new task is

overloaded on a previously scheduled task set τ,
update Wins(τ).

2) If any one AP does not exist,
i.call rescheduling algorithm

ii. if both the AP of pri and the AP of bki exist after the
rescheduling and pass the validity checking,

a. pri and bki are scheduled,
b. set Wins(pri) and Wins(bki), and if the new task
is overloaded on a previously scheduled task set τ,
update Wins(τ).

iii.if the AP of pri or the AP of bki does not exist after
rescheduling, or any one of them can not pass the
validity checking,

9898

Authorized licensed use limited to: Japan Advanced Institute of Science and Tech. Downloaded on October 24, 2008 at 04:28 from IEEE Xplore. Restrictions apply.

a. reject the task Ti.
2. Set and update shift window

1) If the task Ti is not overloaded on any other tasks,
i.if the task is a primary pri,

a. () () () ()iiiiis prftbkst,rprstprWin −−= .

ii. if the task is a backup bki,

a. () () () ()iiiiis bkftd,prftbkstbkWin −−= .

iii.the size of overloading task set is 1 for each task
and the shift window of each task set is the same as
that of this task.

2) If the task is overloaded on an overloading task set τ,
and Wins(τ) is <back, for>

i.if the task is a primary pri,

.for.prWinfor.Win

,for.Win,prftbkstminfor.prWin

,back.prWinback.Win

,back.Win,rprstminback.prWin

iss

siiis

iss

siiis

⎟
⎠
⎞⎜

⎝
⎛=⎟

⎠
⎞⎜

⎝
⎛

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛−⎟

⎠
⎞⎜

⎝
⎛=⎟

⎠
⎞⎜

⎝
⎛

⎟
⎠
⎞⎜

⎝
⎛=⎟

⎠
⎞⎜

⎝
⎛

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞⎜

⎝
⎛−⎟

⎠
⎞⎜

⎝
⎛=⎟

⎠
⎞⎜

⎝
⎛

τ

τ

τ

τ

ii. if the task is a backup bki;

.for.bkWinfor.Win

,for.Win,bkftdminfor.bkWin

,back.bkWinback.Win

,back.Win,prftbkstminback.bkWin

iss

siiis

iss

siiis

⎟
⎠
⎞⎜

⎝
⎛=⎟

⎠
⎞⎜

⎝
⎛

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛−=⎟

⎠
⎞⎜

⎝
⎛

⎟
⎠
⎞⎜

⎝
⎛=⎟

⎠
⎞⎜

⎝
⎛

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛−⎟

⎠
⎞⎜

⎝
⎛=⎟

⎠
⎞⎜

⎝
⎛

τ

τ

τ

τ

iii.update the shift window of the other task in τ.
4.3.2 Rescheduling algorithm

In the rescheduling algorithm, an overloading task set
is moved as a whole. After the rescheduling, the
relationship of the overloaded tasks can not be changed.
1. Re-scheduling

1) Ti is the task to be scheduled; τj is a previously
scheduled overloading task set between ri and di. τj can
include one or more tasks. The Wins(τj) is <backj, forj>.
The number of all τj is s, that is sj ≤≤1 .
2) If ijj cforback <+ +1 , then enlarge properly the
interval between two neighboring task sets τj and τj+1 by
moving them backward and forward respectively to find
a time slot for Ti. (If st(τ1) is less than ri, or ft(τ s) is
larger than di , then move τ1, τs both forward or
backward to find an available time slot.)

3) If a time slot is available, calculate AP(pri, pj) of this
processor.
4) repeat 1) to 3) on each processor for all τj and τj+1.
5) If AP exists, then return AP. Otherwise, reject Ti.

2. Moving
1) If try to move the overloading task set τj forward and
the forward time is t.

i.if ⎟
⎠
⎞⎜

⎝
⎛≥+⎟

⎠
⎞⎜

⎝
⎛

+1jjs stt .forWin ττ , iteratively move τj+1

forward with the forward time

⎟
⎠
⎞⎜

⎝
⎛−+⎟

⎠
⎞⎜

⎝
⎛= +1jjs stt .forWint ττ ,

ii. if ⎟
⎠
⎞⎜

⎝
⎛<+⎟

⎠
⎞⎜

⎝
⎛

+1jjs stt .forWin ττ , the moving forward is

successful. Otherwise the moving is failed.
2) If try to move the overloading task set τj backward
and the backward time is t.

i. if ⎟
⎠
⎞⎜

⎝
⎛≤−⎟

⎠
⎞⎜

⎝
⎛

−1jjs ftt .backWin ττ , iteratively move τj-1

backward with the backward time

t.backWinftt jsj +⎟
⎠
⎞⎜

⎝
⎛−⎟

⎠
⎞⎜

⎝
⎛= − ττ 1 ,

ii. if ⎟
⎠
⎞⎜

⎝
⎛>−⎟

⎠
⎞⎜

⎝
⎛

−1jjs ftt .backWin ττ , the moving is

successful. Otherwise, the moving is failed.
3) If the moving is successful eventually, change the
previous schedule. Otherwise, keep the previous
schedule and return.

4.4. Examples

Figure 5: An example of the scheduling with AP.

Example 1.
T1, T2, T3, and T4, are previously scheduled tasks. Now,

T5 is going to be scheduled. After T5 is scheduled, the
schedule is shown in Figure 5. c5 is 1. r5 is 1.5. d5 is 4. All
the other values follow the scale in the figure. The primary
pr5 can be scheduled on Processor 1 and Processor 2 and
has three candidate locations, on Processor 1 within the
time 1.5 to 2.5 (A:pr5), on Processor 2 within the time 1.75

9999

Authorized licensed use limited to: Japan Advanced Institute of Science and Tech. Downloaded on October 24, 2008 at 04:28 from IEEE Xplore. Restrictions apply.

to 2.75 (B: pr5), and on Processor 2 within the time 1.5 to
2.5(pr5). pr5 can not be scheduled on Processor 2 within
the time 2 to 3 because of the overloading constraint 3. The
three results of Eq.1 are

40
1
1

3
252

250
1
750

3
2752

20
3
152

25

25

15

.
1.5-4
2.5-4 .,,pprAP

..
1.5-4
2.75-4 .,,pprAP

.
1.5-4
2.5-4 .,,pprAP

=××=⎟
⎠
⎞

⎜
⎝
⎛

=××=⎟
⎠
⎞

⎜
⎝
⎛

=×=⎟
⎠
⎞

⎜
⎝
⎛

.

Thus AP of pr5 is 0.4, and pr5 is finally scheduled to
Processor 2 with its finish time 2.5.
Example 2.

Figure 6: Examples of task set and shift window.
The task set and the change of shift window when a

new task T2 is allocated are shown in Figure 6. In the
case of A, before T2 is scheduled, the shift window of pr1 is
<0, 0.75> and the shift window of bk1 is <0.75, 0>. After
T2 is scheduled, bk1 and bk2 form an overloading task set
and have the same shift window. The shift window of bk1
and bk2 is also same with the shift window of the task set,
which is <0.5, 0>. In the case of B, pr2 and bk1 form the
task set. Before overloading, the shift window of bk1 is
<0.5, 0>. After overloading, the shift window of bk1 is <0,
0>. The more overloading, the smaller the shift window is.
Example 3.

Figure 7: An example of the rescheduling.

An example of the rescheduling is shown in Figure 7.
Because of the task deallocation, there exists an empty
time slot before pr2. This is reasonable because the
deallocated task in front of pr2 might be a backup which is
the tail of a PB chain with the maximum length or a task
whose actual computation time is much less than its worst
case computation time, so in the previous schedule pr2 can

not be overloaded on this empty time slot. The newly
arriving task is T7. The pr7 can not be scheduled without
the rescheduling. The ready time, deadline, and the shift
window are displayed in the figure. The rescheduling is the
only choice for pr7. Therefore, pr2 is moved to the time slot
from 0 to 0.5 and pr7 is scheduled to the time slot from 0.5
to 1. bk7 has many choices for its allocation.

5. Analysis of the algorithm

In the proposed scheduling algorithm, the main work is
to search the best valid AP. Hence, the time complexity of
our scheduling algorithm is the complexity of searching
AP for a new pri and its bki. The worst case of searching
AP for a new task is
1. to search on all processors and fail to find a valid AP in

the chief scheduling algorithm, then to move the
previously scheduled tasks on each processor and find
a valid AP for pri.

2. to search on all processors and fail to find a valid AP in
the chief scheduling algorithm, then to move the
previously scheduled tasks on each processor and find
no valid AP or only one AP for bki.

The search operation in the chief scheduling algorithm
always takes less time than that in rescheduling algorithm,
since in the worst case the search operation in the chief
scheduling algorithm only need to check if there are
previously scheduled task sets which can be overloaded
and the intervals between task sets are large enough to
contain the new task.

Let m denote the number of processors. Let N denote
the average number of previously scheduled task sets on a
processor. The worst case computation time follows
uniform distribution within [Min_c, Max_c]. Let l denote
task laxity. For task i, we have

iiii clrd ⋅=− .
In this paper, l follows uniform distribution within [lmin,
lmax]. Because tasks are always scheduled to overload with
each other tightly, we assume the time slot occupied by a
task set is approximately same with a time slot occupied by
a task. Thus, the maximum N can be represented as

cMaxcMin
cMaxlcMinl

N
__

__ maxmin
max +

⋅+⋅
= .

We assume in the worst case the N previously scheduled
task sets distribute within [ri, di] of the new task Ti as in
Fig. 8.

Figure 8. Previously scheduled tasks on a processor.

When the rescheduling algorithm is invoked, it means
the search operation in the chief scheduling algorithm is
failed. In the worst case, the primary will search all m

100100

Authorized licensed use limited to: Japan Advanced Institute of Science and Tech. Downloaded on October 24, 2008 at 04:28 from IEEE Xplore. Restrictions apply.

processors and the backup will search m-1 processors
because of the constraint 2. A version of a new task will be
inserted into the intervals between τi in Figure 8. For a new
primary the number of intervals is N, since the last interval
after τn can not be used by a primary (if a primary is
inserted into this interval its backup can not be scheduled
for constraint 3). It is similar for a new backup that only
the last N intervals can be used except the first one. Only if
the rescheduling algorithm finds a valid AP for the new
primary and a valid AP for its backup successfully, the
previous schedules, only on one processor, will be changed.
For an available time interval, the moving operation only
need to check if this time interval can be enlarged to
contain the new task according to the shift windows of
those previous task sets. Since the shift windows are
known in advance, we assume this operation only take one
unite time.

Finally, we represent the time cost for rescheduling a
new primary on m processor as mN ⋅ , and the time cost for
rescheduling a new backup on m-1 processor as

()1−⋅ mN .The time complexity of proposed task scheduling
algorithm is

()⎥⎦
⎤

⎢⎣
⎡ −⋅⋅ 12 mmNO .

6. Simulation studies

To evaluate our task scheduling presented above, we
have performed a series of simulations. We use the
performance metric, Task Rejection Ratio [4, 12], to
evaluate the experimental results. Rejection Ratio (RR) is
defined to be the ratio of the number of tasks rejected to
the total number of tasks that arrive at the system.

arrivedtasksofnumberthe
rejectedtasksofnumbertheRR

= (10)

The parameters used in our simulations are summarized
in Table 1.

Table 1: Parameters of simulations
Parameter Description Value
n number of tasks 10000
m number of processors 2,3,…,10
l task laxity 3,4,…,10
Max_c maximum computation time of tasks 100s
Min_c minimum computation time of tasks 20s
ac_ratio ratio of the actual to the worst case

computation time
0.5~1

load task load 0.5,0.6,…,1

Some parameters are generated as follows:
♦ ci is a random number following uniform distribution

between Max_c and Min_c.
♦ aci is the multiple of ci and ac_ratio which follows

uniform distribution.
♦ The deadline of a task Ti is uniformly chosen

between ri + 2·ci and ri + l·c. ri = ai + δ. δ is a
random number between 1s and 10s.

♦ The time interval of faults follows exponential
distribution with the mean (MTBF). The minimum
value is 2l·Max_c.

♦ The interval between task arrivals follows
exponential distribution.

♦ The task load is defined as the expected number of
task arrivals per mean service time and its value is
approximately equal to the ratio of the mean
computation time of tasks to the mean time interval
of task arrivals.

According to the introduction of Section 2, we compare
our task scheduling algorithm with the algorithms in [4]
and [8], which are named SG and RA. Because
PB-overloading and BB-overloading exist in two
algorithms in [8], RA includes RAPB and RABB. In order
to make a fair comparison, all algorithms will share the
parameter setting with our algorithm and the parameter
weight in [4] is set to be 0. Our task scheduling approach
with the rescheduling algorithm is denoted as OR. The
rescheduling algorithm can be reduced in our task
scheduling approach, and this reduced algorithm is denoted
as ONR.

Figure 9: The relationship between RR and m.

(l = 5, ac_ratio = 0.5, load = 0.5)

Figure 10: The relationship between RR and l.

(m = 5, ac_ratio = 0.5, load = 0.5)
The effect of varying the number of processors on RR

is shown in Figure 9. As the increase of the number of
processors, RR decreases and tends to be close to 0. This is
a commonness of most scheduling algorithms. The larger
task laxity leads to the more flexible allocation of tasks.
Hence, the larger task laxity, the smaller RR is. This effect
is shown in Figure 10. In Figure 11, RR increases as task

101101

Authorized licensed use limited to: Japan Advanced Institute of Science and Tech. Downloaded on October 24, 2008 at 04:28 from IEEE Xplore. Restrictions apply.

load does. OR and ONR have the lower RR due to the
higher processor utilization. The rescheduling can help to
squeeze more empty time slots from the previous schedule,
so OR is better than ONR.

Figure 11: The relationship between RR and load.

(m = 5, ac_ratio = 0.5, l = 0.5)
The maximum time length of PB chain is affected by

MTBF. Moreover, when a fault happens, the scheduler will
not schedule tasks to the failed processor. Thus, MTBF has
the effect on RR. Under different task load, the effect is
different. The effect of MTBF and load is shown in Figure
12. Whether OR can find and squeeze more empty time
slot or not is affected by ac_ratio. The effect is shown in
Figure 13.

Figure 12: Effect of MTBF and load.

(m = 5, ac_ratio = 0.5, l = 5)

Figure 13: RR and different ac_ratio. (m = 5, l = 5)

7 Conclusion

In this paper, we have proposed a fault tolerant
dynamic real-time task scheduling approach, which is
based on the Primary-backup fault tolerant technique. The
overloading technique in this paper is the extension of the
existing ones. The scheduler uses the allocation parameter
to search the proper time slots for a new task, and uses the
rescheduling algorithm to change the previous task
schedule for possible empty time slots by moving
previously scheduled tasks on one processor. The
simulations have shown that our approach is better than the

others. The theoretical analysis of this scheduling approach
is shown in [12].

References

[1]K. Ramamritham, J.A. Stankovic, “Scheduling
algorithms and operating system support for real-time
systems,” Proc. IEEE 82 (1) pp. 55–67, Jan. 1994.

[2]G. Manimaran, C. Siva Ram Murthy, “An efficient
dynamic scheduling algorithm for multiprocessor
real-time systems,” IEEE Trans. Parallel Distributed
Systems 9 (3) pp. 312–319, Mar. 1998.

[3]Ching-Chih Han, Kang G. Shin, and Jian Wu, “A
fault-tolerant scheduling algorithm for real-time
periodic tasks with possible software faults,” IEEE
Trans. Parallel Distributed Systems 52(3) pp. 362–372,
Mar. 2003.

[4]S. Ghosh, R. Melhem, D. Mosse, “Fault-tolerance
through scheduling of aperiodic tasks in hard real-time
multiprocessor systems,” IEEE Trans. Parallel
Distributed Systems 8(3) pp. 272–284, Mar. 1997.

[5]H. Zou, F. Jahanian, “Real-time primary-backup (RTPB)
replication with temporal consistency guarantees,” Proc.
IEEE Intl. Conf. Distributed Computing Systems, 1998.

[6]R. Al-Omari, A.K. Somani, G. Manimaran, “An
adaptive scheme for fault-tolerant scheduling of soft
real-time tasks in multiprocessor systems,” J. Parallel
and Distributed Computing, vol. 65, pp. 595-608, 2005.

[7]G. Manimaran, C. Siva Ram Murthy, “A fault-tolerant
dynamic scheduling algorithm for multiprocessor
real-time systems and its analysis,” IEEE Trans.
Parallel Distributed Systems 9 (11), pp. 1137–1152,
Nov. 1998.

[8]R. Al-Omari, A.K. Somani, G. Manimaran, “Efficient
overloading techniques for primary-backup scheduling
in real-time system,” J. Parallel and Distributed
Computing, vol. 64, pp. 629-648, 2004.

[9]J.A. Stankovic, K. Ramamritham, “The spring kernel: a
new paradigm for real-time operating systems,” ACM
SIGOPS, Oper. Systems Rev. 23 (2), pp.77–83, Jan.
1995.

[10]Y. Oh and S. H. Son, “Scheduling real-time tasks for
dependability,” J. Operation Reserch Society, 48(6) pp.
629-639, Jun. 1997.

[11]C. Shen, K. Ramamritham, and J.A. Stankovic,
“Resource Reclaiming in Multiprocessor Real-Time
Systems,” IEEE Trans. Parallel and Distributed
Systems, 4(4), pp. 382-397, Apr. 1993.

[12]W. Sun, Y. Zhang, C. Yu, X. Defago and Y. Inoguchi,
“Hybrid Overloading and Stochastic Analysis for
Redundant Scheduling in Real-time Multiprocessor
Systems,” 26th IEEE Int’l Symp. Reliable Distributed
Systems, to appear.

102102

Authorized licensed use limited to: Japan Advanced Institute of Science and Tech. Downloaded on October 24, 2008 at 04:28 from IEEE Xplore. Restrictions apply.

