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Dynamic Task Flow Scheduling for Heterogeneous Distributed
Computing: Algorithm and Strategy*

Wei SUN™®, Yuanyuan ZHANG ', Nonmembers, and Yasushi INOGUCHI' ™", Member

SUMMARY  Heterogeneous distributed computing environments are
well suited to meet the fast increasing computational demands. Task
scheduling is very important for a heterogeneous distributed system to sat-
isfy the large computational demands of applications. The performance
of a scheduler in a heterogeneous distributed system normally has some-
thing to do with the dynamic task flow, that is, the scheduler always suffers
from the heterogeneity of task sizes and the variety of task arrivals. From
the long-term viewpoint it is necessary and possible to improve the perfor-
mance of the scheduler serving the dynamic task flow. In this paper we
propose a task scheduling method including a scheduling strategy which
adapts to the dynamic task flow and a genetic algorithm which can achieve
the short completion time of a batch of tasks. The strategy and the genetic
algorithm work with each other to enhance the scheduler’s efficiency and
performance. We simulated a task flow with enough tasks, the scheduler
with our strategy and algorithm, and the schedulers with other strategies
and algorithms. We also simulated a complex scenario including the vari-
ant arrival rate of tasks and the heterogeneous computational nodes. The
simulation results show that our scheduler achieves much better scheduling
results than the others, in terms of the average waiting time, the average
response time, and the finish time of all tasks.

key words: heterogeneous distributed computing, task scheduling, task
Sflow, genetic algorithm, scheduling strategy

1. Introduction

Heterogeneous distributed computing environments utilize a
distributed suite of different machines, interconnected with
high-speed links, to perform different computationally in-
tensive applications that have diverse computational require-
ments [1],[2]. Scheduling tasks to a set of heterogeneous
machines has been shown to be NP-complete [3]. A good
task scheduler is very important to exploit the true potential
of a heterogeneous distributed system.

The traditional task scheduling for the heterogeneous
distributed computing consists of the scheduling strategy
and the scheduling algorithm. The scheduling algorithms
can be classified into the immediate mode and the batch
mode according to the number of tasks involved in a task
schedule. The immediate mode algorithms allocate one
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task onto a computational node once this task arrives at the
scheduler. The batch mode algorithms allocate a batch of
tasks which are in the task queue of the scheduler. The
scheduling strategy usually calls the scheduling algorithm
to create a schedule. Sometimes the scheduling strategy is
embedded implicitly in the scheduling algorithm, for exam-
ple the immediate mode algorithms themselves imply that
the tasks are allocated one by one, i.e., FCFS. The most
familiar and simplest scheduling strategies are the regular
time interval strategy, which creates a schedule every a reg-
ular time interval, and the fixed count strategy, which creates
a schedule every a fixed count of tasks [4]-[6].

Task scheduling in an applied heterogeneous dis-
tributed computing system means the variant arrival rate
of tasks, the high heterogeneity of tasks, and the durative
scheduling process. Hence the task scheduling is continu-
ous and dynamic. Instead of the static task scheduling, the
scheduler always deals with the dynamic task flow. In view
of the traditional task scheduling and the dynamic task flow,
it is necessary and possible to perform a long-term optimiza-
tion on schedulers. We propose a task scheduling method
which consists of a scheduling strategy, which adapts to the
dynamic task flow, and a genetic algorithm, which balances
the loads of the nodes furthest to shorten the completion
time of a batch of tasks. The performance of our schedul-
ing method has been illustrated briefly in [7], where the task
computation sizes are generated randomly and the task ar-
rival rates are at a few discrete values. For a continuous and
dynamic scheduling process the average response time of
tasks is a good index to evaluate a scheduler. In this paper
the research is involved with the waiting time, the response
time, and the behaviors of different algorithms and strategies
in a complex scenario.

The remainder of this paper is organized as follows: the
abstract model of heterogeneous distributed computing sys-
tem and the problem of scheduling task flow are introduced
in Sect.2. The scheduling strategy is described in Sect. 3.
In Sect. 4 a genetic algorithm is presented. We made a sim-
ulation and performed some experiments, which are docu-
mented in Sect. 5 along with the results. Section 6 reviews
some related work. Section 7 concludes this article.

2. Model and Problem
Normally, a heterogeneous distributed computing system

consists of the local task queues on the computational nodes,
the scheduler, and the scheduler task queue. We present an

Copyright © 2007 The Institute of Electronics, Information and Communication Engineers
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Fig.1  Model of heterogeneous distributed computing system.

abstract model for a heterogeneous distributed computing
system in Fig. 1. The black lines on the left denote tasks.
The intervals between the lines indicate the intervals of task
arrivals. The length of each line denotes the task size.

In the long-term scheduling process the scheduling
strategy and algorithm bear different functions. The
scheduling algorithm takes charge of creating schedules in
which the completion time of all tasks is as short as pos-
sible. In theory the more balanced the workloads are, the
shorter the total tasks completion time is and the more ef-
ficient the system is. For the two main classes of schedul-
ing algorithms, it is commonly believed that the batch mode
can lead to the shorter completion time than the immediate
mode under the precondition that the scheduler can collect
enough tasks, but there is no guarantee for the scheduler
serving a dynamic task flow to collect enough tasks. On the
other hand the immediate mode can approach the same re-
sult of the batch mode or better when the number of tasks
is quite small [4]. The scheduling strategy is used to control
the scheduling algorithm to create schedules. For the irregu-
lar task arrivals the scheduling strategy with the simple timer
or counter can not adapt the scheduler to the dynamic task
flow.

In [4]-[6], [8]-[10], it is assumed that the task compu-
tation sizes can be known or predicted before task schedul-
ing, and the tasks are independent, nonpreemptive and do
not have the real-time requirements. The model and the
assumptions are valid for a heterogeneous computing sys-
tem [4]-[6] or a local resource domain of Grid environ-
ment[11],[12]. Therefore all these assumptions are inher-
ited in this paper. The difference of our work is to consider
the dynamic task flow in the context of task scheduling. The
motivation of our work is to achieve the smaller average re-
sponse time of tasks.

3. Scheduling Strategy

Generally the task flow scheduler fulfills a scheduling pro-
cess after every time interval, called the scheduling cycle. In
every scheduling cycle one or a batch of tasks are allocated
to the computational nodes. We named our scheduling strat-
egy as dynamic scheduling cycle. Some notations to appear
in this paper are listed in Table 1.

In our strategy a new scheduling cycle starts only if
there are almost no tasks ready to be executed in the lo-
cal task queues, so that the length of the scheduling cycle
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Table 1  Notations.
Notation | Definition
N Task set;
all tasks in the scheduler task queue
M Set of computational nodes
|- Size of set
L; Total tasks size at node i
C; Processing capacity of node i
S Computation size of task i
cij The communication cost of task i
to be sent to node j
ri The remaining execution time of
the task currently being processed
by the node i
1 The shortest execution time of the tasks
ready to be processed by nodes
y=min (& + ;). j € [1,M]]
tg Time needed to create a task schedule

I:l Execution I:l Transmission
time time

v

Time

b
W« 7 B2 ] @]

Time

v

Fig.2  The transmission time and execution time of tasks in a node. The
transmission time is in parallel with the execution time, when lot of tasks
are scheduled at the same time (a). In a, the transmission time of task 2,
3, and 4 does not affect their response time. The transmission time and
execution time are in serial, when a few of tasks are scheduled (b). In b,
the response time of each task contain its transmission time.

changes dynamically. Because the arrival rate has a direct
impact on the number of tasks in the scheduler task queue,
and 7 implies when all local task queues are going to be
empty, |N| and #; are used to decide what time to start a
new scheduling cycle and what kind of task scheduling to be
adopted in the dynamic scheduling cycle strategy, instead of
monitoring the arrival rate of tasks and the system load.

If there are enough tasks in the task queue at the be-
ginning of scheduling cycle, we choose the batch mode task
scheduling algorithm in order to obtain the shortest com-
pletion time. Considering higher and higher bandwidth, the
execution time of a task is assumed not less than the trans-
mission time over networks. Moreover, when some tasks are
already being executed on the nodes, the execution of these
tasks happens in parallel with the transmission of other sub-
sequent tasks. In Fig. 2, the transmission time and execution
time of tasks are illustrated. Therefore, we ignore the com-
munication costs in batch mode scheduling. We developed
a genetic algorithm as the batch mode scheduling algorithm,
which is presented in Sect. 4.
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//Scheduling strategy;
1. while(1){
2. update 1, t;
if(t; > 1)
continue;
Jelseif(|N| > 2|M|){//enough tasks;
GA_Scheduling();
Jelseif(IN| = = 0){//empty task queue;
wait for a new task arrival;
Jelse{//a few tasks;
for (i=1; i < |M|; i + +){
find the node j with

“';jf +cij+ 1), j € [1IM];
12. map task i to node j;
}
}

}
Fig.3  Dynamic scheduling cycle strategy.
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If there are only a few tasks in the scheduler task queue
at the beginning of a scheduling cycle, the scheduler im-
mediately sends one task to the computational node where
the task can be finished earliest. In this way the scheduler
allocates these tasks to the computational nodes as soon as
possible and waits for next high tide of task flow. In this mo-
ment, we take the communication costs into account in order
to finish tasks in the shortest time, because the transmission
time will affect the response time greatly which is illustrated
in Fig. 2. In fact this is immediate mode scheduling.

The strategy is shown in Fig. 3. In our strategy when a
node finishes all tasks and is ready to receive new tasks, we
call this node as the ready node and the corresponding time
as the ready time. The time 7, that the scheduler takes to
create a schedule should be decided in the real environment,
so we will introduce an expression of ¢, in our simulation.

4. Genetic Algorithm

A GAT[13],[14] is a biologically inspired search method,
which partially searches for a large individual space, known
as population, and uses historical information to exploit the
best individual from previous searches, known as genera-
tions, along with random mutations to explore new regions
of the population. A GA basically repeats three steps: selec-
tion, crossover, and mutation. The process combined with
initiation and evaluation is shown in Fig. 4. We developed a
genetic algorithm for our task scheduling method to achieve
the shortest completion time of each schedule.

4.1 Encoding and Main Operations

The encoding represents a chromosome of individual, which
is a schedule. A number in the chromosome is a gene, which
represents the corresponding task to be allocated in the node
denoted by this number. The length of chromosome 7 is
equal to |N|, and the number of genes m is equal to |M|. We
use ch to denote a chromosome. ch[i] means the ith gene
of a chromosome. If the value of ch[i] is j, it means that
the ith task is scheduled to the jth node. A chromosome is

IEICE TRANS. INF. & SYST., VOL.E90-D, NO.4 APRIL 2007

//Procedure of Genetic Algorithm;

1. Initiate population;

2. Evaluation;

3. While(stop criteria not met){
Selection operation;
Crossover operation;
Mutation operation;
Evaluation;

}

8. Output the best individual,

Fig.4  Procedure of a basic GA.

N e

task 1 2 3 4 5 e n—1 n

node 2 1 9 m 2 e 7 3

Fig.5 Representation of chromosome.

Initiation() //Initiation Algortihm;
Input: task set N, population set P;
Output: chromosome chy, cha, chs, ..., chp;
{
1. for (i = 1;i <= |P|; i++){
2. Initiate_chromosome (N, ch;);

}
}
Initiate_chromosome ()//Sub-function;
Input: task set Q;
Output: chromosome ch;
{
3. while(Q is not empty){
4. select a subset w from Q randomly;
5

find the fask; in w with
LSty e S+l

mln( i (‘,l[g;k J

chli] = k;

7. remove task; from Q;

}

+r), ke [1|M]];

>

Fig.6 Initiation operation.

illustrated in Fig. 5.

The initiation of population has a straightforward effect
on the convergence time of the GA and the quality of the
result. Our initiation was designed to guide GA to search
more effective individual spaces by avoiding impossible task
allocation. The details of initiation are shown in Fig. 6.

A tournament selection is used in our GA. First, a sub-
set of individuals are selected from the population. Second,
the individual with the smallest fitness value is selected as
one parent. Two tournaments are performed and two indi-
viduals are chosen as the parents. After the selection oper-
ation we use a two-point crossover operation [15] to repro-
duce the child individual.

Usually a mutation operation exchanges two randomly
selected genes. But random selection has a pitfall: if the
values of the two selected genes are identical, then the mu-
tation operation is in vain. We describe this problem with
a numeric matrix shown in Fig.7. Hence we compel the
mutation operation to select two genes with different values.
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Fig.7  Matrix of task allocation. “1” indicates that the task is allocated on
the corresponding node. Only the “1” in different rows can be exchanged.

4.2  Fitness Function

The fitness function creates a fitness value for each individ-
ual, which indicates the quality of the scheduling. For a task
scheduling problem, the ideal result is the absolutely bal-
anced workloads. Any scheduling result can only be close
to the ideal result but never to reach it. We use relative error
as the fitness value. The smaller fitness value implies more
balanced workload. The ideal ready time for all nodes is

N M] M|
s+ 2 L+ B
lideal = M .
i1 Ci

(1

The proof of Eq. (1) is as follows:

Proof. Because t,4.,; means all workloads of computational
nodes are balanced absolutely, the ready time of each node is
identical to the others and also identical to t;4.,;. The ready
time is the sum of the execution time of all new arriving
tasks in the local task queue, the execution time of all tasks
already in the local task queue, and the remaining execution
time of the task currently being processed. For each node
we have the following equations and their transforms:

2eni=1 SitL
nodel : tigeq = %’ +r =
Citideal = Qigprin=1 Si + L1 + r1Cy
chli]=1
Yentin= Si+L
node2 : tigeq = % +1r =

Colideal = Xienpiy=a Si + Lo + 12C2

Zenfiy=my Si+ Ly
Cim|

Cimilidear = eppiy=pn Si + Lisay + nianCiua-
All of the |M| equations are added up, so that we have the
following equation:

M —
tideal Zl:l Cl =

Z‘J}le Deni=j Si + leﬂﬂ Lj+ Z‘zfll(’"lcl)'

node|M| : tigea = + 1y =

Since

leﬂ;ﬂl Dichlil=j Si = Z‘zﬁlll Sis
after moving Z‘/Zl' C; to the right, the proof is completed. So
that Eq. (1) is the expression of #;ge4;.
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Refinery()// The refinery algorithm;

Input: an individual with chromosome ch;
Output: refined individual with chromosome ch’;
{

1. find node j with

max (F T e
2. for(all i with ch[i] = j){
3. for(all k with ch[k]! = j){
4.  copychtoch';
5 exchange ch’[i] with ch’[k];
6. if(ch’.fit < ch.fit) return ch’;

}

}

}

Fig.8 Refinery algorithm.

The real ready time of a node is

Zchipl=k Sp T Lk

oty = = —— 1 @)

Thus our fitness function is

|M|

fir = Z |tidear — tnﬂdeklz' )
k=1

4.3 Refinery Algorithm and Stop Condition

It is possible to decrease the fitness value when a task is
moved from the node with the longest ready time to another
node. We developed a refinery algorithm to refine the in-
dividual produced by the mutation operation. The refinery
algorithm is shown in Fig. 8. The execution time of the re-
finery algorithm is less than O(mn).

After the refinery algorithm, the individual with the
largest fitness value is replaced by a new child individual.
Note that a child individual, whose structure is identical to
any of the individual structures in the population, is not al-
lowed to enter the population. This constraint is helpful for
avoiding a homogeneous population.

The GA will evolve the population until the stop cri-
terion is met. Our stop criterion is to define a boundary
generation number. After that number of generations, for
example 1000, if the best fitness value of every generation
is invariable or oscillates in a small range, the GA stops and
outputs the best individual, i.e., the best schedule.

5. Simulation Study

A discrete event simulation was built for testing and evalu-
ation. We used the toolkit[16],[17] to simulate machines,
schedulers, network, and collect the statistical data. Ten
computational nodes with different processing abilities were
also simulated. The communication costs of the tasks follow
the Uniform distribution with the mean 20 s. The task sizes
follow a real workload trace from [18]. The arrival rate of
tasks follow the Logarithmic distribution. Figure 9 is the
distribution of 10000 task sizes and Fig. 10 is the number of
new task arrivals every 100s.
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Fig.10  Task arrivals distribution.

In all experiments the population size is 80. For any
NPC problem, GA requires no more than exponential time
to produce the result, if the MCL (Minimum Chromosome
Length) growth rate is no more than linear [19]. The execu-
tion time 7, of creating a schedule by our genetic algorithm is
estimated by the following conservative estimate equation.

NI
1580

The error of this estimate equation is less than 10% in the
worst case.

t, = 40 exp — 40. 4)

5.1 Scheduling Algorithm Comparison

Our genetic algorithm is designed to shorten the comple-
tion time of a batch of tasks. We choose the MaxMin, Min-
Min, Sufferage, and GA [6] to compare with our genetic al-
gorithm.

In this experiment all algorithms deal with the first
5000 tasks in Fig. 9, and all 5000 tasks are in only one batch
for all algorithms. The results are shown in Fig. 11.

In fact there are many task scheduling algorithms for
heterogeneous distributed computing. According to the re-
sults in [4], MaxMin and MinMin are sensitive to the task
size distribution, and Safferage is the compromise between

IEICE TRANS. INF. & SYST., VOL.E90-D, NO.4 APRIL 2007

1x10°

9x10°
8x10°
7x10°
6x10° H I H I
5x10°

MaxMin MinMin Safferage GA[7] Our GA

Completion Time of All Tasks

Fig.11  Comparison of scheduling algorithms.

Table 2 Schedulers.
Scheduler Strategy Algorithm
Ours Dynamic scheduling cycle | Our GA
MM_Time Regular time interval MinMin
MM _Count | Fixed Count MinMin
MCT FCFS MCT

MaxMin and MinMin. GA can always achieve the best
scheduling result, but its execution time is very long es-
pecially for a large batch of tasks [4]-[6]. In the compar-
isons [6] MinMin was concluded to be the most efficient one
in view of the tradeoff between the goodness of scheduling
result and the execution time. We only show one figure of
the comparison results which demonstrates the advantage of
our genetic algorithm in this static environment, because the
keystone of this paper is to highlight the advantage of the
whole scheduler with our scheduling strategy and genetic
algorithm.

5.2 Schedulers Comparison

We compared our strategy and algorithm with the schedul-
ing algorithm, MinMin, and the most familiar scheduling
strategies, the regular time interval strategy and the fixed
count strategy. Since the immediate mode task schedul-
ing algorithm itself is a scheduling strategy, which has the
fastest response to task arrivals, we also choose MCT algo-
rithm, a good immediate mode algorithm [4]-[6] to compare
with. We built four schedulers with all strategies and algo-
rithms. All schedulers are listed in Table 2.

The 10000 tasks and the variant arrival rate of tasks in
Figs. 9 and 10, form a complex scenario, where the regular
time interval is 20 s and the fixed count is 40. In this com-
plex scenario we focus on the waiting time, the execution
time, and the response time of tasks and their averages. The
waiting time is from the task arriving at the scheduler to the
finish time of this task, which mainly consists of the waiting
time in the scheduler queue and the waiting time in the local
queues. The response time is the sum of waiting time and
execution time. Figure 12 is the total waiting time of each
task and the waiting time in local task queues. Because the
scheduler MCT uses the FCFS strategy, the waiting time in
local task queues of MCT is always approximatively equal
to the total waiting time and the waiting time in the sched-
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uler task queue is always 0. Hence the waiting time in local
task queues of MCT is not shown in Fig. 12. Figure 13 is
the response time and execution time of each task. The av-
erage data are shown in Fig. 14, where it is clear shown that
our scheduler achieves the best average scheduling results
for the dynamic task flow. The average waiting time, the av-
erage execution time, and the average response time of our
scheduler are less than those of the others.

5.3 Discussion

The advantage of our scheduler mainly comes from two as-
pects as follows:

e When many tasks have been waiting in the local task
queue, the new arriving tasks will wait in the scheduler
task queue so that our strategy can collect more tasks
for our genetic algorithm. Because our genetic algo-
rithm can create the schedule with shorter completion
time, so the cumulative effect of many schedules leads
to the whole superiority. Our genetic algorithm is per-
formed in parallel with the execution of tasks on com-
putational nodes, so the long execution time of genetic
algorithm is not a drawback for our scheduler.

e Our scheduler have more opportunities to perform
combinatorial optimization on the tasks waiting in the
scheduler task queue than the tasks waiting in the local
task queues. Our strategy always calls scheduling al-
gorithm to allocate tasks on the best occasions, which
means that our scheduler can accumulate much larger
batch of tasks without any waste of processing capac-

1ty.

The number of tasks in each schedule are shown in
Figs. 15 and 16 for our scheduler and MM _Time. The num-
ber of tasks in each schedule for the fixed count strategy
is always 40, and for FCFS strategy it is always 1. Obvi-
ously the numbers of tasks in the schedules created by our
scheduler are much larger than those created by the other
schedulers, and the frequency of creating schedules is much
smaller. It is due to the large batch size that our genetic
algorithm can perform the scheduling optimization, which
means that the completion time of those large batches of
tasks is short. Thus the subsequent tasks will wait shorter
time. Hence, the average waiting time of all tasks in local
task queues for our scheduler is quite small, and the average
waiting time in scheduler queue is large in Fig. 14. But the
total waiting time is saved so that the average total waiting
time of our scheduler is much smaller.

It is different from our scheduler in Fig. 12 that the
waiting time in local task queues of each task for the other
three schedulers is always very close to the total waiting
time, so for MM_Time and MM_Count the total waiting time
in black is almost covered by the waiting time in local task
queues in grey. The particular behaviors of all schedulers
are depicted in Figs. 12 and 13. Because of the bad adapt-
ability to the dynamic task flow, the other three schedulers’
behaviors look same with each other.
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process for each scheduler. Each group of data is normalized indepen-
dently.
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Fig.16  The number of tasks in each schedule created by MM_Time.

The combinatorial optimization on task scheduling can
shorten the completion time of tasks as a whole, but can not
promise that the execution time, response time, and waiting
time of each task can be optimized. For our scheduler, the
waiting time, the execution time, and the response time of
serval tasks are long. However, the advantages of our sched-
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uler, the short average waiting time, the short average re-
sponse time, the short average execution time, and the short
finish time of all tasks, are at the expense of these several
tasks. Despite the sacrifice of a few of tasks, the average
execution time of all tasks for our scheduler is still a little
shorter.

Note that the simulated environments including the
task sizes distribution and the task arrivals can not abso-
lutely cover all the realities despite our complex scenario
is so close to the real environments. The average arrival rate
of tasks in our simulation is so high that the waiting time of
the tasks in the tail of the task flow is very long. But the
current results have proved and shown the advantage of our
scheduler very well for a busy and crowded system. More-
over the time interval of the regular time interval strategy
and the number of tasks for the fixed count strategy can be
other values. However the schedulers with longer time inter-
val or larger count are obtuse and the schedulers with much
shorter time interval and much smaller count will behave
like the immediate mode scheduler which is shown to per-
form worse than our scheduler.

6. Related Work

Task scheduling in distributed and heterogeneous comput-
ing environments has been a hot topic for many years. Some
excellent scheduling systems have been developed, for ex-
ample Condor [20] and Legion[21]. These systems are
complicated to satisfy diverse requirements of applications.
Most of them have a common key part: decision making,
which schedules tasks according to the known information.
A decision making is a specific scheduling algorithm. Our
work is to develop a task scheduling method with small av-
erage response time of tasks for local computing resources
of heterogeneous distributed computing system under the
given precondition.

Usually different scheduling algorithms are used in a
scheduling system for different tasks. An important class
of scheduling algorithm is the independent task schedul-
ing algorithm, which is usually used to schedule indepen-
dent tasks to a local set of machines. The independent task
mapping techniques have been well summarized and com-
pared in [4]-[6], where the immediate mode scheduling and
the batch mode scheduling were discussed. The immediate
mode scheduling uses the FCFS strategy to deal with the
task one bye one. For the batch mode scheduling the two
basic elements which should be considered by scheduling
strategy are the time and the count of tasks. The regular in-
terval time strategy and fixed count strategy are the simplest
ones [4].

It is an inevitable trend to induct the arrival of tasks
into the research on task scheduling for heterogeneous dis-
tributed computing, for example [22], [23], where the arrival
rate of tasks is a constant and the computational sizes of
tasks are not known in advance. In [10], a strategy named
dynamic batch size is used to estimate the (p + 1)th batch
size after the pth batch has been scheduled. The estimate
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is only based on the running time of creating a schedule,
so this strategy can only achieve a highly efficient scheduler
and can not adapt to the dynamic task flow. In this paper our
research focused on the variant arrival rate and the compu-
tational sizes can be known in advance. Moreover, instead
of directly monitoring the arrival rate of tasks, the number
of tasks in the scheduler task queue is used to influence the
scheduling strategy. The continuous task arrivals are named
task stream in [22], which is named task flow in this paper.

Itis shown that genetic algorithm is an effective method
for task scheduling and can always achieve the shortest com-
pletion time of all tasks [4]-[6]. GA was successfully used
for task scheduling in [8]-[10].

7. Conclusion and Future Work

In this paper we propose a task scheduling method for
heterogeneous distributed computing, which includes a
scheduling strategy named dynamic scheduling cycle and
a genetic algorithm. The scheduling strategy dynamically
calls our genetic algorithm to create task schedules in terms
of the task arrivals measured by the number of tasks in the
scheduler task queue. The genetic algorithm can achieve the
shorter completion time of a batch of tasks. The strategy and
the genetic algorithm work with each other to enhance the
scheduler’s efficiency and performance. According to the
results of simulation our scheduler works well in the simu-
lated environment. In each scheduling cycle our scheduler
can generally achieve advantage over the other schedulers,
and the long-term advantage is obvious.

The average waiting time and average response time of
all tasks are much shorter than those of the other schedulers,
but these advantages are at the expense of several tasks. In
this paper, the advantages of our scheduler are achieved un-
der the precondition that the tasks do not have deadlines,
which is assumed there are no time requirements for tasks
just like many other research. In the future we plan to study
the improvement on the current results considering the tasks
with deadlines.
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