
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
Predict task running time in grid environments

based on CPU load predictions

Author(s) Zhang, Yuanyuan; Sun, Wei; Inoguchi, Yasushi

Citation
Future Generation Computer Systems, 24(6): 489-

497

Issue Date 2008-06

Type Journal Article

Text version author

URL http://hdl.handle.net/10119/7868

Rights

NOTICE: This is the author’s version of a work

accepted for publication by Elsevier. Changes

resulting from the publishing process, including

peer review, editing, corrections, structural

formatting and other quality control mechanisms,

may not be reflected in this document. Changes

may have been made to this work since it was

submitted for publication. A definitive version

was subsequently published in Yuanyuan Zhang, Wei

Sun, Yasushi Inoguchi, Future Generation Computer

Systems, 24(6), 2008, 489-497,

http://dx.doi.org/10.1016/j.future.2007.07.003

Description

Predict task running time in grid environments based on CPU load
predictions

Yuanyuan Zhang a Wei Sun a,∗ Yasushi Inoguchi b

aSchool of Information Science, JAIST, Nomi, Ishikawa, 923-1292 Japan
bCenter of Information Science, JAIST, Nomi, Ishikawa, 923-1292 Japan

Abstract

A good running time prediction of tasks is very helpful and important for job scheduling and resource management
of Grid. In this paper we present a running time predicting method for Grid tasks based on our previous work, which
is a novel CPU load prediction method. In order to eliminate the interference of other factors, such as the memory
accessing, network performance, and fluctuation of CPU processing capacity and so on, we produce a simulation
to test and evaluate our prediction method. In this simulation we use more than 10,000 randomized test cases run
on load traces sampled from 39 different machines. The simulation results are excellent and demonstrate that our
running time prediction of Grid tasks outperforms significantly a widely existing prediction method.

Key words: Grid, task, running time prediction, polynomial fitting, pattern

1. Introduction

Grid computing [6] is a hotspot in recent research
field which derives its name from the analogy with
the electricity grid. A basic and commonly used def-
inition of grid is the internet-based infrastructure
that aggregates geographically distributed and het-
erogeneous resources as an ensemble to solve large-
scale problems.

The information of running time prediction for
tasks in a grid application is very helpful and im-
portant for both job scheduling and resource man-
agement of Grid because most of such work involves
predicting the performance of the tasks on the
prospective resources. Such prediction information
can be derived in two ways: application-oriented

∗ Corresponding author.
Email address: sun-wei@jaist.ac.jp (Wei Sun).

1 This research is conducted as a program for the “21st
Century COE Program” by Ministry of Education, Culture,
Sports, Science and Technology, Japan.

and resource-oriented. For the application-oriented
approaches, they predict the running-time of grid
tasks directly using information about the applica-
tion, such as the running-time of previous similar
tasks; while for the resource-oriented approaches,
they predict the future performance of a resource
such as CPU load and availability at first, using
the available information about the resource, and
then such predictions of resource performance are
used to predict the running time of a task given the
information of the task’s resource requirement.

In this paper what we discuss are the interactive
applications in grid. Each of the short tasks with
deadlines in one of such applications is needed to be
scheduled on one of the available grid resources. If
we could predict the running time of the task on each
of the resources, we can easily select the appropriate
resource. In this paper we introduce a strategy to
predict the running time for computation-intensive
tasks. Our approach is resource-oriented: we predict
the expected task running time based on the predic-

Preprint submitted to Elsevier 1 December 2008

This is the author's version of an article published in Future Generation Computer Systems Volume 24, Issue 6, June 2008, Pages 489-497,
http://dx.doi.org/10.1016/j.future.2007.07.003.

tions of the future performance of the resources. In
detail, such performance parameter is the CPU load
on the resources. The precondition of our task exe-
cution time prediction is the task’s resource require-
ment, which is expressed by the nominal execution
time of the task on an otherwise vacant machine.

Grid computing is a dynamic environment be-
cause users who have competing goals with each
other share resources, resources are upgraded, fail,
join or leave grid system dynamically, and so on.
Also, such dynamicity comes from the fact that ev-
ery grid resource needs to execute its own tasks as
well as tasks from grid applications. Since for appli-
cation scheduling, everything in the system is eval-
uated by its influence on the application, from the
viewpoint of a grid application, all the tasks from
both a grid resource and other grid applications are
“load” on the resource. The grid application can
obtain such load information from grid information
service, and decide how and where to execute their
tasks based on such information [3], [10], [16]. Since
the execution time of a computation-intensive task
on a host is tightly related with the CPU load it ex-
periences while it is run on the host, we can make use
of the information about CPU load to predict the
task running time. If we could predict the load on a
host during the execution of a task, we could predict
easily the execution time of the task on the host.
However, in a grid environment, resource contention
causes host load and availability to vary over time,
and makes the load prediction problem more diffi-
cult. In this paper first we introduce a new CPU load
prediction strategy we proposed, and then we pre-
dict task running time by a mathematic way based
on such CPU load predictions. For the CPU load
prediction, first we introduce a new one-step-ahead
load prediction method, and then we predict multi-
steps-ahead CPU load by repeatedly using the one-
step-ahead prediction strategy. Our one-step-ahead
CPU load prediction strategy is a kind of tendency-
based method. It predicts the one-step-ahead load
based on the increase or decrease tendency of the
historical load data, and uses a 2nd or 3rd order
polynomial fitting method to produce the prediction
value. To make up for the deficiency of polynomial
fitting, we also make prediction based on a search of
previous similar “patterns”.

To implement the running time prediction of tasks
is very difficult to realize in a real environment and
to compare with previous work, so we evaluate the
performance of our strategy in simulation environ-
ment and compare it with an existing method to

eliminate the interference of other factors, such as
the memory accessing, network performance, and
fluctuation of CPU processing capacity and so on.

Our evaluation results on a commonly used load
measurement dataset show that our proposed task
running time prediction strategy consistently out-
performs a task running time prediction approach
which is based on AR(16) linear load prediction
model.

The paper structure is as follows. In Section 2, we
discuss related work. In Section 3, we describe our
CPU load prediction strategy in detail. In Section
4, we introduce the approach to estimate the task
running time making use of the information of the
CPU load predictions. Section 5 describes the eval-
uation results in which our prediction method was
applied to realistic load dataset and compared with
previous work. Finally in Section 6 we conclude the
paper.

2. Related work

As we have introduced before, the approaches
to predict task execution time can be divided into
two categories: resource-oriented and application-
oriented. For the existing running time prediction
strategies, [5], [7], [9], [11], [12] belong to application-
oriented approaches, while [1] is resource-oriented.

Both Smith et al. [12] and Gibbons [7] predict the
running times of parallel applications based upon
the running times of “similar” applications that have
been executed in the past time. Gibbons makes pre-
dictions by examining categories derived from some
templates until a category that can provide a valid
prediction is found. This prediction is then used as
the running time prediction. The novelty of [12] is
that [12] applies search techniques like greedy and
genetic algorithm search techniques to determine
the application characteristics that yield the best
definition of similarity, to partition jobs into cate-
gories within which jobs are judged to be similar.

Downey [5] predicts the running times of parallel
applications by categorizing all applications in the
workload, and it then models the cumulative distri-
bution functions of the running times in each cate-
gory, and finally uses these functions to predict ap-
plication running times.

Schopf and Berman [11] use stochastic values to
parameterize performance models of applications.
They use environment and application character-
istics as parameters, such as bandwidth, available

2

This is the author's version of an article published in Future Generation Computer Systems Volume 24, Issue 6, June 2008, Pages 489-497,
http://dx.doi.org/10.1016/j.future.2007.07.003.

CPU, message size, operation counts, etc, to model
the application performance and provide a predic-
tion of such performance. Model parameters are rep-
resented by stochastic values. They then calculate
running time prediction by using the stochastic val-
ues of the model parameters and the prediction is
represented as a distribution of running times. The
deficiency of their technique is that accurate perfor-
mance models of the applications are required.

Lee and Schopf [9] predict the running time of ap-
plications by using regression methods to establish
the relationship between the actual running times
of the past application run history and the variables
which affect the application running times. Only
some subsets of past history are used and filtering
technique is used to select such subsets.

The difference between our work and the above
papers is that they are application-oriented, while
ours is resource-oriented. Moreover, they predict the
running times of applications with long duration,
while the applications we consider are those inter-
active ones, and what we predict are the running
times of the short compute-bound tasks in the ap-
plications, other than the running times of the ap-
plications themselves.

Dinda [1] predicts the task running times also
based on CPU load predictions, that is, his work
is also resource-oriented. Our work and his use the
same method to calculate the task running time
from load predictions. However, the CPU load pre-
diction strategy used in his work is the AR(16) linear
time series model [4], while we use a different load
prediction strategy we proposed. Moreover, in his
work the predicted task running time is expressed
as a confidence interval given some confidence spec-
ified by the application, while here we predict the
task running time as a point value, other than a con-
fidence interval.

3. CPU load prediction

This section describes our CPU load prediction
strategy. Our approach is to predict the one-step-
ahead load at first, and then predict multi-steps-
ahead load based on such information. In this sec-
tion first we describe the one-step-ahead prediction
method we have proposed [14], and then introduce
the multi-steps-ahead load prediction strategy.
Based on our study on the statistical properties
of host load traces, our one-step-ahead prediction
strategy predicts the load value one step into the

future based on polynomial fitting method and
“similar” patterns.

We use the following notations in the description
of the prediction strategy:

VT : the load value at the Tth measurement.
PT+1: the predicted load value for the (T+1)th

measurement.
N: number of historical data points used for the

prediction of PT+1.

3.1. Polynomial fitting

In scientific experiments, it is often necessary to
disclose the relationship between the independent
variable x and the dependent variable y from a set of
experimentally observed data (xi, yi), i = 0, 1, · · ·.
Such a relationship usually can be approximately
expressed by the function: y = f(x). One method to
produce function f(x) is a Least Squares Polynomial
Fitting, which can be expressed as follows:

Given a discrete sampling of N data points D1,
D2, · · ·, DN with coordinates

Di = (xi, yi) (i = 1, 2, · · · , N), (1)

it is assumed that the value of y can be correlated
to the value of x via an approximate function f with
the expression:

f(x) = Anxn + An−1xn−1 + · · ·+ A1x + A0, (2)

which corresponds to an nth order polynomial ex-
pansion. The expansion coefficients Ai are deter-
mined by least-squares fitting the data points to this
expression. The resulting continuous function may
then be used to estimate the value of y over the entire
x region where the approximation has been applied.

Polynomial models are a great tool for most engi-
neering and manufacturing applications, hence poly-
nomial fitting is sometimes used to estimate and pre-
dict the future data and their direction [8]. In most
modern data analysis tools for example Matlab and
Origin, the polynomial fitting is a basic function. In
the modern computer science polynomial fitting has
become a common approach for signal processing
and data analysis [15].

3.2. One-step-ahead prediction strategy

3.2.1. Prediction based on polynomial fitting.
The existing CPU load prediction methods

mainly use the time series analysis models to predict

3

This is the author's version of an article published in Future Generation Computer Systems Volume 24, Issue 6, June 2008, Pages 489-497,
http://dx.doi.org/10.1016/j.future.2007.07.003.

CPU load [4]. Using polynomial model to predict
CPU load is a new approach in load prediction.
Although it hasn’t been demonstrated obviously, a
method in [16] in fact sometimes uses the first-order
polynomial model to predict CPU load for grid
environment. However, the multi-order polynomial
model hasn’t been used to predict CPU load. In
this research we are going to use the multi-order
polynomial fitting to predict the CPU load.

Our one-step-ahead load prediction strategy is a
kind of tendency-based method because we predict
based on the increase or decrease tendency of sev-
eral previous measurements. The method we use to
predict the increment or decrement for next step
is based on multi-order polynomial fitting method.
To determine the order of the polynomial function,
we have studied the regulation that the CPU load
traces vary. From our observations we found that
2nd or 3rd order polynomial fitting achieves much
better (and the best) fitting effect than the 1st or-
der (linear) fitting does when the load trace varies
smoothly and monotonously; therefore in our pre-
diction we try both 2nd and 3rd order polynomial
fitting and choose the one that is closer to the current
data as the predicted value for the next load mea-
surement. In detail, when the last 3(VT−2, VT−1, VT)
or 4(VT−3, VT−2, VT−1, VT) load measurements in-
crease or decrease monotonously, we use these mea-
surements to produce a 2nd or 3rd order polynomial
fitting function and then use the function value at
the next time point as PT+1.

3.2.2. Prediction based on similar patterns.
The polynomial fitting prediction method

achieves satisfying prediction effect when load traces
vary smoothly and monotonously, however, such
fitting does not work well for predicting a “turning
point”, the time when a time series changes its “di-
rection”, (that is, the point at which a time series
begins to decrease after a number of successive in-
creases, or starts to increase after some successive
decreases), or when a “turning point” is used as
one data point to fit the polynomial function. We
also found that usually the load value at a turn-
ing point changes acutely, and therefore tendency-
based strategy with polynomial fitting method will
produce large prediction error for such cases.

To deal with this problem, we predict the load
value at a possible turning point based on the infor-
mation of previous similar “patterns”. Our observa-
tion of the load traces shows that there are many

0 10 20 30 40 50 60 70 80 90 100
1.1

1.2

1.3

1.4

1.5

CP
U L

oa
d

Measurement

Fig. 1. Similar “patterns” in the load traces.

successive and similar “patterns” occurring in the
time series. As shown in Fig. 1, such a pattern occurs
repeatedly: the time series decreases successively for
several times and then one turning point happens;
after this turning point the series decreases succes-
sively again, and after several times another turning
point happens. We call the successive increases or
decreases between two neighboring turning points a
“pattern”, and two patterns with same number of
data points are thought to be “similar”. Because of
this observation, we can predict the value of a possi-
ble turning point based on the previous similar pat-
tern: if the point to be predicted comes after several
(at least 3) successive decreases (the first point of
these successive decreases is a turning point), while
same number of successive decreases can be seen be-
fore this series of decreasing points, then we assume
that the current point to be predicted is quite pos-
sibly a turning point and these two successively de-
creasing series are similar “patterns”, so we use the
value of last turning point as the prediction value.
If we can’t find such similar pattern we will still use
the polynomial fitting method to predict this point.

For the prediction of a point following a turning
point or two steps after a turning point, a poly-
nomial fitting based prediction will also result in a
large error because its prediction involves the use
of the turning point, so we predict such points also
based on similar patterns: we use the increment for
the point after the previous turning point (or ac-
cordingly two steps after last turning point) as the
increment for this point.

To predict a point after several (at least 3) succes-
sive increases, if we can find a successively increasing
pattern immediately before this series of increasing
points, we will use the information of this pattern to
judge if current point is a turning point or not and
then predict: if the number of points in this pattern
has arrived at the same number of the last pattern,
then we think that next point will be a turning point
and use the measurement of last turning point as

4

This is the author's version of an article published in Future Generation Computer Systems Volume 24, Issue 6, June 2008, Pages 489-497,
http://dx.doi.org/10.1016/j.future.2007.07.003.

PT+1; if the number here is less than that of last
pattern, then we use polynomial fitting to predict
next value; if we can’t find a successively increasing
series we will predict using a “conservative” strat-
egy: we use VT as PT+1.

For the other cases we also choose a conservative
prediction strategy that sets the increment (decre-
ment) between VT and PT+1 at 0.

3.3. Multi-steps-ahead prediction strategy

The prediction of multi-steps-ahead CPU load
based on the above one-step-ahead load prediction
strategy is as follows: we predict the multi-steps-
ahead CPU load by using the one-step-ahead pre-
diction repeatedly, that is, when we predict the
ith-step-ahead load PT+i (i > 0), we predict PT+1,
PT+2, · · ·, PT+i−1 one by one using the one-step-
ahead prediction strategy, then we use the historical
load trace and all the predicted load values before
PT+i to predict PT+i, using the one-step-ahead
prediction strategy.

4. Task running time prediction

4.1. Continuous-time task running time prediction

Task running time prediction is the problem that
given the nominal running time tnom, the execution
time of a task on an unloaded machine, and the CPU
load prediction history on a host, to predict the ex-
pected execution time of the task on the loaded host,
texp. The algorithm we use to predict the running
time of grid tasks is the one proposed by Dinda [1].

In fact, the expected execution time of a task on
a host is the time when the available CPU time on
the host arrives at the nominal task execution time,
that is, given the available time function at(t) (t >
0), we have:

at(texp) = tnom. (3)

The background of our research is a time shared
environment. Because of this, the load we discuss
here is the number of processes that are running or
ready to run, therefore the available time until time
t, at(t) (t > 0), can be expressed as:

at(t) =
t

1 + al(t)
t > 0. (4)

Here al(t) is the average load function until future
time t, which is the average value of the load signal
V(t),

al(t) =
1
t

t∫

0

V (τ)dτ (t > 0). (5)

V(0) is the current load. The available time de-
creases as the increase of the average load, accord-
ingly the execution time of the task increases.

4.2. Discrete-time task running time estimation

If we can predict the future CPU load V(t), we can
easily calculate the expected task running time using
the above equations, however, since the load history
information we obtain is not a continuous-time sig-
nal, but a discrete approximation of the continuous-
time signal, the future load value we can predict is
also discrete, therefore we need discrete version of
the above equations to make use of the discrete his-
torical load measurements. Suppose the sample in-
terval is ∆, the available time until the ith sample
(the i∆th second) in the future can be expressed as:

ati =
i∆

1 + ali
(i > 0). (6)

Where ali is the average CPU load until the ith
sample, which can be calculated using the following
equation:

ali =
1
i

i∑

j=1

Vt+j (i > 0). (7)

Here Vt+j is the load value at the ith sample in
the future. at(t), the continuous-time signal which
represents the available time until t then can be es-
timated using linear interpolation:

at(t) = atbt/∆c +
t− bt/∆c

∆
(atdt/∆e − atbt/∆c). (8)

4.3. Predict task running time using CPU load
prediction

To use the CPU load prediction strategy we in-
troduce in Section 3 to predict the task running
time, we substitute the predicted load signal PT+j

for VT+j so that we obtain the predicted value for
ali using (7), and then we calculate the predicted
discrete-time available time using (6) and its corre-
sponding continuous-time approximation using (8).

5

This is the author's version of an article published in Future Generation Computer Systems Volume 24, Issue 6, June 2008, Pages 489-497,
http://dx.doi.org/10.1016/j.future.2007.07.003.

5. Simulation evaluations

5.1. Simulation setup

As we have introduced before, we evaluate the per-
formance of our task running time prediction strat-
egy in simulation environment and compare it with
an existing method to eliminate the interference of
other factors. The simulation is run on a worksta-
tion of Sun Blade 1500. We make a simulated predic-
tor which embeds the above load prediction strategy
and the algorithm to calculate task running time us-
ing the load predictions. The load traces we use are
with a variety of statistical properties. In total we
use 39 load traces which are derived from a Unix sys-
tem and were collected by Dinda [17]. The 39 load
traces were sampled from heterogeneous machines
which cover a broad range including interactive ma-
chines, batch machines, compute servers, a testbed,
and desktop workstations. The mean and standard
deviation (SD) of the 39 traces are shown in Fig.
2. The captions of the horizontal axis represent the
names of the traces. From the figure we can see that
the statistical properties of these traces are signifi-
cantly different.

Our simulation process is shown in Fig. 3. The
inputs of the simulation are the data of load trace
and the nominal execution time of a task, which is
chosen randomly between 100 ms and 10 seconds
from a uniform distribution. Given the inputs, the
simulated predictor calculates the number of steps
needed for CPU load prediction, and then it uses
a load prediction strategy to determine these load
prediction values. Such CPU load predictions are
then used by the task running time algorithm to
calculate the expected task execution time, which
is finally outputted to a trace recording the task
running time predictions.

5.2. Evaluation results for multi-steps-ahead CPU
load prediction

Before we evaluate our task running time predic-
tion strategy, we firstly ran some experiments using
the 39 load traces to validate the effectiveness of our
multi-steps-ahead CPU load prediction method be-
cause it is the basis for the task running time pre-
diction. If we can predict the CPU load accurately,
we are sure that we can also provide satisfying task
running time prediction because only some mathe-
matic calculation is needed to obtain the task run-

ning time prediction from CPU load prediction.
The evaluation results for one to five steps ahead

CPU load predictions using our proposed strategy
and AR(16) model are shown respectively in Fig. 4
to Fig. 8. We only show results for one to five steps
because of the limitation of space, and also, because
what we consider are the short tasks. The vertical
axis in each of the figures represents the mean of
prediction errors for a given load trace. The predic-
tion error for a measurement is the ratio between the
absolute value of prediction error (the difference be-
tween a predicted value and the measurement) and
the measurement. The mean of prediction errors is
the average error ratio for the prediction error ratios
of all the data in a time series.

In all of the figures from Fig. 4 to Fig. 8, our pro-
posed CPU load prediction strategy predicts much
more accurately than the AR(16) model. We don’t
show the exact number of reduction ratio of predic-
tion error because the effect is clearly shown in the
figures. For each load prediction strategy and each
load trace, the average prediction error increases
gradually from one step to five steps. This is because
that although as Dinda has studied [14], the CPU
load reveals the characteristic of long-rang depen-
dence, as time lasts, the dependence between load
measurements becomes weaker, therefore it’s more
difficult to predict the load values in the farther fu-
ture.

For each step or in each figure, the average predic-
tion errors on the 39 traces are much different using
any of the two load prediction systems. For exam-
ple, in Fig. 3, the average prediction errors for some
traces such as asclepius and bruce are higher than
16the average prediction errors are even lower than
1%. Compared with Fig. 2, we can see that the ab-
solute values of mean and SD of the load traces cor-
responding to high or low prediction errors can be
large or small, but a more detailed observation tells
us some rule: the load traces with high prediction er-
rors are those whose relative SD, the ratio between
SD and Mean, is high, while the load traces with
small relative SD result in low prediction errors. For
example, both the mean and SD of trace asclepius
are not so high compared with other traces, but its
SD is even larger than its mean. This tells us that no
matter the load on a host is heavy or light, it is more
difficult to predict a host with high dynamicity.

6

This is the author's version of an article published in Future Generation Computer Systems Volume 24, Issue 6, June 2008, Pages 489-497,
http://dx.doi.org/10.1016/j.future.2007.07.003.

0.0
0.2
0.4
0.6
0.8
1.0
1.2

ax
p1

ax
p0

 Mean
 Standard Deviation

sa
ha

ra
th

em
is

ze
no

ur
an

us
ru

bi
x

rh
ea

pr
yo

r
ne

w
ar

k
m

oj
av

e
m

an
ch

es
te

r-
8

m
an

ch
es

te
r-

7
m

an
ch

es
te

r-
6

m
an

ch
es

te
r-

5
m

an
ch

es
te

r-
4

m
an

ch
es

te
r-

3
m

an
ch

es
te

r-
2

m
an

ch
es

te
r-

1
da

rr
yl

ha
w

ai
i

he
st

ia

br
uc

e
co

ba
in

as
bu

ry
ar

gu
s

as
cl

ep
iu

s
ap

hr
od

ite

ax
pf

eb
ax

pf
ea

ax
p1

0
ax

p9
ax

p8
ax

p7

ax
p6

ax
p5

ax
p4

ax
p3

ax
p2

Fig. 2. Mean and standard deviation of the 39 load traces.

Fig. 3. Simulation process of the task running time prediction.

0

4

8

12

16

20
 Our load prediction strategy
 AR(16) model

Pr
ed

ic
tio

n
Er

ro
r(

%
)

ax
p1

ax
p0

sa
ha

ra
th

em
is

ze
no

ur
an

us
ru

bi
x

rh
ea

pr
yo

r
ne

w
ar

k
m

oj
av

e
m

an
ch

es
te

r-
8

m
an

ch
es

te
r-

7
m

an
ch

es
te

r-
6

m
an

ch
es

te
r-

5
m

an
ch

es
te

r-
4

m
an

ch
es

te
r-

3
m

an
ch

es
te

r-
2

m
an

ch
es

te
r-

1
da

rr
yl

ha
w

ai
i

he
st

ia

br
uc

e
co

ba
in

as
bu

ry
ar

gu
s

as
cl

ep
iu

s
ap

hr
od

ite

ax
pf

eb
ax

pf
ea

ax
p1

0
ax

p9
ax

p8
ax

p7

ax
p6

ax
p5

ax
p4

ax
p3

ax
p2

Fig. 4. One-step-ahead load prediction errors on the 39 traces.

0
4
8
12
16
20
24

Pr
ed

ic
tio

n
E

rr
or

(%
)

 Our load prediction strategy
 AR(16) model

ax
p1

ax
p0

sa
ha

ra
th

em
is

ze
no

ur
an

us
ru

bi
x

rh
ea

pr
yo

r
ne

w
ar

k

m
oj

av
e

m
an

ch
es

te
r-

8

m
an

ch
es

te
r-

7
m

an
ch

es
te

r-
6

m
an

ch
es

te
r-

5

m
an

ch
es

te
r-

4
m

an
ch

es
te

r-
3

m
an

ch
es

te
r-

2

m
an

ch
es

te
r-

1

da
rr

yl
ha

w
ai

i
he

st
ia

br
uc

e

co
ba

in
as

bu
ry

ar
gu

s
as

cl
ep

iu
s

ap
hr

od
ite

ax
pf

eb

ax
pf

ea
ax

p1
0

ax
p9

ax
p8

ax
p7

ax
p6

ax
p5

ax
p4

ax
p3

ax
p2

Fig. 5. Two-steps-ahead load prediction errors on the 39 traces.

7

This is the author's version of an article published in Future Generation Computer Systems Volume 24, Issue 6, June 2008, Pages 489-497,
http://dx.doi.org/10.1016/j.future.2007.07.003.

0

8

16

24
 Our load prediction strategy
 AR(16) model

Pr
ed

ic
tio

n
Er

ro
r(

%
)

ax
p1

ax
p0

sa
ha

ra
th

em
is

ze
no

ur
an

us
ru

bi
x

rh
ea

pr
yo

r
ne

w
ar

k
m

oj
av

e
m

an
ch

es
te

r-
8

m
an

ch
es

te
r-

7
m

an
ch

es
te

r-
6

m
an

ch
es

te
r-

5
m

an
ch

es
te

r-
4

m
an

ch
es

te
r-

3
m

an
ch

es
te

r-
2

m
an

ch
es

te
r-

1
da

rr
yl

ha
w

ai
i

he
st

ia

br
uc

e
co

ba
in

as
bu

ry
ar

gu
s

as
cl

ep
iu

s
ap

hr
od

ite

ax
pf

eb
ax

pf
ea

ax
p1

0
ax

p9
ax

p8
ax

p7

ax
p6

ax
p5

ax
p4

ax
p3

ax
p2

Fig. 6. Three-steps-ahead load prediction errors on the 39 traces.

0

10

20

30

Pr
ed

ic
tio

n
Er

ro
r(

%
)

 Our load prediction strategy
 AR(16) model

ax
p1

ax
p0

sa
ha

ra
th

em
is

ze
no

ur
an

us
ru

bi
x

rh
ea

pr
yo

r
ne

w
ar

k
m

oj
av

e
m

an
ch

es
te

r-
8

m
an

ch
es

te
r-

7
m

an
ch

es
te

r-
6

m
an

ch
es

te
r-

5
m

an
ch

es
te

r-
4

m
an

ch
es

te
r-

3
m

an
ch

es
te

r-
2

m
an

ch
es

te
r-

1
da

rr
yl

ha
w

ai
i

he
st

ia

br
uc

e
co

ba
in

as
bu

ry
ar

gu
s

as
cl

ep
iu

s
ap

hr
od

ite

ax
pf

eb
ax

pf
ea

ax
p1

0

ax
p9

ax
p8

ax
p7

ax
p6

ax
p5

ax
p4

ax
p3

ax
p2

Fig. 7. Four-steps-ahead load prediction errors on the 39 traces.

0

10

20

30

Pr
ed

ic
tio

n
Er

ro
r(

%
)

 Our load prediction strategy
 AR(16) model

ax
p1

ax
p0

sa
ha

ra
th

em
is

ze
no

ur
an

us
ru

bi
x

rh
ea

pr
yo

r
ne

w
ar

k
m

oj
av

e
m

an
ch

es
te

r-
8

m
an

ch
es

te
r-

7
m

an
ch

es
te

r-
6

m
an

ch
es

te
r-

5
m

an
ch

es
te

r-
4

m
an

ch
es

te
r-

3
m

an
ch

es
te

r-
2

m
an

ch
es

te
r-

1
da

rr
yl

ha
w

ai
i

he
st

ia

br
uc

e
co

ba
in

as
bu

ry
ar

gu
s

as
cl

ep
iu

s
ap

hr
od

ite

ax
pf

eb
ax

pf
ea

ax
p1

0
ax

p9
ax

p8
ax

p7

ax
p6

ax
p5

ax
p4

ax
p3

ax
p2

Fig. 8. Five-steps-ahead load prediction errors on the 39 trace.

5.3. Evaluation results for task running time
prediction

We compare our task running time prediction
strategy with Dinda’s method which is based on
AR(16) load prediction model. For a given load
trace, we choose a task nominal execution time us-
ing the above method and then use one of our CPU
load prediction strategy and Dinda’s AR(16) model
in the simulated prediction to predict the running
time of the task. Then actual task running time
can be calculated given the load trace. Finally the
prediction error is calculated, which is the value
derived from the absolute prediction error divided

by the actual task running time, while absolute
prediction error is the difference between the actual
time and predicted time. Such process is executed
repeatedly for 300 times for one combination of
load trace, load prediction strategy. After all of the
300 testcases are finished, we calculate the average
prediction error among these 300 testcases for a
load prediction system with a given load trace.

5.3.1. Nominal time independent evaluation of
quality of expected running times.

This part evaluates how well the expected running
time provided by the two running time prediction al-
gorithms predicts the actual running time, encoun-

8

This is the author's version of an article published in Future Generation Computer Systems Volume 24, Issue 6, June 2008, Pages 489-497,
http://dx.doi.org/10.1016/j.future.2007.07.003.

tered when running the task. The simulated predic-
tor is a composite whose errors are due to inaccu-
rate host load predictions as well as modeling errors
in transforming from the host load predictions and
task CPU demand to task running time. We are in-
terested in how this composite performs as a whole.

In total we run 11,400 randomized testcases (300
testcases for each trace) for each prediction strategy
and studied the results. The testcases are random-
ized with respect to their nominal running time (0.1
to 10 seconds). We evaluate the quality of prediction
using average prediction error.

We evaluate the prediction quality of different
traces, load prediction methods (ours and AR(16)),
and nominal running time. The main conclusion is
that our running time predictor does indeed produce
high quality predictions for task running times. The
nature of the effect depends on how heavily loaded
the host is.

The evaluation result is shown in Fig. 9. We can
see that our task running time prediction strategy
based on our load prediction method always outper-
forms the prediction based on AR(16) load predic-
tion model.

5.3.2. Effect of nominal time on quality of predicted
running times.

The performance of the running time prediction
depends on the nominal time of the task, tnom. To
illustrate this dependence, we use the same method-
ology as described in the previous section, but we
classify the results based on tnom. Recall that the
range of tnom is from 0.1 to 10 seconds. In the pre-
vious part, for each testcase we produce a nominal
time randomly from this entire range. In this part,
we divide the range of tnom into three classes: 0.1 to
3 seconds (“small tasks”), 3 to 6 seconds (“medium
tasks”), and 6 to 10 seconds (“large tasks”). Then,
for each of these classes we conduct 300 testcases for
each of the 39 load traces.

Figure 10 to 12 illustrate how the average pre-
diction error value measured for each of the load
traces depends on the nominal time. Here we only
show the result of our prediction strategy because
the running time prediction based on AR(16) model
behaves similarly.

As can be seen from the figures, prediction error
values increase gradually as tasks grow in size. For
small tasks (Figure 10), for all of the traces generally
the average prediction error is lower that when the
task size is uniformly selected between 0.1 and 10,

while for large tasks (Figure 11), usually for each of
the traces the average prediction error is higher than
that when the task size is between 0.1 and 10. The
reason for such phenomenon is that as the task size
grows, we need to predict CPU load longer in the
future. As the increase of average prediction error for
the multi-step-ahead load prediction, the prediction
error of task running time also increases.

6. Conclusion

In this paper we propose a task running time pre-
diction method, which is based on the calculation
from multi-steps-ahead CPU load predictions, and a
simulation by which our prediction method is tested
and evaluated. The simulation uses the real load
traces sampled from 39 different machines and be
designed to purely show the advantage of our pre-
diction method over the other one. The simulation
results prove that our method based on CPU load
prediction is effective, our prediction error is lower
than the other one, and the prediction error of task
running time prediction is much lower than that of
CPU load prediction.

References

[1] P.A. Dinda, “Online Prediction of the Running Time
of Tasks,” Journal of Cluster Computing, vol. 5, no. 3,
pp. 225-236, July 2002.

[2] P. A. Dinda and D. R. O’Hallaron, “The statistical
properties of host load,” Fourth Workshop on
Languages, Compilers, and Run-time Systems for
Scalable Computers (LCR 98), pp. 1-23, 1998.

[3] P.A. Dinda, “A prediction-based real-time scheduling
advisor,” Proc. 16th Int’l Parallel and Distributed
Processing Symp. (IPDPS 2002), pp.1-8, 2002.

[4] P.A. Dinda, D.R. O’Hallaron, “Host load prediction
using linear models,” Cluster Computing, vol. 3, no. 4,
pp. 265-280, 2000.

[5] A. Downey, “Predicting Queue Times on Space-sharing
Parallel Computers,” International Parallel Processing
Symposium, pp. 209-218, Apr. 1997.

[6] I. Foster and C. Kesselman, The Grid: Blueprint for
a New Computing Infrastructure, Morgan Kaufmann
Publishers, San Fransisco, CA, 1999.

[7] R. Gibbons, “A Historical Application Profiler for Use
by Parallel Scheduler,” Lecture Notes on Comput.
Science, vol.1297, Springer, Berlin, pp. 58-75, 1997.

[8] http://www.itl.nist.gov/div898/handbook/

[9] B.D. Lee and J.M. Schopf, “Run-Time Prediction of
Parallel Application on Shared Environment,” Cluster
2003, pp. 1-19, Sep. 2003.

[10] D. Lu, H. Sheng, and P. Dinda, “Size-based scheduling
policies with inaccurate scheduling information,”

9

This is the author's version of an article published in Future Generation Computer Systems Volume 24, Issue 6, June 2008, Pages 489-497,
http://dx.doi.org/10.1016/j.future.2007.07.003.

0.0

2.5

5.0

7.5

10.0

P
re

d
ic

ti
o

n
 E

rr
o

r(
%

)

 Our run-time prediction strategy
 Run-time prediction using AR(16) model

ax
p

1
ax

p
0

sa
h

ar
a

th
em

is
ze

n
o

u
ra

n
u

s
ru

b
ix

rh
ea

p
ry

o
r

n
ew

ar
k

m
o

ja
v

e
m

an
ch

es
te

r-
8

m
an

ch
es

te
r-

7
m

an
ch

es
te

r-
6

m
an

ch
es

te
r-

5
m

an
ch

es
te

r-
4

m
an

ch
es

te
r-

3
m

an
ch

es
te

r-
2

m
an

ch
es

te
r-

1

d
ar

ry
l

h
aw

ai
i

h
es

ti
a

b
ru

ce
co

b
ai

n
as

b
u

ry
ar

g
u

s
as

cl
ep

iu
s

ap
h

ro
d

it
e

ax
p

fe
b

ax
p

fe
a

ax
p

1
0

ax
p

9
ax

p
8

ax
p

7
ax

p
6

ax
p

5

ax
p

4

ax
p

3
ax

p
2

Fig. 9. Running-time prediction errors on the 39 traces.

0

2

4

6

Pr
ed

ic
tio

n
Er

ro
r(%

) Our run-time prediction strategy

ax
p1

ax
p0

sa
ha

ra
th

em
is

ze
no

ur
an

us
ru

bi
x

rh
ea

pr
yo

r
ne

w
ar

k
m

oj
av

e
m

an
ch

es
te

r-8

m
an

ch
es

te
r-7

m
an

ch
es

te
r-6

m
an

ch
es

te
r-5

m
an

ch
es

te
r-4

m
an

ch
es

te
r-3

m
an

ch
es

te
r-2

m
an

ch
es

te
r-1

da
rry

l
ha

w
ai

i
he

sti
a

br
uc

e
co

ba
in

as
bu

ry

ar
gu

s
as

cl
ep

iu
s

ap
hr

od
ite

ax
pf

eb
ax

pf
ea

ax
p1

0
ax

p9
ax

p8
ax

p7
ax

p6
ax

p5
ax

p4

ax
p3

ax
p2

Fig. 10. Effect of nomial time on prediction error, 39 traces. 3 to 6 second tasks.

0
2
4
6
8
10
12

 Our run-time prediction strategy

Pr
ed

ic
tio

n
Er

ro
r(%

)

ax
p1

ax
p0

sa
ha

ra
th

em
is

ze
no

ur
an

us
ru

bi
x

rh
ea

pr
yo

r
ne

w
ar

k
m

oj
av

e
m

an
ch

es
te

r-8

m
an

ch
es

te
r-7

m
an

ch
es

te
r-6

m
an

ch
es

te
r-5

m
an

ch
es

te
r-4

m
an

ch
es

te
r-3

m
an

ch
es

te
r-2

m
an

ch
es

te
r-1

da
rry

l
ha

w
ai

i
he

sti
a

br
uc

e
co

ba
in

as
bu

ry

ar
gu

s
as

cl
ep

iu
s

ap
hr

od
ite

ax
pf

eb
ax

pf
ea

ax
p1

0
ax

p9
ax

p8
ax

p7
ax

p6
ax

p5
ax

p4

ax
p3

ax
p2

Fig. 11. Effect of nomial time on prediction error, 39 traces. 3 to 6 second tasks.

0

4

8

12

16

 Our run-time prediction strategy

Pr
ed

ic
tio

n
Er

ro
r(%

)

ax
p1

ax
p0

sa
ha

ra
th

em
is

ze
no

ur
an

us
ru

bi
x

rh
ea

pr
yo

r
ne

w
ar

k
m

oj
av

e
m

an
ch

es
te

r-8

m
an

ch
es

te
r-7

m
an

ch
es

te
r-6

m
an

ch
es

te
r-5

m
an

ch
es

te
r-4

m
an

ch
es

te
r-3

m
an

ch
es

te
r-2

m
an

ch
es

te
r-1

da
rry

l
ha

w
ai

i
he

sti
a

br
uc

e
co

ba
in

as
bu

ry

ar
gu

s
as

cl
ep

iu
s

ap
hr

od
ite

ax
pf

eb
ax

pf
ea

ax
p1

0
ax

p9
ax

p8
ax

p7
ax

p6
ax

p5
ax

p4

ax
p3

ax
p2

Fig. 12. Effect of nomial time on prediction error, 39 traces. 3 to 6 second tasks.

12th IEEE Int’l Symp. on Modeling, Analysis, and
Simulation of Computer and Telecommunications
Systems(MASCOTS’04), pp. 31-38, 2004.

[11] J. Schopf and F. Berman, “Using Stochastic
Information to Predict Application Behavior on
Contended Resources,” Int’l J. Foundations of
Computer Science, vol. 12, no. 3, pp. 341-363, 2001.

[12] W. Smith, I. Foster, and V. Taylor, “Predicting
Application Run Times with Historical Information,”
Journal of Parallel and Distributed Computing, Vol.64,
No.9, pp. 1007-1016, Sep. 2004.

[13] L. Yang, J.M. Schopf, and I. Foster, “Conservative
scheduling: Using predicted variance to improve
scheduling decisions in dynamic environment,” Proc.
of the ACM/IEEE SC2003 Conf. on High Performance
Networking and Computing, pp.1-16, 2003.

[14] Y. Zhang, W. Sun, and Y. Inoguchi, “CPU Load
Predictions on the Computational Grid,” IEEE, Proc.
in 6th International Conference on Cluster Computing
and the Grid (CCGrid06), pp. 321-326, 2006.

[15] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein,
“Introduction to Algorithms”, Second Edition, The MIT

10

This is the author's version of an article published in Future Generation Computer Systems Volume 24, Issue 6, June 2008, Pages 489-497,
http://dx.doi.org/10.1016/j.future.2007.07.003.

Press, 2001.
[16] L. Yang, I. Foster, and J. Schopf, “Homeostatic and

Tendency-based CPU Load Prediction,” Int’l Parallel
and Distributed Processing Symp. (IPDPS 2003), pp.
42-50, 2003.

[17] http://www.cs.cmu.edu/ pdinda/LoadTraces/

11

This is the author's version of an article published in Future Generation Computer Systems Volume 24, Issue 6, June 2008, Pages 489-497,
http://dx.doi.org/10.1016/j.future.2007.07.003.

