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Abstract. We introduce, and show the equivalences among, relativized
versions of Brouwer’s fan theorem for detachable bars (FAN), weak Konig
lemma with a uniqueness hypothesis (WKL!), and the longest path
lemma with a uniqueness hypothesis (LPL!) in the spirit of constructive
reverse mathematics. We prove that a computable version of minimum
principle: if f is a real valued computable uniformly continuous function
with at most one minimum on {0, l}N, then there exists a computable
ain {0,1}N such that f(a) = inf £({0,1}), is equivalent to some com-
putably relativized version of FAN, WKL! and LPL!.
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1 Introduction

The purpose of constructive reverse mathematics [8] is to classify various theo-
rems in intuitionistic, constructive recursive and classical mathematics by logical
principles, function existence axioms and their combinations. Classifying math-
ematical theorems means finding logical principles and/or function existence
axioms which are not only sufficient but also necessary to prove the theorems in
a weak system. An informal approach [9] to constructive reverse mathematics,
that is reverse mathematics in Bishop’s constructive mathematics [3, 4, 6], seems
to have started in Julian and Richman [11] proving that Brouwer’s fan theorem
for detachable bars is equivalent to a positivity property: every positively valued
uniformly continuous function on [0, 1] has a positive infimum. (See Veldman
[21] and others [16] for a similar program of intuitionistic reverse mathematics.)

Ishihara [7] showed in the context of constructive reverse mathematics that
the statement

MIN: every real valued uniformly continuous function f on a compact metric
space X attains its infimum, that is, there exists an x in X such that f(x) =

inf f(X),
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is equivalent to weak Konig’s lemma
WKL: every infinite binary tree has an infinite path.

(The corresponding result in Friedman-Simpson program of (classical) reverse
mathematics can be found in Simpson [19, IV.2].) Here a binary tree T is an
inhabited subset of the set {0,1}* of finite binary sequences such that it is
detachable in the sense that there exists a characteristic function x7 of T' (and
henceVa € {0,1}*(a € TVa ¢ T), which does not hold constructively in general),
and downward closed with respect to the predecessor relation < defined, using
the concatenation function %, by a < b:= 3c € {0,1}*(a * ¢ = b). A binary tree
T is infinite if for each n there is @ in T with |a| = n, where |a| denotes the
length of a, and a binary sequence o € {0,1}N is an infinite path of T if each

finite initial segment an := (a(0),...,a(n — 1)) of a is in T. (We will use a
similar notation for a finite sequence a = (aq, - .. ,am_1), that is, an stands for
(ag,--- ,an_1) if n <m, and a otherwise.)

A real valued function f on a metric space X has at most one minimum if

Vo,y € X[z #y—3z € X(f(2) < f(2) V f(2) < f(y)]-

Note that if m := inf f(X) exists, the above condition is equivalent to the
following condition in Berger et al. [1]:

Vo,y € X[z #y—m < f(x) Vm < f(y)],

and that the real valued function f : y — d(z,y) on an inhabited subset S of a
metric space (X,d) has at most one minimum if and only if x has at most one
best approximation in S in the sense of Bridges [5] (see also [4, 7.2.11] and [1]).
Berger et al. [1] showed that MIN with the uniqueness hypothesis

MIN!: every real valued uniformly continuous function with at most one mini-
mum on a compact metric space attains its infimum

is equivalent to Brouwer’s fan theorem for detachable bars
FAN: every detachable bar is uniform.

Here a bar B is a subset of {0, 1}* such that for each « in {0,1}N there exists n
with @an € B, and B is uniform if there exists n such that 3k < n(ak € B) for
all @ € {0,1}N. As a corollary of the above results, we can see the implication
from WKL to FAN, which was first proved indirectly in [7], and then directly in
[10].

A binary tree T has at most one path if

Va,B € {0,1}N[a # B —In@n ¢ TV fn & T)).

Berger and Ishihara [2] showed indirectly that the equivalence between FAN and
WKL with the uniqueness hypothesis

WKL!: every infinite binary tree with at most one path has an infinite path.
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A nice direct proof of the equivalence between FAN and WKL! can be found in
Schwichtenberg [18]. Schuster [17] dealt with unique solutions in the context of
constructive reverse mathematics.

In this paper, we introduce relativized versions of FAN, WKL! and the longest
path lemma with the uniqueness hypothesis

LPL!: every binary tree with at most one path has a longest path,

where a longest path of a binary tree T is an infinite binary sequence such that
Va € {0,1}*(a € T > @la| € T), and prove the equivalences among them in the
spirit of constructive reverse mathematics. (Note that the equivalence between
WKL and the longest path lemma

LPL: every binary tree has a longest path

was proved in [10].) Then we show that the following computable version of MIN!
for the Cantor space {0, 1}™:

if [ is o real valued computable uniformly continuous function with at
most one minimum on the Cantor space {0,1}N, then there exists a
computable o in {0,1}N such that f(a) = inf f({0,1}Y)

is equivalent to some (classically true) computably relativized versions of FAN,
WKL!, and LPL!. Note that finding a zero of a real valued function g on {0, 1}N
with inf |g({0,1}N)| = 0 is reducible to MIN, and hence this result is related to
the results in 6.3, especially Corollary 6.3.5, of [22].

2 Relativized versions of FAN, WKL! and LPL!

Let C be a subset of NN, Then o € NN is computable in C if there exist an
index e and 8 € C such that

VYn3z[T (e, B,n,2) NU(z) = a(n)],

where T is Kleene’s T-predicate and U is the result-extracting function in [20,
3.7.6], and « is computable if it is computable in {Az.0}. We say that C is
computably closed if every o € NN computable in C is in C. Let Rec be the
smallest computably closed inhabited subset of {0, 1}N, that is, consisting of all
computable a € {0,1}N.

A subset B of {0,1}N is full if {0,1}* C {an | o € BAn € N}. Note that
every computably closed inhabited subset of {0, 1} is full.

Let B be a full subset of {0,1}N. Then a detachable subset B of {0,1}* is a
bar in B if for each a in B there exists n with an € B. Similarly, we may say a
uniform bar B in B if there exists n such that 3k < n(ak € B) for all a € B.
But, if a bar B is uniform in B, then, since B is full, we have

(¥) InVa € {0,1}*[la] = n— Ik < n(ak € B)].
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Conversely, if (x) holds, then B is uniform in any full subset of {0, 1}N. Therefore,
the notion of the uniformity on bars is independent of an underlying full set, and
so we adopt () as the definition of the uniformity.

Let B and D be subset of {0,1}N such that B is full. Then we have the
following relativized version of Brouwer’s fan theorem for detachable bars.

FANp(B): Every D-bar in B is uniform,

where D-bar is a detachable bar whose characteristic function is in D (here we
assume a coding of finite binary sequences into natural numbers). Similarly, we
will say D-tree for a binary tree whose characteristic function is in D. Note that
Kleene [12,13] showed that FANg..(Rec) is refutable (see also [20, 4.7.6]).

A binary tree T' has at most one path in B if

Va,8 € Bla#B—3In(@n g TV Bn ¢T)).
Similar to FAN, we have the following relativized version of WKL! and LPL!

WKL!p(B): Every infinite D-tree with at most one path in B has an infinite
path in B.
LPL!p(B): Every D-tree with at most one path in B has a longest path in B.

Before discussing relations among FANp (B), WKL!p(B) and LPL!p(B), we
introduce a notion of uniformly having at most one path, which is similar to the
notion of having uniformly at most one minimum introduced in [17] for non-
negative functions; see also [14] and [15, 4.1]. A binary tree T' has uniformly at
most one path if

(x%) VEk3n > kVa,b € {0,1}*[la| = |b| =nAak #bk—=a €T Vb¢gT).

Again, we may define this notion relative to a full subset B of {0,1}N: a binary
tree T has uniformly at most one path in B if

VkIn > kVa, B € Blak # Bk —an ¢ TV Bn ¢ T).

But we can see that if a binary tree T has uniformly at most one path in some

full set, then (xx) holds, and if (xx) holds, then T has uniformly at most one

path in any full set. Hence this notion is independent of an underlying full set.
We show the following proposition in a similar way to [18].

Proposition 1. Let B and D be computably closed inhabited subsets of {0, 1},
and assume FANp(B). Then every D-tree with at most one path in B has uni-
formly at most one path.

Proof. Let T be a D-tree with at most one path in B. Then
Ya, 3 € B3k(ak # Bk)—In(@n ¢ TV Bn ¢ T)],
and hence

VEkVa, 3 € Blak # Bk —In(an ¢ T V Bn &€ T)].
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Therefore, for given k, we have
Va,3 € BIn[ak # Bk —an € TV fn & T),
and so, since T is downward closed, we have
Va, B € Bn > k[@nk # Bnk—an ¢ TV Bn ¢ T).

For a € {0,1}N let E,(n) := a(2n) and O4(n) := a(2n + 1). Then, since B is
computably closed, if a € B, then E,, O, € B, and hence

Va € Ban > k[Eank # Oank — Eqn € TV Oan & T).

For a = (ag,a1,.-. ,an-1) € {0,1}%, let E(a) := (ao,- .. ,a2m-2) and O(a) :=
(a1,-.. ,a23m—1), where m = |n/2]. Note that E,n = E(@(2n)) and O,n
O(a(2n)). Then we have

VYo € Ban > k[E(@(2n))k # O(a(2n))k — E(@(2n)) € TV O(@(2n)) € T.

Let

a € B:=2k < |a|A[E(a)k # O(a)k— E(a) ¢ TV O(a) € T].

Then, since D is computably closed, the characteristic function of B is in D, and
Va € Ban(a(2n) € B), that is B is a bar in B. By FANp(B), there exists m such
that

Va € {0,1}*[|la] = m — 3j < m(aj € B)].

Choose n such that m < 2n. Then, taking 0™ := (0,...,0) with |0™| = m,
there exists j < m such that 0mj € B, and hence 2k < [0™j| = j < m < 2n.
Thus & < n. Let a = (ag,.-. ,an-1) and b = (bg, ... ,b,—1) be in {0,1}* with
@k # bk. Then, setting ¢ := (ag, bo, - - - ,@n_1,bn_1), we have m < 2n = |¢|, and
there exists j with j < m such that émj = ¢j € B. Since 2k < j < m < 2n, we
have E(¢j)k = ak # bk = O(cj)k, and hence either E(¢j) € T or O(¢j) € T. In
the former case, since E(¢j) =< a, we have a ¢ T'. Similarly, in the latter case, we
have b € T. Thus T has uniformly at most one path.

The following proposition shows that a binary tree with uniformly at most
one path has a longest path.

Proposition 2. Let D be a computably closed inhabited subset of {0,1}N. Then
every D-tree with uniformly at most one path has a longest path in D.

Proof. Let T be a D-tree with uniformly at most one path, and define a relation
big(c,n) by

big(c,n) :=Vd € {0,1}*[|[d| =n—c*xd € T).
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Note that the characteristic function of big is computable in D. Then for given
¢ € {0,1}*, since T has uniformly at most one path, there exists n such that

Va,be€ {0,1}la] = b =n—cx(0)xa g TVex(1)xbeg T,

and hence —big(c * (0),n) — big(c * (1),n). Therefore for each ¢ € {0,1}* there
exists n such that big(c * (0),n) V big(c * (1),n), and so the function o defined
by

o(c) := min[big(c * (0),n) V big(c * (1),n)]
is computable in D. Define functions § and 7 by

[ 0if big(c * (1),0(c)),
3(c) == { 1 if =big(c * (1), 0(c)),

and

7(0) == (),
7(n + 1) := 7(n) x§(r(n)).

Then, clearly, § and 7 are computable in D. Let a(n) := §(7(n)). Then a €
{0,1}N is computable in D, and, since D is computably closed, « is in D. Note
that, by induction, an = 7(n).

We prove that « is a longest path of T'. Suppose that an = 7(n) ¢ T. Then
we show that ¥d € {0,1}*(|d| = n—d ¢ T), or big(7(0),n). To this end, we
prove by induction that

Vk < n[big(r(n — k), k)].

If k = 0, then, trivially, big(7(n), 0). Assume that big(7(n—k), k). Then big(r(n—
k—1)xa(n—k—1),k), and hence o(7(n —k — 1)) < k. Either a(n—k—-1) =0
or a(n —k — 1) = 1. In the former case, big(r(n — k — 1) * (0), k) and, since
big(t(n —k —1) % (1),0(r(n — k —1))), we have big(7(n — k —1) = (1), k). Hence
big(7(n — k — 1),k + 1). In the latter case, big(7(n — k — 1) * (1), k), and, since
=big(r(n—k—1)%(1), o (r(n—k—1))), we have big(7(n—k—1)%(0), o(t(n—k—1))).
Therefore big(7(n — k — 1) x (0), k), and so big(7(n —k — 1),k + 1).

We omit proof of the following proposition which is an easy adaptation of
the proof in [2] or [18].

Proposition 3. Let B and D be computably closed inhabited subsets of {0, 1}N.
Then WKL!p(B) implies FANp(B).

The aforementioned propositions culminate in the following theorem.

Theorem 1. Let B and D be computably closed inhabited subsets of {0,1}N
with D C B. Then the following statements are equivalent.
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FANp(B).

Every D-tree with at most one path in B has a longest path in D.

Every infinite D-tree with at most one path in B has an infinite path in D.
LPL!p(B).

WKL!p(B).

Proof. (1) — (2): Assume FANp(B), and let T be a D-tree with at most one
path in B. Then, by Proposition 1, T has uniformly at most one path, and hence
T has a longest path in D, by Proposition 2. (2) — (3) and (4) — (5): Trivial.
(2) = (4) and (3) — (5): By D C B. (5) — (1): By Proposition 3.

AR INCI R

3 A computable version of MIN!

We assume that a real number z is given by a Cauchy sequence (p,,),, of rationals
with a fixed modulus, that is, Vm, n(|pm — pn| < 27™ +27™). For a real number
Z := (Pn)n, we write (), for p,. See [3,4, 6, 20] for more on constructive theory
of the real numbers.

A uniformly continuous function f from the Cantor space {0,1}N to R is
computable if there exists an index e and a computable M € NN such that

Va € {0,1}NVn3z[T (e, o, n, 2) AU(2) = (f())n]
and
ViVa, B € {0, 13N [@M (k) = BM (k) = | () = f(B)| < 27").

We show that the following computable version of MIN! for the Cantor space
{0,1}™:
if f is a real valued computable uniformly continuous function with at

most one minimum on the Cantor space {0,1}N, then there exists a
computable a in {0,1}N such that f(a) = inf f({0,1}Y)

is equivalent to the classically true relativized versions WKL!g..({0,1}N),
FANge.({0,1}Y), and LPL!g..({0,1}N). We start with showing the following
propositions.

Proposition 4. Let T be an infinite Rec-tree with at most one path in {0, 1}N.
Then there exists a real valued computable uniformly continuous function f on
the Cantor space {0, 1} such that if f(a) = inf f({0,1}N), then « is an infinite
path of T.

Proof. Define a real valued function f on the Cantor space {0,1}N by
9 if @n €T,

(F(@))n = { (F(@))n_s if an ¢ T.

Then f is a computable uniformly continuous function with inf f({0,1}N) = 0.
Let a,3 be in {0,1}N with o # B. Then, since T has at most one path in
{0, 1}, there exists n such that an ¢ T or Bn & T, and hence either 0 < f(a)
or 0 < f(B). Thus f has at most one minimum. If f(a) =0, then (f(a)), <27
for all n, and hence an € T for all n.
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Proposition 5. Let f be a real valued computable uniformly continuous func-
tion with at most one minimum on the Cantor space {0,1}N. Then there ezists

an infinite Rec-tree T with at most one path in {0,1}N such that if a is an
infinite path of T, then f(a) = inf £({0,1}N).

Proof. We may assume without loss of generality that inf f({0,1}N) = 0. Let
M € NN be a computable function such that

VkVa, 8 € {0,11N[@M (k) = BM(k) - | f(a) - F(8)] < 27*1.

We may assume further that M is strictly increasing and 0 < M(0). For a €
{0,1}*, we write f(a) for f(a* (Az.0)), where the concatenation is extended to
concatenation of a finite sequence with an infinite sequence. Define a subset T
of {0,1}* by

a €T :=VEk[Mk) <|a|— (f@M (k) < 2710 + 2741,

Then T is a Rec-tree. For given n, choose a € {0,1}N such that f(a) < 277,
and set a := @n. Then, for each k with M (k) < |a| = n, we have

(F@M (k) < f@M(k)) +27% = f(@M(k)) +2°*
< fla) +27F+t < g-lel fg—ktt

and hence a € T. Therefore T is infinite. Let ,3 be in {0,1}N with a # 8.
Since f has at most one minimum, there exists n such that either 5-27" < f(a)
or 5-27" < f(B). In the former case, since n < M(n), we have

(f@Mn)n > f@M(n)) —27" > fa) — 27"+
> 27" 497l > 97 M) 4 gt

and hence @M (n) € T. Similarly, in the latter case, we have BM (n) € T. There-
fore T has at most one path. If « is an infinite path of T', then, for each n, we
have

fla) < f(@M(n)) +27" < (f(@M(n)))n + 27"
< Q™M) 4 9g—n42 < 5.9

and hence f(a) = 0.
The above propositions and Theorem 1 culminate in the following theorem.
Theorem 2. The following statements are equivalent.

1. If f is a real valued computable uniformly continuous function with at most
one minimum on the Cantor space {0,1}N, then there exists a computable
a in {0,1}N such that f(a) = inf £({0,1}N).

2. If f is a real valued computable uniformly continuous function with at most
one minimum on the Cantor space {0,1}N, then there exists a in {0,1}N
such that f(a) = inf £({0,1}N).
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3. WKL!g..({0,1}).
4. LPL!g..({0,1}).
5. FANR..({0,1}™).

Proof. Note that (1) — (2) is trivial. Then, by Theorem 1, it is enough to show
that (2) — (3) and (3) — (1).

(2) — (3): By Proposition 4. (3) — (1): Let f be a real valued computable
uniformly continuous function with at most one minimum on the Cantor space
{0,1}N. Then, by Proposition 5, there exists an infinite Rec-tree T with at
most one path in {0,1}N such that if a is an infinite path of T, then f(a) =
inf £({0,1}Y). By Theorem 1, there exists an infinite path « of T in Rec, that
is computable, and hence f(a) = inf f({0,1}Y).

4 A concluding remark

Let B be a subset in between Rec and {0,1}N, say the set of characteristic
functions of computably enumerable sets. Then, since FANg..(Rec) is refutable
as mentioned before, it is natural to ask whether FANg..(B) is still refutable
or is derivable from FANg..({0,1}N). In the latter case, since it is trivial that
FANEg..(B) implies FANg..({0,1}Y), we could see the equivalence between
FANge.(B) and FANEg,. ({0, 1}I).
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