
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
Context-Sensitive Relevancy Analysis for

Efficient Symbolic Execution

Author(s)
Li, Xin; Shannon, Daryl; Ghosh, Indradeep; Ogawa,

Mizuhito; Rajan, Sreeranga P.; Khurshid, Sarfraz

Citation Lecture Notes in Computer Science, 5356: 36-52

Issue Date 2008

Type Journal Article

Text version author

URL http://hdl.handle.net/10119/7880

Rights

This is the author-created version of Springer,

Xin Li, Daryl Shannon, Indradeep Ghosh, Mizuhito

Ogawa, Sreeranga P. Rajan, and Sarfraz Khurshid,

Lecture Notes in Computer Science, 5356, 2008,

36-52. The original publication is available at

www.springerlink.com,

http://dx.doi.org/10.1007/978-3-540-89330-1_4

Description

Context-Sensitive Relevancy Analysis for

Efficient Symbolic Execution ⋆

Xin Li1, Daryl Shannon2, Indradeep Ghosh3

Mizuhito Ogawa1, Sreeranga P. Rajan3, and Sarfraz Khurshid2

1 School of Information Science,

Japan Advanced Institute of Science and Technology, Nomi, Japan
2 Department of Electrical and Computer Engineering,

University of Texas at Austin, Austin, TX, USA
3 Trusted Systems Innovation Group,

Fujitsu laboratory of America, Sunnyvale, CA, USA

Abstract. Symbolic execution is a flexible and powerful, but computa-

tionally expensive technique to detect dynamic behaviors of a program.

In this paper, we present a context-sensitive relevancy analysis algorithm

based on weighted pushdown model checking, which pinpoints memory

locations in the program where symbolic values can flow into. This in-

formation is then utilized by a code instrumenter to transform only rele-

vant parts of the program with symbolic constructs, to help improve the

efficiency of symbolic execution of Java programs. Our technique is eval-

uated on a generalized symbolic execution engine that is developed upon

Java Path Finder with checking safety properties of Java applications.

Our experiments indicate that this technique can effectively improve the

performance of the symbolic execution engine with respect to the ap-

proach that blindly instruments the whole program.

1 Introduction

A recent trend of model checking is to combine with the power of dynamic exe-

cution, such as simulation and constraint solving. Remarkable progress on both

hardware and efficient decision procedures, such as Presburger arithmetic, sat-

isfiability check on various logic, equality with uninterpreted function symbols,

and various constraint solving, has made such a combination of model check-

ing and off-the-shelf decision procedures more practical. For instance, symbolic

execution [1], a classic technique for test-input generation, has been integrated

into such model checking frameworks, including Bogor/Kiasan [2] and various

extensions of Java Path Finder (JPF) [3, 4]. JPF has been combined with deci-

sion procedures such as first-order provers CVClite and Simplify, the SMT solver

Yices, the Presburger arithmetic constraint solver OMEGA, and the constraint

solver STP on bit-vectors and arrays, for correctness checking and automated

⋆ D.Shannon was an intern at Fujistu Labs. Sunnyvale during this work.

test-input generation. Symbolic execution interprets the program over symbolic

values and allows model checking to reason variables with infinite data domain.

Though such exhaustive checking is very powerful, it is computationally expen-

sive. Further sophistication is needed to make it scale to industrial size software

applications.

Fig. 1 shows an example of code instrumentation from the Java code fragment

(the left-hand side) into its symbolic counterpart (the right-hand side) for sym-

bolic execution. In the Driver class, the String s is designated as symbolic (by

the assignment of Symbolic.string() to s). The methods of IncL(), GetL(), and

the constructor Limit(int x) of the class Limit does not need a symbolic version

as no symbolic values ever flow into these methods. However, in the symbolic

execution of Java programs, most of existing approaches transform the entire

program with regarding all program entities as symbolic. Blind instrumentation

will incur unnecessary runtime overhead on symbolic execution along with the

extra time required to instrument the entire program. Therefore, some program

analysis is expected to help identify the part of program entities that are subject

to symbolic execution at run-time.

0. public class Limit{
1. int v = 0;
2. Limit (int x){this.v = x;}
3. int GetL(){return this.v;}
4. int IncL(int t) {return this.v + t;}
5. String CutExcess(String s){
6. if(s.length() > v)
7. return s.substring(0, v);
8. else return s;
9. }
10.}
11. public class Driver{
12. public static void main(String[] args){
13. String s = Symbolic.string();
14. int i = 7;
15. Limit limit = new Limit(i);
16. limit.IncL(i);
17. s = limit.CutExcess(s);
18. }
19. }

public class Limit implements Symbolic{
int v = 0;
Limit (int x){this.v = x;}
int GetL(){return this.v;}
int IncL(int t) {return this.v + t;}
String CutExcess(String s) {
return CutExcess(StringExpr.

constant(s)). getValue();
}
StringExpr CutExcess(StringExpr s){
if(Symbolic. GT(s. length(), v))
return s. substring(Symbolic.IntConstant(0),

Symbolic.IntConstant(v));
else return s;
}

}

public class Driver{
public static void main(String args[]){

StringExpr s = new Symbolic.string();
int i = 7;
Limit limit = new Limit(i);
limit.IncL(i);
s = limit. CutExcess(s);

}
public static void main(String args[]){

main(args);
}

}

Fig. 1. A Java Example for Code Instrumentation of Symbolic Execution

This paper makes the following primary contributions:

– We present an interprocedural relevancy analysis (RA), formalized and impl-

mented as weighted pushdown model checking [5] with PER-based abstrac-

tion [6]. Our RA is context-sensitive, field-sensitive, and flow-insensitive, and

conservatively detects the set of memory locations (i.e., program variables of

various kinds) where symbolic values can flow into. Then the instrumenter

can use this information to instrument only the relevant parts of the program

with symbolic constructs, thereby improving the performance of symbolic

execution and code instrumentation itself.
– We perform experiments on the generalized symbolic execution engine [3],

which is developed upon JPF, for checking safety properties on three Java

applications. Relevancy analysis is used as the preprocessing step to detect

program variables that may store symbolic values at run-time. Only these

portions of the applications are later transformed using a code instrumenter.

Experimental results indicate that our technique can effectively improve the

performance of the symbolic execution engine with respect to the approach

that blindly instruments the whole program.

The rest of the paper is organized as follows. In Section 2 the relevancy anal-

ysis based on weighted pushdown model checking techniques is presented. In

Section 3 we describe in detail how Java programs are abstracted and modelled

for relevancy analysis. Experimental results are presented and discussed in Sec-

tion 4, and related work is surveyed in Section 5. Section 6 concludes the paper

with a description of our future work.

2 Context-sensitive Relevancy analysis

2.1 Interprocedural Program Analysis by Weighted Pushdown

Model Checking

Definition 1. A pushdown system P = (Q, Γ, ∆, q0, w0) is a pushdown au-

tomaton regardless of input, where Q is a finite set of states called control loca-

tions, and Γ is a finite set of stack alphabet, and ∆ ⊆ Q×Γ×Q×Γ ∗ is a finite set

of transition rules, and q0 ∈ Q and w0 ∈ Γ ∗ are the initial control location and

stack contents respectively. We denote the transition rule ((q1, w1), (q2, w2)) ∈ ∆

by 〈q1, w1〉 →֒ 〈q2, w2〉. A configuration of P is a pair 〈q, w〉, where q ∈ Q and

w ∈ Γ ∗. ∆ defines the transition relation ⇒ between pushdown configurations

such that if 〈p, γ〉 →֒ 〈q, ω〉, then 〈p, γω′〉 ⇒ 〈q, ωω′〉, for all ω′ ∈ Γ ∗.

A pushdown system is a transition system with a finite set of control states

and an unbounded stack. A weighted pushdown system extends a pushdown

system by associating a weight to each transition rule. The weights come from

a bounded idempotent semiring.

Definition 2. A bounded idempotent semiring S = (D,⊕,⊗, 0, 1) consists

of a set D (0, 1 ∈ D) and two binary operations ⊕ and ⊗ on D such that

1. (D,⊕) is a commutative monoid with 0 as its neutral element, and ⊕ is

idempotent, i.e., a ⊕ a = a for a ∈ D;

2. (D,⊗) is a monoid with 1 as the neutral element;

3. ⊗ distributes over ⊕. That is, ∀a, b, c ∈ D, a ⊗ (b ⊕ c) = (a ⊗ b) ⊕ (a ⊗ c)

and (a ⊕ b) ⊗ c = (a ⊗ c) ⊕ (b ⊗ c);

4. ∀a ∈ D, a ⊗ 0 = 0 ⊗ a = 0;

5. The partial ordering ⊑ is defined on D such that ∀a, b ∈ D, a ⊑ b iff a⊕b = a,

and there are no infinite descending chains on D wrt ⊑.

Remark 1. As stated in Section 4.4 in [5], the distributivity of ⊕ can be loosened

to a ⊗ (b ⊕ c) ⊑ (a ⊗ b) ⊕ (a ⊗ c) and (a ⊕ b) ⊗ c ⊑ (a ⊗ c) ⊕ (b ⊗ c).

Definition 3. A weighted pushdown system is a triple W = (P,S, f), where

P = (Q, Γ, ∆, q0, w0) is a pushdown system, S = (D,⊕,⊗, 0, 1) is a bounded

idempotent semiring, and f : ∆ → D is a function that assigns a value from D

to each rule of P.

Definition 4. Consider a weighted pushdown system W = (P,S, f), where P =

(Q, Γ, ∆, q0, w0) is a pushdown system, and S = (D,⊕,⊗, 0, 1) is a bounded idem-

potent semiring. Assume σ = [r0, ..., rk] to be a sequence of pushdown transition

rules, where ri ∈ ∆(0 ≤ i ≤ k), and v(σ) = f(r0) ⊗ ... ⊗ f(rk). Let path(c,c′)

be the set of all rule sequences that transform configurations from c into c′. Let

C ⊆ Q × Γ ∗ be a set of regular configurations. The generalized pushdown

reachability problem(GPR) is to find for each c ∈ Q × Γ ∗:

δ(c) =
⊕

{v(σ)|σ ∈ path(c, c′), c′ ∈ C}

Efficient algorithms for solving GPR are developed based on the property

that the regular set of pushdown configurations is closed under forward and back-

ward reachability [5]. There are two off-the-shelf implementations of weighted

pushdown model checking algorithms, Weighted PDS Library 4, and WPDS+ 5.

We apply the former as the back-end analysis engine for relevancy analysis.

The GPR can be easily extended to answer the“meet-over-all-valid-paths”

program analysis problem MOVP(EntryPoints, TargetPoints), which intends to

conservatively approximate properties of memory configurations at given pro-

gram execution points (represented as TargetPoints) induced by all possible ex-

ecution paths leading from program entry points (represented as EntryPoints).

A valid path here satisfies the requirement that a procedure always exactly re-

turns to the most recent call site in the analysis. The encoding of a program into

a weighted PDS in a (flow-sensitive) program analysis [5] typically models pro-

gram variables as control locations and program execution points (equivalently,

line numbers) as stack alphabet. The weighted domain is designed as follows:

4 http://www.fmi.uni-stuttgart.de/szs/tools/wpds/
5 http://www.cs.wisc.edu/wpis/wpds++/

– A weight function represents the data flow changes for each program execu-

tion step, such as transfer functions;

– f ⊕ g represents the merging of data flow at the meet of two control flows;

– f ⊗ g represents the composition of two sequential control flows;

– 1 implies that an execution step does not change each datum; and

– 0 implies that the program execution is interrupted by an error.

Moreover, assume a Galois connection (L, α, γ, M) between the concrete domain

L and the abstract domain M , and a monotone function space Fl : L → L.

Taking weight functions from the monotone function space Fm : M → M defined

as Fm = {fm | fm ⊇ α ◦ fl ◦ γ, fl ∈ Fl}, a sound analysis based on weighted

pushdown systems can be ensured according to abstract interpretation.

2.2 PER-based Abstraction and Relevancy Analysis Infrastructure

For program verification at source code level, it is a well understood methodology

that program analysis can be regarded as model checking of abstract interpreta-

tion [7] on an intermediate representation (IR) of the target program. Our RA

is designed and implemented as weighted pushdown model checking following

this methodology.

The infrastructure of our RA is shown in Figure 2, with a soot 6 compiler

as the front-end preprocessor and the Weighted PDS Library as the back-end

model checking engine. The analysis starts off preprocessing by soot from Java

to Jimple [8], which is a typed three-address intermediate representation of Java.

In the meantime, points-to Analysis (PTA) is performed and thus a call graph

is constructed. After preprocessing, Jimple codes are abstracted and modeled

into a weighted PDS, and the generated model is finally checked by calling the

Weighted PDS Library. The set of symbolic variables is detected and output into

an XML file for later use by the code instrumenter.

We choose Jimple as our target language since its language constructs are

much simpler than those of either Java source code or Java Bytecode. Although

the choice of PTA is independent of RA, the precision of RA depends on the pre-

cision of PTA, in that (i) call graph construction and PTA are mutually depen-

dent due to dynamic method dispatch; and (ii) a precise modelling on instance

fields (a.k.a., field-sensitivity [9]), array references, and containers (Section 4.3)

depends on PTA to cast aliasing.

The objective of our relevancy analysis is to compute the set of program

variables of interested type that are relevant to any designated variables that

are meant to be symbolic. We mark a variable as relevant if it can store symbolic

values at run-time. Our relevancy analysis is leveraged from an interprocedural

irrelevant code elimination [10]. The idea is that, if the change of a value does

not affect the value of outputs, we regard it as irrelevant, and relevant otherwise.

6 http://www.sable.mcgill.ca/soot/

Fig. 2. The Analysis Infrastructure.

The weighted domain for this analysis is constructed on a 2-point abstract

domain L (Definition 5) based on a partial equivalence relation (PER). A PER

on a set S is a transitive and symmetric relation S × S. It is easy to see that

γ l is a PER for all l ∈ L. Our relevancy analysis works with an interpretation

on L as follows: any is interpreted as any values, and id is interpreted as fixed

values. Designating a seed variable x to be any in a program, a variable y is

relevant to x if its value can be any at run-time.

Definition 5. Define the 2-point abstract domain L as L = {any, id}, with

the ordering any ⊃ id. Taking the concrete domain D as integers or other data

sets of interest, the concretization γ of L is defined as γ any = {(x, y) | x, y ∈

D}, γ id = {(x, x) | x ∈ D}.

Definition 6. Define a set of transfer functions F : L → L as

F = {λx.x, λx.any, λx.id | x ∈ L}

Let f0 = λx.any, f1 = λx.x, and f2 = λx.id. We have ∀x ∈ L, f0 x ⊃

f1 x and f1 x ⊃ f2 x. Thus, F is a monotone function space with the ordering

f0 ⊒ f1 ⊒ f2, where f ⊒ f ′ iff ∀x ∈ L, fx ⊃ f ′x. The weighted domain in our

analysis thus consists of F plus 0 element, and binary operations over weights

are correspondingly induced by the ordering ⊒.

3 Modelling Java Programs

3.1 Building the Weighted Dependence Graph

Provided with a Java points-to analyzer, the analysis first builds a weighted

dependence graph (WDG), a directed and labelled graph G = (N, L,). The

WDG is then encoded as the underlying weighted pushdown system for model

checking. Let Var denote the set of program variables of interested type which

consist of local variables and field or array references, and let ProS denote the

set of method identifiers which is identified as a pair of class names and method

signatures. N ⊆ Var × ProS is a set of nodes and each of them represents a

program variable and the method where it resides. L ⊆ F is a set of labels,

and ⊆ N × L × N is a set of directed and labelled edges that represent some

dependence among variables regarding the changes of data flow. By v1
l
 v2, we

mean that there is a data flow from v1 to v2 represented by a weight l. A WDG

can be regarded as an instance of the exploded supergraph [11].

Let Stmt be the set of Jimple statements and let P be the powerset operator.

An evaluation function A[[]] : Stmt → P(), which models Jimple statements

(from a method f ∈ ProS) into edges in G, is given in Table 1, where

– GlobVar (⊆ Var) denotes the set of static fields and instance fields, as well

as array references, in the analysis after casting aliasing;
– env (∈ GlobVar) denotes the program environment that allocates new mem-

ories; SymVal and ConstVal denotes symbolic values and program constants

respectively; binop denotes binary operators;
– pta(r, cc) (cc ∈ CallingContexts(f)) denotes points-to analysis on a refer-

ence variable r with respect to calling contexts cc, and CallingContexts(f)

represents the calling contexts of a method f where r resides;
– [[o]] (o ∈ pta(r)) denotes the unique representative of array members r[i]

after calling points-to analysis on the base variable r;
– rp(∈ RetP) is a return point associated with a method invocation. Return

points denoted by RetP are introduced in addition to method identifiers, so

that each method invocation is assigned with a unique return point;
– f ′

ret (resp. f ′
arg

i

) is a variable that denotes a return value (resp. the i-th

parameter) of the method f ′ ∈ ProS.

λx.any models that env assigns symbolic values to seed variables; λx.id models

that env assigns variables with program constants; λx.x models that a data flow

is kept unchanged. For readability, the label λx.x (on) is omitted in the table.

Our analysis is context-sensitive by encoding the program as a pushdown

system, and thus calling contexts that can be infinite are approximated as regular

pushdown configurations. A WDG G is encoded into a Weighted PDS as follows,

– The set of control locations is the first projection of N (⊆ Var);
– The stack alphabet is ProS∪ RetP;
– The weighted domain is the set of labels L;

– Let (v1, f1)
l
 (v2, f2) ∈ E for l ∈ L such that

• 〈v1, f1〉 →֒ 〈v2, f2〉 if f1 = f2,
• 〈v1, f1〉 →֒ 〈v2, f2fr〉 if the method f1 calls f2 with fr designated as the

return point, and
• 〈v1, f1〉 →֒ 〈v2, ǫ〉 if f2 ∈ RetP.

Table 1. Rules for Building the Weighted Dependence Graph

A[[x = SymVal]] = {(env, f)
λ.any
 (x, f)}

A[[x = ConstVal]] = {(env, f)
λ.id
 (x, f)}

A[[x = y]] = {(y, f) (x, f)}

A[[z = x binop y]] = {(x, f) (z, f), (y, f) (z, f)}

A[[x = r[n]]] = {([[o]], f) (x, f) | o ∈ pta(r,cc)}

A[[r[n] = x]] = {(x, f) ([[o]], f) | o ∈ pta(r,cc)}

A[[x = r.g]] = {(o.g, f) (x, f) | o ∈ pta(r,cc)}

A[[r.g = x]] = {(x, f) (o.g, f) | o ∈ pta(r,cc)}

A[[x = lengthof r]] = {(o.len, f) (x, f) | o ∈ pta(r,cc)}

A[[r = newarray RefType [x]]] = {(x, f) (o.len, f) | o ∈ pta(r,cc)}

A[[return x]] = {(x, f) (fret, f)}

A[[x := @parameter
k

: Type]] = {(farg
k
, f) (x, f)}

A[[x := (Type)y]] = {(y, f) (x, f)}

A[[z = x.f ′(m1, ..., ml, ml+1, ...mn)]] =

{(mi, f) (f ′

arg
i
, f ′) | 1 ≤ i ≤ l} ∪ {(f ′

ret, f
′) (f ′

ret, rp)}

∪ {(f ′

ret, rp) (z, f)} ∪ {(v, f) (v, f ′) | v ∈ GlobVar}

∪ {(v, f ′) (v, rp) | v ∈ GlobVar} ∪ {(v, rp) (v, f) | v ∈ GlobVar}

where mi(1 ≤ i ≤ l) are variables of interested type, and cc ∈ CallingContexts(f).

Our analysis is also field-sensitive, so that not only different instance fields of

an object are distinguished (otherwise called field-based analysis), but also are

instance fields that belong to different objects (otherwise called field-insensitive

analysis). Note that array references are treated similarly as instance fields. The

abstraction we take is to ignore the indices of arrays, such that members of an

array are not distinguished. Both field and array references can be nested, and

we choose to avoid tracking such a nesting in the analysis by cast aliasing on

their base variables with calling a points-to analysis.

Considering efficiency, we perform a flow-insensitive analysis, i.e., each method

is regarded as a set of instructions by ignoring their execution order. Note that

soot compiles Jimple in a SSA-like (Static Single Assignment) form. When a

program is in the SSA-like form, a flow-insensitive analysis on it is expected

to enjoy a similar precision of that of a flow-sensitive analysis [9], except that,

in a flow-insensitive analysis, the return points of call sites also shrink to the

nodes (i.e., methods) of the call graph. Thus, calling contexts of a method that

is multiply invoked from one method are indistinguishable due to sharing the

same return points. We remedy such a precession loss by associating a unique

return point with each invocation site.

Definition 7. Assume that the program under investigation starts with the en-

try point ep ∈ ProS. Our relevancy analysis on a variable v ∈ Var that resides

in the method s ∈ ProS computes ra(v, m) = MOVP(S, T), where S = 〈env, ep〉

and T = 〈v, m.(RetP)∗〉. v is marked as relevant if and only if ra(v, m) returns

λx.any.

Remark 2. To compute MOVP(S, T), our analysis calls the Weighted PDS Library

to (i) first construct a weighted automaton that recognizes all pushdown con-

figurations reachable from S; and (ii) then read out weights associated with

pushdown configurations from T with respect to the variables of interest. The

latter phase seems not to be a dominant factor in practice, and the time com-

plexity of the former is O(m n2), where m is the number of variables and n is

the program size (Lemma 1 in [12]).

Remark 3. We are interested in variables of primite type, strings, and the classes

explicitly modelled (Appendix A) in the analysis. An array is regarded as sym-

bolic if its unique representative is detected as symbolic by the analysis. Since

our analysis is field-sensitive, an instance field f of a class is regarded as sym-

bolic, if it is detected as symbolic when belonging to any instance o of this class,

i.e., when o.f is detected as symbolic.

3.2 Precision Enhancement by Refined Modelling on Globals

A typical approach to perform context-sensitive analysis is based on context-

cloning. In such methods, program entities, such as methods and local variables,

typically have a separate copy for different calling contexts. Since possible call-

ing contexts can be infinite due to recursions, this infinity is often bounded by

limiting the call depth within which the precision is preserved (like k -CFA anal-

ysis [13]) or by performing context-insensitive analysis on all the procedure calls

involved in any recursions [14]. In contrast, our approach to context-sensitivity

is based on context-stacking. That is, the infinite program control structures are

modelled by the pushdown stack with no limit on recursions and procedure calls.

The context-stacking-based approach has an advantage over the context-cloning-

based approach when there are deep procedure calls, or when a large number of

procedures is involved in various recursions in the program. However, in some

cases, it can be less precise than the context-cloning-based analysis.

Example 1. Suppose the int s is designated as symbolic (by the assignment of

Symbolic.int()) in the Java code fragment in Fig. 3 that uses class Limit in Fig.

1. For the driver, variables c and p are symbolic, but variables d and q are not.

Assume the heap objects allocated at lines 3 and 4 are respectively O1 and

O2. Fig. 4 shows part of the WDG corresponding to lines 3-4 and 5-6. Each

dotted circle demarcates a method. There are two kinds of nodes identified by

variable names: circles for local variables and rectangles for global variables, such

as instance fields and array references. Dashed edges are induced by the method

invocation at line 6, which is to be distinguished from the method invocation

at line 5. Return points for method invocations at lines 5 and 6 are represented

as triangles, and named r1 and r2 respectively. The variable ret represents the

return value of IncL(). Our analysis can precisely distinguish that c and d are

returned from two invocations on the same method, and only c is relevant to s.

0.public class Driver {

1. public static void main (String[] args){

2. int s = Symbolic.int();

3. Limit a = new Limit(s);

4. Limit b = new Limit(5);

5. int c = b.IncL(s);

6. int d = b.IncL(5);

7. int p = a.GetL();

8. int q = b.GetL();

9. }

10.}

Fig. 3. A Java Code Fragment Fig. 4. The WDG for lines 3-4, 5-6

However, the analysis cannot correctly conclude that q can only store con-

crete values at run-time, whereas this case can be handled by the 1-CFA context-

sensitive approach based on context-cloning. Fig. 5 shows part of the WDG cor-

responding to lines 3-4 and 7-8, where dashed edges are induced by the method

invocation at line 6, and for readability, return points for line 7 and 8 are omitted

in the figure. GetL() are invoked on objects O1 and O2 respectively from line 7

and 8, and instance fields of both O1.v and O2.v can flow to ret under two calling

contexts. However, since the pushdown transition only depends on the control

location (i.e., variable) and the topmost stack symbol (i.e., the method where

the variable presently resides), the pushdown transitions are incapable of distin-

guishing under which calling contexts a global variable (∈ GlobVar) flows into

a method. Therefore, pushdown transitions that model edges e1 and e2 cannot

distinguish invocations from lines 7 and 8.

To remedy a precision, our choice is to refine modelling on global variables

from GlobVar to avoid an invalid data flow. Such an extension is obtained by

modifying rules from Table 1 in which global variables are involved. Table 2 shows

some of the extensions on array references and method invocations. Assume that

the calling context of main() is C0, the calling contexts of GetL() are C1 and

C2, and that the calling contexts of Limit(int x) are C3 and C4. Fig. 6 shows the

refined version of the WDG shown in Fig. 5. Note that the precision of refined

modelling closely depends on that of the underlying context-sensitive points-to

analysis.

4 Evaluations

4.1 Configuration of the Evaluation Steps

Our evaluation of checking safety properties of Java web applications through

symbolic execution generally consists of the following steps:

Table 2. Refined Modelling on Globals

A[[x = r[n]]] = {(([[o]], cc), f) (x, f) | o ∈ pta(r, cc), cc ∈ CallingContexts(f)}

A[[z = x.f ′(m1, ..., ml, ml+1, ...mn)]] =

{(mi, f) (f ′

arg
i
, f ′) | 1 ≤ i ≤ l} ∪ {(f ′

ret, f
′) (f ′

ret, rp)} ∪ {(f ′

ret , rp) (z, f)}

∪ {((v, cc), f) ((v, cc′), f ′) | v ∈ GlobVar, cc ∈ CallingContexts(f),

cc
′ ∈ CallingContexts(f ′)}

∪ {((v, cc′), f ′) ((v, rp), rp) | v ∈ GlobVar, cc′ ∈ CallingContexts(f ′)}

∪ {((v, rp), rp) ((v, cc), f) | v ∈ GlobVar, cc ∈ CallingContexts(f)}

where mi(1 ≤ i ≤ l) are variables of concerned type.

Fig. 5. The WDG for lines 2-4, 7-8 Fig. 6. Fig.5 with Refined Modeling

– Environment Generation: Since model checking techniques require a

closed system to run on, the first step is to convert a heterogeneous web

application that uses various components into a closed Java program. This

process is known as environment generation [15], which decomposes web

applications into the module that is typically the middle tier of web ap-

plications, which comprises the business logic and the environment with

which the module interacts with. The environment is further abstracted into

drivers from Java classes that hold a thread of control and stubs from the

rest of Java classes and components of the application. After this step, all

the applications consist of a driver file that provides all input values to the

application. Typically, these values are provided by a user using forms in a

webpage. The back-end database is abstracted as a series of stubs that use a

two-dimentional table structure, and also to store the input data if needed.

– Property Specification: Once the model is generated, some specific input

values in the drivers are made to be symbolic quantities, such as values of

integer, float, Boolean, or String. For example, if the requirement is that

the shopping cart total must be the product of the item price and the item

quantity specified by the user, then the item price, quantity, and cart-total

are made to be symbolic entities. Sometimes this can be achieved using

the input variables in the driver only. However, sometimes this also means

changing the database stubs for inputs that were stored in the database (such

as item price). The requirement is further inserted as an assertion comprising

the symbolic entities and placed in an appropriate location in the program.
– Code instrumentation: The program is thus instrumented using a code

instrumenter that replaces java codes that use concrete values with the coun-

terparts that can handle symbolic values. For this purpose, extensive libraries

have been developed that can handle symbolic integer, symbolic float, sym-

bolic Boolean, etc.. The instrumenter uses the relevancy analysis to pinpoint

the portions of the program that are required to tackle symbolic entities. The

results of the relevancy analysis are conveyed as series of classes, methods,

parameters, and variables to the instrumenter in an XML file.
– Symbolic program model checking: Finally, once the instrumentation

phase is completed, a state-based model checker is used to check safety prop-

erties of interest. The symbolic libraries create a system of equations with

the symbolic variables, whenever those variables are manipulated. At each

control point that consists of symbolic variables, an off-the-shelf decision

procedure is invoked to check whether the system of equations is satisfiable.

If not, the exploration is terminated along that path. An assertion containing

symbolic variables is inserted into the program at an appropriate point to

check for the negation of the property being checked. When the assertion is

hit, a solution to the equations points to the existence of a counterexample

or bug. If there are no solutions, then the requirement holds.

4.2 Experimental Results

Our experimental platform is built upon JPF at the University of Texas at

Austin. The targets of our experiments are Java applications as shown in Table

3. Note that these numbers reflect the size of the generated Java model. The

original application is usually much larger since it is heterogeneous and consists

of HTML pages, JSP code, some database code, etc.. It is extremely difficult to

estimate the exact size of the original application.

Table 3. Benchmark Statistics

Application Description #classes #lines

WebStore Simple Web E-store 6 410

DB-Merge Database Application 26 706

Petstore SUN’s J2EE Sample App. 752 23,701

We now discuss the efficiency issues of this whole exercise. Table 4 shows the

CPU times (in seconds) for various parts of the process by comparing symbolic

execution with blind instrumentation and symbolic execution with RA-based

instrumentation. The underlying points-to analysis of the relevancy analysis is

provided by soot, which is 1-CFA context-sensitive analysis with call graph con-

structed on-the-fly. Since symbolic execution is computationally expensive, it

was impractical to check all symbolic inputs in one pass for large-scale applica-

tions. As a result various symbolic execution instances of the same application

were created based on the requirement that was being checked. As shown in the

Table, multiple properties over symbolic variables are checked in separate passes.

Therefore, although the soot PTA phase is one of the dominant factors in the

execution time, it has been reused across all these requirements for a particular

application as only some different set of variables are marked as symbolic in the

program in each instance. Thus this analysis comprises of an one-time cost and

is amortized across all the requirements that are checked. Typically hundreds

of requirements need to be checked for a medium size application. Hence, this

time has not been included in the overall CPU runtimes. Moreover, note that

the Soot PTA time is relatively large even for small examples like WebStore and

does not increase that much for the larger example. This is due to its analysis

of many Java library classes used by the example which dominate the runtime.

These library analysis results can be cached and reused not only across differ-

ent requirements in the same application but across different applications that

use the same libraries. This will reduce the PTA overhead even further. We can

observe that there is an average gain in overall runtime as well as reduction

in instrumented code size due to the static analysis phase. The CPU time im-

provement can be as high as 61% for larger examples. This can only grow as the

number and influence of symbolic inputs become smaller compared to the overall

application size. The CPU times are for a 1.8Ghz dual core Opteron machine

running the Redhat Linux operating system and having a memory of 4GB.

5 Related Work

Symbolic execution for model checking of Java programs has been proposed in

[3]. However, it is well known that symbolic execution is computationally ex-

pensive and efforts have been made to reduce its complexity by abstracting out

library classes [16]. A framework for type inference and subsequent program

transformation for symbolic execution is proposed in [17] which allows multi-

ple user-defined abstractions. Execution of a transformed program for symbolic

execution has been used in several approaches. In most of those approaches,

the whole program is transformed akin to our blind instrumentation technique

[18], [19]. In [20], the performance of symbolic execution is enhanced by ran-

domly concretizing some symbolic variables at the cost of coverage. Instead of

transforming the source code, an enhanced Java virtual machine is used to sym-

bolically execute code in [2].

The approach in [21] is closely related to this work. However, the focus of

that paper is precise instrumentation through static analysis whereas the focus

Table 4. Performance of symbolic execution with instrumenter using static analysis

App. Prop. Blind Instrumentation RA based Instrumentation RT CR

Program Instr. SECK Total PTA RA Instr. SECK Total

WebStore Prop.1 6.2 1.9 8.1 509 0.8 2.0 1.9 4.7 42% 43%

Prop.2 6.2 2.9 9.1 0.9 2.0 2.8 5.7 37% 41%

DB-Merge Prop.1 3.1 10.5 13.6 523 0.6 2.1 9.4 12.1 11% 19%

Petstore Prop.1 36.9 259.2 296.1 575 1.2 4.8 109.4 115.4 61% 16%

Prop.2 38.1 593.6 631.7 1.1 5.1 319.9 326.1 48% 16%

Prop.3 39.2 2566.2 2605.4 1.2 5.4 1053.6 1060.2 59% 17%

Prop.: property being checked Instr.: time for code instrumentation

PTA: time for points-to analysis RA: time for relevancy analysis

Total: time for both Instr. and SECK RT: percentage of runtime improvement

SECK: time for symbolic execution of requirement checking

CR: percentage of the reduction on the instrumented code size

All time above are measured in seconds

of this work is on performance enhancements through the static analysis phase.

Approaches adopted in [21] and this work consider two streams of performing

context-sensitive program analysis, i.e., context-cloning vs. context-stacking. The

analysis in [21] borrows ideas and algorithms from points-to analysis, e.g., the

match of field read and write operations are formalized as a CFL (Context Free

Language)-reachability problem. Their approach to context-sensitivity is based

on context-cloning following [14] and the k-CFA approach to handle procedural

calls, whereas our analysis based on pushdown system complemented with the

refined modelling on globals can reach a higher precision due to the absence

of restriction on recursions and call depth. Note that we cannot compare our

work with [21] as neither the tool described in that work or the versions of the

example programs used there are in the public domain. No performance statistics

are mentioned in that paper.

6 Conclusions

We formalized a context-sensitive, field-sensitive and flow-insensitive relevancy

analysis as weighted pushdown model checking, to help the symbolic execution

technique scale to realistic Java applications. Our analysis was used as a prepro-

cessing step of symbolic execution, which helps in identifying relevant sections

of a program where symbolic values can flow into.

We evaluated the methodology on the generalized symbolic execution plat-

form, built upon JPF at the Univiersity of Texas at Austin. Though the domi-

nant overhead of this methodology is the PTA phase, the results of PTA can be

cached and reused. Experimental results indicate that, as the program size in-

creases,, the performance gains obtained from the symbolic execution phase far

outweigh the overhead of analysis and thus produce a significant gain in overall

performance. Moreover, the symbolic programs thus obtained are much smaller

than the ones obtained by blind transformation, which avoids running out of

memory during symbolic execution.

The precision and scalability of the relevancy analysis is closely related to that

of the underlying points-to analysis. Currently, we performed a 1-CFA context-

sensitive on-the-fly points-to analysis provided by Soot. In this work, we limit our

focus to the performance improvement of symbolic execution. We are planning to

apply a context-sensitive points-to analysis based on weighted pushdown model

checking, to see the room of precision enhancement. Points-to analysis on Java

web applications is expensive since, even for a small web application, the libraries

of the web applications are huge and easily reach millions of lines. Thus, more

sophisticated treatments for analyzing libraries are expected. Another interesting

direction is that our relevancy analysis can be regarded as an instance of the

traditional taint-style analysis, thus it is applicable to other application scenarios

such as security vulnerability check on Java web applications [22].

References

1. J.C. King. Symbolic execution and program testing. Commun. ACM, 19(7):385–

394, 1976.

2. X. Deng, J. Lee, and Robby. Bogor/Kiasan: A k-bounded symbolic execution for

checking strong heap properties of open systems. In the 21st IEEE International

Conference on Automated Software Engineering (ASE 2006), pages 157–166, 2006.

3. S. Khurshid, C. Pasareanu, and W. Visser. Generalized symbolic execution for

model checking and testing. In International Conference on Tools and Algorithms

for Construction and Analysis of Systems (TACAS 2003), pages 553–568, 2003.

4. S. Anand, C.S. Pasareanu, and W. Visser. JPF-SE: A symbolic execution exten-

sion to Java PathFinder. In International Conference on Tools and Algorithms

for Construction and Analysis of Systems (TACAS 2007), pages 134–138, 2007.

Springer LNCS 4424.

5. T.W. Reps, S. Schwoon, S. Jha, and D. Melski. Weighted pushdown systems and

their application to interprocedural dataflow analysis. Sci. Comput. Program.,

58(1-2):206–263, 2005.

6. S. Hunt. PERs generalize projections for strictness analysis. In Functional Pro-

gramming: Proc. 1990 Glasgow Workshop, pages 114–125. Springer-Verlag, 1990.

7. D.A. Schmidt. Data flow analysis is model checking of abstract interpretations.

In the 25th ACM SIGPLAN-SIGACT symposium on Principles of programming

languages (POPL 1998), pages 38–48, 1998.

8. R. Vallée-Rai, P. Co, E. Gagnon, L.J. Hendren, P. Lam, and V. Sundaresan. Soot -

a Java bytecode optimization framework. In Conference of the Centre for Advanced

Studies on Collaborative Research (CASCON 1999), 1999.

9. R. Hasti and S. Horwitz. Using static single assignment form to improve flow-

insensitive pointer analysis. In ACM SIGPLAN conference on Programming lan-

guage design and implementation (PLDI ’98), pages 97–105, 1998.

10. X. Li and M. Ogawa. Interprocedural program analysis for java based on weighted

pushdown model checking. In the 5th International Workshop on Automated Ver-

ification of Infinite-State Systems (AVIS 2006). ETAPS, April 2006.

11. T.W. Reps. Program analysis via graph reachability. In International Logic Pro-

gramming Symposium (ILPS ’97), pages 5–19. MIT Press, 1997.

12. T.W. Reps, A. Lal, and N. Kidd. Program analysis using weighted pushdown sys-

tems. In the 27th International Conference on Foundations of Software Technology

and Theoretical Computer Science (FSTTCS 2007), pages 23–51, 2007. Springer

LNCS 4855.

13. O. Shivers. Control flow analysis in scheme. In ACM SIGPLAN conference on

Programming Language design and Implementation (PLDI ’88), pages 164–174,

1988.

14. J. Whaley and M.S. Lam. Cloning-based context-sensitive pointer alias analysis

using binary decision diagrams. In ACM SIGPLAN Conference on Programming

Language Design and Implementation (PLDI 2004), pages 131–144, 2004.

15. O. Tkachuk, M. B. Dwyer, and C. Păsăreanu. Automated environment genera-

tion for software model checking. In the 18th IEEE International Conference on

Automated Software Engineering (ASE 2003), pages 116–129, 2003.

16. S. Khurshid and Y.L. Suen. Generalizing symbolic execution to library classes.

In ACM SIGPLAN-SIGSOFT Workshop on Program Analysis For Software Tools

and Engineering (PASTE’05), pages 103–110, 2005.

17. M. Dwyer, J. Hatcliff, R. Joehanes, S. Laubach, C.S. Pasareanu, Robby, H. Zheng,

and W. Visser. Tool-supported program abstraction for finite-state verification.

In the 23rd International Conference on Software Engineering (ICSE 2001), pages

177–187, 2001.

18. C. Cadar, V. Ganesh, P.M. Pawlowski, D.L. Dill, and D.R. Engler. EXE: Au-

tomatically generating inputs of death. In ACM Conference on Computer and

Communications Security 2006 (CCS 2006), pages 322–335, 2006.

19. W. Schulte W. Grieskamp, N. Tillmann. XRT-exploring runtime for .NET ar-

chitecture and applications. Electronic Notes in Theoretical Computer Science,

144(3):3–26, 2006.

20. Koushik Sen, Darko Marinov, and Gul Agha. CUTE: a concolic unit testing en-

gine for C. In ESEC/FSE-13: Proceedings of the 10th European software engineer-

ing conference held jointly with 13th ACM SIGSOFT international symposium on

Foundations of software engineering, pages 263–272. ACM, 2005.

21. S. Anand, A. Orso, and M. J. Harrold. Type-dependence analysis and program

transformation for symbolic execution. In International Conference on Tools and

Algorithms for Construction and Analysis of Systems (TACAS 2007), pages 117–

133, 2007. Springer LNCS 4424.

22. V.B. Livshits and M.S. Lam. Finding security vulnerabilities in Java applica-

tions with static analysis. In the 14th conference on USENIX Security Symposium

(SSYM’05), pages 18–18. USENIX Association, 2005.

23. A. Christensen, A. Møller, and M. Schwartzbach. Precise analysis of string expres-

sions. In the 10th International Symposium on Static Analysis (SAS 2003), pages

1–18, 2003. Springer LNCS 2694.

A Application-oriented Modelling for Efficiency

It is often intractable and unnecessary to explore the whole Java libraries. We

hence propose application-oriented explicit modelling on some popular Java li-

braries, such as containers and strings for better efficiency.

Container , such as HashMap, vectors and trees, is widely used in Java

web applications, to store and fetch event attributes. A precise analysis on con-

tainers is nontrivial, since the capacity (or the index space) of containers can

be unbounded. Our treatment on containers is inspired by the treatment on in-

stance fields, based on the insight that keys of containers can be regarded as fields

of class instances. Compared with modelling on instance fields, the modelling

on containers differs in that keys of containers can be either string constants or

more often reference variables. Therefore, both containers and keys need to be

cast back to heap objects by calling points-to analysis. Table 5 gives rules of

modelling Map containers. As shown in Table 5, the key of a map is bound with

its corresponding value by the put and get methods. The pair of containers and

keys are treated as variables from GlobVar when building the WDG. In partic-

ular, a Map container is marked as symbolic if there is any symbolic value put

into or any symbolic key taken from it.

Strings are also heavily used in Java web applications. For instance, the keys

and values of containers are usually of type String. The space of string values is

generally infinite, and to conduct a precise string analysis [23] will put too much

overhead on the static analysis phase. However, we are only interested in the

relevancy relationship among string variables. In our analysis, string constants

that syntactically appear in the program (and are thus essentially bounded)

are considered as distinguished string instances. Java library methods related to

strings, i.e., java.lang.String, java.lang.StringBuffer are explicitly mod-

elled. They fall into the following categories: (1) The receiver object is relevant

to all arguments for a constructor; (2) The return value, if any, is relevant to all

method arguments, as well as the receiver object, if any. Table 5 also shows a

few of examples that require specific treatments.

Table 5. Application-oriented Modelling

Map Container :

A[[map.put(key, value)]]={(value, f) (om.ok, f) | om ∈ pta(map), ok ∈ pta(key)}

A[[value = map.get(key)]]={(om .ok, f) (value, f) | om ∈ pta(map), ok ∈ pta(key)}

java.lang.String, java.lang.StringBuffer :

A[[str.getBytes(m0 , m1, m2, m3)]] = A[[str.getChars(m0 , m1, m2, m3)]]

= {(mi, f) (m2, f) | 0 ≤ i ≤ 3 and i 6= 2} ∪ {(str, f) (m2, f)}

A[[strbuffer.getChars(m0 , m1, m2, m3)]]

= {(mi, f) (m2, f) | 0 ≤ i ≤ 3 and i 6= 2} ∪ {(strbuffer, f) (m2, f)}

