JAIST Repository

https://dspace.jaist.ac.jp/

K Aut hentication Revisited: FI aw or N«
Recursive Authentication Protocol
Author(s) Li, Guogiang; Ogawa, Mi zuhito
Citation Lecture Notes in Computer| Science, !
Issue Date 2008
Type Journal Article
Text version aut hor
URL http://hdl . handle.net/ 101119/ 7881
This is the author-createfd version
Guogiang Li, Mi zuhito Ogawa, Lectur
. Computer Science, 5311, 2p 08, 374- 3¢
: original publication is apailabl e af
www. springerlink. com,
http://dx.doi.org/10.212007(978-3-540-
Description
JAPAN
ADVANCED INSTITUTE OF
® SCIENCE AND TECHNOLOGY

Japan Advanced Institute of Science and Technology

Authentication Revisited: Flaw or Not, the
Recursive Authentication Protocol

Guogiang Li' and Mizuhito Ogawa?

! NCES, Graduate School of Information Science, Nagoya University
1li.g@nces.is.nagoya-u.ac.jp
2 Japan Advanced Institute of Science and Technology
mizuhito@jaist.ac. jp

Abstract. Authentication and secrecy have been widely investigated
in security protocols. They are closely related to each other and vari-
ants of definitions have been proposed, which focus on the concepts of
corresponding assertion and key distribution. This paper proposes an on-
the-fly model checking method based on the pushdown system to verify
the authentication of recursive protocols with an unbounded number of
principals. By experiments of the Maude implementation, we find the re-
cursive authentication protocol, which was verified in the sense of (weak)
key distribution, has a flaw in the sense of correspondence assertion.

1 Introduction

Security protocols, although each of them only contains several flows, eas-
ily cause attacks even without breaking cryptography algorithms. Design and
analysis of security protocols have been a challenging problem over 30 years.

Woo and Lam proposed two goals for security protocols, authentication and
key distribution [1]. By authentication, we mean that after termination of the
protocol execution, a principal should be assured that it is “talking” to the
intended principal. Key distribution means that if a principal receives a session
key, then only the principal who sent the key (and the server) knew the key.
They also gave the formal definitions: authentication is defined as correspondence
assertion, and key distribution is defined as secrecy. Note that this secrecy is
stronger than the one widely used later [2, 3]. Correspondence assertion is later
widely used to define the authentication [2—4]. The intuitive meaning is, when B
claims the message it accepted from A, then A exactly sent the same message.

These properties has various different points of view. For instance, Bellare et.
al. stated that key distribution is “very different from” authentication [5]. Bella
pointed out that two goals “are strictly related” and “might be equivalent” [4].

Paulson et al. formally defined the key distribution 2, which intuitively means,
if a principal receives a session key, then only the principal who sent the key (and
the server) can know the key [4, 6]. Its difference from the key distribution Woo
and Lam defined is quite subtle, since “can know” implies “may not know”. In

3 This “key distribution” is weaker than what Woo and Lam has defined in [1].

2 Guoqgiang Li and Mizuhito Ogawa

their sense of key distribution, Paulson proved the correctness of the recursive
authentication protocol (referred to as the RA protocol) [6].

This paper proposes an on-the-fly model checking method [7-9] based on
the pushdown system to verify the authentication property of recursive proto-
cols with an unbounded number of principals. By experiments with the Maude
implementation, we find out that the RA protocol has a flaw in the sense of
correspondence assertion.

The model checking method tackles various sources of infinity in the verifi-
cation of the RA protocol. Our main ideas are summarized as:

— Lazy instantiation on messages, i.e., message contents that do not affect
protocol actions will be left unsubstantiated.

— Lazy instantiation on names, i.e., names, such as encryption keys, are ex-
tended from constants to terms, and left uninstantiated until actual princi-
pals are assigned during communications.

— Identification of fresh messages by contexts, i.e., since the RA protocol does
not repeat the same context (i.e., once pop starts, never push again), each
nonce in a session is identified by the stack content.

The first idea is realized by a parametric semantics and a refinement step. The
second and the third ideas are realized by binders [7]. These ideas supply sound
and compete model checking for verifying authentication of the RA protocol.

Note that this methodology covers only a restricted class of recursive pro-
tocols, which are described by sequential recursive processes. To the best of our
knowledge, this is the first model checking applied to recursive protocols.

This paper is organized as follows. Section 2 presents an environment based
process calculus for security protocol descriptions, and a trace equivalence to
specify the authentication property. Section 3 shows how to describe and analyze
the RA protocol in our setting. The encoding of the pushdown system and
experimental results by Maude are reported in Section 4. Section 5 presents
related work, and Section 6 concludes the paper.

Due to the lack of space, we omit detailed explanations, examples and theo-
rems; these can be found in the extended version [10].

2 A Process Calculus for Security Protocol Descriptions

2.1 The Syntax of the Calculus

Assume three disjoint sets: £ for labels, B for binder names and V for
variables. Let a,b,c,... denote labels, let m,n, k, ... for binder names, and let
x,y,z,... for variables.

Definition 1 (Messages). Messages M, N, L ... in a set M are defined itera-
tively as follows:

pr = | mpr, ..., pr]
M,N,L:=pr|(M,N)|{M}p | H(M)

A message is ground, if it does not contain any variables.

Authentication Revisited: Flaw or Not 3

— pr ranges over a set of undecomposable primary messages.

— A binder, m[pry,...,pr,] is an atomic message indexed by its parameters,
pri,...,pry. A binder with 0 arity is named a name, which ranges over a set
N (N CB).

— (M, N) represents a pair of messages.

— {M} is an encrypted message where M is its plain message and L is its
encryption key.

— H(M) represents a one-way hash function message.

Definition 2 (Processes). Let P be a countable set of processes which is in-
dicated by P,Q, R, The syntax of processes is defined as follows:

P,Q,R::=0|aM.P|a(z).P|[M=N]P|(newz: AP | (vn)P |
let (x,y) =M in P |case M of {x}, in P |
PlQIP+Q[P;Q | Apr)

Variables x and y are bound in a(z).P, (newz : A)P, let (z,y) = M in P, and
case M of {z}r in P. The sets of free variables and bound variables in P are
denoted by f,(P) and b,(P), respectively. A process P is closed if f,(P) = 0.
A name is free in a process if it is not restricted by a restriction operator v.
The sets of free names and local names of P are denoted by f,(P) and l,,(P),
respectively.

Their intuition is,

— 0 is the Nil process that does nothing.

— @M.P and a(x).P are communication processes. They are used to describe
sending message M, and awaiting an input message via x, respectively.

— (new z : A)P and (vn)P are binding processes. The former denotes that z
ranges over A (C N) in P; The latter denotes that the name n is local in P.

— [M = N]P, let (x,y) = M in P and case M of {z}, in P are validation
processes. They validate whether the message M is equal to N, whether it
is a pair, and whether it is an encrypted message, respectively.

— P||Q, P+Q, and P; Q are structure processes. P||Q) means that two processes
run concurrently; P + () means nondeterministic choices of a process; P; Q)
means when P terminates, then @) runs.

— For each identifier A(pry,...,pry,), thereis a unique definition, A(prq, ..., pry)
£ P, where the pry,...,pr, are free names and variables in P.

We assume a set of identifier variables, X will range over identifier variables.
A process expression is like a process, but may contain identifier variables in the
same way as identifers. E, F' will range over process expressions.

Definition 3 (Recursive process). A recursive process is defined as an iden-
tifier, with the format, A; = E(Aq,...,Aq,... A,).

If a process is not a recursive process, we name it a flat process.

Definition 4 (Sequential). Let FE be any expression. We say that an identifier
variable X is sequential in E, if X does not occur in any arguments of parallel
compositions. An expression E is sequential if all variables in E are sequential.
A sequential process is an identifier defined by an sequential expression.

4 Guoqgiang Li and Mizuhito Ogawa

2.2 Characterizations and Restrictions on the Process Calculus

We use an environment-based process calculus [3], while traditional process
calculi, such as w-calculus [11], use channel-based communications. There are
several notable differences between two types of calculi.

— Communications.
e In channel-based calculi, two processes communicate through a specific
channel. For example, a communication in m-calculus [11] is,

(v2)T2.P) | 2(y).Q | R —T (v2)P | Q{z/y}) | R

The first process sends a local name z through the channel x, while the
second process awaits a name via y on the same channel x. Thus the
name z will be communicated between two processes.

e In the environment-based process calculus, all processes communicate
through a public environment, which records all communicated messages.
The calculus is thus natural to describe a hostile network.

— Freshness of names.

e Channel-based calculi adopt scopes of local names for fresh names. In the
example above, the scope of z enlarges after the transition. Although R
is included in the system, it cannot “touch” the z during the transition.
Due to a-conversation, z can be substituted to any fresh name.

e All local names in the environment-based process calculus will be substi-
tuted to fresh public names during transitions. Since when two principals
exchange a message through a hostile network, we assume that all other
principals will know the message. Several techniques will be performed
to guarantee that each public name is fresh to the whole system.

— Infinitely many messages that intruders and dishonest principals generate.

e Channel-based calculi adopt recursive processes to generate these mes-
sages. Thus even describing a simple protocol, the system is complex [12].

e The environment based process calculus adopt deductive systems to gen-
erate the messages generated by intruders and dishonest principals [3,
8]. Security protocols can be described in a straightforward way.

For both types of calculi, there are two representations for infinite processes,
identifiers and replications. Identifiers can represent recursive processes. Repli-
cations take the form !P, which intuitively means an unbounded number of
concurrent copies of P. For fitness to model as a pushdown system, we choose
identifiers with the sequential restriction.

2.3 Trace Semantics and Equivalence

An environmental deductive system (represented as b, see Appendix ??) gen-
erates messages that intruders can produce, starting from the the logged mes-
sages. It produces, encrypts/decrypts, composes/splits, and hashes messages.

An action is a term of form aM or a(M). It is ground if its attached message
is ground. A string of ground actions represents a possible run of the protocol,

Authentication Revisited: Flaw or Not 5

if each input message is deduced by messages in its prefix string. We named
such a kind of string (concrete) trace, denoted by s, s’,s”,.... The messages in
a concrete trace s, denoted by msg(s), are those messages in output actions of
the concrete trace s. We use s - M to abbreviate msg(s) - M.

Definition 5 (Concrete trace and configuration). A concrete trace s is
a ground action string, satisfying each decomposition s = s'.a(M).s"” implies
s'F M. A concrete configuration is a pair (s, P), in which s is a concrete trace
and P is a closed process.

The extended version [10] presents the trace semantics, the parametric se-
mantics and a refinement step as the lazy instantiation. We proved the sound
and complete correspondence between two semantics [7,9].

Abadi and Gordon adopted testing equivalence to define security proper-
ties [2], in which the implementation and the specification of a security protocol
are described by two processes. If they satisfy the equivalence for a security
property, the protocol guarantees the property.

Testing equivalence is defined by quantifying the environment with which the
processes interact. Intuitively, the two processes should exhibit the same traces
under arbitrary observers (as intruders). In our calculus, capabilities of intruders
are captured by the environmental deductive system. Thus, a trace equivalence is
directly applied for the authentication property without quantifying observers.

For simplicity, we say a concrete configuration (s, P) generates a concrete
trace §', if (s, P) —* (s/, P’} for some P’.

Definition 6 (Trace equivalence). P and Q are trace equivalent, written
P ~; Q, if for all trace s, P generates s if and only if Q generates s.

3 Analysis of the Recursive Authentication Protocol

3.1 The Recursive Authentication Protocol

The recursive authentication protocol is proposed in [13]. It operates over an
arbitrarily long chain of principals, terminating with a key-generated server.

Assume an unbounded number of principals intending to generate session
keys between each two adjacent principals by contacting a key-generated server
once. Each principal either contacts the server, or forwards messages and its
own information to the next principal. The protocol has three stages (see Fig.
1): Communication stage. Each principal sends a request to its next principal,
composing its message and the message accepted from the previous one. Submis-
sion stage. One principal submits the whole request to the server. Distribution
stage. The server generates a group of session keys, and sends back to the last
principal. Each principal distributes the session keys to its previous principal.

The RA protocol is given informally as follows. For simplicity, we use a
convenient abbreviation of the hash message,

HK(X) = (H(K’X)aX)

6 Guogiang Li and Mizuhito Ogawa

- Oy)0say

g (1) “bay qng

Uy -

(

Reqg (Null)

Fig. 1. The Recursive Authentication Protocol

Communication Stage

Ag — A HKAOS<A0,A1,NAO,Null)

Aj — A Hi o, s (Aiy Ait1, Na,, Xi)
Submission Stage

An—>Si HKAnS(An;S;NAnaXn)
Distribution Stage '
S—’An : {Kn,SaNAn}KAns){K’nflvAnflvNAn}KAnsﬂ
{K’I’L717 Ana NAn,l}KA"7157 {Kn727 An72; NAn—l}KAn,IS’

{Kl, A27 NA1 }KAlsa {KOa AO» NA1 }KAlsv
{K07A17NAO}KAOS
Ai — Aicr K1, Ais Nay_ Yka, 50 {Ki—2,Ai—2, Na, YKa, g0
A1—>A0: {K07A17NA0}KAOS
where Null is a special name, and X; is the message from A4;_; to A;.

3.2 Authentication of the RA Protocol

To represent authentication, declaration processes will be inserted into a pro-
tocol description [2,9]. For instance, the implementation, SYSf:”,ﬁN of the RA
protocol below contains a declaration process acec x.0 for authentication.

Ou(z1,x2) éHHlk[xhs} (w1, 22, N[Null], Null).a2(x).case © of {y1,Y2, Y3} 1kjz,,5]-
y3 = N[Null]]accx.0

Ra (21, 22) £(b1(x).let (y1,y2,Y3,Ya,ys5) = @ in [y2 = 1]
b2 Hayja, 51 (21, Al], N]ys],). (R(A[z1], 21)
—&-ﬁ?‘[lk[whs] (1,8, N[ys],).0)); (b4d(x).let (z1, 22, 23) = = in
case z1 of {z4, 25, 26 Y1x[z,,5] 0 [25 = A[z1]] [26 = N[y3]]
case z3 of {27, 28, 20 }1x(z,,5] I [28 = @2] [20 = N[ys]] b523.0)

S £51(z).52 (F(2)).0
SY Si4 20, (A[Null], A[A[Null]])||R, (A[A[Null]], A[Null])||S

imp

Authentication Revisited: Flaw or Not 7

In the description, we use a group of nested binders to describe unbounded
number of fresh names. For instances, by N[Null], N[N[Null]],... we describe fresh
nonces Na,,Na,,....
F : M — M is an iterative procedure that generates an arbitrarily long
message. We name this kind of messages recursive messages.
% is defined as follows:
F(x) = 1et (Y1, y2,Y3,Y4,Y5) = T;
let t =¢;
while (y1 = H(y2, ys, ys, Y5, Lk[y2, S]) && ys! = Null)
let (21, 22,23, 24,25) = Ys;
if (21 = H(Zg7 23, 24, 25, 1k[22, S])&&Z;g == yg)
then t = (t, {k[yal], y3, y4}, {k[ys], 22, 24});
else raise error
endif

(y17y27 Y3, y47y5) = (Z17 22, 23, %4, Z5);
endwhile

t = (t, {k[ya], ys, ya});
return ¢;

The specification for the authentication, SYSS%‘;‘, is a process that replaces

z in acc x.0 with {k[Null], A[A[Null]], N[Null]}lk{A[Null]’S]
Authentication between the originator and its recipient is defined by

SYSfiA ~ Sy SiA

spe

The implementation and the specification may fail to generate the same
traces after certain message comparisons. The specification will guarantee that
the message received and validated by one principal should be the same as the
message sent by other principal, while these messages would be different in the
implementation due to the ill-design of a protocol. Hence, we can explicitly check
the equality of the two messages in traces generated by the implementation [7,
9], which is another way to encode the correspondence assertion.

Definition 7 (Action terms[3]). Let o and 8 be actions, with f,(a) C f,(8),
and let s be a trace. We use s |E « < (3 to represent that for each ground
substitution p, if Bp occurs in s, then there exists one ap in s before Bp. A
configuration satisfies o < [3, denoted by (s, P) E a <« f, if each trace s
generated from (s, P) satisfies s’ = a < 3.

Characterization 1 [Authentication for the RA protocol] Given the formal de-
scription of the RA protocol, the recipient is correctly authenticated to the orig-
inator, if (€, SYSEAY = b5 2 « acca.

imp

4 Model Checking by the Pushdown System

4.1 Encoding as Pushdown Model

To analyze recursive protocols with a pushdown system, the restrictions for
a process are, (i) a system is restricted to contain at most one recursive process;
(ii) the expression that defines the recursive process is sequential.

8 Guogiang Li and Mizuhito Ogawa

When analyzing protocols in bounded sessions, fresh messages that processes
generate are bounded. We can fix a set of distinguished symbols to describe
them [7]. However, for the analysis of recursive protocols, fresh messages can
be unbounded. We represent an unbounded number of fresh messages by nested
binders. With the restrictions of a single recursive process, the same context
(stack content) will not be repeated; thus freshness will be guaranteed.

Definition 8 (Pushdown system). A pushdown system P = (Q, I, A, cp) is
a quadruple, where Q) contains the control locations, and I" is the stack alphabet.
A configuration of P is a pair (q,w) where ¢ € Q and w € I'*. The set of all
configurations is denoted by conf (P). With P we associated the unique transition
system Ip = (conf(P),=,co), whose initial configuration is cg.

A is a finite subset of (Q x I') x (Q x I'*). If ((g,7), (¢ ,w)) € A, we also
write {q,v) < {(¢',w). For each transition relation, if {q,7y) — {(¢',w), then
(g, W) = (¢ ,ww') for all W' € T*.

We define a set of messages used for the pushdown system as follows,

Definition 9 (Messages in the pushdown system).

pro=a | T |nl] | npr...,pr|
M,N,L:=pr|(M,N)|{M}p | H(M)

Two new messages are introduced. T is a special name, substituting a variable
that can be substituted to an unbounded number of names. m[] is a binder
marker, representing nested binders, together with the stack depth. For instance,
A[A[Null]] is represented by A[], with two stack elements in the stack.

Definition 10 (compaction). Given a parametric trace §, a compaction tr is
a parametric trace by cutting off redundant actions with the same labels in §.

We represent the parametric model with at most one sequential recursive
process by the pushdown system as follows,

— control locations are pairs (R, tr), where R is a finite set of recursive mes-
sages, and {r is a compaction.

— stack alphabet only contains a symbol *.

initial configuration is ((0,€),e), where € represents an empty parametric

trace, and € represents an empty stack.

— A is defined by two sets of translations, the translations for the parametric
rules, and the translations for the refinement step.

An occurrence of 0 in the last sequence process of a recursive process means a
return point of the current process. We will replace it to a distinguished marker,
Nil, when encoding a parametric system to the pushdown system.

The key encodings of the parametric transitions are as follows, in which ¢r
and &r are compactions of § and §', respectively.

1. For parametric transition rules except PIN D rules, (R, tr),w) — ((R, tAT/), w)
if (3, P) —, (3, P').

Authentication Revisited: Flaw or Not 9

Solution 1 (state 415)

states: 416 rewrites: 67367 in TE89676981m=s cpu (824ms real) (0
rewrites/second)

ML1 --> ({(k[MK],n&sme (1)),px(32) }1k[px(31),name (1)],{ (Mk,px(33)),px(32) } 1k[px |
31),name (1010, 4 (M, px(31)) ,pxi34) } lk[px (33) ,name (11]

TR1 —-» < a(l),0,H(1k[ML, name (1)], { (M4, A[MA]), M), null) > . < b(l),i,H({lk[NL,
name (1)1, ((MA, RA[MA]) ,MN) ,null) > . < Bb(3),o0,H(1k[A[MA],name (1)], ((R[ML],
name (1)) ,N[MN]), Hilk[Mi, name (1)], ((MA, A[MA]), MM) ,null)) > . < =(1),1i,H{lk[
L[MA], name (1)1, ((A[MA] ,name (1)) N[MN]], H{1k[MA, name (1)], ((ME, A[MA]) MOV ,
null)) » . <« s(2),0, ({ (K[MK] ,name (1)) N[MN] } 1k[A[ML] ,name (1] ,{ (Mk, M&) N[
MM]} lk[A[ML] ,neme (1)]), 4 (Mk, A[MA]) , MM} 1k[Mi, name (1] > . < &(2),1,{ (Mk, L[
Mi]) MM} lk[ML, nawe (1)] > . < acc,o,{ (Mk, A[ML]), M} 1k[ML, name (1)] >

STACKE —-> empty

Fig. 2. Snapshot of Maude Result for the Recursive Authentication Protocol

2. For PIN D rule, when R is firstly met, (R, tr), w) — ((R, tAr/),w> if (8, P) —,
(8, P'"), where R(pr) £ P; Otherwise (R, tr),w) < (R, tr),*w).
3. {(R,tr),) — {(R,tr),e) if (3, Nil) is met.

In the refinement step, we need to satisfy rigid messages by unifications [10,
9]. A rigid message is the pattern of a requirement of an input action that can
be satisfied by messages generated only by legitimate principals. We distinguish
two kinds of rigid messages, context-insensitive, and context-sensitive.

Definition 11 (Context-sensitive/insensitive rigid messages). Contest-
sensitive rigid messages are rigid messages that contain binder markers, while
context-insensitive rigid messages do not contain any binder markers.

Intuitively, a context-sensitive rigid message has an bounded number of can-
didate messages within the current context to unify with, while a context-
insensitive one has an unbounded number of candidate messages to unify with.

The transition relations for the refinement step in A are defined as follows.

4. (R, tr),w) = ((R,trp),w), if N is context-sensitive and p-unifiable in R U
el(§1).

5. {(R,tr),w) — ((RUN',trp'),w), if N is context-insensitive and p-unifiable
to N in el(81), and p’ is the substitution that replaces different messages in
N and N’ with T.

4.2 Implementing in Maude

We implemented the pushdown system above by Maude [14]. Tt describes
model generating rules by rewriting, instead of constructing directly. The reach-
ability problem can be checked at the same time while a model is being generated.
We tested the RA protocol by our Maude implementation. A counterexample is
automatically detected. The result snapshot is in Fig. 2, in which MA, MN, and Mk
are binder markers. name(1) is the server name S. It describes attacks showed
in Fig. 3, which actually represents infinitely many attacks. An intruder inter-
cepts the message sent by S, splits it, and sends the parted message to Ag. The

10 Guoqgiang Li and Mizuhito Ogawa

1

1

b3
Reqpfil) Reqp_1(N X

Fig. 3. The Attack of the RA Protocol

(TTo) “bay qn g

minimal one is,

AO —>A12 HKAOS(Ao,Al,NAO,Null)
Al — S HKAls(AlasaNANHKAUs(AOaAlvNonNull))
S —I(A1): {Kl?S?NAl}KA157{KO7AO’NA1}KA15’{KO’A17NAO}KAOS
I(Al) —>A01 {KO?A17NA0}KAOS

This result obstructs that: (1) further update of the session key of A is disabled,
and (2) traceability of the session key of Ag is violated, which are frequently
required in the real-world security.

The implementation contains about 400 lines for the general structures and
functions, and 32 lines for the protocol description. The test was performed on
a Pentium M 1.4 GHz, 1.5 G memory PC. The flaw is detected at the last step.

protocols states times(ms) flaws
recursive authentication protocol 416 824 detected

The reason of attacks is that S sends the message without any protections.
One modification is that S protects the message it sends iteratively with long-
term symmetric keys shared with principals. In the two-principal case,

Ao I A1 : HKAOS(Ao,Al,NAO,Null)

A — S HKAls(Al’Sv NAl,HKAOS(Ao,Al,NAO,Null))

S — A {{K17A27NA1}KAlsa {KO?AO?NAl}KA1$7
{KO’A17NAO}KAOS}KA15

A1—>A02 {Ko,Al,NAO}KAOS

The fixed protocol is checked secure by the same Maude implementation.

protocols states times(ms) flaws
fixed recursive authentication protocol 416 1,068 secure

5 Related Work

G. Lowe proposed a taxonomy that elucidates four levels of authentica-
tion [15]. Let us suppose that in a session of a protocol, a sender A communicates
with a receiver B.

Authentication Revisited: Flaw or Not 11

Aliveness of B guarantees that B attended the protocol.

Weak agreement of B guarantees that B attended the protocol with A.

— Non-injective agreement of B guarantees that B attended the protocol with
A, and two principals agreed on a set of messages H.

Injective agreement of B guarantees non-injective agreement of B, and that
A corresponds to a unique run of B in the session.

Each level subsumes the previous one. This paper, together with other re-
searches [12, 3], took non-injective agreement as the standard authentication,
which can be specified by the correspondence assertion.

Paulson took a weak form of key distribution property, and used Isabelle/HOL
to prove that the correctness of the RA protocol with bounded number of prin-
cipals [6]. Bella pointed out that non-injective agreement authentication and the
weak form of key distribution “might be equivalent” [4]. However, we showed in
this paper that the weak form of key distribution does not hold non-injective
agreement, specified by the correspondence assertion.

Bryans and Schneider adopted CSP to describe behaviors of the RA protocol
with the same assumption as Paulson’s. They considered the correspondence as-
sertion between the server and the last principal who submitted the request, and
used PVS to prove the correctness of the authentication for the RA protocol [16].

Basin et al. proposed an on-the-fly model checking method (OFMC) [17] for
security protocol analysis. In their work, an intruder’s messages are instantiated
only when necessary, known as lazy intruder. Their research is similar to our
work in analyzing authentication in bounded sessions without binders.

A tree transducer-based model was proposed for recursive protocols by Kiisters,
et al. [18]. The rules in this model are assumed to have linear left-hand sides,
so no equality tests can be performed. Truderung generalized the limitation,
and proposed a selecting theory for recursive protocols [19]. Both of the two
works focused on the secrecy property of the RA protocol. Recently, Kiisters
and Truderung considered the arithmetic encryption algorithm for the RA pro-
tocol, detected the known attack [20] automatically [21]. Since we assume a
perfect cryptography, this attack is out of our methodology.

6 Conclusion

This paper presented the pushdown model checking of authentication of the
RA protocol. It extended our previous work [7], allowing to analyze protocols
with at most one recursive procedure. Our Maude implementation successfully
detected a previously unreported attack that violates authentication in the sense
of corresponding assertion of the RA protocol automatically. This result shows
the effect of the subtle difference among security definitions.

Acknowledgements The authors thank Prof. Kazuhiro Ogata for fruitful dis-
cussions. This research is supported by the 21st Century COE “Verifiable and
Evolvable e-Society” of JAIST, funded by Japanese Ministry of Education, Cul-
ture, Sports, Science and Technology.

12 Guoqgiang Li and Mizuhito Ogawa
References
1. Woo, T.Y., Lam, S.S.: A Semantic Model for Authentication Protocols. In: Pro-

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

ceedings of the S&P’93, IEEE Computer Society Press (1993) 178-194

Abadi, M., Gordon, A.D.: A Calculus for Cryptographic Protocols: The Spi Cal-
culus. In: Proceedings of the CCS’97, ACM Press (1997) 36-47

Boreale, M.: Symbolic Trace Analysis of Cryptographic Protocols. In: Proceedings
of the ICALP’01. Volume 2076 of LNCS., Springer (2001) 667-681

Bella, G.: Inductive Verification of Cryptographic Protocols. PhD thesis, Univer-
sity of Cambridge (2000)

Bellare, M., Rogaway, P.: Provably Secure Session Key Distribution: The Three
Party Case. In: Proceedings of the STOC’95, ACM Press (1995) 57-66

Paulson, L.C.: Mechanized Proofs for a Recursive Authentication Protocol. In:
Proceedings of the CSFW’97, IEEE Computer Society Press (1997) 84-95

Li, G., Ogawa, M.: On-the-Fly Model Checking of Security Protocols and Its
Implementation by Maude. IPSJ Transactions on Programming 48 (2007) 50-75
Li, G., Ogawa, M.: On-the-Fly Model Checking of Fair Non-repudiation Protocols.
In: Proceedings of the ATVA’07. Volume 4762 of LNCS., Springer (2007) 511-522
Li, G.: On-the-Fly Model Checking of Security Protocols. PhD thesis, Japan
Advanced Institute of Science and Technology (2008)

Li, G., Ogawa, M.: Authentication Revisited: Flaw or Not, the Recursive Authen-
tication Protocol. Technical Report IS-RR-2008-002, Japan Advanced Institute of
Science and Technology (2008)

Sangiorgi, D., Walker, D.: The Pi-Calculus: A Theory of Mobile Processes. Cam-
bridge University Press (2003)

Lowe, G.: Breaking and Fixing the Needham-Schroeder Public-key Using FDR. In:
Proceedings of the TACAS’96. Volume 1055 of LNCS., Springer (1996) 147-166
Bull, J.A., Otway, D.J.: The Authentication Protocol. Technical report, Defence
Research Agency, UK (1997)

Clavel, M., Durédn, F., Eker, S., Lincolnand, P., Marti-Oliet, N., Meseguer, J.,
Talcott, C.: Maude Manual (Version 2.2). (2005)

Lowe, G.: A Hierarchy of Authentication Specifications. In: Proceedings of the
CSFW’97, IEEE Computer Society Press (1997) 31-43

Bryans, J., Schneider, S.: CSP, PVS and a Recursive Authentication Protocol. In:
Proceedings of the DIMACS FVSP’97. (1997)

Basin, D.A., Mddersheim, S., Vigano, L.. OFMC: A Symbolic Model Checker
for Security Protocols. International Journal of Information Security 4(3) (2005)
181-208

Kisters, R., Wilke, T.: Automata-based Analysis of Recursive Cryptographic Pro-
tocols. In: Proceedings of the STACS’04. Volume 2996 of LNCS., Springer (2004)
382-393

Truderung, T.: Selecting Theories and Recursive Protocols. In: Proceedings of the
CONCUR’05. Volume 3653 of LNCS., Springer (2005) 217-232

Ryan, P., Schneider, S.: An Attack on a Recursive Authentication Protocol: A
Cautionary Tale. Information Processing Letters 65 (1998) 7-10

Kiisters, R., Truderung, T.: On the Automatic Analysis of Recursive Security
Protocols with XOR. In: Proceedings of the STACS’07. Volume 4393 of LNCS.,
Springer (2007) 646—657

