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Abstract. This paper reconstructs and extends the automatic verifi-
cation technique of Le Métayer, Proving properties of programs defined
over recursive data structures (ACM PEPM ’95), based on a backward
abstract interpretation.

To show the effectiveness of extensions, we show two examples of the
declarative specifications of sorting and formatting programs, which are
directly and concisely expressed in our specification language.

1 Introduction

Program errors cause failures during execution that can be classified into three
categories.

1. Execution eventually stops as a result of illegal operations.
2. Execution does not terminate.
3. Execution results are not what was intended.

Errors of the first kind are detected by type inference, with such languages as
ML. In addition, although termination is in general undecidable, errors of the
second kind can be automatically prevented by several techniques, such as simple
termination [12, 13], termination analysis [16], and dependency pairs [2].

The third kind of error cannot be prevented without a specification language,
and there is always a trade-off between expressiveness and feasibility. If the
aim 18 to express everything, it is easy to fall into the trap of undecidability.
Moreover, too much expressiveness may make users hard to learn. For compile-
time error detection, an automatic verifier that functions without any human
guidance is desirable even if it verifies only partial specifications. Then the user
can concentrate on what kind of properties, under the limitation of a simple and
restricted specification language, properly approximate the program behavior.

By restricting both properties and languages, Le Métayer developed an au-
tomatic verification technique [19]. Tts target language is a strongly-typed first-
order functional language with product types and recursive types. The impor-
tant restriction is that the conditional part of an if-expression contains only basic
predicates (such as null, leg, geq, and equal) without any functional symbols.



He defines a language which prescribes a class of uniform predicates over
recursive types. These predicates are constructed by predicate constructors from
basic predicates on base types. As an example, his system expresses that a sort
program returns a list of decreasing values (if the sort program terminates) and
automatically verifies it. This property is called orderedness of the sort program,
which is expressed by true — Vgeq(sort X) in our specification language. Note
that the termination of the sort program is not verified; this verification is left
to a termination analysis.

Similar ideas to those of uniform predicates are also found in Refs. [15, 17,
3, 21]; however, the significant differences are that

— binary predicates are allowed in constructing predicates, and
— free variables in binary predicates are allowed.

The former extends the expressiveness of target properties from other flow anal-
yses. The latter maintains the power of inter-functional inferences. However,
the expressive power of the specification language 1s still fairly restricted as a
verification; for instance, the input-output relation cannot be described.

This paper reconstructs and extends the automatic verification technique
of Le Métayer [19] based on a backward abstract interpretation [11, 1, 7]. The
termination and soundness proofs of the verification are naturally derived from
the formalization as a backward abstract interpretation.

Extensions are achieved by (1) using the input variable in function prop-
erties, (2) introducing new predicate constructors, and (3) using uninterpreted
function/predicate symbols. They are demonstrated by verifying the sorting and
formatting programs. The first and the second extensions expand the ability of
the specification language so that it covers another major specification of the
sorting program; namely, weak preservation, i.e., the input and the output are
the same set. This is expressed by true — V;3,equal A V,.Jrequal(sort X). Note
that since our specification language cannot express the number of elements in a
list, our algorithm cannot detect the full specification of sort, called preservation,
1.e., the input and the output are the same multiset.

The third extension expands the range of both target programs and the spec-
ification language. The expansion of target programs is achieved by loosening
the restrictions on the conditional part of an if-expression. The running exam-
ple is format, which formats a given sentence (expressed as a list of strings)
to a specified width. The technique behind this extension is the use of uninter-
preted functions. We also show how partial evaluation will cooperate with the
verification. Other major specifications of format become expressible by the use
of uninterpreted predicates. This technique drastically expands the expressive
ability, such as the specification that the order of words is preserved by format.

This paper is organized as follows: Section 2 defines programming and specifi-
cation languages. Section 3 provides the verification algorithm based on a back-
ward abstract interpretation. The termination and soundness proofs are also
given. Section 4 demonstrates the verification of orderedness of the (simple but
inefficient) sort program to explain the algorithm. Section 5 presents extensions



and demonstrates the verification of major specifications of the sorting and for-
matting programs. Section 6 discusses related work and Section 7 concludes the
paper and discusses future work.

2 Preliminaries

2.1 Programming Language

The target language is a strongly-typed first-order functional language with ML-
like syntax, in which product types and recursive types, such as lists list(A4) =
ponil + A x list(o), are allowed. We use :: to mean infix cons, @ to mean infix
append, and [ ] to mean a list, namely, [ay, a2, a3z] = a1 :: (a2 :: (a3 :: nil)). The
semantics of the language is given by an ordinary least fix-point computation.
We assume that the language is strict, but the same technique can be applied
to a lazy language as well. The precise syntax and semantics of the language are
shown in Fig. 1 and Fig. 2. Parentheses in the syntax are used for either making
pairs or clarifying the order of applications of infix operators. Basic concrete
domains Dpeo and Dypy are flat cpo’s (as usual), and the other concrete domains
D, of type « are constructed by the list and pair constructors. The interpretation
1 of expressions has the hidden argument, i.e., for simplicity the environment
fve of function variables are omitted in Fig. 2.

The language of expressions
E=x|C| (B, E) | By Ey | fE|op E|(E)|
if Cond then F else Ey | let val # = E| in P> end |
let val (z,y) = Fy in F> end | let val z :: s = [ in F» end
Cond=py « | py (2,y)

E e Fxp expressions op € Prim primitive functions
where ¢ C' € Const constants Pu, Py € Pred  basic predicates
x € By bound variables feFv functional variables
The syntax of programs Prog={fun f; &; = F; ; }

The language of types

T =T1¢ | Tr Tp =T¢ — Tg
TGITU|TP|TR TP:TGxTG
Tg = panil +Tg Ty =7 (basic types)

Fig. 1. Syntax of Programming Language.



o[ {fun fiz; =E;; } ] = fve whererec
fve =[(Ayr -+ yn.if (bottom? y1 - yp)
then L else [E;]ly; /x;])/ fi]

Y[C]bve =¢.[C]
Pl[x]bve = bve[z]
Y[op E]bve = & [op](¥[ETbve)

Ylpu x]bve = &lpu(bvelx])
Vs (2, y)]bve = &l ] (bve[x], buely])

V[ f Elbve = foe[fI(¥[E]bve)
Y[(Fy, Fa)]bve = (Y[ Er]bve, Y[ Ea]bve)
V[E, :: Es]bue = (Y[ E1]bve) :: (Y] E:]bve)

¢[[if Cond then F; else Es]bve = if (bottom? (¢[Cond]bve)) then L
elsif Y[Condlbve then Y[ FE1]bve else Y[E:]bve

Y[let val ¢ = Fy in Ey]bve = Y[ E:](bve[¢[E1]bve/x])
¢Ylet val (x,y) = Fy in BEsllbve = Y[ Ea](bve[v[Er]bve/(z,y)])
Ylet val z = ws = Ey in Esllbve = @[ Ex](bve[[Er]bve/x 2 xs])
bottom? v, -y = =1)V oV (g =1)

¢ (Fve —=)BEep — Bve — D & Prim—D—D
¥, Prog — Fue & : Pred — D — Bool
fre€ Fve=Fv—D—D & Const — D

bve € Bve = Bv — D

where

Fig. 2. Semantics of Programming Language.

An important restriction 1s that the conditional part of an if-expression must
consist only of basic predicates without any functional symbols. Section 5 dis-
cusses how this requirement can be loosened. Until then, we use only null as the
unary basic predicate on lists, leq, geq, and equal as the binary basic predicates
on integers, :: as a binary primitive function, and n¢ as a constant. The type
description in a program is often omitted if it can be easily deduced by type
inference.

For technical simplicity, we also set the following restrictions.

— Basic types are Int and Bool.
— Product types and recursive types are pairs and lists, respectively.
— Each function is unary, i.e., pairs must be used to compose variables.

The third restriction means that binary functions and predicates are respectively
regarded as unary functions and predicates which accept the argument of pair



type. This assumption can easily be extended to a more general setting, for
instance, with tuple types.

Values are denoted by a,b,c,---, lists by as, bs,cs,---, and lists of lists by
ass,bss,css,---.' We also assume that variable names of input variables and
locally defined variables are different. The following functions present a sorting
program with types sort : int list — int list and max : int list — int x int list.

fun sort as = if null as then nil else
let val (b,bs) = max as in b::sort bs end;

fun max cs = let val d::ds = cs in
if null ds then (d,nil) else
let val (e,es) = max ds in
if leq(e,d) then (d,e::es) else (e,d::es) end
end;

2.2 Specification Language

The language for specifying properties is constructed by using predicate con-
structors V,V;,V,, and V on basic predicates, constants, free variables, and vari-
ables appearing in a program. Predicate constructors will be extended in Sec-
tion 5. A basic unary predicate is denoted by py, a basic binary predicate by ppg,
a unary predicate by Py, and a binary predicate by Pg. Indexes U and B are of-
ten omitted when they are clear from the context. As convention, bound variables
are denoted by a,b,¢,---,2,y,2,---,as,bs,cs,---,xs,ys, zs,- - -, free variables by
X, Y. Z - constants by C, M, --- and expressions by £, Eq, Ey, - -.

A binary predicate P is transformed into a unary predicate P¥ by substitut-
ing an expression F for the second argument. That is, P?(E') = P(E', E). P
is defined by P(Ey, Fs) = P(Es, Fy). The grammar of the construction of pred-
icates is shown in Fig. 3. Specification of a function f is expressed with a free
variable by Q(X) — P(f X), which means if input X satisfies @ then output
f X satisfies P, when P, Q) € P;. Each input X is a distinct free variable for
each function and property to avoid name crash.

Note that negation is not allowed. The meanings and examples of the predi-
cate constructors V,V;,V,, and V are given as follows.

— VPy(xs) iff either xs is nil or the unary predicate Py(x) holds for each
element z in xs.

— VPg(zs) iff either xs is nil or P} (ys) A VPg(ys) for xs = y = ys.

Vi Pg(zs,y) and V, Pg(z,ys) are defined by VPg(xs) and VPE(ys), respectively.
The examples are shown in the table below.

! as is a reserved word of ML, but we ignore it.



Pp =P; X —=P; (fX) properties of functions

Pj = predicates in Pg without bound variables

Pg = Ps | Pp | true | false ground properties

Ps =Py | Pr unary predicates

Pr =VPy | VP | PE | PR APr| PrV Pr properties of lists

Pp =Pg | Pp| Ps x Ps |Y,.Pp | Vi Pp | properties of pairs

Pp A Pp | PpV Pp

Pg =py | P | PBAPg | PgV Py basic binary predicates

Py =py | PE | Py APy | PuV Py basic unary predicates

E expressions

V =X z|e basic expressions

X (finitely many) free variables

z bound variables

C constants

Fig. 3. Language for specification of properties.
predicate true false
geq>(a) 4 2
Vgeq®(as) [3,6,4], il [3,6,1]

Vileq(as,a) |([3,6,4], 8), (nil, 8) ([3,6,44], 5)

Veleg(a,as)|(3, [3,6,4]), (3, nil) (5, [3,6,4])
Vgeq(as) [6,4,3], il [4,6,3]

For instance, the sorting program is fully specified by the following conditions.

1. Output must be ordered (called orderedness).

2. Input and output are the same multiset (called preservation).

Orderedness is expressed as true — Vgeq(sort X). That is, the output of the
sorting program is decreasing if the input satisfies true (i.e., empty assump-

tions). For preservation, the weaker condition called weak preservation, i.e., the

input and the output are the same set, is expressed by

true — (V;3,equal A VTEllequal)X(sort X).

with the introduction of additional predicate constructors 3,3;, and 3, (which
intuitively mean —V—, =¥;—, and =V, -, respectively), which will be discussed in

Section 5. Note that only the input variable of a

function remains in the scope

when a function call occurs, thus our definition of properties of functions (Pp)

is possible (which was neglected in [19]).



3 Automatic Verification as Abstract Interpretation

3.1 Verification Algorithm as Abstract Interpretation

An abstract interpretation consists of an abstract domain, its order, and an
interpretation (on an abstract domain) of primitive functions [11, 1, 7]. Our
choice 1s a backward abstract interpretation with

abstract domain a set of predicates (in Fig. 3) satisfying the type,
order the entailment relation defined in Fig. 4, and
interpretation  defined in Fig. 5.

Let { fun f; #; = E; ; } be a program. The verification algorithm is the least
fixed point computation to solve whererec equations in Fig. 5. Section 4 explains
how this algorithm performs on the sorting program.

The entailment relation C (in Fig. 4) is intuitively the opposite of the logical
implication. That 1s, P C () means that ) implies P. By definition, true is
the least element and false is the greatest element in the abstract domain. We
denote by P = @ if P C ) and P O (). The entailment relation may be used to
trim at each step of interpretation ¥. Formally, the entailment relation consists
of axioms on basic predicates/predicate constructors, and ordinary logical rules,
and their extensions by predicate constructors, as defined in Fig. 4.

In Fig. 5, let Formula be a set of all formulae constructed from predicates
in Fig. 3 and bound variables (in the scope of an expression) with logical con-
nectives A and V. The disjunction V is regarded as composing branches of the
verification, i.e., each branch (conjunctive formula) is analyzed independently.

The projection | extracts a predicate P, in which a bound variable # (in
the scope of an expression E) is substituted in a formula. When regarding a
conjunctive formula v as an assignment from bound variables to predicates, v |,
coincides with the restriction to z. For instance, (leq(z,y) AV(xs)) |,= leg? (z).
Note that the | operator is used when the local definition of z in a let-expression
is analyzed, thus P = v |, must exclude z. In our specification language, if such
case occurs then P(z) can be reduced true or false using the entailment relation.

The —-elimination operator G is defined by

Ol (Cond A P)V (~Cond A P') ] = V;Q;

where each Q; satisfies Cond A P C @Q; and —=Cond A P’ C ;. For instance,
Ol (leq(e,d) AVleqi(es)) V (mleq(e,d) AVleq®) | = Vieqi(es) V Vieq®(es).

The interpretation of a function call
U[f E]P = w[EN((feplf1P"7)0°7)

requires another operation, called S7-expansion (similar to the substitution cal-
culus in higher-order rewrite systems [24]). When a function f is called in an
expression E, bound variables (except for an input variable to f) become out
of the scope. Thus, if a predicate P contains a bound variable, then it must be
replaced with a free variable and the substitution to the free variable must be
kept. They are P?7 and 6°7. For instance, W[f E]Vieq® creates P°7 = Vieq?
and 0°7 = [Z «— b].



Axioms on basic predicates

equal = equal leq = geq null(nil) = true null(z :: xs) = false
equal(z, ) = true geq(z,z) = true leq(x, x) = true
equal C equal®™ x equalx geq C geq® x geq” leq C leq” x Ex
T % pT PLC P®xP* e
PEP"x P = X Transitivity

VPYC VP AP(z,y) VIV, P C (VY. P)™* x (V[V, P)"*

Ordinary logical rules on logical connectives

PAP=P PPCPAAP, trueANP=P false A P = false
PVP=P PVPLCP true V P = true falsev P =P
PEP, PLCP PEP, PLCP
PyAP CEPyAP) PV P CPVP

Entailment relation of predicate constructors
Pl E PZ P1 E P2

PCEP  tPACTP
P C P Py C Py

lists  f(PLAP)=1P AtP, with { € {V,¥,,V,,V}

P Py Pl x P pair (Py x Po)A(P] x Py)=(PLAP])x (Py\P})
P=P P APR=P AP, PNB=PVP P xP=PxP
V,P=V,P V. P=VY,P (Vi P)E =V(PF) YV, P =V,V;P
VP(a ::as) = P(a) AYP(as) VP(nil) = true

VP(a:as)= Vpa(as) AV P(as) V P(nil) = true

Fig. 4. Entailment relation

Theorem 1. The verification algorithm always terminates.

(Sketch of proof) Basic predicates, variables, and constants appearing in a pro-
gram are finite. A free variable is introduced as a substitute for a bound variable
only when function-calls; thus, only finitely many free variables are used dur-
ing verifications. Since each predicate constructor enriches types, once types of
functions are fixed only finitely many applications of predicate constructors are
possible. The finiteness of an input-dependent abstract domain is then guaran-
teed. The algorithm is therefore formulated as the least fix-point computation
on a finite abstract domain, so that it terminates. |



O {fun f; 2, = F; ; } ] = fup whererec fop =[ (APL-- Po.(W[EIP) 12,)/ fi ]

vicne - {I';ilsi i)ftlllDe(rfv)ise
Uz]P = P(x»)
@[op E]P = U[E](=[op]P)
w[f E]P = U[E](foplf1P°7)0°7)
 (W[EP, AU[ES]Ps if P=P x P

V(Ey, E2)]P - {LD[[El]]PEz V U B, PE otherwise "

) _ [VIEIQAPIEING it P =vQ
U[E; :: Es]P = {lI/[[(El, E)¥-Q AP[E]VQ if P=V(Q
Uit Cond then E) else F3|P = O[(Cond AV[EL]P) V (—-Cond ANW[E2]P)]
VU[let val z — E; in E5|P =V[EJWIE]P) |

Ullet val (z,y) = Fy in EL]|P =V [E(P[E-]P) Lz

VIEVQif (V[E2]P) l(e,ws)= VrQ

VEAIVQ if (P[E:]P) le= Q or (F[E2]P)lss=VYQ
U (Fop —)Eep — Pred — Formula = : Prim — Pred — Pred

where ¢ @ : Prog — Fup |: Formula — Bv — Pred
fvp € Fvp = Fv — Pred — Pred O: Formula — Formula

Ulet val « :: s = Ey in Es]P = {

Fig. 5. Abstract semantics of verification

3.2 Soundness by Domain-Induced Abstract Interpretation

In this section, we will show how the abstract interpretation @ is obtained as a
domain-induced abstract interpretation, 1.e., an abstract interpretation induced
from domain abstractions. As a consequence, the soundness proof is given. Note
that an automatic verification cannot be complete by nature.

Let the domain and codomain of a function f of type o« — 3 be D, and Dyg,
respectively. Let the power domain PD[D,] of D, be {cl%a (X) | X C D,} with

the order C_; = D, where cl%a is the downward closure operator in D,.
& (in Fig. b) is expressed as the two-step domain-induced abstract interpre-
tation (as indicated in Fig. 6). The first step is backward and consists of

— the abstract domain PD[D,,
— the concretization map conc

o

=1dp,
— the abstraction map absl = cl%
This step precisely detects how much of the input is enough to produce the

output satisfying the specification. The next step approximates according to the
specification language in order to make the analysis decidable. Let Pred, be a



faep absl o fto concfg
D.—""5 D, PD[D.Jé—— PD[Dy)

abs?, (cljlja) conc}3 (1dp,) abs? conc?3

PD[D,]{——— PD[Dg] Pred,{——— Predg

abstoflo conc}3 abs? oabst o fto conc}3 ) conc?3

Fig. 6. Two steps of domain-induced abstract interpretation

set of predicates on D, generated as Pz in Fig. 3. The second step is forward
and consists of

— the abstract domain Pred,,.
— the concretization map conc?(P) = cl,lj ({x € Do | P(x)}) for P € Pred,.

— the abstraction map abs(X) = N({P € Pred, | conc’(P) C X}) for X €
PDID,].

Note that the abstract domain Pred, 1s a lattice wrt the entailment relation.
For instance, P U @ and P M @ always exists as P A @ and PV @, respectively.

Thus an abstract interpretation = on a primitive function op of type a« — 3
is defined by Z(op) = abs - op™! - conc, where abs, = abs? - abs, and concg =
conch - conc?. Similar to ¥ on expressions. The abstract interpretation & on
recursively defined functions f;’s is obtained by the least fix-point computation.

Definition 2. For an abstract interpretation @, a function f is safe if f satisfies
@(f) C abs - f~1 - conc. An abstract interpretation W is safe if each primitive
function is safe.

Theorem 3. The verification algorithm is sound (i.e., the detected property of
a program always holds if a program terminates).

(Sketch of proof) Since the concretization map conc, and the abstraction map
absg satisfy abs, - conc, = tdp,, and conc, - abs, C cl]lja, a recursively defined
function is safe. Thus the detected property is sound. |

4 Example: Verifying Orderedness of Sorting

The verification algorithm is explained here by an example of orderedness true —
Vgeq(sort X). When unknown properties of user-defined functions are required,
new conjectures are produced. For instance, when verifying true — Vgeq(sort X),
it automatically produces and proves the lemmata; Vieq? (X) — Vleq? (sort X),
—null AVleqg? (V) — leq? xVleqg? (maz V), and —null(Y) — V,geq(mazx Y). The
generation of lemmata is shown at the top of Fig. 7. The vertical wavy arrow
indicates an iterative procedure, the double arrow indicates the creation of a
conjecture, and the arrow returns the resulting lemma.



true — Vygeg(sort X) 4

) — true — ViegZ(sort X)
\H/ ’ \
4 / true — leq? x true(maz Y)
true — Vieqg” (sort X) first \S
5/ wteration
—null(Y) AVieg? — leg? x true(maz Y)

Vieg? (X) — Vieg? (sort X)

\

, = ViegZ(X) — ViegZ (sort X)

\

/

\

true — VY,geg(mazr Y) | true — leg? x Yieg?(max Y)

. second \S/
L iteration
\

—null(Y) — Vrgeq(maz Y) —null(Y) AVieg? (V) — leg? x Yieg? (max Y)

\

\
5/ ! L ViegZ(X) — Vieg? (sort X) (converged)

success !

\

Fig. 7. Generation of lemmata for true — Vgeg(sort X)

For instance, Yleq? (X) — Vleg? (sort X) means that if an input of sort is
less-than-or-equal-to any given Z, an output is also less-than-or-equal-to Z. This
lemma is generated as a conjecture true — Vieg?(sort X) at the else-branch
of the if-expression in sort (¥[b::sort bs]Vygeq) as follows.

Vgeq(b :: sort bs) = V,geq(b,sort bs) A Vgeq(sort bs)

Vieq®(sort bs) A Vgeq(sort bs)

Since there are no conjectures related to Vleqb(sort X) in the recursion hypoth-
esis, a new conjecture is created. But properties of functions (Pr in Fig. 3) ex-
clude bound variables. Thus, by the 3i-expansion, Vieq®(sort X) is transformed
to Vieq? (sort X) with the substitution [Z « b], and true — Vleq?(sort X) is
created. This means that no local information on b is used during the verifica-
tion of true — Vleg? (sort X ). This conjecture does not hold; instead, we obtain
Vieg? (X) — Vleq? (sort X) as a lemma.

A typical example of the use of the entailment relation appears in the ver-
ification of —null(Y) — V,.geq(mazx Y). At the second if-expression in max,
U[if leq(e,d) then (d,e::es) else (e,d::es)]V,.geq is created. Thus,
(leg(e,d)AVleq?(es)) V (leq(e, d)AVleg®(es)) is obtained. From the transitivity
of legq, leg(e,d) A Vleq?(es)) C leq(e,d) A Vleg®(es) (see the underlined parts),
therefore we obtain Vleg®(es) by the —-elimination. Note that the —-elimination
also creates Vleq?(es), but only Vleq®(es) branch is successful, i.e., from the re-
cursion hypothesis ¥[max ds]V,geq is reduced to —null(ds), as desired. Thus
Vieg%(es) is omitted.

5 Extensions

5.1 New Predicate Constructors

In this section we introduce new predicate constructors and extend the entail-
ment relation to make it possible to verify weak preservation of sort programs.



The new predicate constructors are 3,3;,3,., and A. The predicates are extended
by updating part of the grammar in Fig. 3 with

Pr=VPy |7E|PU | VPg | APg | Pg | PR A Pr | PRV Pr properties of lists
Pp=Pg|Pp|PsxPs|VY.Pg|ViPg|3Ps|3Psl properties of pairs
Pp A Pp | PpV Pp

where the underlined parts are newly added. Their meanings are shown by ex-
amples in the table below. The entailment relation is enriched as in Fig. 8.

predicate | true false
Jgeq’(as) [3,6,4] ([3,2,4]), nil
Jileg(as,a) | ([3,6,4], 5) ([3,6,4], 2), (nil, b)
J.leq(a, as) | (5, [3,6,4]) (7, [3,6,4]), (b, nil)
Aleg(as) [3,2,4] [3,6,4], [3], nil

Then weak preservation of sort is expressed by

true — V;3,equal A VrEllequalX(sort X).

During the verification of true — VlElrequalX(sort X), the key step is at
Vi3requal(as,b :: sort(bs)) in sort. By transitivity Vi3,equal(as,b :: bs) A
Vi3requal(b :: bs,b =2 sort(bs)) is inferred. To solve the second component, the
entailment relation V;3, P(a :: as, b :: bs) C P(a,b) AV,3, P(as, bs) is used. This
i1s obtained as a transitive closure by
Vi3, P(a::as,b:bs)=3,.Pla,b::bs) AV;3, P(as,b :: bs)
C (P(a,b) v 3, P(a,bs)) AV;3,P(as, bs)

C P(a,b) AY3, P(as, bs).

Thus Vi3, equal(b :: bs, b :: sort(bs)) is reduced to V;3.equal(bs, sort(bs)) which

is a recursion hypothesis. The rest V;3,equal(as,b :: bs) creates the conjecture

Y
true — V;(equal X true V true x J,equal) (mazx Y)

at (b,bs) = max as, and similar approximations occur in max at expressions

(d,e::es) and (e,d::es). true — EINTequalX(sort X)) is similarly verified.

5.2 Uninterpreted Functions and Predicates

This section extends the range of conditional expressions that can be included in
the programs to be verified. Function symbols (either primitive or user-defined)
in the conditional part of an if-expression are allowed. They are left uninter-
preted during the verification, and the result will be refined by partial evaluation
of these function symbols.

The example is a formatting program format that formats a sentence (ex-
pressed by a list of strings) as a list of sentences each of which has a width
less-than-or-equal-to a specified number M. Its specifications are as follows.



P CP P CP
AP.CAP, 1P CiPs

JP=3,Pp 3J,P=3P (FPP=3(PP) 3FIP=33P

list T(P1VP2)ETP1VTP2 WlthTE{E',E'],E'T}

PLC P*x P* PLC P*xP*
= — = — Transitivity
VIHTP E (VIEITP)“ X (VIEITP)“ HIVTP E (EINTP)“ X (EINTP)“
dP(a :: as) = P(a) vV 3P(as) V3, P(as, b :: bs) E V3, P(as, bs)
AP (nil) = false V.31 P(a :: as,bs) EV,3;P(as, bs)
AP(a::b::bs)=3PYb  bs) A (null(bs) V AP(b :: bs))
AP(a :: nil) = false AP(nil) = false

Fig. 8. New entailment relation

— Each sentence of the output must have a width less-than-equal to M.
— The order of each word in the input must be kept in the output.
— Each word of the input must appear in the output, and vice versa.

fun format as = f (as,nil);

fun f (bs,cs) = if null bs then [cs] else
let val d::ds = bs
in if leq (width (cse[d]),M)
then f (ds,cs@[d]))
else cs::f (ds,[d]) end;

fun width es = if null es then 0 else
let val f::fs=es in
if null fs then size f
else 1+size f+width fs end;

In this example, string is added to base types. Basic functions 4+ and con-
stants 0,1 also are used in the program, but they are not directly related to the
verification. Thus, their interpretation and entailment relations are omitted.

The first specification of format states that an output must satisfy V(leg™ -
width). Note that this predicate allows a function symbol width in it. Verification
starts with true — V(leg™ - width)(format X), which is immediately reduced
to true — V(leg™ - width)(f Y). The result of the verification is

(Vieg™ -width - [1) x (leg™ - width)(Y) — Y(leg™ - width)(f Y),
and this deduces

(Vleg™ -width - [1)(X) A (leg™ - width)(nil) — Y(leg™ - width)(format X).



Note that the result is not affected by whatever width is, since width is left
uninterpreted. The key steps are at if leq (width (cs@[d]),M) then ....
Since the throughout of then-branches leq(width (¢s@[d]), M) holds, the second
argument of f (ds, cs@[d]) always satisfies leq™ -width. These steps depend only
on V-elimination so that the function symbol width remains uninterpreted.

With the aid of partial evaluation which leads to width nil = 0, width [z] =
size x, weobtain V(leg™ -size)(X)Aleq(0, M) — VY(leg™ -width)( format X). For
the partial evaluation, only the relation between size and width is important.
The information on the function size is required only when the final result above
is interpreted by a human being. Note that in general a partial evaluation may
not terminate. However, this final step is devoted to transforming the detected
property into a more intuitive form for a human being, and even if it fails the
detected property is correct.

The second and the third specification of format are similar to orderedness
and weak preservation of sort, respectively. They require further extensions.

The second specification of format is expressed by a fresh binary predicate
Rel on pairs of strings as VRel (X) — VVRel AVORel (format X) where O
is an abbreviation of V;V,.. Note that throughout the verification the predicate
Rel is left uninterpreted. This implies that the specification above holds for any
binary relation Rel. Finally, the meaning of Rel is assumed by a human being,
and in this case 1t is suitable to be interpreted as the appearance order of strings.

The third specification 1s expressed by true — VlElrElrequalX(format X)
and true — VTVrEllequalX(format X). Our algorithm detects the latter, but
for the former we also need a new transitivity-like entailment relation of type
list(a) x list(list(@)), i.e.,

PLC P* x P*¥
v;3,3,P C (Vi3,P)” x (V;3.3, P)"°.

6 Related Work

Many studies have been undertaken on verification. Most are based on theorem
provers, for example, Coq, LCF, Boyer-Moore prover, Larch, and EQP. They
require either complex heuristics or strong human guidance (or both), either of
which is not easy to learn. However, for huge, complex, and critical systems, this
price 18 worth paying.

The complementary approach uses intelligent compile-time error detection
for easy debugging. For imperative programs, Bourdoncle proposed an assertion-
based debugging called Abstract debugging [5, 4]. For logic programs, Comini, et.
al. [8] and Bueno, et. al. [6] proposed extensions of declarative diagnosis based
on abstract interpretation. Cortesi, et. al. [L0, 18] proposed the automatic verifi-
cation based on abstract interpretation. Levi and Volpe proposed the framework
based on abstract interpretation to classify various verification methods [20].
Among them, target specifications primarily focus on behavior properties, such
as termination, mutual exclusion of clauses, and size/cardinality relation between
inputs and outputs.



In contrast, Métayer’s [19] and our specification language (for functional pro-
grams) directly express the programmer’s intention in a concise and declarative
description. This point is more desirable for some situation, such as, when a
novice programmer writes a relatively small program.

As an abstract interpretation, our framework is similar to inverse tmage
analysis [14]. The significant difference is that inverse image analysis determines
how much of the input is needed to produce a certain amount of output and
computes Scott’s open sets. Our framework, in contrast, determines how much of
the wnput is enough to produce a certain amount of output and computes Scott’s
closed sets. In terms of [22], the former is expressed by a HOMT (id,—,C_g
,min), and the latter is expressed by (id, —,C_1, maz).

Similar techniques that treat abstract domain construction as a set of pred-
icates are found in several places. However, predicates are either limited to
unary [15, 17, 3, 21] (such as null and —null), or are limited to propositions
corresponding to variables appearing in a (logic) program [9].

7 Conclusion

This paper reconstructs and extends the automatic verification technique of Le
Métayer [19] based on a backward abstract interpretation. To show the effective-
ness, two examples of the declarative specifications of the sorting and formatting
programs are demonstrated. Although we adopted the simple and inefficient sort-
ing program here, we also tried efficient sort programs, such as orderedness of
quick-sort and merge-sort (both topdown and bottomup), and weak preservation
of the topdown merge-sort. These verifications are quite messy by hand [23].
Future work will include the implementation and the exploration of its use
on more complex examples. An efficient implementation may require an efficient
reachability test algorithm (as well as a congruence-closure algorithm) and a
strategy to prune highly-nondeterministic —-eliminations and transitivity.
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