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Chew’s theorem revisited
- uniquely normalizing property of
nonlinear term rewriting systems -

Mizuhito Ogawa

NTT Basic Research Laboratories
3-9-11 Midori-cho Musashino-shi Tokyo 180 Japan
mizuhito@ntt-20.ntt.jp

Abstract. This paper gives a purely syntactical proof, based on proof normalization
techniques, of an extension of Chew’s theorem. The main theorem is that a weakly com-
patible TRS is uniquely normalizing. Roughly speaking, the weakly compatible condition
allows possibly nonlinear TRSs to have nonroot overlapping rules that return the same
results. This result implies the consistency of CL-pc which is an extension of the combi-
natory logic CL with parallel-if rules.

1 Introduction

The Church-Rosser (CR) property is one of the most important properties for term rewriting
systems (TRSs). When a TRS is nonterminating, a well-known condition for CR is Rosen’s
theorem, which states that a left-linear weakly nonoverlapping TRS is CR. - or, simply, that a
left-linear nonoverlapping TRS is CR[11, 13]. A pair of reduction rules is said to be overlapping
if their applications interfere with each other (i.e., they are unified at some nonvariable position),
and a TRS is said to be nonoverlapping if none of its rules are overlapping (except that a same
rule overlaps itself at the root). A TRS is said to be weakly nonoverlapping if applications of
an overlapping pair of rules return the same result. Without the assumption of linearity, on the
other hand, CR for a nonoverlapping TRS is not guaranteed for the following two reasons:

(1) A pair of nonoverlapping rules may overlap modulo equality. For instance, R; has a sequence
4(2,2) — d(2,£(2) — d(£(2), £(2)) — d(F(2), F*(2)) = -+ sit. d(2,2), d(F(2), £(2), -
are reduced to 0, and d(2, f(2)), d(f(2), f?(2)), - are reduced to 1. Because 0 and 1 are
normal forms, Ry is not CR[11].

(i1) A reducible expression (redex) for a nonlinear rule may not be recovered after some re-
duction destroys the identity of nonlinear variables. For instance, R, has a sequence 1 —
F(1) = d(1, f(1)) — d(f(1), f(1)) — 0. Thus, 1 = 0 and 1 — f(1) = £(0). Since 0 is a
normal form and f(0) simply diverges to d(0,d(0,d(---))), R2 is not CR[3].

d(z,z) —0 d(z,z) — 0
Ry = d(z, f(z)) — 1 Ry =4 f(z) —d(z,f(2))
2 — f(2) 1 — f(1)

Chew and Klop have shown the sufficient condition for the uniquely normalizing (UN)
property instead of CR - that is, a strongly nonoverlapping TRS is UNJ[3, 7]. A TRS is said to
be strongly nonoverlapping if its linearization (i.e., the renaming of repeated variables with fresh
individual variables) is nonoverlapping. Chew also states, more generally that a compatible TRS
is UN]J7]. In the compatible case, however, Chew’s proof is hard to recognize, and its journal
version has not yet been published[4].

Several trials to get a new proof have been reported[3, 15], and they show partial answers.
Their main technique is to first transform a nonlinear TRS to a linear TRS (either unconditional
or conditional) and use its weakly nonoverlapping property to prove it CR.. Then, they translate
the CR property of the linearized TRS to the UN property of the original nonlinear TRS[7, 8].
De Vrijer uses a similar technique to show that ClL-pc (combinatory logic with parallel-if)



is UN[15] and the key of his proof is the consistency check (i.e., T # F) accomplished by
constructing a model of CL-pc. Finally the consistency shows that an application of Czzz — =

may overlap modulo equality with an application of either C'T'zy — = or C'Fzy — y, but not
both.

CTzy — Szyz — xz(yz)
Cl-pc=CLU{ CFzy —y where CL=<X Kzy — =z
Czeez — Iz —=z

This paper shows a purely syntactical proof for an extension of Chew’s theorem. This ex-
tension states that a weakly compatible TRS is UN. Roughly speaking, this weakly compatible
condition allows a pair of nonroot overlapping rules if they return the same results (whereas a
compatible condition allows only root overlapping rules). The main technique of this syntactical
proof is an equational proof normalization called E-normalization that shows UN directly (not
by way of the CR of a linearized TRS). This normalization technique differs those described
in [2] and [9] in that it can be used even for TRSs that are nonterminating.

0(B) — bla) = o) = o) = 6(8) = a(B)

Fig. 1. Elimination of a reduction peak modulo equality on substitutions (Basic E-normalization)

Intuitively speaking, F-normalization is an elimination of reduction peaks modulo equality
on substitutions (strongly overlapping cases, Fig. 1) and their variations (weakly compatible
cases). Section 2 reviews the basic notation and terminology used in this paper, and it reviews
results related to CR. Section 3 introduces a weight for proof structures that guarantees the
termination of the E-normalization procedure. This weight is principally an extension of the
parallel steps of an objective proof. Section 4 introduces F-normalization rules and their prop-
erties. Subsection 5.1 shows that any equality in a weakly compatible TRS has a proof in which
there is no reduction peaks modulo equality (not restricted on substitutions. That is, two re-
dexes are combined with equality that does not touch on their root symbols). Lemma 31 in
subsection 5.2 then shows that a weakly compatible TRS is UN.

2 Term rewriting systems

Assuming that the reader is familiar with the basic TRSs concepts in [1] and [6], we briefly
explain notations and definitions.

A term set T(F,V) is a set of terms where F' is a set of function symbols and V is a set of
variable symbols. 0-ary function symbols are also called constants. The term set T'(F, V) may
be abbreviated by simply 7. A substitution € is a map from V' to T'(F, V). To avoid confusion
with equality, we will use = to denote the syntactical identity between terms.

Definition1. A position position(M, N) of a subterm N in a term M is defined by

. € if M = N.
position(M, N) = { i-u ifu=position(N;,N) and M = f(Ny,---,N,).

Let u and v be positions. We denote u < v if 3w # € s.t. v = u - w, we denote u < v if either
u=wvoru=<v, ul| vif neither u < v nor u = v, and we denote u |f v if either u < v or u = v.



For a set U of positions and a position v, we will denote U || v if u || v for Yu € U, we denote
U |fvif not U || v, and we denote v < U if v < u for Vu € U.

The subterm N of M at position u is noted by M /u (i.e., u = position(M, N)). We say that
u is a nonvariable position if M/u is not a variable. We denote a set of all positions in M by
pos(M), a set of all non-variable positions in M by posp(M ), and a set of positions of variables
in M by posy (M). A set of variables in M is denoted as Var(M). A variable z is linear (in M)
if z appears at most once in M. A variable z is nonlinear if it is not linear. A replacement of
T/u with T', where u is a position in T, is denoted by T[u «— T"].

Definition 2. A finite set R = {a; — J;} of ordered pairs of terms is said to be a term
rewriting system (TRS) if each «; is not a variable and Var(8;) C Var(a;). A binary relation
called reduction is defined to be M — N if there exist a position u and a substitution € s.t.
M/u=0(e;) and N = M[u — 6(5;)]. A subterm M/u = 0(a;) in M is said to be a redez. A
normal form is a term that contains no redex. A set of normal forms of R is noted as N F(R).

The symmetric closure of — is noted as <. If a reduction M — N or M « N occurs at a
position u, we will note M — N or M «— N. The reflexive transitive closure of — is noted as
u u

%, An equality noted = is the reflexive symmetric transitive closure of —. A structure with an
equality = is said to be an equational system associated to a TRS R. We will use the default
notations R for a TRS and F for an associated equational system.

Definition3. A TRS R is Church-Rosser (CR) if M = N implies M | N (i.e., 3P s.t.
M 5 Pand N 5 P). A TRS R is said to be uniquely normalizing (UN) if each set of equal
terms has at most one normal form (i.e., M = N and M, N € NF(R) imply M = N).

Definition4. A reduction rule is said to be left linear if any variable in its lhs is linear. A
TRS is said to be left linear if all its reduction rules are left linear. We say a TRS is nonlinear
if it is not left linear.

Definition 5. A pair of reduction rules oy — §; and a; — f; is said to be overlapping if
there exist both a nonvariable position u in a; and substitutions 6, ¢ s.t. f(a;)/u = o(a;) (i.e.,
a;/u and a; are unifiable). We also say o(a;) overlaps with 6(c;) at u. A TRS R is said to be
nonoverlapping if no pair of rules in R are overlapping except for trivial cases (i.e., i = j A u =€),
and a TRS R is said to be strongly nonoverlapping if R is nonoverlapping after renaming its
nonlinear variables with fresh individual variables. A TRS R is said to be weakly nonoverlapping
if any overlapping pair of rules returns same result (i.e., 0(5;) = 6(o;)[u — o(5;)]).

Theorem 6 (Rosen[13]). A left-linear weakly nonoverlapping TRS is CR.
Corollary 7 ([11]). A left-linear nonoverlapping TRS is CR.

This theorem and its corollary intuitively rely on the commutativity of reductions, but
nonlinear TRSs have more complex situations. Firstly, the commutativity of reductions is lost
because 1t requires synchronous applications of a reduction on each occurrences of a variable
(such as those applied in term graph rewriting[5]). Moreover, consider a variable z on the lhs
of a rule: which z on the lhs is inherited to an occurrence of z’s on the rhs? The following
compatible conditions guarantee that if a pair of linearizations of rules is overlapping it returns
same result under suitable combinations of variable-inheritances. Note that when a TRS is left-
linear, a strongly nonoverlapping condition is the same as a nonoverlapping condition, and a
weakly compatible condition is the same as a weakly nonoverlapping condition.

Definition 8 ([15]). (i) Let @« — 3 be a rewriting rule. A linearization of a term M is a
term M’ in which all the nonlinear variables in M are renamed to fresh individual variables.
A cluster of a rewrite rule « — S is {a’ — 31,---,a/ — (.}, where o' is a linearization of «
and each ! is a term obtained from § by replacing each nonlinear variable in o with one of the
corresponding variables.



(ii) Let ay — f1 and ay — (5 be two rules of a TRS R. Let {a} — 31, -+, 0} — 3{,} and
{afy — B, -+, ah — 5} be the two clusters corresponding to oy — 31 and ay — (5. We say
that a; — 7 and ay — (5 are weakly compatible if the following holds:

If o(af) overlaps with 6(ca)) at a position u, then the two clusters have a common
instance wrt a contezt C[ ] = of[u — O]. That is,

{(6(at) = 0(B1) [ i=1,---,n} N {(a(Clar]) — o(C[B;])) [ =1,---,m} # ¢.
A TRS R is weakly compatible if all pairs of its reduction rules are weakly compatible.

(iii) Let notations be the same as in (ii), and let oy — f; and ay — (5 be reduction rules. We
say that oy — (1 and as — 35 are compatible if they are weakly compatible and a} and o
may overlap only at the root (i.e., u = €). A TRS R is compatible if all pairs of reduction rules
are compatible.

Ezample 1. Regarding a product zy in CL-pc as apply(z,y), CL-pc is a compatible TRS. CL-sp
(CL with surjective pairing[12, 15]) is not weakly compatible.

Theorem 9 (Chew|[7]). A compatible TRS is UN.

Corollary 10 (Klop[3]). A strongly nonoverlapping TRS is UN.

3 Equational proof: structure and weight

3.1 Proof structure

Definition11. A sequence of terms combined by the < relation is said to be a proof structure.
A proofis a pair consisting of an equality and its proof structure, and it is denoted by My «—
Ui
My~ -+ =& M1 M, = My= M,, where a reduction M;_1 < M; occurs at a position
Uz Up—1 Un Uy
u;. We will omit positions u; if they are clear or unspecified from the context.

Instead of writing whole terms, we will use proof structure variables P, P’ , Py, Py, --- for
proof structures. For proofs Py = My = My, Ps = My =My, -+, Py = M,_1 = M,, a
concatenation Py, Py, - -+, P, is denoted by cone(Py, - -+, Py), and the resulting proof is denoted
by cone(P1,-++,Pn) = Mo = M,. For a proof structure P of M; < M> < --- < M, and a
context C[ ], we will denote C[M;] « C[M>] « --- «— C[M,] by C[P].

To emphasize the specific structure of a proof structure, we will also introduce two abbrevi-
ated notations: a sequence and a collection. A sequence of proofs [P = My = M7 ; -+ ; Pn =
M, _1 = M,] is a proof structure for My = M,,. It emphasizes the specific intermediate terms
Mo, -+, M,. Its proper form is obtained by the unfolding rule (S):

(S) A sequence [P1 = Mo= My; -+ ; Pp = My_1 = M,] is a proof structure for
My = M,,. It is unfolded to conc(Py,---,Pn) = My = N,.

A collection of proofs [Py == My =M|, --- , Pn = M, = M!] is a proof structure for
C[My, -, M,) = C[M{,---,M}]. Consider an example of a proof structure f(g(a),h(y)) T

f(h(a),h(y)) - f(h(a),g(y)) for a TRS {g(z) — h(z)}. Parallel subproofs g(a) — h(a) and

h(y) < g(y) induce an equality f(g(a),h(y)) = f(h(a),g(y)). A collection of proofs emphasizes
such a situation. Its proper form is obtained by the unfolding rule (C):

(C) Let u; be disjoint positions in pos(M) Npos(N). A collection [Py = M/u; =
Njuy ,---, Pn = M/u, = N/u,] is a proof structure for M = N. It is unfolded
to conc(Ci[P1],---,Cp[Pn]) = M = N, where C5[0] = M[u; — N/u; for Vj <
Z'.

) ’LLZ'<—D]‘



Our technique for transforming an equational proof to a simpler one is F-normalization. This
normalization (introduced in Section 4) eliminates reduction peaks modulo equality on substi-
tutions and their variations. For instance, consider a TRS {f(z,y) — g¢(z,y,y), --- }. Assume
there exist an equality g(0(z), 0(y),0(y)) = g(o(z), o(y), o(y)) that is proved by g(8(z), 0(y), 6(y)) —
f(6(x),0(y)), a collection of proofs [P, = 6(x) = o(z), Py = 0(y) =c(y)] = f(6(x),0(y)) =
f(o(z),0(y)), and f(o(z),0(y)) — g(o(z),0(y),o(y)). Then a (basic) E-normalization (Fig. 1)
transforms it to a simpler proof [P, = 6(z) = o(z),Py = 0(y) = o(y),Py = 6(y) =o(y)] =
9(0(2),6(y),6(y)) = g(o(2),0(y), o (y))-

To show the termination of F-normalization, the proof weight will be introduced in Subsec-
tion 3.2. This normalization decreases a parallel step of a transformed part in a proof structure,
but when that part may be properly included in a whole proof, the number of parallel steps
of a whole proof may not decrease. We therefore need an extension that is more sensitive to a
parallel step of its proper substructure: a proof weight. Lemma 19 in Subsection 3.2 will show
the termination of E-normalization procedure (Theorems 21 and 25).

Uy
u
Mo Mo —~Ms _¥__ M, Ms
Uo w
P
usz \\\\\\ U3 //,// d
(a) ]Mo = (b) Afo = Afz = (C) Afo = Afz = ]\/[4 = ]\/[5

Fig. 2. Construction of E-graph for Mo «— M; «— My < Mz — My — Ms.

uy ug uz v

The graphical intuition of a proof weight is sketched by a notion of an F-graph[17]. Let
My — My & My — M3z < My — Ms; = My = Ms. Assume that u;, us, and ug are disjoint,

and that v < u1,us, v || us, and w < ugz, v. Then, the E-graph is generated as follows. Since u;,
19, and ug are disjoint, the edges corresponding to u1, us, and ug stem in parallel from a vertex
My (Fig. 2(a)). Since v < u1, us, the edges labeled with u; and uy are collected to a vertex My
and an edge labeled v stems from M5 (Fig. 2(b)). Finally, since w < uz, v and ug || v, the edges
labeled u3 and v are collected to a vertex M, and an edge labeled w stems from M, to a vertex
Ms (Fig. 2(c)). A set of proof strings (Subsection 3.2) is a set of all cycle-free paths from M
to Ms, such as (uy,v,w), (us,v,w), and (uz, w). The proof weight of P is a multiset of their
lengths {3, 3,2}.

3.2 Weight for proofs

Definition 12.  Let (ug,uq,---,u,) be a sequence of positions and v be a position. An oper-
ation (u1,us, -, u,) ® v returns a set defined by

{(ul,u2f..,un,v)} if v Wun.

{(ur,us, -, un), (ur, ug, - -+ uz,v)}  ifv ||l u; for Vj > 1 and v |f u;.

{(uy,u2,- -, un)} if v || u; for Vi.

Definition 13. Let S be a set of sequences of positions, and v be a position. An operation
S & u is defined to be

Uages u®uv ifJue Sst. ulfv, and

SU{(v)}  otherwise.

Here @ || v if u; || v for Yu; € &= (u1,ua,---,uy,), and @ |fv if not @ || v.

Definition14. Tet My — My — -+ — M, 1 & M, = My = M, be a proof. A proof

Unp—1
string is an element of a set S(My — My — --- — M,_1; — M,) inductively defined to be
Uy Ug Up_1 Upn



@ if n=20, and
SMog =My — -+ & M, 1)Pu, otherwise.

For two sets 81, Sy of sequences of positions, §; @ 8 is defined to be U(U17,,,7Un)65281 P v P
-+ @ vy. Thus 8(cone(P1,P2)) = S(P1) @ S(Pa2).

Definition15. Let P = M = N be a proof. A proof weight w(S(P)) is a multiset of string-
lengths of proof strings in S(P) where a string-length /(@) is a number n for @ = (u1,ua, -+, uy,).
The ordering on proof weights is defined to be the multiset extension of the usual ordering on
natural numbers[10].

Definition16. TLet P = M = N be a proof. A boundary OP is a set of positions defined
by min({v | v appears in u € S(P)}) (i-e., a set of minimum positions appeared in each proof
string in S(P)). If a proof structure P satisfies Vv € 9P s.t. w < v, we denote P by M = N.

If Vv € 9P s.t. w < v, we denote P by M = N.

Definition17. Let § be a set of proof strings. S* is defined to be {v € S | v |f u} for a
position u. For a set of disjoint positions U/, S is U,ey S*. For positions v, w s.t. v < w, S*/*
is § — §*. For a position v and a set of disjoint positions W, §*/% is §¥ — SW.

Definition18. Let @ = (w1, -, Wm ) be a proof string and u be a position. We will denote
(w1,---,w;) by @< uif w; |fu and w; || u for Vj > ¢, and we will denote (w;,---,wy,) by u b @
if w; |f v and w; || u for Vj < 4. For a set § of proof strings, S<duis {0 < u | @ € §} and
upSis{upw|weS}.

Lemma 19. Let an equality S = T have two proof structures Py, Ps, and let u, v be positions
s.t. u [fv. Assume P; has a form S — S’ = T" < T and P9 has a form S = T.
v

u max(u,v)< max(u,v)<

Then maz(w(8(P1))) > maz(w(S(P2))) implies w(S(PF)) > w(S(P5)), where

(i) Pfis[P=> M=S;P1= S=T; P'= T=N],
) P ia [P V=8 s SZTLP S TN and

(iii) > is the multiset extension of the ordering > on natural numbers.

Proof Without loss of generality, we can assume u < v and maz(u,v) = v. We remark that
if positions u, v satisfy u < v, then, for any set S of proof strings, $* D §?, maz(w(S < u)) >
maz(w(S < v)), and maz(w(u > 8)) > maz(w(v > S)).

We will estimate the maximum length in w(S(P;)—S(P)NS(P3)) and w(S(P5)—-S(PF)N
8(P3)). The former will be shown to be greater than the latter, and this will show that
w(S(Py) > w(S(P3).

(1) A proof string in S(Pf) = S(P) @ S(P1) @ S(P’) has one of following forms:

(1_1) (wla"')wiiuaul)"':us:’U)w/’)"')w;z) for (wla"')wi) ES(’P)UQU

j
(w,u,- -, us,v) € S(P1)
!

(’U}},“-,’wn) €v DS(P/)U
(1—11) (wli"')wi;uaw;')"'iw;m) for (wli"'ywi) ES('P)UQU

(wf, -, w,) € uSP)
(14i1) (w1, wy, w), - - wy) for (wy,---,w;) € S(P)/" qw!

(W, wh) € wi 1> S(P)l

These sets are respectively denoted S(1_;), S(1-4i), and S(1_si;). The maximum length of
S(1-i) and S(1_;;) are estimated as

maz(w(S(i-s))) = maz(w(S(P) < u)) + maz(w(S(P))) + maz(w(v > S(P'))) and

maz(w(S(1—i))) = maz(w(S(P) < u)) + 1+ maz(w(u > S(P"uvY).

(2) A proof string in S(P3) = S(P) @ S(P2) @ S(P’) has one of following forms:



(2_1) (wla'";wiaullx"'au;aw;’a"'aw:m) for (wl;‘ )ES(P) 11<]’LL
(

ull)' ) {s) € w; |>S(7)2)<| w»

y (wj, -+, wp) € uy > S(P)*
(2-1i) (w1,~~~,wi,w§,~-~,w;) for (wy,-- )wz) €S(P )5/813, 4 wJ
(W), -+, w},) € w; > S(P')/9P=

These sets are denoted S(»_;) and S(»_;;). Then S(Pl) NS&(Py) = S1—iiy and Sy N
St1—iiiy = ¢ A set Sa_iiy = S(2—ii) — S(1-ii) consists of elements of the form
(2-i)’ (wa, - wiyw), oo w))  for (wi,---,w;) € S(P)/7P2 q w)
(w} w!) € w; > S(P')4/Ps,

R
Since u >S(P') /%P2 = u >S(P')*/?Uu >8(P')"/?P2  the maximum lengths maz(w(S(2—s)))
and maz(w(S(a—i;))) are estimated as follows:

maz(w(Sa-s)) < maz( w(S(P)?P* < u)) +maz(w(S(P2))) +maz(w(v >S(P)°P2))
< mazg wgg(P) ;]) u)) + maz(w(S(P1))) + maz(w(v > S(P')))
= maz( w(S(—q
maz(w(Sa—iy)) < maz( w(S(P)/2P2 q u) + maz(w(u 1> S(P')*/9P2))
< maz( maz(w(S(P)? 4 u) + maz(w(u > S(P")*/")),
maz(w(S(P)*17P < )+ maz(u(u > S(P)172)) )
< maz( maz(w(S-q))), maz(w(Si-i))) )

Thus w(S(P7)) > w(S(P3)). "

4 FE-normalization

4.1 Basic E-normalization

Definition 20. Let @ — 3 be a reduction rule, and let § and o be substitutions. Then, the
following transformation rule (from the upper column to the lower column) is said to be a basic
E-normalization rule:

0(8) — 0(a) = 0(8) =0(a) ;

[P. = 6(a)/u=0c(a)/ufor Vu € posv(a)] = b(a)=0c(a); | = 8(8) = (h)

o(a) — a(B) = o(a) = o(3)

[P, = 6(B)/v=a(B)/v for Vv € posv (B)] = 0(p) = a(P)

if a proof structure P, in the lower column is arbitrarily selected from a set of P,’s in the upper
column s.t. a/u = /v € Var(B).

Theorem 21.  Fach step of a basic E-normalization decreases the proof weight. Thus a basic
E-normalization procedure for any proof always terminates.

4.2 E-normalization for a weakly compatible TRS

Definition 22. Let oy — 3; and ay — (35 be reduction rules, let # and o be substitutions,
and let C[] = 0(ay)[u — OJ]. Assume that #(«;) and Co(as)] are combined by a proof structure
0(@);6’[0((12)]. If 9(6(ex1) = Clo(az)])Nposp(ar)Nu-posp(az) = ¢, then 8(ay) and Clo(az)]

are said to be quasi-E-normalizable.
Assume S and S’ to be quasi- E-normalizable. The next lemma shows that if a TRS is weakly

compatible, then any pair of reduction T« S and S’ — 7" in a proof can be eliminated by an
E-normalization.

Lemma23. Let a TRS R be weakly compatible. Assume that oy — 1 and as — 35 are
rules in R, that § and o be substitutions, and that a position u € posp(a1) s.t.



[Pw = 0(a1)/u-w = o(as)/w for Yw € min(posv (a1 /u) Uposy (as))] = 0(a1) = o(Clas])
for C[ ] = ai[u < O]. Then linearizations of & /u and a5 overlap, and

[Puw: = 0(51)/u-w' = o(B2)/w' for Vu' € min(posy (B1/u) U posy (32))] = 6(51) = a(C[3])

Proof Let {a}f — 11, -, o} — B} and {ah — B4, -, ab — (5.} be clusters of oy — 34
and as — f2. Let W = min(posy (a1/u) U posy (a3)), and let C’[ ] be a linearization of CT ].
Set substitutions ¢’ for o} and ¢’ for C’[a4] as follows:

For a variable z in o} s.t. w = position(a}, z),

0'(z) = {J(C[az]/w) ifweu-(WnNposp(az)), and
T (a1 /w) otherwise.

For a variable y in C'[a4] s.t. w = position(C'[ad)], v),

, _ [ 0(ar/w) if weu- (W — posp(az)),and

o'y) = {U(C[aﬂ/w) otherwise.

Then linearizations «f and af overlap at a position u (i.e., /() = o/ (C[a}])). Since R is
weakly compatible, there exists the intersection (6'(a}) — 6'(81,)) = (¢/(Clab]) — ' (C[34:]))
between two clusters (i.e., 8'(51,) = ¢'(C[B%,;])). Thus a set of proofs (a1 /u - w) = o(asz/w)
for Yw € min(posy (a1 /u) U posy («2)) also combines (1) and o(C[3,]) as 6(51) = 6'(5;,) =
o' (C[F2]) = o(C[B:)). u
Definition24. Let a3y — 31 and ay — 9 be weakly compatible. Assume «f /u and o to be
unified for u € posp(c}), where o} and «f are the linearizations of a1 and as. Let C[ ] be a

context that has a hole O at u s.t. C[ab] = o), and let § and & be substitutions. The following
transformation rules are said to be the E-normalization rules:

9(/3)1) — 9(;(1) )7 0(51) =(9(;1/1) ;
w = a)/u-w=oc(ay)/w _ , ) _ )
[[for Yw € min(posv (a1 /u) Uposy (as)) H = 0(a1) = o(Clas]); | = 0(B1) = o(C[Be]))

o(az) = o(f2) = a(Claz]) = o(C[P:])

Puwr = 0(f1/u) - w' = o(B2) /v’ s
Hfor Yu' € min(posvy (51/u) Upogv(ﬁ2))JJ = 0(5) = o(C[B])

and its inverted form
o(B2) — o(az) = o(C[B2]) = o(Claz])
[[Pw = o(az)/w=0(ar)/u-w
for Yw € min(posy (a1 /u) U posy (as))
O(a1) — 6(81) = 0(a1) =0(51)

| = otctasd = otans| = otz = o0

Puw = o(fa)/w' =60(51/u) v ] B
Hfor Yw' € min(posy (51/u) Uposv(ﬂQ))JJ = o(C[F:]) = 0(51)

Here a proof structure P, in the lower column is arbitrarily selected from a set of P, in the
upper column s.t. §(aq)/u-w = 0(1)/u - v and o(az)/w = o(F2)/w'.

Theorem 25. Let R be a weakly compatible TRS. Fach step of an E-normalization decreases
the proof weight. Thus the E-normalization procedure for any proof always terminates.

Ezample 2. For a product zy such as apply(z,y), Cl-pc is a compatible TRS. CL-pc has
overlapping rules such as (CTzy — z,Czze — z) and (C'Fzy — z,Czzx — z). The following
rule is an example of an F-normalization rule in addition to the basic F-normalization rules:

0(z) — C T 6(z) 0(y) =0(x)=CT6b(z)0(y) ;

P = T=o0(2),

Py = 6(z) = a(m’),] =>CT=) b0(y)=Co(Z) o) a(@);| = b(z)=0c(z)
Ps = 6(y) =o(z')

Co()o(@)o(z)—o(2)=C o) o) o(2') = o(z')

Py = 0(z) =o(2')

for substitutions ¢ and o.



5 Sufficient condition for the UN property

5.1 E-overlapping pair

Definition 26. Let P = Mg = M, be a proof. Assume P has the form
My e My« - M;_1 — M; = M; — Mjqy1 & - > Mp_y & My,

max(u,v)<

Then a pair of terms (M;, M;) is said to be an E-overlapping pair.

Definition 27. A proof is F-normal if no F-normalization rule is applicable. An equational
proof is said to be F-overlapping-pair-free if there are no E-overlapping pairs in it. A TRS is
FE-nonoverlapping if every F-normal proof is E-overlapping-pair-free.

Theorem 28. If a TRS R is weakly compatible, then R is E-nonoverlapping.

Proof Let P = M = N be an E-normal proof. Assume there exists an E-overlapping pair
in P. Let (S,T) be an innermost E-overlapping pair in P. Then (S,T) is quasi- E-normalizable
(otherwise there is an inner E-overlapping pair between S and T'), and E-normalization can be
applicable to (S,7T) from Lemma 23. This contradicts the E-normal assumption on P. |

5.2 The UN property for an E-nonoverlapping TRS

Definition 29 [11]. A term-length A(M) for a term M is defined to be

Az) =1 for a variable z, and
A(f(My, -+, Mp)) =1+ 5% A(M;)  otherwise.

Proposition 30. Assume that a TRS R is E-nonoverlapping. If P = M = N is an E-normal
proof and M # N then there exist a position u € 9P, a substitution o, and arule &« — G s.t. P is

either M = N[u — o ()] - Nu — o(a)] = N, or M = Mu — o(a)] - Mu —o(8)] = N.

Proof 7P is a nontrivial proof because M # N. If P holds for neither of the cases specified in

Proposition 30, there exist a position u € P, a substitution ¢’, and a rule o’ — 3’ s.t. P includes

M/u = o(f) —o(a)=0'(a!) — o'(F) = N/u. Then there must exist an F-overlapping pair
€ € € u

in 0(B3) — o(a) = 6'(e/) — o’/ (B'). This is contradiction. ]
Lemma 31. Assume that a TRS R is weakly compatible. Then

(1) I M = 0(«r) — 0(pB) is an E-normal proof for some rule &« — 3 € R and a substitution 6,

then M ¢ NF(R).
(11) If N1 = N2 and Nl,NQ S ]\/rF(R), then ]\lrl = Ng.

Proof Since R is weakly compatible, Theorem 28 implies that R is F-nonoverlapping. Assume
that (i) of Lemma 31 holds, then Theorem 25 and Proposition 30 imply that if Ny = N, and
N1 # Ny, then either Ny or Ny is not a normal form. Thus if (i) holds for A(M) < n, (ii) also
holds for A(Ny), A(N3) < n.

The proof of (i) is due to the induction on n = A(M). If n = 1, M must be a constant or
a variable. Then M = 0(«) implies M = (), and M is a redex. Let n > 1 and M = 6(a) —

6(8) = M = 6(B) be an E-normal proof.
Assume M € NF(R). Thus M # #(«) and according to Proposition 30 there are a position
u € (M = 6(«)), a substitution o, and a rule o/ — ' € Rs.t. M = 6(a) — 6(3) has one of

the following forms:
(1) M = Mu — o(a')] - Mlu —a(f8)] = 0(a) — 6(5)
(2) M = b6(a)[u— o(f")] - 0(a)[u — o(a’)] = 0(a) — 6(5)



Form (1) satisfies A(M/u) < A(M), and M/u = o(a’) — o(f') is E-normal (because a sub-

proof of an E-normal proof is E-normal). Thus M/u ¢ N F(R) from the induction hypothesis.
This implies M ¢ N F(R).
Let us divide Form (2) into two cases: (a) u € posp(«) and (b) u € posp(a).

(a) Since u € posp(a), (0(a)[u — 6(a’)],0(«)) is an E-overlapping pair. Every E-normal proof
in R is F-overlapping-pair-free. Thus this is a contradiction.

(b) There exist a nonlinear variable z in « and positions vy,vy € position(a,z) s.t. M/v; #
M/vs and M /vy = M/vy. (Otherwise, M is a redex for « — $.) If M € NF(R), then
M /vy, M/va € NF(R) and applying the induction hypothesis to (ii) shows M/v; = M /vs.
This is a contradiction. Thus M ¢ N F(R). ]

Theorem 32. If a TRS R is weakly compatible, then R is UN.

Corollary 33. Let R be a weakly compatible TRS. If R has at least two distinct normal forms,
then an associated equality system E 1s consistent.
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