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ABSTRACT

The longest path problem is the one that finds a longest path in a given graph. While
the graph classes in which the Hamiltonian path problem can be solved efficiently are
widely investigated, few graph classes are known to be solved efficiently for the longest
path problem. Among those, for trees, a simple linear time algorithm for the longest

path problem is known. We first generalize the algorithm, and show that the longest
path problem can be solved efficiently for some tree-like graph classes by this approach.
We next propose two new graph classes that have natural interval representations, and
show that the longest path problem can be solved efficiently on these classes.

Keywords: algorithmic graph theory, design and analysis of algorithms, graph classes,

longest path problem.

1. Introduction

The Hamiltonian path problem is one of the most well known NP-hard prob-
lems, and there are numerous applications of the problem [18]. For such an in-
tractable problem, there are some major approaches; e.g., approximation algorithms
[2, 21, 36] and algorithms with parameterized complexity analyses [16]. In both ap-
proaches, we have to change the decision problem to the optimization problem.
Therefore the longest path problem is one of the basic problems from the viewpoint
of combinatorial optimization. From the practical point of view, it is also a very
natural approach to find a longest path in a given graph, even if it does not have a
Hamiltonian path. However, finding a longest path seems to be more difficult than
determining whether the given graph has a Hamiltonian path or not. Even if we
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know that a given graph has a Hamiltonian path, it is impossible to find a path of
length n−nε in polynomial time for any ε > 0 unless P = NP [22]. In general, the
longest path problem does not belong to APX unless P = NP [22], and the best
known performance ratio of an approximation algorithm is O(n(log log n/ log n)2)
[7] (see also [1, 28, 33, 37] for related results).

Recently, many new graph classes were proposed, and the complexity of hard
problems restricted on those graph classes are investigated intensively [9, 19]. The
classification of the graph classes by the difficulty in solving the Hamiltonian path
problem gives us an insight for the longest path problem. Indeed, when the Hamil-
tonian path problem is NP-hard, the longest path problem is also intractable since
the Hamiltonian path problem is the special case of the longest path problem. Such
“hard” graph classes include chordal bipartite graphs, strongly chordal split graphs
(and hence chordal graphs and split graphs)[29], undirected path graphs, double
interval graphs, rectangle graphs [6], and circle graphs [14]. On the other hand,
proper interval graphs are a “trivial” graph class in the sense that all connected
proper interval graphs have a Hamiltonian path [5]. Thus we can find a longest
path of length equal to one less than the number of vertices for any given connected
proper interval graph. Between them, there are “non-trivial” graph classes; the
Hamiltonian path problem is polynomial time solvable for circular arc graphs (and
hence interval graphs) [15], and bipartite permutation graphs [34]. Moreover, such
“non-trivial” graph classes include infinite number of graphs that have no Hamil-
tonian paths (e.g., trees).

In this paper, we focus on the longest path problem for the “non-trivial” graph
classes, and propose efficient algorithms for some of those classes. There are quite
few efficient algorithms for finding a longest path in a given graph for specified
classes of graphs; as far as the authors know, (unweighted) trees are the only graph
class which is natural and non-trivial such that the longest path problem can be
solved in polynomial time. The algorithm for trees was invented by W. Dijkstra
around 1960. It runs in linear time, indeed, and the formal proof is given by R.W.
Bulterman et al [12]. In the former part of this paper, we generalize the Dijkstra’s
algorithm and its correctness proof in [12], and show that the longest path problem
can be solved efficiently for (vertex/edge) weighted trees, block graphs, and cacti.
Although some of those algorithms may not necessarily be the most efficient, we
here enjoy how the generalization of Dijkstra’s algorithm can be applied for some
tree-like graphs.

In the latter part, we focus on some graph classes which have natural interval
representations, some of which we newly introduce in this paper and lie between
“non-trivial” and “trivial” graph classes. First, the class of interval bigraphs has a
natural bipartite analogy with the class of interval graphs. In the class, there are
some subclasses; chain graphs ⊂ bipartite permutation graphs ⊂ biconvex graphs
⊂ convex graphs ⊂ interval bigraphs. We will show some relationship among these
graph classes (though some of them seem to be folklore), and show a linear time
algorithm for finding a longest path in a bipartite permutation graph. (For these
graph classes, see, e.g., [24, 38] for chain graphs, [11, 26, 34] for bipartite permuta-
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tion graphs, [9] for (bi)convex graphs, and [20, 30] for interval bigraphs.)
Then, we turn to the interval graphs and their subclasses. Although all longest

paths of a connected interval graph have non-empty intersection [3, Corollary 2.2],
there are no efficient algorithms for finding a specific longest path in an interval
graph. Between the class of interval graphs and the class of proper interval graphs,
we introduce a new graph class named “interval biconvex graphs” and “proper
interval biconvex graphs.” An interval biconvex graph G is an interval graph that
corresponds to a biconvex graph G′ such that G and G′ have the same interval
representations. That is, the class of interval biconvex graphs is the one that the
corresponding biconvex graphs is a natural bipartite analogy. We also show the
inclusion among graph classes: (proper interval graphs ∪ threshold graphs) ⊂ proper
interval biconvex graphs ⊂ interval biconvex graphs ⊂ interval graphs. That is, the
class of proper interval biconvex graphs is a generalization of both proper interval
graphs and threshold graphs. Finally, we give an algorithm that finds a longest
path for any proper interval biconvex graph in O(n3(m + n log n)) time.

2. Preliminaries

A graph G = (V,E) consists of a finite set V of vertices and a collection E of
2-element subsets of V called edges. The neighborhood of a vertex v in a graph
G = (V,E) is the set NG(v) = {u ∈ V | {u, v} ∈ E}, and the degree of a vertex v

is |NG(v)| and is denoted by degG(v). For a subset U of V , we denote by NG(U)
the set {v ∈ V | v ∈ N(u) for some u ∈ U}. If no confusion can arise we will omit
the index G. We denote the closed neighborhood N(v) ∪ {v} by N [v]. Also for a
subset U of V , the subgraph of G induced by U is denoted by G 〈U〉. Given a graph
G = (V,E), its complement is defined by Ē = {{u, v} | {u, v} 6∈ E}, and denoted
by Ḡ = (V, Ē). A vertex set I is an independent set if G 〈I〉 contains no edges, and
then the graph Ḡ 〈I〉 is said to be a clique.

For a graph G = (V,E), a sequence of the vertices v0, v1, . . . , vl is a path, denoted
by (v0, v1, . . . , vl), if {vj , vj+1} ∈ E for each 0 ≤ j < l. The length of a path is the
number of edges on the path. For two vertices u and v, the distance of the vertices,
denoted by d(u, v), is the minimum length of the paths joining u and v. A cycle is a
path beginning and ending with the same vertex. A cycle of length i is denoted by
Ci. An edge that joins two vertices of a cycle but is not itself an edge of the cycle
is a chord of that cycle. A graph is chordal if every cycle of length at least 4 has a
chord. Given a graph G = (V,E), a vertex v ∈ V is simplicial in G if G 〈N(v)〉 is a
clique in G. A graph G = (V,E) is bipartite if V can be partitioned into two sets
X and Y such that every edge joins a vertex in X and the other vertex in Y .

A graph G = (V,E) is called a threshold graph when there exist nonnegative
weights w(v) for v ∈ V and t such that

∑
v∈S w(v) ≤ t if and only if S is an

independent set in G.

Tree-like graph classes: We here introduce some graph classes that have similar
structure to trees. A graph G is a block graph if G is connected and every maximal
biconnected subgraph is a clique. Block graphs can be seen as graphs obtained from

3



trees by replacing each edge by a clique, and any two maximal cliques share at most
one vertex in common. A graph G is a cactus if every edge is part of at most one
cycle in G. Similarly, cacti can be seen as graphs obtained from trees by replacing
each edge by a cycle, and any two cycles share at most one vertex in common. In
other words, a cactus is a graph whose block is either an edge or a cycle. See [9] for
further details of the graph classes.

Interval graph representation and related classes: A graph (V,E) with
V = {v1, v2, . . . , vn} is an interval graph if there is a finite set of intervals I =
{Iv1 , Iv2 , . . . , Ivn} on the real line such that {vi, vj} ∈ E if and only if Ivi ∩ Ivj 6= ∅
for each i and j with 0 < i, j ≤ n. We call the set I of intervals an interval
representation of the graph. For each interval I, we denote by R(I) and L(I) the
right and left endpoints of the interval, respectively (hence we have L(I) ≤ R(I)
and I = [L(I), R(I)]).

A bipartite graph (X,Y,E) with X = {x1, x2, . . . , xnx
} and Y = {y1, y2, . . . ,

yny} is an interval bigraph if there are families of intervals IX = {Ix1 , Ix2 , . . . , Ixnx
}

and IY = {Iy1 , Iy2 , . . . , Iyny
} such that {xi, yj} ∈ E iff Ixi ∩ Iyj 6= ∅ for each i and

j with 1 ≤ i ≤ nx and 1 ≤ j ≤ ny. We also call the families of intervals (IX , IY ) an
interval representation of the graph. If no confusion can arise we sometimes unify
a vertex v and corresponding interval Iv, and denote as N(Iv), L(v), and so on.

For two intervals I and J , we write I ≺ J if L(I) ≤ L(J) and R(I) ≤ R(J).
For any interval representation I and a point p, N [p] denotes the set of intervals
that contain the point p. An interval graph is proper if no two distinct intervals I

and J properly contain each other. That is, either I ≺ J or J ≺ I for every pair of
intervals I and J .

Let G = (X,Y,E) be a bipartite graph. An ordering < of X in G has the
adjacency property if, for each vertex y ∈ Y , N(y) consists of vertices that are
consecutive in the ordering < of X. A bipartite graph G = (X,Y,E) is biconvex if
there are orderings of X and Y that fulfill the adjacency property, and that is convex
if there is an ordering of X or Y that fulfills the adjacency property. A biconvex
graph G = (X,Y,E) is said to be a chain graph if it has a vertex ordering of Y

such that N(y1) ⊆ N(y2) ⊆ · · · ⊆ N(y|Y |). That is, for the interval representation
of I(G), a biconvex graph G is a chain graph if J1 ⊆ J2 ⊆ · · · ⊆ Jny , where
J1, J2, . . . , Jny are the corresponding intervals of y1, y2, . . . , yny .

A graph G = (V,E) with V = {1, 2, . . . , n} is said to be a permutation graph
if there is a permutation σ over {1, 2, . . . , n} such that {i, j} ∈ E if and only if
(i − j)(σ−1(i) − σ−1(j)) < 0. Intuitively, each vertex v in a permutation graph
corresponds to a line v joining two points on two parallel lines L1 and L2. Then
two vertices v and u are adjacent if and only if the corresponding lines v and u

intersect. The ordering of vertices gives the ordering of the points on L1, and
the permutation of the ordering gives the ordering of the points on L2. When a
permutation graph is bipartite, it is said to be a bipartite permutation graph.

3. New graph classes and related results
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We first introduce the notion of the compact interval representations. Given an
interval (bi)graph, an interval representation is said to be compact if the following
conditions hold;

1. for each interval I, R(I) and L(I) are integers, and

2. for each distinct pair of integers p, q with N [p] 6= ∅ and N [q] 6= ∅, N [p]\N [q] 6=
∅ and N [q] \ N [p] 6= ∅.

If a vertex v corresponds to an integer point on a compact interval representation,
the vertex v and the corresponding integer L(Iv) = R(Iv) are sometimes unified;
for example, “u := v + 1” means that “let u be a vertex with L(Iu) = R(Iu) =
L(Iv) + 1 = R(Iv) + 1.”
Lemma 1 For any given interval graph G = (V,E), there is a linear time algorithm
that constructs a compact interval representation I such that

1. each simplicial vertex v is a point; that is, L(Iv) = R(Iv),

2. ∪I∈II is contained in [1, |V |], and

3. each integer point i with N [i] 6= ∅ corresponds to a distinct maximal clique of
G.

Proof. Given an interval graph G = (V,E), we can construct an MPQ-tree,
which is a kind of labeled PQ-tree, in linear time [25]. From the MPQ-tree, in a
natural way, we can construct a compact interval representation in linear time. The
claim can be proved by induction on the number of nodes/sections in the MPQ-
tree, but it is straightforward and tedious, and is omitted here. We show that the
constructed compact interval representation satisfies the conditions.

Let v be any simplicial vertex in G. By the definition, N(v) induces a clique.
Thus, by the Helly property (see, e.g.,[4]), all vertices u in N(v) share a common
point. Therefore, Iv contains the point. If Iv is not an integer point, Iv should
contain an interval [i, i + 1] for some integer i. Then, N [i] = N [i + 1], which
contradicts the second condition of the definition. Thus we have the claim 1.

The maximal cliques of an interval graph G can be linearly ordered such that
for each vertex v, the maximal cliques containing v occur consecutively [8]. Since
the representation is compact, we have the claim 3 immediately. It is well known
that chordal graphs, and hence interval graphs, have at most n maximal cliques.
This fact with the claim 3 implies the claim 2. 2

Given a biconvex graph G = (X,Y,E) with |X| = nx and |Y | = ny, a compact
interval representation I(G) is constructed as follows: Let x1 < x2 < · · · < xnx

and y1 < y2 < · · · < yny be the orderings over X and Y that have adjacency
property. Let xi correspond to the integer point i with 1 ≤ i ≤ nx. For each j with
1 ≤ j ≤ ny, since each yj contains consecutive xs, we can let yj correspond to the
interval [L(yj), R(yj)] such that L(yj) = l and R(yj) = r, where xl and xr are the
minimum and maximum vertices in N(yj), respectively.
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Figure 1: Bounds of a biconvex graph.
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Figure 2: Proper biconvex graphs coincide with bipartite permutation graphs.

Lemma 2 For the compact interval representation I(G) of a biconvex graph G =
(X,Y,E), there are two indices jt and jb such that (1) L(y1) ≥ L(y2) ≥ · · · ≥ L(yjt)
and L(yjt) ≤ L(yjt+1) ≤ · · · ≤ L(yny ), and (2) R(y1) ≤ R(y2) ≤ · · · ≤ R(yjb

) and
R(yjb

) ≥ R(yjt+1) ≥ · · · ≥ R(yny ) (Figure 1). Moreover, we can assume that
jt ≤ jb without loss of generality.

Proof. We note that x1 ∈ N(yjt) and xnx ∈ N(yjb
) if and only if G is

connected. If the two indices do not exist, we have three consecutive vertices, say,
yi < yj < yk such that L(yi) > L(yj) and L(yk) > L(yj). Then there is a vertex
x in X such that yi, yk ∈ N(x) and yj 6∈ N(x). This contradicts the definition of
biconvex graphs. Thus there are two indices jt and jb. If jt > jb, reversing the
ordering of X, we have jt < jb. 2

Here we can introduce a natural bipartite analogy of a proper interval graph; we
say a biconvex graph G = (X,Y,E) is proper if it has a vertex ordering in Lemma
2 and J1 ≺ J2 ≺ · · · ≺ Jny , where J1, J2, . . . , Jny are the corresponding intervals of
y1, y2, . . . , yny (and hence we also have I1 ≺ I2 ≺ · · · ≺ Inx , where I1, I2, . . . , Inx

are the corresponding intervals of x1, x2, . . . , xnx
). We here show that the class of

“proper” biconvex graphs coincides with the class of bipartite permutation graphs.
Theorem 3 A bipartite graph G = (X,Y,E) is proper biconvex if and only if G is
a bipartite permutation graph.

Proof. We first assume that a bipartite graph G = (X,Y,E) is a proper
biconvex graph with X = {x1, x2, . . . , xnx} and Y = {y1, y2, . . . , yny}. Then
y1 ≺ y2 ≺ · · · ≺ yny by definition. From the interval representation, we con-
struct the permutation σ that characterizes the bipartite permutation graph G as
follows (see Figure 2). First, we put the lines corresponding to X between two
parallel lines L1 and L2. For yi, let xj and xk be the vertices in X such that
N(yi) = {xj , xj+1, . . . , xk}. Then we modify the line corresponding to yi join-
ing the point between xk and xk+1 on L1 and the point between xj−1 and xj on
L2. The permutation σ can be obtained from the diagram immediately. From a
given bipartite permutation graph G = (X,Y,E), the construction of the interval
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representation of the proper biconvex graph G is also immediate. 2

From definitions, we have the following observation:
Observation 4 For a given biconvex graph G = (X,Y,E) with two indices jt and
jb in Lemma 2, we partition Y into Y1 := {y1, . . . , yjt}, Y2 := {yjt+1, . . . , yjb

},
and Y3 := {yjb+1, . . . , yny}. Let Xi be the set of vertices in N(Yi) and Ei be the
set of edges induced by Xi ∪ Yi. Then the graph G2 = (X2, Y2, E2) is a bipartite
permutation graph by Theorem 3, and the graphs G1 = (X1, Y1, E1) and G3 =
(X3, Y3, E3) are chain graphs by definition.

That is, any biconvex graph consists of at most two chain graphs and at most
one bipartite permutation graph.
Theorem 5 A chain graph G = (X,Y,E) is a bipartite permutation graph.
We note that Theorem 5 follows from [10] implicitly; in the paper, a bipartite
permutation graph is decomposed into consecutive chain graphs. We here prove it
rather directly from an algorithmic point of view.

Proof. By definition, there is an index ic such that N(x1) ⊆ N(x2) ⊆ · · · ⊆
N(xic) and N(xnx) ⊆ N(xnx−1) ⊆ · · · ⊆ N(xic), where nx = |X|. Since Y is linearly
ordered in inclusion, for any pair of xi and xi′ with 1 ≤ i ≤ c and c ≤ i′ ≤ nx, we
have N(xi) ⊆ N(xi′) or N(xi′) ⊆ N(xi). Therefore, we can linearly order both X

and Y ; the ordering of Y is as it is, and the ordering of X is the one computed by
the following procedure:

Procedure REORDER

Input: A chain graph G = (X,Y,E) with |X| = nx and |Y | = ny, the
orderings over X and Y , and a compact interval representation I(G).
Output: A linear ordering of X in inclusion.
1. ` := 1; r := nx;
2. if N(x`) ⊆ N(xr) then output x` and ` := ` + 1;

else output xr and r := r − 1;
3. if ` < r then goto step 2 else output x` and halt.

The correctness of this procedure is verified by induction on the number of intervals
in X. 2

We note that this procedure REORDER runs in O(nx) time, since N(x`) ⊆ N(xr)
if and only if min{N(x`)} ≥ min{N(xr)}.

We here introduce a new graph class that resides between interval graphs and
proper interval graphs. An interval graph G = (V,E) is said to be an interval
biconvex graph if V can be partitioned into two sets S and Y such that

1. each vertex x ∈ S is simplicial in G, and

2. bipartite graph G′ := (S, Y,E′) is a biconvex graph, where E′ := {{x, y} | x ∈
S, y ∈ Y, and {x, y} ∈ E}.

Intuitively, interval biconvex graphs G are interval graphs obtained from biconvex
graphs G′; they have the same interval representations. However, we allow some
vertices in S to correspond to the same point:
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Figure 3: Interval representations of G1 which is interval biconvex but neither
threshold nor proper interval, G2 which is interval biconvex but not proper, and G3

which is interval but not interval biconvex.

Lemma 6 Let G = (V = S ∪ Y,E) be an interval biconvex graph. Let v be a
(simplicial) vertex in S, and NS [v] be the set {v} ∪ (N(v) ∩ S) in G. Then NS [v]
induces a clique, and for any two vertices v1 and v2 in NS [v], NG[v1] = NG[v2].

Proof. Since v is simplicial, NS [v] induces a clique. Thus we show that
N [v1] = N [v2] for any v1 and v2 in NS [v]. To derive a contradiction, we assume
that there is a vertex w ∈ N [v1] \ N [v2]. Then, both of v2 and w are in N [v1], and
{w, v2} 6∈ E, which contradicts v1 is simplicial in G. 2

Corollary 7 Let G = (V = S ∪ Y,E) be an interval biconvex graph, and I(G) be
a compact interval representation of G. Then

1. for each vertex v in S, Iv is an integer point, and

2. for each vertices u and v in S with N [u] = N [v], Iv and Iu are the same
integer point.

Similarly, we can define a proper interval biconvex graph as follows; an interval
biconvex graph G = (S ∪ Y,E) is said to be proper if Y has a vertex ordering
y1, y2, . . . , yny such that J1 ≺ J2 ≺ · · · ≺ Jny , where Jj corresponds to the interval
of yj .

Now, we have the following proper inclusion:
Lemma 8 (Proper interval graphs ∪ threshold graphs) ⊂ proper interval biconvex
graphs ⊂ interval biconvex graphs ⊂ interval graphs.

Proof. By definitions, the following inclusions are immediate: proper interval
graphs ⊆ proper interval biconvex graphs ⊆ interval biconvex graphs ⊆ interval
graphs. Thus we first show that any threshold graph G = (V,E) with its threshold
t is a proper interval biconvex graph. We assume that vertices are ordered with
respect to their weights in the increasing order, that is, w(v1) ≤ w(v2) ≤ · · · ≤
w(vn). Let i be the minimum index with w(vi) > t

2 . We partition V into V ′ :=
{vi, . . . , vn} and S := V \ V ′. Then we can see that (1) G 〈V ′〉 is a clique, (2)
each vertex in S is simplicial, (3) for each vertex v in S, N(v) 6= ∅ implies that
N(v) = {vj , vj+1, . . . , vn} for some j ≥ i. Thus the fact that G is a proper interval
biconvex graph can be shown as follows: S corresponds to the set of simplicial
vertices; each vertex vj corresponds to the integer point j with 1 ≤ j ≤ i − 1. The
vertices in V ′ correspond to the set of intervals of the same length as follows; vi
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corresponds to [j, i − 1], where j is the minimum index of the vertices in N(vi),
or N(vi) = {vj , vj+1, . . . , vi−1}. Then, for each vi′ with i < i′, the vertex vi′

corresponds to [j′, (i − 1 + j′ − j)], where N(vi′) = {vj′ , vj′+1, . . . , vi−1}. Now the
resulting interval representation satisfies the condition of a proper interval biconvex
graph.

We also show that the inclusions are proper; the graph G1 with an interval
representation I(G1) in Figure 3 is an interval biconvex graph. However, G1 is not
a threshold graph; if w(y1) > w(y2), s4 should overlap with y1, and vice versa. On
the other hand, G1 is not a proper interval graph; if y1, y2, s2, and s3 have the
same length, s1 cannot overlap with y1 without overlapping with s2. On the other
hand, G2 is an interval biconvex graph but it is not proper. N(y1) ⊂ N(y2), and
s1 and s4 have to be separated both sides of the interval y1. Hence the interval
y2 contains y1. Moreover, the graph G3 in Figure 3 is an interval graph, but it is
not an interval biconvex graph; if y2 has the same length as y3 and y4, y2 cannot
overlap both of s1 and s6. 2

4. Algorithms for tree-like graphs

Given a finite (unweighted) tree T , a longest path in T can be found in linear
time. A simple procedure is invented by E.W. Dijkstra around 1960, and its formal
proof is given in [12]. The objective is not necessarily to design intricate and efficient
algorithms for some specific graph classes, but enjoy the idea of Dijkstra’s algorithm
and generalize it so that we can apply it to solve the longest path problem for some
tree-like graph classes.

Now, we give a framework that allows a generalization of the Dijkstra’s algorithm
by transforming G into another graph G′. For a given graph G = (V,E), suppose
that we can construct a new graph G′ = (V ′, E′) satisfying the following three
conditions:

1. V ⊆ V ′,

2. for each pair u, v in V , dG′(u, v) equals the length of a longest path joining u

and v in G, and

3. for each pair u, v in V , dG′(u, v) is given by the unique shortest path on G′.

Then the following algorithm computes the length of a longest path in G by using
the graph G′ in O(|V ′|+ |E′|) time and space (we assume that each vertex v knows
whether v ∈ V or v ∈ V ′ \ V ).

Algorithm TR

Input: Graph G′ = (V ′, E′).
Output: The length of a longest path P in G.
1. pick up any vertex u in V of G′;
2. find a vertex x in V such as to maximize dG′(u, x);
3. find a vertex y in V such as to maximize dG′(x, y);
4. output the length of a shortest path joining x and y on G′.

9



The Dijkstra’s algorithm for trees is exactly the one that can be obtained by
letting G = G′, and G is a tree.
Theorem 9 Algorithm TR computes the length of a longest path of G in linear
time in the sizes of G and G′.

Proof. In the proof in [12], the correctness of the Dijkstra’s algorithm is based
on the following three points;

• for any vertices u and v, the shortest path joining them gives the longest path
joining them,

• for any vertices u, v and w, we have d(u, v) ≤ d(u,w) + d(w, v), and

• for any vertices u, v and w, we have d(u, v) = d(u,w) + d(w, v) if and only if
w is on the path joining u and v.

By the properties of G′, for any vertices u and v in V , the length of the shortest path
joining u and v on G′ is equal to the length of the longest path joining u and v on
G. For any vertices u, v, and w in V , we also have dG′(u, v) ≤ dG′(u,w)+dG′(w, v).
By the properties of G′, dG′(u, v) is given by the unique shortest path on G′. Thus,
for any vertices u, v and w in V , we have dG′(u, v) = dG′(u, w) + dG′(w, v) if and
only if w is on the shortest path joining u and v. Therefore, we can use the same
argument as in the proof of [12] to show the correctness of Algorithm TR. Since
dG′(u, v) is given by the unique shortest path on G′ for each pair u, v ∈ V , we can
use the standard breadth first search to execute the algorithm in linear time. 2

Hereafter, we show three graph classes such that Algorithm TR computes the
length of a longest path with suitable reductions. We note that, in Step 4, Algorithm
TR outputs the length of a longest path. However, it is easy to modify the algorithms
for the specified graph classes in order to output the longest path of G itself.
Lemma 10 Let G = (V,E) be a weighted tree with w : V ∪ E → Z an integer
weight function of vertices and edges. We define the length of a weighted path
(v1, v2, . . . , vk) by

∑k
i=1 w(vi)+

∑k−1
i=1 w({vi, vi+1}). Then the weighted longest path

problem can be solved in O(|V | + |E|) time and space.
Proof. For vertex/edge weighted trees, we do not transform the original graph

G into G′, but use the primitive Dijkstra’s algorithm directly just by regarding the
length of a path as defined above. Then a BFS can implement it in O(|V | + |E|)
irrelevant to the vertex/edge weights. 2

Theorem 11 Let G = (V,E) be a block graph. Then the longest path problem can
be solved in O(|V | + |E|) time and space.

Proof. Given a block graph G, we construct a weighted tree G′ as follows:
We first initialize each edge by weight 1, and each vertex by weight 0. For each
maximal clique K of size k > 2, we first remove all edges in K, second put a vertex
c of weight k − 3, and third join c and each vertex in K by an edge of weight
1. We repeat the replacement for all maximal cliques of size > 2. The resulting
graph G′ is an integer weighted tree. Since the number of maximal cliques is ≤ |V |
and the transformation does not increase the number of edges, we can say that
|V ′| = O(|V |) and |E′| = O(|E|). Let u and v be any two vertices in V . Then

10



Figure 4: An example of gadgets: the gadget C ′
5 for C5.

the length of a longest path between u and v on G is equal to the weight of the
path joining u and v on G′. Thus we can use Lemma 10, and the running time is
O(|V ′| + |E′|) = O(|V | + |E|). 2

Theorem 12 Let G = (V,E) be a cactus. Then the longest path problem can be
solved in O(|V |2) time and space.

Proof. We first show a reduction in O(|V |3) time and space. Let Ck be any
cycle of k vertices in G. We replace Ck by a gadget C ′

k defined as follows (Figure
4): For each pair of vertices vi and vj on Ck, if dCk

(vi, vj) = h, C ′
k contains a path

of length k − h (with auxiliary vertices). We note that the length of the longest
path joining vi and vj on G (or Ck) is k − h. We replace all cycles of G by the
gadgets. The resulting graph G′ has O(|V |3) vertices and edges, and the reduction
can be done in O(|V |3) time and space. To show the correctness of Algorithm TR,
we show that for each pair u, v in V , (1) dG′(u, v) equals the length of a longest
path joining u and v in G, and (2) the shortest path joining u and v on G′ is
uniquely determined. Since G is a cactus, we show that for each pair vi and vj on
Ck, dG′(vi, vj) equals the length of a longest path joining vi and vj in G. Without
loss of generality, we assume that Ck = (v1, v2, . . . , vk, v1), i = 1, and 1 < j ≤

⌈
k
2

⌉
.

By the construction, we have dG′(v1, vj) is at most k− j by the added path joining
v1 and vj . We assume that there is a shorter path P in G′ joining v1 and vj to
derive a contradiction. Since G is a cactus, P contains at least one vertex v′ on Ck

with v′ 6= v1, vj . From the construction, for any pair of vertices u and u′ on Ck,
we have k

2 ≤ dG′(u, u′) ≤ k − 1. Thus, k − j ≤ k − 1. On the other hand, since
P contains three vertices v1, vj , and v′ on Ck, the length of P is at least 2 · k

2 = k,
which contradicts that the length of P is shorter than k− j ≤ k− 1. Thus, for each
pair u, v in V , dG′(u, v) is equal to the length of a longest path joining u and v in
G, and the shortest path joining u and v on G′ is uniquely determined.

In each gadget in Figure 4, since we can replace each path by the edge of weight
equal to the length of the path, the reduction can be done from G in O(|V |2) time
and space. Moreover, the resulting graph after the reduction only requires |V |
vertices and O(|V |2) edges, which implies that the running time is O(|V |2). 2

5. Algorithms for biconvex graphs

In this section, we consider the longest path problem on subclasses of biconvex
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graphs. We assume that a biconvex graph G = (X,Y,E) is given with its compact
interval representation. For a given any path P, we denote by PX the ordered set of
vertices in P and X, and by PY the ordered set of vertices in P and Y . Hereafter,
we use (·) to denote ordered sets, and {·} to denote unordered sets, respectively.
Also, we sometimes identify a path P with the ordered set that consists of the
vertices in P. Hence, when PX = (xi1 , xi2 , . . .) and PY = (yj1 , yj2 , . . .), we have
P = (xi1 , yj1 , xi2 , yj2 , . . .) or P = (yj1 , xi1 , yj2 , xi2 , . . .).

We first assume that a given biconvex graph is a bipartite permutation graph;
in our context, we deal it as a “proper” biconvex graph as depicted in the left hand
side of Figure 2.
Lemma 13 For a given bipartite permutation graph G = (X,Y,E), there is a
longest path P with PX = (xi1 , xi2 , . . .) and PY = (yj1 , yj2 , . . .) such that ip < ip+1

and jp < jp+1 for each p.
Proof. Let P′ be any longest path (xi′1

, yj′
1
, xi′2

, yj′
2
, . . .) such that xi′p

∈ X

and yj′
p
∈ Y (the symmetric case that P′ starts from a vertex in Y is omitted). We

construct P from P′ such that P contains the same vertices in P′ and satisfies the
condition. The proof is by induction on the length of the path. The lemma holds
when the length of the path is 2. Thus we assume that the length of the path is at
least 3. We have two cases:
(1) The path ends with two vertices (xi′

k
, yj′

k
) with xi′

k
∈ X and yj′

k
∈ Y . Then,

by the inductive hypothesis, there is a path P′′ = (xi1 , yj1 , xi2 , yj2 , . . ., xik
, yjk

)
such that ip < ip+1 and jp < jp+1 for each p. If either yjk

≺ yj′
k+1

or yj′
k+1

≺ yj1 ,
the path (xi1 , yj1 , . . ., xik

, yj′
k+1

, xi′
k+1

) or (xi′
k+1

, yj′
k+1

, xi1 , yj1 , . . ., xik
) satisfies

the condition. Thus we suppose that yj1 ≺ yj′
k+1

≺ yjk
. Then since the graph

is proper, there is an index h such that yjh
≺ yj′

k+1
≺ yjh+1 . Then xih+1 ∈

Iyj′
k+1

, and xi′
k+1

∈ (Iyjh
∪ Iyjh+1

). If xi′
k+1

∈ Iyjh
, the path (xi1 , yj1 , xi2 , yj2 ,

. . ., yjh
, xi′

k+1
, yj′

k+1
, xih+1 , yjh+1 , . . ., xik

, yjk
) satisfies the condition. Otherwise,

the path (xi1 , yj1 , xi2 , yj2 , . . ., yjh
, xih+1 , yj′

k+1
, xi′

k+1
, yjh+1 , . . ., xik

, yjk
) satisfies the

condition.
(2) The path ends with two vertices (yj′

k
, xi′

k+1
) with yj′

k
∈ Y and xi′

k+1
∈ X. Then,

by the inductive hypothesis, there is a path P′′ = (xi1 , yj1 , xi2 , yj2 , . . . , xik
, yjk

)
such that ip < ip+1 and jp < jp+1 for each p. Then we have three possible cases;
yjk

≺ yj′
k
, yj′

k
≺ yj1 , and yj1 ≺ yj′

k
≺ yjk

. Using the same argument as in (1), we
have the lemma. 2

Theorem 14 For a given connected bipartite permutation graph G = (X,Y,E), a
longest path can be found in O(|X ∪ Y | + |E|) time.

Proof. To compute the longest path satisfying the condition in Lemma 13, we
use standard dynamic programming technique. We define two functions f(xi, yj)
and g(yj , xi) such that f(xi, yj) gives the length of a longest path starting with the
vertex xi and g(yj , xi) gives the length of a longest path starting with the vertex
yj in the subgraph induced by {xi, xi+1, . . . , x|X|} ∪ {yj , yj+1, . . . , y|Y |}. We define
f(xi, yj) = 0 if {xi, yj} 6∈ E or yj does not exist, and g(yj , xi) = 0 if {xi, yj} 6∈ E
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Figure 5: An example for f(xi, yj) and g(yj , xi).

or xi does not exist. Then, if {xi, yj} ∈ E,

f(xi, yj) = max{f(xi, yj+1), g(yj , xi+1) + 1} and

g(yj , xi) = max{f(xi, yj+1) + 1, g(yj , xi+1)}.

Consequently, the length of a longest path is given by max{f(x1, y1), g(y1, x1)}.
Computing the longest path itself is also straightforward. The computation of
max{f(x1, y1), g(y1, x1)} can be done in linear time and space by means of dynamic
programming. 2

An example is depicted in Figure 5. In Figure 5, f(x1, y1) = 10 and g(y1, x1) =
11. Hence the length of a longest path is 11, which is given by (y1, x1, y2, x2, y3, x3,

y4, x4, y5, x5, y6, x6) or (y1, x1, y2, x2, y3, x3, y4, x4, y5, x5, y6, x7).
By Theorems 5 and 14, we can find a longest path in a chain graph in linear

time. On the other hand, by Observation 4 and Theorem 5, any biconvex graph G

consists of three bipartite permutation graphs G1, G2, and G3. We conjecture that
the longest path among three longest paths in Gi with i = 1, 2, 3 has length at least
one third of the length of a longest path in G.

6. Algorithms for interval biconvex graphs

In this section, we consider the longest path problem on interval biconvex graphs.
Some related results, and especially a polynomial time algorithm for the problem
on the class of proper interval biconvex graph are shown.

Let G = (V = S∪Y,E) be an interval biconvex graph with the set S of simplicial
vertices. Let x1 < x2 < · · · < xnx and y1 < y2 < · · · < yny be the orderings over S

and Y that have adjacency property. We here denote by I(xi) the integer point Ixi ,
that is, I(xi) = R(Ixi) = L(Ixi). By Lemma 6, for each x and x′ with N [x] = N [x′],
I(x) = I(x′). For each j with 1 ≤ j ≤ ny, since each yj contains consecutive x’s,
we can let yj correspond to the interval [L(yj), R(yj)] such that L(yj) = I(x`)
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and R(yj) = I(xr), where x` and xr are the minimum and maximum vertices in
S ∩ N(yj), respectively. By definition and the proof of Lemma 2, we immediately
have the following lemma:
Lemma 15 For the compact interval representation I(G) of the interval biconvex
graph G = (V = S ∪ Y,E) with the set S of simplicial vertices, there are two
indices jt and jb such that (1) jt ≤ jb, (2) L(y1) ≥ L(y2) ≥ · · · ≥ L(yjt) and
L(yjt) ≤ L(yjt+1) ≤ · · · ≤ L(yny ), and (3) R(y1) ≤ R(y2) ≤ · · · ≤ R(yjb

) and
R(yjb

) ≥ R(yjt+1) ≥ · · · ≥ R(yny ).
The following proposition is also immediate (see also [5, Lemma 2]):

Proposition 16 Let G = (V = S ∪ Y,E) be a connected interval biconvex graph.
Let y1 < y2 < · · · < yny be the orderings over Y that have adjacency property. Then
{yi, yi+1} ∈ E for each 1 ≤ i < ny. That is, (y1, y2, . . . , yny ) is a path of G.

We here let Y1 := {y1, y2, . . . , yjt}, Y2 := {yjt , yjt+1, . . . , yjb
}, and Y3 := {yjb

,

yjb+1, . . . , yny}. (We note that the vertices yt and yb are shared by two sets.)
For any ordered set Z = {z1, z2, . . . , zn}, we say an ordered subset Z ′ ⊆ Z is
in consecutive order if there are two indices i and j with i ≤ j such that Z ′ =
{zi, zi+1, . . . , zj−1, zj}. For a given path P, we denote the ordered sets P ∩ Y1,
P ∩ Y2, and P ∩ Y3 by P1, P2, and P3, respectively.
Lemma 17 Any interval biconvex graph G = (Y1∪Y2∪Y3∪S,E) has a longest path
P such that Pi induces an ordered subset in consecutive order for each i = 1, 2, 3.

Proof. We first consider the case i = 2. Let P2 be (yj1 , yj2 , . . .). Then, using
the same analysis of Lemma 13, we can show that j1 < j2 < · · ·. Now we assume
that P2 contains a subpath (yj1 , yj2) with j1 < j3 < j2 for some j3. Then, by
Proposition 16, we can extend P by replacing a vertex yj1 by a subpath (yj1 , yj3),
which contradicts that P is a longest path.

Next we consider the case i = 1. Let P1 be (yj1 , yj2 , . . .). By definition, j < j′

implies that N(yj) ⊆ N(y′
j). Thus, when j < j′ < j′′ and yj , yj′′ ∈ P1 and yj′ 6∈ P1,

we can replace yj by yj′ . Hence, since P is a longest path, the unordered set P∩ Y1

consists of {yj | k ≤ j ≤ jt} for some k with 1 ≤ k ≤ jt. Therefore we show that
they can be sorted in consecutive order. When |P1| < 3, we have done. Hence we
assume that |P1| ≥ 3. We assume that P1 contains yj1 , yj2 , yj3 in this order and
j2 < j1 < j3. Without loss of generality, P contains a subpath (yj1 , S1, yj2 , S2, yj3)
for some ordered set S1, S2 ⊆ (S∪Y2∪Y3)\Y1. If yj1 is the first element in P1, we can
replace the subpath by (yj2 , S1, yj1 , S2, yj3) since S1, S2 ⊆ N(yj2) ⊆ N(yj1). If yj1 is
not the first element in P1, we have two vertices yj0 ∈ Y1 and S0 ⊆ (S∪Y2∪Y3)\Y1

such that P contains a subpath (yj0 , S0, yj1 , S1, yj2 , S2, yj3). If N(yj2) ⊆ N(yj0),
we can replace the path by (yj0 , S2, yj2 , S1, yj1 , S0, yj3). If N(yj0) ⊆ N(yj2), we can
replace the path by (yj0 , S0, yj2 , S1, yj1 , S2, yj3). Repeating this process, we can sort
P1 in consecutive order. The case i = 3 is symmetric to i = 1. 2

Now we focus on the class of proper interval biconvex graphs G = (S ∪ Y,E).
That is, we consider the case that G 〈Y 〉 induces a proper interval graph. Hereafter,
we denote by (X, y) a path (xi, xi+1, . . . , xi+j , y) for a set X = {xi, xi+1, . . . , xi+j}
if G 〈X〉 is a clique.
Lemma 18 For a connected proper interval biconvex graph G = (V = S ∪ Y,E),
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there is a longest path P such that
(1) the vertices in Y ∩P appear consecutively; that is, Y ∩P is yj , yj+1, . . . , yj+k−1,

yj+k for some j and k, and those vertices appear according to the ordering over Y ,
(2) the consecutive vertices in S on P correspond to the same integer point; that is, if
P contains a subpath (yj , xi, xi+1, xi+2, . . . , xi+h, yj+1), we have I(xi) = I(xi+1) =
· · · = I(xi+h),
(3) the vertices in S on P appear according to the ordering over S; that is, if S ∩ P

is xi1 , xi2 , . . . , xih
in this order, I(xi1) ≤ I(xi2) ≤ · · · ≤ I(xih

), and
(4) P starts and ends at the vertices in S.

Let s and f be integers such that N [s]∩S and N [f ]∩S give us the set of vertices
satisfying the condition that P starts at N [s] and ends at N [f ]. Let ys and yf be
the vertices such that P starts with (N [s], ys) and ends with (yf , N [f ]). Then
(5) ys is the minimum vertex in Y with Iys containing s, and yf is the maximum
vertex in Y with Iyf

containing f .
Proof. (1) We assume that P contains yj1 , yj2 , and yj3 in this ordering and

yj1 ≺ yj3 ≺ yj2 . We assume that they are minimal, that is, they are consecutive in
P∩Y . Then, swapping yj2 and yj3 we also have a path. Repeating this process, we
have a path such that the vertices in Y appear according to the ordering over Y .
Let yj and yj+k be the first and last vertices in P ∩ Y , respectively. We next show
that all vertices yj+k′ with 0 < k′ < k appear on P. We assume that some yj+k′

with 0 < k′ < k does not appear on P. Then, inserting it, we have a longer path,
which contradicts that P is a longest path.
(2) Let s be any integer such that there is a vertex x in N [s] ∩ S ∩ P. If there is
a vertex x′ such that x′ ∈ N [s] ∩ S and x′ does not appear in P, we have a longer
path by replacing a subpath (x) of P by (x, x′). Thus all vertices in N [s]∩S appear
in P. It is clear that gathering all vertices in N [s] ∩ S ∩ P has no effects on the
connectivity and length of P. Thus we can assume that all vertices in N [s] ∩ S are
consecutive in P.
(3) By (1), all vertices in Y ∩P appear consecutively. Thus, using the same argument
in (1), we can assume that all vertices in S ∩ P also appear consecutively.
(4) To derive a contradiction, we assume that P starts at the vertex yj not in S.
Then, by the definition of a compact interval representation, we have (a) L(yj) =
R(yj′) for some j′ < j, or (b) N [L(yj)] ∩ S 6= ∅. In the case (a), we have a longer
path by adding yj′ at the top of P. On the other hand, in the case (b), we also
have a longer path by adding the vertices in N [L(yj)] ∩ S at the top of P. Thus,
P starts at the vertex in S. Using the same argument, we can show that P ends at
the vertex in S.
(5) To derive a contradiction, we assume that P starts with (N [s], ys) and there is
a vertex ys′ such that s′ 6= s, Iys′ contains s, and ys′ ≺ ys. By (1), ys′ does not
appear in P. However, in the case, we have longer path by replacing (N [s], ys) by
(N [s], ys′ , ys), which is a contradiction. Thus ys is the minimum vertex in Y with
Iys containing s. Using the same argument, we can show that yf is the maximum
vertex in Y with Iyf

containing f . 2

By Lemma 18, the outline of our algorithm is as follows:
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1. for each integer s and f with 0 < s < f ≤ nx, suppose N [s]∩ S and N [f ]∩ S

are the endpoints of a longest path;

2. let yjs be the smallest vertex with L[yjs ] ≤ s ≤ R[yjs ], and let yjf
be the

largest vertex with L[yjf
] ≤ f ≤ R[yjf

];

3. for each integer i = s + 1, s + 2, . . . , f − 1, determine where the vertices in
S ∩ N [i] are inserted in the path (N [s], yjs , yjs+1, . . . , yjf−1, yjf

, N [f ]).

Step 3 can be implemented using the polynomial time algorithm for the maximum
weighted matching problem. We first construct a weighted bipartite graph G′ =
(X ′, Y ′, E′) with X ′ = {i | I(x) = i for some x ∈ S with s < i < f} and
Y ′ = {{yj , yj+1} | yj , yj+1 ∈ Y and js ≤ j ≤ jf − 1} as follows; E′ contains
a weighted edge e = {i, {yj , yj+1}} if N [i] contains both of yj and yj+1. The
weight of the edge e is defined by |S ∩ N [i]|, which is the number of vertices x

in S with I(x) = i. A matching M of G′ gives a path of G as follows; if an edge
e = {{yj , yj+1}, i} is in M , the path of G contains (yj , N [i], yj+1). Thus, by Lemma
18, the maximum weighted matching of G′ gives a longest path of G. The detail of
the algorithm can be described as follows:

Algorithm PIBG

Input: A proper interval biconvex graph G = (V = S ∪ Y,E) with
|S| = nx and |Y | = ny, and a compact interval representation I(G).
Output: A longest path P.
1. for each integer s with 0 < s < nx do
2. for each f with s < f ≤ nx do
3. construct the weighted bipartite graph G′ = (X ′, Y ′, E′)

for the vertices that overlaps the interval [s, f ];
4. find a maximum weighted matching M in G′;
5. let N [s] and N [f ] suppose the endpoints of a longest path;
6. let yjs be the smallest vertex with L[yjs ] ≤ N [s] ≤ R[yjs ],

and let yjf
be the largest vertex with L[yjf

] ≤ N [f ] ≤ R[yjf
];

7. compute the path given by (N [s], yjs , yjs+1, . . ., yjf−1, yjf
, N [f ])

with the vertices in S that appear in M ;
8. end
9. end

10. find the longest path among the paths generated in step 6.

Theorem 19 A longest path in a given proper interval biconvex graph G = (V =
S ∪ Y,E) with |V | = n and |E| = m can be found in O(n3(m + n log n)) time.

Proof. The correctness of Algorithm PIBG follows from Lemma 18. Thus
we analyze the running time. For the weighted bipartite graph G′ = (X ′, Y ′, E′)
constructed in Step 3, we have |X ′| = O(nx), |Y ′| = O(ny), and |E′| = O(|E|).
A maximum weighted matching can be found in O(|V |(|E|+ |V | log |V |)) time and
O(|E|) space for any given graph G = (V,E) [17]. Hence Step 4 takes O(n(m +
n log n)) time with n = nx + ny and m = |E|. The graph G′ induced by the
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vertices that overlap the interval [s, f ] can be maintained incrementally. In each
update of s and f , G′ is updated in O(|N [s]|) time and O(|N [f ]|) time, respectively.
Hence the total cost of maintenance of G′ can be bounded above (

∑
x∈S deg(x))2 =

O(m2) = O(mn2). Therefore total running time is O(n2
xn(m + n log n) + m2) =

O(n3(m + n log n)). 2

Corollary 20 A longest path in a given threshold graph G = (V,E) with |V | = n

and |E| = m can be found in O(n + m) time and space.
Proof. (Sketch.) By Lemma 8 and Theorem 19, a longest path in a threshold

graph can be found in O(n3(m + n log n)) time. However, Algorithm PIBG can be
simplified to run in linear time and space using the properties shown in the proof of
Lemma 8 and that G 〈S〉 is an independent set. Similar idea can be found in [27],
and hence omitted here. 2

7. Concluding remarks

The main open problems are the complexity of the longest path problem for
interval graphs, convex graphs, biconvex graphs, and interval biconvex graphs.

The longest path problem for interval graphs can be reduced to the one for
convex graphs in polynomial time by using a simple reduction by Damaschke in
[29, Section 2] (see Appendix 1). Thus the problem for convex graphs seems to be
more difficult than for interval graphs. Intuitively, however, a convex graph has
similar structure to the interval graph that has the MPQ-tree with only one Q-
node in the manner of [25]. Therefore, the complexity of the longest path problem
for interval graphs and convex graphs seems to be essentially the same.

The longest path problem for biconvex graphs is similar to the problem for
interval biconvex graphs, and they seem to be easier than the other two graph
classes. However, the problem for (interval) biconvex graphs are not so easy. We
know the path is “monotone” in each part Y1, Y2, Y3 by Lemma 17. However, their
combinations are not simple. Two typical and difficult cases are shown in Figure 6;
both graphs satisfy Y3 = ∅, and they have Hamilton paths, respectively. Each path
is monotone in Y1 and Y2, but their crossing is tricky.

It is also worth investigating the complexity of the longest cycle problem instead
of the longest path problem. It is known that a longest cycle can be found in thresh-
old graphs in polynomial time [27]. The efficient algorithms for the Hamiltonian
cycle problem for proper interval graphs [5, 31] and interval graphs [23] have been
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given. There are a few results for the Hamiltonian cycle problem on split graphs
[13, 32].
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Appendix A: Related Results

Using a simple reduction by Damaschke in [29, Section 2], we have the following
two theorems:
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Theorem A.1 The longest path problem for interval graphs can be reduced to the
longest path problem for convex graphs in O(n2) time.

Proof. Given connected interval graph G = (V,E) with |V | = n, we construct
a corresponding convex graph G′ = (V,W,E′) such that a longest path in G gives
a longest path in G′ or vice versa. For G, we first construct a compact interval
representation I. Then the set W is defined as follows; for each integer i in [1, n],
W contains |N [i]| + 1 vertices corresponding to the point i. The ordering of W

is defined naturally; w < w′ if I(w) < I(w′). The set E′ is the set of edges
{v, w} if and only if Iv contains the point I(w). The resulting bipartite graph is
clearly a convex graph, and the reduction can be done in O(n2) time. Thus it is
sufficient to show that a longest path in G corresponds to a longest path in G′.
Let P = (v1, v2, . . . , vk) be a path in G. Then, by the definition of compact interval
representation, Ivi

∩Ivi+1 contains at least one integer point for each i = 1, . . . , k−1.
Moreover, each integer point i corresponds to |N [i]| + 1 ws. Thus, on G′, we can
construct a path P′ = (w1, v1, w2, v2, . . . , wk, vk, wk+1) of length 2k + 1. It is easy
to see that P is a longest path in G if and only if P′ is a longest path in G′. 2

Theorem A.2 We can solve the Hamiltonian path problem for biconvex graphs
G = (X,Y,E) in O(n2) time, where n = |X ∪ Y |.

Proof. Let G = (X,Y,E) be a given biconvex graph such that X and Y are
ordered with respect to the adjacency property. By Lemma 1, each x ∈ X on the
compact interval representation I(G) corresponds to an integer point.

When |X| = |Y |, we can use the same idea in [29, Section 2] which is as follows:
From G, we construct the interval graph G′ = (X∪Y,E∪E′) where E′ := {{y1, y2} |
N(y1) ∩ N(y2) 6= ∅}. We let m = |E ∪ E′|. Then, since two vertices in X cannot
be consecutive on a path of G′, G has a Hamiltonian path if and only if G′ has a
Hamiltonian path.

However, G can have a Hamiltonian path when ||X| − |Y || ≤ 1. Thus we have
to consider two other cases. We first assume that |X| − |Y | = 1. Two vertices in X

cannot consecutive even in G′. Thus if G′ has a Hamiltonian path, it starts from a
vertex in X and ends at a vertex in X. Hence the reduction above again works; G

has a Hamiltonian path if and only if G′ has a Hamiltonian path.
If |Y | − |X| = 1, we can swap X and Y and the problem is reduced to the case

|X| − |Y | = 1. 2

Corollary A.3 Let G = (X,Y,E) be a convex graph such that an ordering < of X

has the adjacency property. Then the Hamiltonian path problem for G can be solved
in O(n2) time if |X| = |Y | or |X| − |Y | = 1.
Remark: The Hamiltonian path problem for the convex graph G = (X,Y,E) with
|Y | − |X| = 1 is open. It seems that the case is related to the problem named
“Hamiltonian path with fixed end” (1HP) proposed by Damaschke in [15], which is
also open. If 1HP has a polynomial time algorithm, the Hamiltonian path problem
for the convex graph G = (X,Y,E) with |Y | − |X| = 1 also can be solved in
polynomial time.
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