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|PAPER

Transformation of Strictness-Related Analyses
Based on Abstract Interpretation”

SUMMARY This paper newly proposes HOMomorphic
Transformer (HOMT) in order to formalize relations among
strictness-related analyses (SRAs) on first-order functional pro-
grams. A HOMT is defined to be a composition of special
instances of abstract interpretation, and has enough ability to
treat known SRAs including head/tail/total strictness detection
on nonflat domains. A set of HOMTs, furthermore, is an
algebraic space such that some composition of HOMTs can be
reduced to a simpler HOMT. This structure gives a transfor-
mational mechanism between various SRAs, and further clarifies
the equivalence and the hierarchy among them. First, we show
a construction of a HOMT as a composition of Unit-HOMTs
(U-HOMTs) which are specified by quadruplet representations.
Second, algebraic relations among HOMTs are shown as reduc-
tion rules among specific pairs of quadruplet representations.
Thus, hierarchy among HOMTs can be clarified by finding some
adequate quadruplet representation which bridges a HOMT to
the other. Third, various SRAs are formalized as HOMTs in
either forward or back-ward manners. They are also shown to be
safe under unified discussions. Finally, their equivalence and
hierarchy are examined in terms of an algebraic structure of
HOMTs.

1. Introduction

Stimulated by an urgent need for efficient imple-
mentation of lazy applicative languages, many Global
Dataflow Analyses ( GDAs ) have been pro-
posed ™20 - A most notable class in GDAs is a set of
Strictness-Related Analyses (in short, SRAs), that
collect information on the strictness of functions.
SRAs"? are classified into either Strictness Analysis
(SA)®-6r.02.2)  Relevance Analysis(RA) or Com
putation Path Analysis (CPA) "9 An SA detects a
set of parameters that should be evaluated to obtain the
resulting value of a function. Conversely, an RA
detects a set of parameters that may be evaluated. CPA
is a generalization of both SA and RA, detecting a set
of all possible computation paths.

Abstract interpretation-®U1-02 and projection
analysis>®® have been proposed as the basis for for-
malizing various GDAs. Abstract interpretation exe-
cutes a program for all instances on a (possibly finite)
abstract domain which reflects the objective property.
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In contrast, projection analysis interprets a program as
a transformer on a (possibly finite) selections of pro-
jections, which reflect the objective property. Equiv-
alence between their certain sub classes was investigated

in Ref. (4). However, there are still remaining the
following questions. Let us restrict discussions on
SRAs.

+In Ref. (22), Wadler indicated that head-

strictness detection on nonflat domain cannot be treat-
ed by a previously proposed abstract interpretation,
although projection analysis can. In Ref. (4), Burn
divided head-strictness into two parts: H-strictness
and Hp-strictness. He showed that Hp-strictness can be
treated by abstract interpretation. In fact, it is much
easier to detect as a by-product property in total/tail
strictness analysis. Then, the question is, can H -strict-
ness also be treated by abstract interpretation ?

+ Even restricting discussions on abstract interpre-
tation, there are various algorithms to have been
proposed. For instance, SAs on flat domain were
proposed in both forward/backward manners!2-2%®,
Furthermore, a result of some analysis intuitively intro-
duces results of the others. For instance, this is a case
of CPA and SAs. Then, the question is, how these
equivalence and hierarchy can be formally shown ?

This paper newly proposes HOMomorphic Trans-
former (HOMT) in order to formalize relations among
strictness-related analyses(SRAs) on first-order func-
tional programs. A HOMT is defined to be a composi-
tion of special instances of abstract interpretation, and
has enough ability to treat known SRAs including
head/tail/total strictness detection on nonflat
domains. A set of HOMTs, furthermore, is an alge-
braic space such that some composition of HOMT'S can
be reduced to a simpler HOMT. This structure gives a
transformational mechanism between various SRAs,
and further clarifies the equivalence and the hierarchy
among them.

First, we show a construction of a HOMT as a
composition of Unit-HOMTs (U-HOMTs) which are
specified by quadruplet representations. Second, alge-
braic relations among HOMTS are shown as reduction
rules among specific pairs of quadruplet representa-

* This paper was recommended by the Editorial Com-
mittee.
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tions. Thus, hierarchy among HOMTs can be clarified
by finding some adequate quadruplet representation
which bridges a HOMT to the other. Third, various
SRAs are formalized as HOMTs in either forward or
backward manners. They are also shown to be safe
under uniffed discussions. Finally, their equivalence
and hierarchy are examined in terms of an algebraic
structure of HOMTs.

For simplicity, we will restrict the arguments to
strongly-typed first-order functional programs with
streams instead of general lists. Note that the tech-
niques are not exclusive of typeless programs except
that classifications among flat/nonflat domains and
Boolean values which decide the choices of condi-
tional branches.

2. Intuitive Comparison among SRAs
2.1 SRAs as HOMTs, Overview

SRAs are made up of three kinds of GDAs. That
is, SAs, RAs and CPAs"”. CPA computes the Prop-
erty Dependency Parameter Set (PDPS), which is intui-
tively a set of all possible demand patterns of the
function when demands are propagated to resulting
value. RA detects relevant parameters which may need
to be evaluated when demands propagate. SA detects
requisite parameters which always need to be evaluated
when demands propagate.

On the other hand, a HOMT, 4, is a functional
which maps continuous functions f on computational
domains to 4 (f) on (possibly finite) abstract domains
(See Sect. 3.2). Thus, SRAs are formalized by HOMTs
as follows. Assume 4 be a HOMT such that A(f)
preserves the objective property of an SRA on the
original program f. Note that A(f) may be not
computable even if abstract domains are finite, since
h(f) reflects the exact run-time property which is never
clarified before actual execution. Thus, the algorithms
of SRAs are formalized according to the following two
steps. First, compute the approximation A°(f) of A
(f), where A°(f) is the solution of some recursive
equation on abstract domains. This result is called the
computed HOMT (See Sect. 3. 3). Next, execute 4°(f)
for all possible instances on abstract domains. As a
result, the approximated property on f is detected,
instead of the exact but noncomputable run-time prop-
erty on f.

With the formalizations of SRAs as above, the
equivalence of two SRAs which have different corre-
sponding HOMTs 4, A is clarified by finding HOMTs
M, he that transform to each other as /; (f) 5 by (f)
and Ay (f) 25 hy (f) for each continuous function f.
Similarly, the hierarchical relationship between two
SRAs is clarified by finding a HOMT that transforms
the stronger one into the weaker one.
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Sections 2. 2 and 2. 3 examine both the equivalence
and the hierarchy of the already proposed algorithms
of SRAs.

2.2 Forward/Backward Equivalence among SRAs

An SRA may be either forward or backward. As
SRA is said to be a forward analysis, if it clarifies the
properties of results from the properties of parameters.
Conversely, an SRA is said to be a backward analysis,
if it clarifies the conditions satisfied by parameters from
the properties of results.

Let us concentrate on SAs on flat domains (i. e.
Integer, Boolean, etc). Forward SA (FSA) is an
example of a forward analysis"®. Similar algorithms
are found in Refs. (1), (5).

FSA interprets a function, f, on a flat domain
(such as Integer or, Boolean) to a {0, 1}-valued func-
tion frsa, where 0 means totally undefined and 1 means
possibly defined. Thus, frsa returns 1 if there possibly
exists a computable real instance of f, and returns 0 if
there never exists a computable real instance of f. For
instance, ordinary if (x, y, z) is interpreted to

ifesat (1,1,1) =1, (1,1,0)—1, (1,0,1) —>1,
2(0,1,1) >0, (1,0,00—0, (0,1,0)—0,
:(0,0,1) — 0, (0,0,0)— 0.

Then, requisite parameters can be detected by
firstly testing frsa for all {0, 1)-input patterns, next
collecting the set of minimum input patterns that
returns 1(called 1-frontier in Ref. (1)), and finally
detecting requisite parameters that are always required
to be 1 in all patterns in the 1-frontier. For instance,
if (x, y, z), the 1-frontier is {(1,1,0), (1,0,1)}, and
then, the requisite parameter is x.

On the other hand, Boolean-algebraic SA
(BSA) @07 ig an example of SA as a backward analysis.
BSA interprets a function, /', to a function fzss which is a
symbolic manipulation on the set-characteristic expres-
sions of input parameters. For example, if (x, y, z) is
interpreted to ifssa(x, 3, z) =Axyz (xUy) N (xUz).
Then, requisite parameters are collected by substituting
actual variable names to corresponding setcharacteris-
tic expressions. For instance, requisite parameters of
if (a, b, b) are detected as (Axyz(xUy)N(xUz))
({a}, {8}, (8}) = ({a}U{B}) N ({a} U{8}) ={a, B}.

In both FSA and BSA, these interpretations for
user defined functions are induced by ordinary fixpoint
calculus based on given interpretations on primitive
functions on abstract domains.

From an application view point, both FSA and
BSA have equivalent analytical ability except that
FSA can detect diverged functions when its 1-frontier
is an empty set, whereas BSA cannot.
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2.3 Hierarchy among SRAs

The hierarchy of SRAs arises {rom 2 reasons:

+ Objective property of program is the same for SRA;
and SRA,, but abstraction is more detailed on SRA,
than SRA; (Approximation hierarchy).

+ Objective property of program itself is more infor-
mative on SRA; than SRA; (Property hierarchy).
The approximation hierarchy arises from the fact that
an SRA is a compile-time technique whereas the
objective property is a run-time property. Thus,
approximation accuracy is traded off with
computational complexity (including termination).
Therefore, even for the same objective property, there
are many selections for approximation levels. These
levels can be measured by domain abstractions.

The notable examples are SAs on non-flat domains
(e. g lazy list structures, streams ) ) »(1002.8),02)
The notable feature of non-flat domains is non-
strictness. That is, lazy functions such as cons-stream
(x, y), head (x), tail (x) (as in Scheme) admit par-
tially evaluated data for both inputs and outputs.

A trivial extension of FSA interprets functions to
{0, 1}-valued functions where the data structure is
approximated as 1 if the evaluation requires a head-
normal form (i. e. not delayed), and as 0 if delayed.

Conversely, Tail Strictness Analysis (Tail SA) on
streams ( 8 ), (22) interprets functions as {0, 1, 2, NIL}
-valued functions. In the abstract domain {0, 1,2,
NIL}, 0 means never evaluated, 1 means values that are
evaluated until the head normal form is clarified, 2
means values that are evaluated until the spine of a list
is clarified, and NIL means eventually evaluated to
Nil.

Thus, for instance, a parameter x in length(x) is
analyzed as simply not delayed by FSA, whereas it is
analyzed as requisite at level 2 or NIL by Tail SA.
Detailed discussions on SRAs on nonflat domains are
found in Sect. 4. 2.

The property hierarchy is found in the relation
among CPA, SA, and RA™ 17 For example,

f(x, 3 2 p q)=if p>0 then
(if p=1 then (if z=0 then x else y)
else f (2,20, p—1,x))
else £(0,0,z 1, y)
is analyzed as
PDPS {{xzp) (02 p) (2 ), P}
relevant parameters {x, , z p}

requisite parameters {p}

Roughly speaking, the union of all elements in
PDPS is a set of relevant parameters, and the intersec-
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tion is a set of requisite parameters. Therefore, CPA is
more powerful than both SA and RA.

3. Algebraic Structure on HOMTs

3.1 Construction of U-HOMTSs and Their Quadru-
plet Representations

A HOMT is defined to be a functional which

maps continuous functions on computational domains
to those on possibly finite abstract power domains. A
HOMT is constructed as a composition of U-HOMTs.
A U-HOMT 4 is a functional from a directed relation
on a domain D to a directed relation on a possibly
finite abstract domain Abs. Let us describe them more
formally.
[Definition 1] Let D and 4bs be cpo’s®. A map
abs: D — Abs is said to be a domain abstraction if
abs is an onto map and bottom-reflecting® (i. e. abs
(x) = L 4ps implies x= L p).

A preorder = is defined to be a relation which
satisfies a reflexive law (i.e. XC= X) and a transitive
law (i.e. XE Y and YE Z implies X = Z), but may
not satisfies an asymmetric law (i.e. XEY and X2 Y
implies X=1Y).

[Definition 2] Let D be a cpo. A power domain
PD[D]™ associated to a preorder = is defined to be

def

PD[D]={closure (X)| X (= $) S D}, where a pair of a
closure function and a preorder (closure(X), =) is
either (RC (X)), 5y), (LC (X)), =), (Conv(X),
C ), or (id, &) (Definitions of these representative
functions and preorders are shown in Table 1). PD[D]
with (id, €) is specifically called a power set and
noted as PS[D].

[Definition 3] Let D; and D: be domains. Relation
~between them is defined to be a subset A.S Dy X D».
The relation is noted as x~y if(x, y)EA4...

The relation~is said to be directed if Vx& D, 3 y
€D, s. t. x~y, and noted x =>y. In case of Dy=D"
and D,=D for some domain D and integer n, we will
call that the relation is forward if D, = D, and is
backward if Dy < D.

A U-HOMT, which is a HOMT induced from a
domain abstraction, is classified into two types. That
is, covariant U-HOMTSs and contravariant U-HOMTs,
corresponding to forward analyses and backward
analyses. A covariant U-HOMT transforms a directed
relation to those that of a same direction (i.e. a for-
ward relation to a forward one, and a backward rela-
tion to a backward one), and a contravariant U-
HOMT transforms it to those that of a contrary direc-
tion (i. e. a forward relation to a backward one, and a
backward relation to a forward one). Their construc-
tions are shown in commutative diagrams in Fig. 1. A
U-HOMT is constructed in three steps. For instance, a
covariant U-HOMT is as follows: First, a directed
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Table 1 Definitions of preorder related notations.
. closure function
preorder definition
representative function
Conv(X) ¥ LC(X)N RC(X)
XCemY | XEYAXL,Y
Conv(X)
RC(X) Y {ceD|IyeXstyla)
XCoY | RO(X)2RO®Y) 0 df“ |y eX st yLal
Min(X) = {zeX|-JyeX st yrCz}
LO(X) ¥ {zeD|IyeXstaC
XC,Y | LO(X)CLO(Y) (X) = feeDlIeXatsly}
Maz(X) = {zeX|-3yeXstzCy}

Table 2 Typical selections

of parameters of quadruplet repre-

sentations.
domain abstraction direction preorder representative
function
base domain abstraction
covariant
1 (ifx#1) - id
absy 1z — ) (+)
0 (ifx=1) CeMm Conv
X X X
(where 0 C 1) ) Co Min
contravariant
identical abstraction o) Cy Maz
absig: ¢ — =z (Vz € D)
itself. Thus, A(f) may not be well-defined when f is
£ £l not an onto relation. That is, The function inverse
Dn T~ Dn NS D . .
5 may require ¢ as a result value, but a power domain
absUabs"lj abSl abSi wabs TabS‘1 does not include ¢. To avoid such a case, we extend
Abs” :f Q Abs Abs” | Abs a power domain PD[D] with an empty set ¢. The
i ; l l i l preorders are naturally extended except the case of a
.t n : i i = -
PS[Abs"] ¢ PS[Abs] PS[Abs'] 'PS[Abs] power domain with (= gy, Con\_/). 'I:hus, as an excep
T i tion, we abopt a power domain with (C g, Conv)
Tldn i ¥ closure cloiureQ; ldT only for covariant HOMTs.
PD[Abs ]—'~‘—~>PD[Abs] PD[Abs ]<—=—PD[Abs] The parameters which specify these U-HOMT
inc '} &6 D lrep v, f(f)y incT constr}lctions are a dc?main abstractim.l, a direction
Abs Abs Abs Abs (that is, whether covariant or contravariant), a power

covariant U-HOMT hg contravariant U-HOMT hg.

Fig. 1 Construction of U-HOMT #,.
relation f : D" = D is transformed to a function on a
powerset of abstract domain as abs o fo abs™': PS
[Abs™] — PS[Abs]. Second, it is naturally embedded
into a function f = closure  abs of° abs™' ° id : PD
[Abs™] — PD[ Abs] on a power domain of an abstract
domain. Finally, A(f) is realized as a directed rela-
tion as A(f): x = rep o abs o [ o abs™' o inc(x)
where rep is a representative function and a map inc:
Abs™ — PD[Abs™] is defined to be inc(x)=closure
({x}). On the other hand, a contravariant U-HOMT. A
is defined to be A(f) : x > rep o abs o f7' o inc(x).
(Note that rep o closure=rep.)

A result of a contravariant U-HOMT A(f) is
induced from an inverse relation /7', whereas a result
of a covariant U-HOMT is induced from a relation f

domain construction, and a representative function.
By definition, a power domain construction is com-
posed of the selection of preorder = on power set
combined with a closure function closure. Table 2
presents selections for these parameters.

[Definition 4] A U-HOMT, 4, is specified by a
domain abstraction abs: D-— Abs, a direction dir
(whether covariant (+) or contravariant (—)), a
preorder =, and a representative function rep. A
quadruplet (abs, dir, =, rep) is called the quadruplet
representation of A.

3.2 Algebraic Relations among HOMTSs

A U-HOMT is a functional from a directed rela-
tion to a directed relation on an abstract domain. A
HOMT is a composition of U-HOMTs, and specifically
restricts its application on continuous functions f :
D" — D which is a special instance of a forward rela-
tion with a prefix notation. We will freely convert a
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direct relation to a function on a power domain using
a representative function rep and a closure function
closure. More precisely, a directed relation rep ° f o
closure on a domain corresponds to a function f on a
power domain.

[Definition5] A HOMT is defined to be a composi-
tion of U-HOMTs regarding a function f : D* — D as
a forward relation. A HOMT is also represented as a
composition of quadruplet representations.

Let a HOMT /% be a composition of U-HOMTSs
hy o-e0 . A HOMT is said to be covariant if a
product of all directions in each quadruplet expression
of U-HOMTs Ay, «+, b, is positive, and said to be
contravariant if a product of all directions is negative.
From this definition, the name of a covariant HOMT is
validated as it transforms a directed relation to those
that of same direction (i.e. a forward relation to a
forward relation, and a backward relation to a back-
ward relation). Similarly, the name of a contravariant
HOMT is validated as it transforms a directed relation
to those that of different direction (i.e. a forward
relation to a backward relation, and a backward rela-
tion to a forward relation).

Some compositions of U-HOMTSs may eventually
coincide with a simpler U-HOMT. This shows that
some HOMTs may be equivalent although they have
different representations as compositions of U-
HOMTs. This equivalence is introduced from the next
Reduction theorem, and defines an algebraic structure
on HOMTs. Before introducing it we prepare two
notations on preorders.

[Definition 6] The order € among preorders T is
defined to be ='KC iff XEY = XZ'Y.
[Definition 7]  The preorder =  is defined to be X
E_.Y iff X3,Y where =, is either =g, =1, = gy, OT
Cee (e S).

The lattice due to this ordering < is presented in
Fig.2. Intuitively speaking, &'« = means = has
more detailed information than £=’. The first part of
the next theorem follows easily from the definition
above. The second part follows by a long but routine
process of set-theoretical relations.

[Theorem 1] Let 4 and A" be U-HOMTsS, and (abs,
dir, =, rep) and (abs’, dir’, =’, rep’) be their quad-
ruplet representations, where abs : Dy — D, and abs’ :
D, — Dy are domain abstractions. If one of following

C

— null

Fig. 2 Relations among preorders.
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conditions is satisfied, a composition 4" o A is reduced
to a single U~-HOMT as (abs’, dir’, =7, rep’) » (abs, dir,
=, rep) = (abs’ o abs, dir’ o dir, =, rep’)

(1) For dir=+,
(a) E'KC or (b)
(2) For dir=-—,
(a) (E,29)
or (b) (=,

or (c)(x,=)

either CLEL

either (E 10, E 1) A rep=DMin,

(E 41, & 10) A rep=Max,

(

Il

I

=y

3.3 Computation of a HOMT and Its Safeness

A HOMT is defined as above, but the algorithm to
compute it remains still unspecified. In fact, 2(f") that
reflects a run-time property of a function (program) f
is not computable, even if the abstract domain Abs is
finite. Therefore, instead of 4 (f), we introduce 4°(f")
which approximates A(f), and is computable if the
abstract domain is finite. Thus, a computation of A°¢
(f) exactly corresponds to an algorithm of an SRA on
a program f, whereas a HOMT 7 can be regarded as a
property extractor of a program.

[Definition 8]  Let / be a fix(r) = ,r"(R), for a
recursion equation r and an undefined function @
which maps every elements to a bottom element L.
Let 4 be a HOMT. A computed HOMT A€ is defined

def
to be A°(f)=Un(h:(2))"(A(R2)), where A (1) is
defined to be a syntactically identical (resp. inverse)
equation, but replaces each primitive functions priv
with A (priv), if A is a covariant (resp. contravariant)
HOMT.

Intuitively, A°(f) is a result of a fixed-point

computation on a power domain of an abstract
domain, starting with A(£2). From a viewpoint of
SRAs as HOMTs, a computed HOMT #4° must proper-
ly approximates a HOMT 4. For instance, SRAs on
flat domains must satisfies conditions shown in Table
3. These conditions are generalized to safeness condi-
tion as defined below.
[Definition 9] A HOMT # is said to be safe iff A
(f)EA°(f) for all continuous functions f where an
order = is associated to a power domain construction
of a target abstract domain of 4.

Table 3 Safeness of SRAs on flat domains.

SRA real property detected property

SA real strict parameters detected strict parameters
detected relevant parameters

detected PDPS

2
RA | real relevant parameters C
c

CPA real PDPS

In general, safeness A= A°, is shown by two steps.
That is, first show A(feg) Sh(f)e h(g) if h is covar-
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iant, and A(f o g) Eh(g) o A(f) if h is contravariant.
Second, show A(f LI g) h(f) U h(g). The first condi-
tion guarantees h(f NE (k. (T )) (A(02)). Thus, LA
(= U, (A () (h(w)) =h°(f). The second con-
dition guarantees A(f)=h(L,f )= U, A ©).
Therefore, safeness 2 (f) = A¢(f) is shown.

The first condition Z(f o g)=A(f) ° h(g) is

satisfied if A4 is a U-HOMT and a preorder T is
cooperative with S (i.e. XE Y == closure(X') S clo-
sure(Y).). This is the case Z&{E 4, =,, &}. The
special case of the second condition is A(f Llg) =
(f)UA(g). This means £ is continuous. This is the
case in Theorem 2.
[Theorem 2] Let 2 be a U-HOMT s. t. A has a
quadruplet representation (abs, dir, =, rep). Then A
and their compositions safe HOMTs if the following
conditions are satisfied.

» The domain abstraction abs is continuous, and
its inverse abs™! satisfies x= y == abs ™' (x) E pyabs™!
(y) for any elements x, yin an abstract domain.

» The pair (dir, =, rep) is one of the followings :

(+, = _o, Min), (+, =, Max), (—, =_¢, Min), (—,
=, Max)
[Theorem 3"Y] The notations are same as Theorem
2. If a domain abstraction abs : D — Abs satisfies the
same condition as Theorem 2, a U-HOMT 4 with a
quadruplet representation (-, =gy, Conv) is a safe
HOMT.

When a domain abstraction is not continuous, the

next theorem is useful. This theorem is obtained by
pursuing set-inclusive relations.
[Theorem 4] Let & be a HOMT and A4’ be a U-
HOMT with a quadruplet representation (abs’, dir/,
=, rep’) and a domain abstraction abs’: Dy — Ds.
Then, A" ° h is a safe HOMT if the following condi-
tions are satisfied.

« If 2 is a covariant HOMT, A(f e g) SA(f) = A
(g) and A(f L1g)Sh(f)UA(g). If A is a contravar-
iant HOMT, A(f o ¢g) Sh(g)  h(f') and A(f Lg) S
h(f)YUh(g).

« dx Uy for x, yE D, implies that there exists
abs’(x)Uabs' (y)&ED, and abs’(x Uy)Eabs’ (x) U
abs’(y). Conversely, Ju 1y for u, v& D, implies
abs Y (u U v)E gpwabs’ (u) Ll abs”™ (v).

» A preorder = is cooperative with € (i.e. E&
{:—07 =1 C} )

4, SRAs as HOMTs
4.1 SRAs on Flat Domains

The algorithms of various SRAs are independently
proposed by many authors®®EO11D,12),(19,018),(0),(22)
These SRAs are formalized in terms of HOMTs by
checking following two points: (1) an interpretation
of primitive functions, (2) definedness ordering on
abstract domains. Thus, an interpretation of general
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functions is constructed by the ordinary least fixed
point calculus, and this corresponds to an algorithm of
an SRA and a computed HOMT. We first shows SRAs
on flat domains as HOMTs.

[Example 1] A gquadruplet representation of FSA is
grsa= (absy, +, =1, Max). This is shown from the
correspondence among interpretations on primitive
functions and definedness ordering on abstract
domains.

Let /754 be a HOMT whose quadruplet representa-
tion is grsa. Equivalence among interpretations on
primitive functions is checked by testing all possible
values on abstract domains. For example, by FS4, if
(x, y, z) are interpreted to

ifrsa: (1,1,1) =1, (1,1,0)—1, (1,0,1) — 1,
(0,1,1) —0, (1,0,0)—0, (0,1,0)— 0,
(0,0,1) — 0, (0,0,0) — 0,

and by Agsa,

hrsa (if )+ Max ({(1, 1, 1)}) — Max({1}),
Max ({(1, 1, 0)}) — Max ({1}),

Max ({(1,0,1)}) — Max({1}),

Max ({(0,1, }) — Max({0}),

Max ({(1, 0, 0)}) — Max ({0}),

Max({(O 1,0}) — Max({0}),

ax ({(0,0, 1)}) — Max({0}),

MaX({ 0,0, 0)}) — Max({0}).

Thus, equivalence among ifmsa and FApsa(if) 1

easily shown from an embedding: x={0, 1} — {x}&
PD({0,1}). Equivalence of definedness order is obvi-
ous from x=y = {x} =.{y}.
[Example 2]  Strictness Information Analysis (SIA),
the extension of BSA, is a HOMT #Ag4 whose quadru-
plet representation is (abss,, —, =_o, Min). The main
difference between BSA and SIA is that SIA can detect
diverged functions whereas BSA cannot. This is
because a totally undefined function Q(xi, -+, x,) is
interpreted to Ax;---x,. UNDEF by SIA with a special
value UNDEF, whereas Q2 (xy, -*-, x,) is simply inter-
preted to Axis+ Xn. X1 U - U x5 (strict function) by BSA.
Except 2(x;, **-, x»), other primitive functions are
interpreted to the equivalent abstract functions. For
example, if (x, y, z) and + (x, y) are interpreted to

Vi hssa(f)
if (x,y,2) | Axyz.(xUy)N(xUz)
+(x, ) Axy. xUy
f hsia (f)
if (x, p 2) {1} > Min({(1,1,1), (1,1,0), (1,0,1)})
+(x, y) {1} > Min({(1, 1)})
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Correspondence among definedness orderings is
also easily checked from the fact XS YV = X C_,7Y.
[Example 3] Computation Path Analysis (CPA)
detects demand propagation patterns. CPA can not be
treated as a single U-HOMT, but represented as a
composition of two HOMTs. We will show it with the
example of if (x, y, z) and serial-or(x, y, z), where
serial-or (x, y, z) returns values true when (x, y, z) =
(true, L, L), (false, true, L), (false, false, true), and
returns false only when (false, false, false). By
definition, ifepa=Axyz.{{x, y}, {x, z}} and serial-orcps=
Axyz{{x}, {x, y}}h {x p 2}"7.

The first step to get a HOMT /Acpa is the construc-
tion of a function inverse. This U-HOMT #4; has a
quadruplet representation (id, —, =_o, Min) such as

h(if) : {5} — {(true, 5, 1), (false, L, 5)},
{4} — {(true, 4, 1), (false, L, 4)},
etc.

hy (serial-or) : {true} — {(true, L, L), (false, true,

1), (false, false, true)},

{false} — {(false, false, false) }.

{5}— ¢,

{true} — ¢, etc.

The second step abstracts differences of values, but
keeps the difference between an evaluated value and
L. This U-HOMT #A, has a quadruplet representation
(abss,, +, S, Id). Then,

hy o hi(if) A{—-{1,10), 1,01}

h © hy(serial-or) : {1} — {(1,0,0), (1,1, 0),
(L1, 1)}

hy o b () -9

which exactly correspond to ifces and serial-orcp,.
Thus, CPA as a HOMT has a quadruplet representa-
tion (absy, +, S, id) o (id, —, T _y, Min) @9,

4.2 Tail/Total Strictness Detection

There are several SRAs on nonflat domains in
literatures. They are tail/total/head strictness detec-
tion™®® and an error detection based on minor
signature analysis"?. We concentrate discussions on
tail/total/head strictness detection. Formal definitions
of these strictness are found in Refs.(15), (22).

Tail strictness is a property that the result is
obtained only when input list data are evaluated until
their spines are clarified. For instance,

length (x) =if null (x) then 0
else add1(length(cdr(x)))

IEICE TRANSACTIONS, VOL. E 74, NO. 2 FEBRUARY 1991

is tail-strict.

Total strictness is a property that the result is
obtained only when input list data are completely
evaluated. For instance,

sum(x) =if null (x) then 0

else add(car(x), sum (cdr(x)))
is total-strict.

This section shows that tail/total strictness detec-
tion can be realized as extensions of FSA. (These are
formalized as either forward or backward SAs. For a
backward manner, the extensions of SIA with same
domain abstractions below are appropriate.) In any
case, the interests concentrated on finding adequate
domain abstractions. For simplicity, we will restrict
the arguments to strongly-typed first-order functional
programs with integer streams instead of general lists.
Note that the techniques are not exclusive of typeless
programming except that classifications among flat/
nonflat domains and Boolean values which decide the
choices of conditional branches.

At first, we divide abs, to absi: and absgeo; Wwhich
are corresponding to integers and Booleans, respective-
ly. absin is defined identically to abs, except type-
restrictions. abspoo; is defined to be an identity map on
Booleans. That is, an abstraction on Boolean is not
necessary because Boolean domain is originally finite,
and an abstraction on Boolean should be avoided
because a Boolean value select a conditional branches
which is crucial in SRAs on nonflat domains.

The following domain abstraction abssst(ine)

ignores differences among values, but keeps shapes of
list data structures.
[Definition 10]  The base domain abstraction abs; :
int — {0, 1} on a flat domain inf is extended inductive-
ly according to structure of domain D. For instance,
the extension to /list (int) is

absSiistinty © X
constructor (absi: (), absistine(z))
— if x=constructor(y, z)
NIL if x=Nil

(Example 4]  absustiney (list (int)) is still an infinite
domain, thus additional abstractions are required.
They are,

absiiniiorar  list (int) — {a°, o, &, &°, &*, @®, of,
)

abswmz . list(int) - {Bo; /81: ‘82: ,83: 341 BNIL};

absw : list (int) — {7°, o', 7%, ¥},

absgsa : list (int) — {5°, 6}

as shown in Fig. 3. In it an abstraction abs : D — Abs
is regarded as a partition. (That is, D= U yeapsabs™}
(x), and x=*+y== abs '(x)Nabs™'(y)=¢.) For
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- ~N
o cdr-is- ad: car-is-strict tail / total strictness
totally-strict & tail-strict
AN ~ ~
2 nil

o tail-strict
~
1

-
» @ non-nil /
absq_ﬁ/ N \
7

y'4
B4: totally-strict
2 edre -~ N
. car-1s- 3. : ;
totally-strict B car-is-strict
\ .
gl non-nit B nil
~ ~
ﬁoz delayed
N
N
absp—s\

total strictness

: car-is-strict o nil

absq—y

a0; delayed AN

tail strictness
7 tail-strict
»L: non-nil M nil
~ ~

ro: delayed
7’

7
7 absy—g

non-delayed stricthess

81 not delayed

80 delayed

Fig. 3 A hierarchy of abstract domains for Tail/Total strictness

detection.

instance, in tail/total strictness detection, &*’s have
meanings as follows.

« @® and ™" consists of a single element L and
NIL, respectively.
a* collects the elements which are non-nil lists, but
neither their car-parts nor their spines are evaluat-
ed.
a” collects the elements in which their car-parts are
evaluated, but spines are not clarified.
a® collects the elements in which their spines are
clarified, but car-parts and else remain unevaluat-
ed.
a* collects the elements in which their car-parts
and spines are evaluated.
a® collects the elements in which every parts except
car-parts are evaluated.
@® consists of the elements which are completely
evaluated.
They make a lattice and its ordering are represent-
ed by lines in Fig. 3. For g*, y* and 6™ have similar
meanings.

Then, Tail/Total-SA, which detects both tail/
total strictness, has a quadruplet representation of
(absiairjora, +, =1, Max). Similarly, Total-SA, Tail-
SA, and FSA have each quadruplet representations
(absiotar, +, =1, Max), (absiwu +, =1, Max), and
(absrsa, +, E1, Max), respectively.

4.3 Head Strictness Detection

Head strictness is a property that the result is
obtained only when leaves (i.e. car-part) of input list
data are evaluated synchronously with their evalua-
tions on spines(This is equivalent to H -strictness in
Ref. (4)). For instance,

search0(x) =if null (x) then O

else if  zerop (car(x)) then 1

else search0Q(cdr(x))

is head-strict. Head strictness detection has been
proposed as a projection analysis®®. However, the
method based on abstract interpretation is unknown.
We show that SAs are not enough for head strictness
detection (which is indicated in Ref. (22)), but CPA
with a non-monotonic domain abstraction @bspeqs can
safely detect head-strictness. We call it head-CPA.
[Example 5] Let absneqq : list (int) — {e"*, &°, &, &',
€%} be as shown in Fig.4. Regarding as &*’s as a
partition, their meanings are,

+ &% and €™ consist of a single element L and Nil
respectively.

« ' collects the elements in which their cdr-parts are
head-strict, but their car-parts remain unevaluated
(including (L . L)).

+ &2 collects the elements which are head-strict



414

&3: not-head-strict head strictness
|
% head-strict el pil
1
el: cdr-part-is-head-strict /
~
e0; delayed

Fig. 4 Abstract domain for head-strictness detection.

(including (value. L).)
« &® collects the rest of elements in non-nil lists.

Then, Head-CPA as a HOMT is defined with the
quadruplet representation (absneqq, +, S, Id) o (id, —,
C 5, Min). In the algorithm of head-CPA, a path
merging requires a Ll-operation. In a HOMT-
framework, this is naturally introduced as & (copy) :
(y,z) —y iz for a copying function copy: x — (x,
x). For instance, in the definition of search0(x), a
variable x is copied three times in the right-hand side.
We call them x!, x?, and x% respectively. Let us
imagine the computation path which through the third
branch in the definition in search0(x). (i.e. null (x)
and zerop (car(x)) are both false.) If the property of
x' is a non-nil list (cdr-part is head-strict), the prop-
erty of x* is head-strict, and the property of x® is
cdr-part is head-strict. These properties are merged to
head-strict at the left-hand side occurrence of x. Note
that if two properties makes conflicts to each other, this
path will be erased. (i.e. maps to ¢.) More precisely,
search0(x) is analyzed as follows. (Notations are
same as in Sect. 3. 3) Since search0(x) has a type list
(int) — int, the algorithm starts with A(Q) which
maps 1— ¢. Let us note AV (f) = (A (7)) (A (Q))

(ie. LIAD(f)=hr(f)). Then, a convergent
sequence of A°(search0)is
A (search0) : 1— ¢
hY (search0) :  1— {e"E, &' &%)
— {ENIL EZ}

h® (search0) : 1— {"*, 'l &? &'l L&}

={e", &%} (Converged)

Thus, A°(search0) is computed as 1— {e¥', &%}.
Therefore, search0(x) is detected to be head-strict.

Note that Head-CPA is a more powerful SRA
than those that proposed in Ref. (22), because Wadler’
s method has two major restrictions which head-CPA
has not. That is,

+ It works effectively only on primitive recursive
functions.

+ The objective language has two conditional
expressions, case and if. It works effectively only on
case-sentences which has quite severe restrictions, and
works little on if -sentences which treat general condi-
tional branches.
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We imagine that SIA and FSA might work as
(absneass —) =0, Min) and (abSneas, +, =1, Max).
However, abspeqq is a nonmonotonic domain abstrac-
tion (i.e. not continuous). In fact, absieqq maps an
ascending sequence ((L L. 1)), ((L2.1))), ((12.
1))-to &, &', &%+, Therefore, the conditions for
safeness (in Theorem 2) are not satisfied. For instance,

interval-search0(x)
=if null(x) then 0

else if  zerop(car(x)) then 1

else interval-searchO(cdr (cdr(x)))

is detected head-strict by both SIA and FSA, although
this function is actually not head-strict.

5. Equivalence and Hierarchy among SRAs
5.1 Forward/Backward Equivalence

The analytical powers of SRAs are compared by
existence of transformational methods from one to the
other. ’

[Definition 11] Let 4; and A, be HOMTs. Then,
m=hy iff b1 HOMT s. t. ly=hy, © he Equivalence
among HOMTs A, = A, is defined to be A< Ay A By =
h.

[Example 6] The equivalence of FSA and SIA is
proved by the existence of forward/backward conver-
sion operators. These operators are easily found from
reduction theorem (See Sect. 3.2). That is,

hsia= (id, —, E_o, Mlin) © Apsa
hpsa= (id, — =y, Max) ° hsia

where Apsa= (abs,, +, =1, Max), and

hsia= (abs,, —, = _¢, Min).

5.2 Appproximation Hierarchy

There are two cases that cause hierarchy of analyti-
cal power among SRAs: approximation hierarchy and
property hierarchy, as mentioned in Sect.2.3. These
are clarified by the existence of projection operators in
terms of HOMTs.

The example is the relation among SAs on non-
flat domains (e. g. streams), such as Tail/Total SA,
Total SA, Tail SA, and FSA. Recall that their quad-
ruplet representations as HOMTs are

htaz’l/total: (abstail/total; +, &4, Max) s
Pian = (absii, +, =1, Max),
htotar= (abSiotar, +, =1, Max),

hFSA: (absps,q, +, =, Max) .
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Table 4 Additional abstractions for hierarchy among tail/total SAs.

oNIL  _, gNIL
a6 — ,84
of o op
absqp dat o B
oot - B
a® - p°

B° — &

ﬂNIL ﬂ4 53“32751 N 61
absﬂ_.g H ’ ’

Let abstraction maps be as Table 4. Note that they
are all continuous functions. Then, from Theorem 1,
following reduction rules are introduced. Thus, their
approximation hierarchy is clarified as the existence of
underlined quadruplet representations.

hiotar= (abStotar, +, =1, Max)
= (absg-p +, =1, Max) o
(absiaiistotar, +, =1, Max)
hiain= (abSsas, +, E1, Max)
=(absq., +, =1, Max) ©
(absaittoranr +, =1, Max)
hrsa= (abspsa, +, =1, Max)
= (absp~s, +, =1, Max)
(absiotar, +, =1, Max)
= (absy.s +, E;1, Max) o

(absiai, +, =1, Max)

o

5.3 Property Hierarchy

The example of property hierarchy is the relation
among CPA and SIA on flat domains.
[Example 7] A quadruplet representation of CPA is
(abss, +, T, id) © (id, —, E_¢, Min). From reduc-
tion theorem, SIA is induced from CPA as

(id, +,
= (id, +,

(id, —, = _¢, Min))

= ((id, +, Eo, Min) ° (abs, +, S, id)) °
(id, —, E_;, Min)
(
(
hsta

o, Min) © Acpa

o, Min) © ((abss, +

+, &, id) °

=y, Min) ¢ (id, —, &, Min)

abs,, —, So, Min)

absb) »

[

NI — ANID
of 08,0t 0 — 42
abSqoy . )
ol a -
a® — 9°
NIL o2 A1 1
5 ANIE AR AT =8
A0S8y—§ ¢
0 - &0

We imagine RA on flat domain can be obtained
by a similar method. RA seems to have a correspond-
ing HOMTs with a quadruplet representation (adss,

+,CE,Max ) o (id —, =, Min ), and to have a
hierarchical relation with CPA as
(id, +, =1, Max) o hcpa
=(id, +, =, Max) ° ({(absy, +, S, id) ©
(id, —, =, Min))
=((id, +, =1, Max) o (abss,, +, S, id)) °
(id, —, =, Min)
= (absy,, +, =1, Max) ¢ (id, —, & _, Min)

= hga

However, this formalization leads a trivial SRA.
In fact, the initial function Aga(R) is the greatest
function with respect to =, so that the result of this
fixed-point computation A g4(f) for any recursive
function f sticks to it.

6. Conclusion

A new formalization method for SRAs on first-
order functional programs was proposed. For this
purpose, the concept called HOMomorphic Trans-
former (HOMT) was introduced. Intuitively speaking,
a HOMT is a special instance of abstract interpreta-
tion. A set of HOMTs is an algebraic space, where
equivalence relations (or reduction rules) are defined.
This paper has clarified that HOMTSs can be used not
only for a formalization of SRAs, but also as a trans-
formational mechanism between these analyses. Thus,
equivalent and hierarchical relationships among these
analyses can be discussed on a unified basis.

The direction of further works is an automatic
program generation of SRAs. This is partially done in
Ref. (16). In fact, an experimental system which, is
implemented on VAX Common Lisp (about 3.5K
lines), can produce total/tail-SA and head-CPA.
However, their specifications require hand-coded data
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tables. As automatic program generation of SR As still
remain in naive status.
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