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Preface 
 

Bose–Einstein condensation was discovered in atomic gas systems, where 

Bose condensate occupies 100% of the total system at zero temperature. Liquid helium 

systems have been investigated based on the Landau theory, where the superfluid 

component of liquid helium is background flow. According to the Landau theory, it is 

doubtful that the superfluid component is a Bose condensate. 

In experiments, the probability of helium atoms with zero momentum is a few 

percent of the total liquid helium at ultra-low temperatures. However, the superfluid 

component occupies 100% of the liquid helium at zero temperature, as macroscopic 

observations indicate. These two properties of liquid helium mean that the set of helium 

atoms with zero momentum is not a good approximation of the ground state. What state 

represents the superfluid component of liquid helium?  

We introduce a quasi-particle representing an eigenstate of the total 

Hamiltonian. We designate the quasi-particle a “dressed boson”. It is the most 

straightforward answer to the question posed above: the superfluid component is a Bose 

condensate of dressed bosons. 

Experimental data of thermodynamic quantities differ greatly from the 

theoretical values of the Landau theory near the λ point. The specific heat has a 

logarithmic singularity at the λ point in the experimental data; however, the theoretical 

result of the Landau theory has no singularity. 

In the present article, the diagonalized form of the total Hamiltonian is 
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examined and is clarified to have a nonlinear form for the distribution function of the 

dressed bosons. The nonlinear form produces logarithmic divergence of the specific heat. 

Many theoretical approaches have used a linear form in a total energy of a 

Bose system as 

∑=
i

iinE ε , 

where in  is the quasi-particle number in quantum level i, and where  εi is the energy per 

quasi-particle. This familiar form maintains the order of energy from small to large. That 
is to say, the energy of level 1 is smaller than that of level 2 always if 21 εε < . The 

property changes drastically for a nonlinear form of a total energy as 

L++= ∑∑
j,i

jiji
i

ii nnfnE ε . 

The energy of a quasi-particle (dressed boson) is definable as 

L+++= ∑∑
j

jij
j

jjii
i

nfnf
n
E ε

∂
∂

, 

which depends upon the other dressed boson numbers. Consequently, the energy of the 

dressed boson with quantum level i varies depending on the distribution of dressed boson 

number. This nonlinear dependence yields level inversion; that is to say, which 

momentum level of the dressed boson has a minimum energy depends upon the choice of 

the distribution of dressed boson number. The level with momentum zero has minimum 

energy for some distribution. However, when the distribution of dressed boson number 

changes into a specific distribution, a level with a non-zero momentum has minimum 

energy. This level inversion produces Bose condensation of the dressed bosons with 

non-zero momentum. The stability of the moving superfluid component is established on 

the basis of this level inversion. Many other surprising effects arise from the nonlinearity. 

In almost all cases for many body problems, the total energy is nonlinearly 

dependent upon the distribution function of quasi-particle number. Accordingly, the 

developed method explained in this book is widely applicable to investigation of the 

statistical physics of many body problems. 
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I.  Introduction 
  

Since Kamerlingh Onnes liquefied helium gas in 1908, surprising properties of 

liquid helium have been revealed [1]. Particularly, after the λ-transition was discovered, 

striking behavior of liquid helium has been found in the lower temperature phase (which 

is called helium II). Helium II comprises two components: a non-viscous component 

called the superfluid component and a viscous component called the normal-fluid 

component. These two components flow while interpenetrating each other. Each 

component has an independent velocity, although these two components are mutually 

mixed uniformly. The two velocities do not average out, even over time. In addition, the 

entropy value of each component does not take on the mean value: the superfluid 

component maintains entropy zero and the normal-fluid component maintains all the 

entropy of the whole liquid helium II. In addition to these properties, superfluid helium 

exhibits many characteristic phenomena: the fountain effect, the mechano-caloric effect, 

heat superconductivity and so on. 

Many theoreticians have remained fascinated by these phenomena and have 

made efforts to clarify their origin [2–3]. Traditional theories related to liquid 4He are 

classified into London’s theory and Landau’s theory. Actually, F. London [2] neglected 

interatomic potentials among helium atoms, and investigated the statistical physics of the 

system. Subsequently, he arrived at the result that Bose–Einstein condensation occurs at 

some finite temperature. He regarded this condensate of non-interacting helium atoms as 

the superfluid component. According to his theory, the velocity of the condensate must be 

equal to the velocity of the center of mass of liquid helium, which does not agree with the 

experimental results. 

On the other hand, Tisza and Landau [3] independently proposed a two-fluid 

model. Landau developed this theory, in which he assumed the existence of a background 

flow inside the liquid helium II, which he named the superfluid component. In addition, 

he assumed that the residual component (normal fluid component) comprises a set of 

quasi-particles representing quantized modes of density waves, which he named the 

phonon and the roton. This theory explained the superfluidity of liquid helium and 

concurred with the specific heat near temperature zero. Many theoreticians followed 

Landau’s method in their investigations of liquid helium. 
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Some calculated the single excitation energies of the quantized density wave 

(elementary excitation) approximately from the total Hamiltonian of liquid helium [4–7]. 

Bogoliubov [4] assumed macroscopic occupation of helium atoms with momentum zero 

and replaced the creation and annihilation operators with momentum zero to a c-number 

(classical number, not quantum number). He obtained an excitation spectrum like that of 

a phonon. Bogoliubov’s transformation violates the number conservation law of helium 

atoms, although his work is very important to clarify the existence of phonons in an 

interacting bosen system. Based on Bogoliubov’s theory, Miller, Pines and Nozieres [6] 

tried to take account of the backflow, which was first considered by Feynman and Cohen 

[6]. Feenberg [6] calculated the expansion series of the excitation energy systematically 

using the correlation functions. Sunakawa, Yamasaki, and Kebukawa [6] derived the 

same result on the basis of the density fluctuation and velocity operators. Sasaki and 

Matsuda [7] obtained the same result through unitary transformation. 

The single particle excitation energy has been thus obtained using various 

perturbational approaches. However, it is necessary to clarify the structure of the total 

energy for a case with a macroscopic number of excitations because the number of 

excitations is macroscopically large at a nonzero temperature in a real liquid helium 

system. Several works have examined the structure of multiple excitations. For example, 

R. Balian and C. de Dominicis [4] used a self-consistent Bogoliubov transformation, and 

developed the old theory. However, the theory violates the number conservation law. 

Therefore, the number of quasi-particles is not equal to the number of helium atoms. 

Accordingly, the traditional theories of liquid helium present many difficulties. 

About 30 years ago, one of the present authors exactly diagonalized the total 

Hamiltonian of one-dimensional (1D) interacting boson system with a repulsive delta 

function potential using unitary transformation [10, 11]. The result shows that the total 

energy of the multi-excitation is not equal to the sum of the energies of single excitation. 

In other words, the functional form of the total energy has a nonlinear form for the 

distribution function of quasi-particle number. This nonlinearity can be derived only from 

the Galilean covariance of the total energy. Therefore, nonlinearity also appears in almost 

all interacting many-body systems because the Galilean covariance holds. Therefore, it is 

necessary to investigate the statistical physics with a nonlinear form of the total energy. 

The investigation is executed in this book. The nonlinearity produces many important 
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behaviors in thermodynamic functions. 

Experimental data at 1.6 K < T <2.17 K in liquid helium differ greatly from the 

calculated results according to the Landau theory. As an example, the values of specific 

heat are shown in the following figure.  

 

 

Fig. 1.1 Specific heat of superfluid helium 

 

 

The dots indicate the experimental data of liquid helium, and the curve shows the 

calculated value of the Landau theory. Consequently, Landau’s results deviate to a great 

degree from the experimental data at 1.6 K<T<2.17 K. The total energy of the Landau 

theory depends linearly on the number distribution function of elementary excitations. 

This property is not good in the actual system of liquid helium. We consider the nonlinear 

effect and develop the treatment of nonlinear properties. Thereby, we can clarify how the 

nonlinear structure produces the experimental behavior of liquid helium. 

In this book, we assume the following two postulates. We can theoretically 

derive the qualitative characteristics of superfluid helium merely using the two 

postulates. 

 

(Postulate l) 

A unitary transformation U exists from the non-interacting states to the eigenstates of the 

total Hamiltonian in a liquid helium system. 
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It is noteworthy that the explicit form of U is never used herein; only the 

existence of U. This postulate is true because of the hermitian property of H and because 

of the property that no bound-state exists: no molecule is composed of plural helium 

atoms. These properties confirm the existence of a unitary transformation from the 

complete set of free states to the complete set of the eigenstates of H. In a previous paper 

[7], we demonstrated the approximated form of U up to the second order in the 

perturbation series for a 3D system. Moreover, in a 1D many-boson system, we obtained 

the exact form of U (see reference [10]). 

 

 (Postulate 2) 

Single excitation energy from the ground state has a phonon-like spectrum in a small 

momentum region. 

The detected dispersion curve of the elementary excitation exhibits 

phonon-like behavior in a small momentum region. Therefore, Postulate 2 agrees with 

the experimental results. 

 

It is noteworthy that these two postulates are true in a 1D many-boson system 

with a repulsive delta function potential. The proofs have been presented in the relevant 

literature [10, 11], where the unitary transformation exactly diagonalizes the total 

Hamiltonian of the 1D system. This is summarized in Appendix I. 

Using the two postulates described above, we can introduce a new concept, i.e. 

"dressed boson" whose creation and annihilation operators are defined as follows: 

Transform the creation and annihilation operators of a helium atom by the inverse unitary 

transformation of U. Then, new creation and annihilation operators are obtained. These 

new operators create or annihilate a quasi-particle, which represents the eigenstate of the 

total Hamiltonian of liquid helium. This quasi-particle is called the "dressed boson", 

which is the key to clarification of the mysterious mechanism of superfluid helium. 

In chapter II, we will examine a diagonalized form of the total Hamiltonian. 

The functional form is nonlinear with respect to the momentum distribution function of 

the dressed bosons because the interactions among 4He atoms are Galilean invariant. The 

nonlinear term is determined concretely using the experimental data of elementary 

excitation energy in neutron scatterings and using the latent heat per helium atom. This 
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explicit form of the nonlinear term produces the remarkable properties of liquid helium. 

In chapter III, we will derive coupled integral equations that determine the 

momentum-distribution of the dressed bosons at equilibrium. At temperatures higher 

than the λ point, these equations have only one solution. On the other hand, for 

temperatures lower than the λ point, these equations have infinitely many solutions, even 

in fixing of the values of temperature, total number, and total momentum. The multiple 

solutions include a Bose condensate of the dressed bosons: a macroscopic number of 

dressed bosons with only one momentum value. Moreover, the condensed momentum 

value can be an arbitrary value within some range. The Bose condensate represents the 

superfluid component, and the residual dressed bosons represent the normal fluid 

component. Therein, even when the velocity of the normal fluid is fixed to a single value, 

many solutions exist in which the Bose condensed momenta differ from one another. 

Consequently, the velocity value of superfluid component can be chosen to be any value 

independent of the normal fluid velocity. For that reason, the solutions of momentum 

distribution of the dressed bosons reproduce the two-fluid model, which will be discussed 

in detail in chapter VIII. 

H. Kojima et al. [9] measured the decreasing rate of superfluid velocity. They 

prepared liquid helium II, whose superfluid component flows with an initial velocity 

through a toroidal channel, and whose normal-fluid component has velocity zero. Then, 

the superfluid velocity did not decrease for the case of the initial superfluid velocity 

smaller than 33 cm/s. That is to say, the superfluid component flows permanently in this 

case. The superfluid velocity would decrease to 60 cm/s after 1010 years in their 

experimental result when the initial velocity was 67.7 cm/s. Accordingly the two-fluid 

states are extremely stable. The solutions obtained in the nonlinear theory have local 

maximum entropies. Therefore, the nonlinear theory well explains the stability of the two 

fluid states in liquid helium. 

 

It is clarified in this book that the nonlinear theory produces the properties of 

liquid helium as  

1) Existence of the λ-transition. 

2) Two interpenetrating fluids coexist at a temperature lower than the λ- transition. 

3) Any solution representing a two-fluid state has a local maximum entropy among the 
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thermal fluctuated states. 

4) The fountain effect in superfluid helium. Dressed bosons satisfy the London equation. 

5) Superfluidity and zero entropy for the superfluid component. 

 

We can calculate the thermodynamic functions of liquid helium numerically 

using the concrete form of the nonlinear term determined in chapter II and using the 

iteration method presented in chapter III. We execute the calculations and obtain the 

theoretical results in good agreement with the experimental data for entropy and heat 

capacity. Moreover, examining the nonlinear properties in detail, we evaluate the specific 

heat near the λ point. The numerical result has logarithmic divergence at the λ point. The 

reason for the appearance of the logarithmic singularity is also clarified in an analytical 

method. We theoretically obtain the phase diagram between He II and He I, the critical 

index of the Bose-condensed number at the λ point, etc. via the nonlinear theory. 

Accordingly, the nonlinear theory presented in this book engenders the 

theoretical explanation for the macroscopic behavior of liquid helium. 
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II. General Form of Total Energy 
 

2.1 Unitary transformation 

The total Hamiltonian H of liquid helium is given as 

 

( )∑∑ −++=
kqp

qpkqkp
p

pp kp
 , ,

*** aaaag
V

aa
m

H
2
1

2

2

, (2.1) 

 

where m is the mass of a helium atom, *
pa  and pa

 
respectively signify the creation and 

annihilation operators, ( )kg  is the inter-atomic potential between helium atoms, V is the 

volume of the system, and kqp  , ,  are the momenta whose values satisfy the periodic 

boundary conditions in a cubic box with side length L (V = L3): 

 

 ( ) ( ) ( )  integer,2 integer,2 integer,2 ×=×=×= LpLpLp zyx hhh πππ  

 ( ) ( ) Lhh integer,2 integer,2 ×=×= LqLq yx ππ  (2.2) 

 ( )π2constant s'Planck=h . 

 

The operators *
pa  and pa  are the creation and annihilation operators satisfying the 

commutation relations 

 

[ ] [ ] [ ] 0,, , , **
,

* === qpqpqpqp aaaaaa δ , (2.3) 

 

where qp ,δ  represents Kronecker’s delta function. 

In this chapter, we examine the general form of the total energy of liquid 

helium system via the unitary transformation U diagonalizing the total Hamiltonian H. 

Actually, the existence of U is ensured by the fundamental requirement of quantum 
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physics, although the explicit form of U is unknown because of difficulty of the 

many-body problem. All eigenstates of H can be written using the transformation from 

free states of helium atoms (see Postulate 1 in chapter I), as 

 

0stateeigen ****
321 N

aaaUa pppp L= , (2.4) 

 

where 0  denotes the vacuum state of the system, and where N is the total number of 

helium atoms. New creation and annihilation operators are defined as 

 

11 −− == UUaA ,UUaA **
pppp . (2.5) 

 

These new operators indicate creation and annihilation operators of a quasi-particle with 

an interaction cloud. We designate this quasi-particle as a "dressed boson" hereinafter. 

We rewrite the eigenstate (2.4) using the dressed boson operators, thereby obtaining  

 

00stateeigen ****1**1*1*
321321

UAAAAUUaUaUUaUUa
NN pppppppp LL == −−− . (2.6) 

 

Because the vacuum state 0  is the eigenstate of H, we get 

 

00 =U  (2.7) 

  

Substitution of that equation into the right-hand-side of Eq. (2.6) yields 
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0eigenstate ****
321 N

AAAA pppp L= . (2.8) 

 

Therefore, the direct products of the dressed boson operators express all the eigenstates of 

liquid helium. Accordingly, the operator *Ap  creates a quasi-particle representing an 

eigenstate of H. Using the dressed boson operators; we can rewrite the eigenequation of 

H as the following. 

( ) 0 ,,,0 ****
21

****
321321 NN

AAAAEAAAAH N pppppppp ppp LLL =  (2.9)  

 

This equation indicates that the total energy of the liquid helium depends only upon the 

number distribution of the dressed bosons in momentum space. That is to say, the 

eigenenergy E is expressed with the number distribution { }pn  as 

( )}{ pnEE = , (2.10) 

where 

ppp AAn *=  (2.11) 

is the number of dressed bosons with momomtum p. 

 

2.2 Galilean covariant form of total energy 

The total Hamiltonian H is Galilean covariant. Therefore the diagonal form of 

H is the sum of the kinetic energy K of the center of mass and Galilean invariant terms X. 

 

XKH +=  (2.12) 

M
K

2

2Q
=  (2.13) 
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In Eq. (2.13), M is the total mass and Q  is the total momentum of liquid helium. 

Because of the total momentum conservation, we obtain the following relations. 

 

∑∑∑∑ ==== −

q
q

q
qq

q
qq

q
qq qqqqQ nAAUaaUaa *** 1  (2.14) 

 

Hamiltonian H conserves the total number of helium atoms; therefore, the unitary 

transformation U diagonalizes H and N simultaneously. 

 

∑∑∑∑ ==== −

q
q

q
qq

q
qq

q
qq nAAUaaUaaN *** 1

 
(2.15) 

 

Accordingly, the total number of helium atoms is equal to the total number of the dressed 

bosons. Substitution of Eqs.(2.14) and (2.15) into Eq. (2.13) yields 

 
( ) ( )[ ] ( )

∑
∑∑∑∑

+
−−

=
++−−

=
•

=
p

p
qp

qp
qp

qp
q

q
p

p p
qpqpqpqp

n
mM

nn

M

nn

M

nn
K

2222

2
,

2
2
1

,

22
2
12

2
1

 (2.16) 

 

where 
NMm =  (2.17)  

 

is the mass of the helium atom. Then, the diagonal form of the total Hamiltonian H is 

expressed as the following. 

 

 ( ) ( )termsinvariant Galilean 
22

1
2

2

,

2
2
1

2

+=+−−=+= ∑∑∑
p

p
qp

qp
p

p
pqpp n
m

Xnn
M

n
m

XKH

 (2.18) 

 

Galilean invariant terms are described only by relative momenta of dressed bosons. They 

are expressed using arbitrary functions sf  as 
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( ) ( ) ( ) L+−−+−= ∑∑
kqp

kqp
qp

qp kpqpqp
, ,

32
 ,

2 ,11termsinvariant Galilean nnnf
N

nnf
N  .(2.19) 

 

The function sf  indicates the coefficient of term where s dressed bosons mutually 

correlate. It is also noteworthy that 1f  does not exist because the relative momenta 

cannot be made of only one momentum. Galilean invariant terms are nonlinearly 

dependent upon number operators of dressed bosons. According to (2.18) and (2.19), the 

total energy of liquid helium has the following form. 
 

( ) ( ) L+−−+−+= ∑∑∑
kqp

kqp
qp

qp
p

p kpqpqpp
, , ,

nnn,f
N

nnf
N

n
m

E 322

2 11
2   

(2.20) 

 

The correlation with many particles decreases when the system becomes dilute. The 

terms L543 f f f  are smaller than 2f  because a three particle collision is a rare case 

for diluteness of liquid helium compared with an ordinary liquid. We can therefore 

neglect higher terms. Thereby we obtain  
 

( )∑∑ −+=
qp

qp
p

p qpp
 ,

nnf
N

n
m

E 1
2

2
 (2.21) 

 

As the details are examined in Sec. 2.5, the function form ( ) ( )0ff −k  is related directly 

to k  for a small value of k . The property is derived from Postulate 2 in chapter I to 

yield a phonon-like behavior in the excitation of dressed boson. The nonlinear form of 

(2.21) produces characteristic properties of liquid helium: temperature dependence of 

thermodynamic functions, two fluid mechanism, and so on. The mechanism will be 

examined in greater detail in chapters III–XI. 
In a 1D system, we have exact quantum solutions for interacting of many 

bosons. The total energy of the system also has a nonlinear form. The details are 

discussed in section 2.3. (Readers who are only interested in properties of liquid helium 

can skip sections 2.3 and 2.4.). 
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2.3 Exact form of total energy in a one-dimensional system 

We have an exact solution for an interacting many-boson system. The system 

is a 1D many-boson system via a repulsive delta-function potential. The eigenenergies 

were obtained by Girardeau, Lieb, and Liniger [5]. The diagonalization of the total 

Hamiltonian via the unitary transformation was solved by Sasaki and Kebukawa [10]. 

The Hamiltonian is 

 

∑∑ −++=
k,q,p

qp
*

kq
*

kp
p

p
*
p aaaa

L
gaa

m
pH

22

2
, (2.22) 

 

where m is the mass of a boson and L is the length of the 1D space. The diagonal form of 

the Hamiltonian is  

 

( )
3

1
2
1

22

222 −
⎟
⎠

⎞
⎜
⎝

⎛+
−

+= ∑∑
NN

Lm
AAAA

mL
qp

AA
m

pH
q,p

q
*
qp

*
p

p
p

*
p

hh ππ
 (2.23) 

 

for an infinitely large coupling constant g, where 

 

1−= UUaA pp , and 1−= UUaA *
p

*
p . (2.24) 

 

The unitary transformation U is described explicitly in Appendix I. In a finite coupling 

constant value, the diagonal form is expanded by (1/g) as the following. 

( )
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( )3
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222
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*
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132221
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⎪
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⎪⎩
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⎪
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⎫

⎪⎩

⎪
⎨
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⎟⎟
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⎞
⎜⎜
⎝

⎛
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∑
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hhhh

hh

ππ
 

 (2.25) 
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This result shows that the nonlinear form (2.21) is reasonable. More details are presented 

in Appendix I. 

 

2.4 Calculation of single excitation energy in liquid Helium 

A liquid helium system in three-dimensional (3D) space cannot be solved 

exactly. Many investigations have been carried out to find an approximate form of the 

single excitation energy for the Hamiltonian (2.1) [4–7]. 

One is the Bogoliubov theory [4]. Therein, almost all bosons are considered to 

have momentum zero; the operators 0a  and *a0  are replaced by the c-number N  as 
 

Na →0  and Na* →0 . (2.26) 

 

Then, the total Hamiltonian is approximately equal to the following form. 

 

( ) terms order higher
2
0

B

2

++≈ Hg
V
NH  (2.27)

 

( )( )∑∑ −−−− ++++=
k

kkkkkkkk
p

kk kk aaaaaaaag
V
Naa

m
H *****

B 22

2
 (2.28) 

 

We call BH  a Bogoliubov Hamiltonian. This Bogoliubov Hamiltonian does not 

conserve the total boson number because the replacement from the operators 
0a  and *a0  

to the c-number N  violates the total number conservation. This simple Hamiltonian 

can be diagonalized as the following. 

( )∑∑
≠

−
−=

0
2

22
*B

B
1

8k k

k

k
kkk

k
λ

λ
m

ccEH  (2.29) 

 

( )( ) ( )( ) *2sinh2cosh kkk kk −−= cfcfa  (2.30a) 

 

( )( ) ( )( ) kkk kk −−= cfcfa 2sinh2cosh **  (2.30b) 
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( )kk k λmE B 22=  (2.31) 

 

( )( ) ( ) ( ) ( )( ) ( ) ( )kkkk kk λλλλ −=+= −− 142sinh   ,142cosh 2121 ff  

 (2.32) 

( ) ( )( ) 2122 4
−

+= Vg mN k hkkkλ  (2.33) 

 

The excitation energy in the Bogoliubov theory BEk  is proportional to the momentum k 

for a small value of k. It is theoretically clarified that the elementary excitation energy has 

a phonon-like behavior at a small momentum. 
Subsequently, many physicists tried to improve the Bogoliubov theory. The 

backflow effect is considered by Feynman and Cohen, and is investigated based on the 

Bogoliubov theory by Miller, Pines, and Nozieres [6]. Feenberg calculated the expansion 

series of the excitation energy systematically on the basis of correlation functions. 

Nishiyama also investigated a new formulation using the number density operator and the 

phase operator [6]. 

Sunakawa, Yamasaki, and Kebukawa [6] rewrote the total Hamiltonian of 

liquid helium using the density fluctuation operator and its velocity operator. Hereafter, 

we call that theory the SYK theory. They evaluated the single excitation spectrum for a 

potential with square shape. As Fig. 2.1 shows, their numerical calculation of the 

excitation energy showed good agreement with the experimental data. Their operators 

indicate the creation and annihilation operators of density wave mode. Therefore the total 

number of the modes in SYK theory does not relate with the total number of helium 

atoms. Consequently, it is difficult in their theory to discuss Bose condensation. 
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Fig. 2.1 Elementary excitation energy ( BkEk ) 

Dots signify the experimental values of the excitation energy in neutron scatterings. The blue curve 

represents the calculation result of Sunakawa et al. The curve shown with a dashed line portrays the result 

obtained using the Bogoliubov theory. 

 

 

Sasaki and Matsuda [7] attempted to improve the SYK theory. Sasaki and 

Matsuda found the unitary transformation satisfying number conservation in perturbation 

method up to the second order. The unitary transformation produces the dressed boson 

operators pp αα  ,* . Then the total number conservation holds as  

 

∑∑ =+
≠ p

pp
p

pp
 all

*** aa
0

00 αααα , (2.34) 

 

which was shown in (4.32) of reference [7]. Accordingly, the Bose condensate of dressed 

bosons appears at a sufficiently low temperature. The dressed boson excitation energy 

from momentum zero to p is equal to the excitation energy of the density mode in SYK 

theory. 

The single particle excitation energy has been approximately obtained in 

various perturbational approaches. It is necessary to determine properties of multiple 
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excitations to study the thermodynamic functions of liquid helium. That property is 

examined in subsequent sections. 

 

2.5 Determination of Galilean invariant term in energy using experimental data 

 

The ground state of the system is expressed as  

 

( ) ( ) 00state Ground *
0

*
0

NN AaU == . (2.35) 

 

The eigenequation of H is 

 

( ) ( ) 00 00
N*

G
N* AEAH = , and (2.36a) 

 
( )NfEG 0= , (2.36b) 

 
which are readily derived from Eq. (2.21). This equation indicates that the value ( )0f−  is 

the latent heat per atom at zero Kelvin. 

 

( ) −=0f (latent heat per atom at zero Kelvin) (2.37) 

 

The single excitation state is 

 

( ) 0state excitation single 1*
0

* −
=

NAAp
. (2.38) 

 

Because the number distribution of the single excitation state is { }1 ,10 =−= pnNn , the 

total energy can be expressed as the following. 
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( )( ) ( )( ) ( )( ) ( )( )
( ) ( ) ( )( )02

2
0

11101
2

2

2
2

ff
m

Nf   

fNfNfNf
Nm

E

−++≈

−+−−+−+−+=

pp

ppppp
 (2.39) 

 
In that equation, we used 01 ≈N  and the spherical symmetric property of the function 

( )pf  in (2.21). Comparison of two energies (2.36b) and (2.39) gives the energy increase 

as ( ) ( )( )02
2

2
ff

m
−+ pp . This increasing energy indicates the single excitation energy 

0
pε . 

 

( ) ( )( )02
2

2
0 ff

mp −+= ppε  (2.40) 

 

The energy was detected by neutron scattering experiments in liquid helium [1, 

8, 25]. Therefore, the Galilean invariant term is expressed as the following. 

 

( ) ( )( ) ( )0220
2
1 fmf p +−= pp ε  (2.41) 

 

The function form of ( )pf  is thus determined from experimental data of the elementary 

excitation energy 0
pε  and the latent heat ( )0f−  per atom at the temperature 0=T . 

The energy spectrum of elementary excitation is measured using neutron 

scattering experiments [8, 25]. These experimental values are presented in Table I. We 

can apply the experimental values of 1.1 K for 0
pε  (which is the excitation energy at zero 

Kelvin) because the experimental energy spectrum does not vary for changing of 

temperature value in the region lower than 1.3 K. 
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Table I Experimental data of elementary excitation energy  

(The unit of ( )h1010p  is 
1−o

A ; the unit of Bp k0ε  is K.) 

 

( )h1010p  Bp k0ε
 

( )h1010p Bp k0ε
 

( )h1010p  Bp k0ε
 

( )h1010p Bp k0ε
 

0.0894 1.6131 0.3 5.65 1.1 13.8 1.94 8.63

0.0946 1.7175 0.4 7.4 1.13 13.82 1.94 8.609

0.115 2.1005 0.4036 7.6361 1.2 13.75 1.95 8.65

0.121 2.2514 0.4082 7.7173 1.3 13.5 1.95 8.633

0.139 2.6111 0.4187 7.9146 1.4 12.95 1.96 8.683

0.143 2.6343 0.4232 7.9958 1.5 12.2 1.96 8.672

0.1594 2.9709 0.4355 8.1815 1.6 11.2 1.97 8.695

0.1767 3.2958 0.4498 8.3788 1.7 10.25 2 8.95

0.1818 3.3887 0.4643 8.6457 1.8 9.25 2.1 10

0.1938 3.6324 0.4785 8.8662 1.88 8.694 2.2 11.65

0.199 3.7368 0.4926 9.1099 1.89 8.657 2.3 13.55

0.2 3.7 0.5 9.15 1.9 8.7 2.4 15.5

0.211 3.9689 0.5605 10.1544 1.9 8.654 2.5 16.45

0.2162 4.085 0.6 10.75 1.9 8.634 2.6 17

0.2278 4.2822 0.6243 11.0015 1.91 8.635 2.7 17.3

0.2329 4.3867 0.6965 11.8023 1.91 8.616 2.8 17.5

0.2445 4.6072 0.7 11.75 1.915 8.611 2.9 17.7

0.2495 4.7116 0.7649 12.4173 1.92 8.626 3 17.85

0.2611 4.9205 0.8 12.72 1.92 8.61 3.1 18

0.2776 5.2339 0.8 12.65 1.925 8.606 3.2 18.15

0.2825 5.3267 0.83 12.8815 1.93 8.626 3.3 18.3

0.2938 5.524 0.8925 13.2297 1.93 8.606 3.4 18.35

0.2988 5.6284 0.9 13.15 1.935 8.63 3.5 18.4

0.3 5.57 1 13.55 1.935 8.612 3.6 18.45

 

 

We find the analytical form of 
0
pε  which fits the experimental data. The momentum 

region is divided into five regions: phonon, maxon, roton, high-momentum region 1, and 

high-momentum region 2. The function forms for each region are chosen as the 

following. 
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(Phonon region) 

p cp 1
0 =ε     for 10 pp ≤≤  (2.42) 

(Maxon region) 

( ) ( ) ( ) ( )( )5
5

4
4

3
3

2
20

0
MMMMBp ppgppgppgppggk −+−+−+−+=ε

 

for 21 ppp ≤≤  (2.43) 

(Roton region) 

( )
rm

pp
p ×

−
+Δ=

2

2
00ε     for 32 ppp ≤≤   (2.44)

 
(High momentum region 1) 

( ) ( ) ( )333
2

32310
0 pp bpp bpp cbp −+−+−+=ε    for 43 ppp ≤≤  

 (2.45) 

(High momentum region 2) 

( ) ( )2
42410

0 pp dpp ddp −+−+=ε  for h10
4 1063 ×≤≤ .pp  (2.46) 

We abbreviate the momentum region larger than h101063 ×. . These function forms have 
several properties: (1) The excitation energy in the phonon region has the first sound 

velocity. (2) The shape near the roton minimum is a parabolic curve. (3) In the 

high-momentum region 1, the velocity is in agreement with the first sound velocity. 

Therefore, we adopt the following values for several parameters. 

]m/s[ 2381 =c  (2.47) 

This value is used in (2.42) and (2.45). 
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The roton parameters are 

Bk .618=Δ  (2.48) 

h10
0 10921 ×= .p  (2.49) 

1530.r =  (2.50) 

Table I shows that the maximum energy in the maxon region is 13.82 Bk  at momentum 

h . 1010131 × . We apply these values as 

82130 .g =  (2.51) 

h .pM
1010131 ×=  (2.52) 

The function form of (2.46) fits the experimental data for the parameter values as 

Bk.d ×= 7526160  (2.53) 

( )h10
1 10228773 Bk.d ×=  (2.54) 

( )210
2 10569681 hBk.d ×−=  (2.55) 

Three boundaries between four momentum regions are given as 

h .p 10
1 1050 ×=  (2.56) 

h .p 10
2 10781 ×=  (2.57) 
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h .p 10
4 10552 ×=  (2.58) 

The remaining boundary is determined as follows: Equation (2.45) shows that the 

velocity of high-momentum region 1 becomes the first sound velocity   c1 at 3pp = . 

Accordingly, the roton energy is expected to have the same derivative at the boundary 

3pp =  to hold a smooth connection at the boundary. Accordingly, the value of 3p  is  

h .p 10
3 1014952 ×= . (2.59) 

The continuous connection at 3pp =  leads to the following value of parameter 0b . 

 ( )
Bk.

rm
ppb ×=
×

−
+Δ= 69610

2

2
03

0 . (2.60) 

The parameters 432  , , ggg  and 5g  are determined so that the phonon curve and roton 

curve connect smoothly to the maxon curve at 1pp =  and 2pp = : the function value 
and the derivative are connected to both curves. In addition, the values of 

2b  and 3b are 

determined by the conditions for smooth connection at 4pp = . The numerical results 

are the following. 

( )210
2 10880510 h.g −=  (2.61) 

( )310
3 10814971 h.g −=  (2.62) 

( )410
4 109668090 h.g −=  (2.63) 

( )510
5 10190447 h.g =  (2.64) 
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( )210
2 10434414 hBk.b ×=  (2.65) 

( )310
3 10095855 hBk.b ×−=  (2.66) 

Therefore, all the parameters have been determined. The analytical forms of 

(2.42)–(2.46) show good agreement with the experimental data of the elementary 

excitation energies, as presented in Fig. 2.2. 

 

Fig. 2.2 Elementary excitation energy ( Bkpε ) 

The dots express the excitation energies detected in neutron scatterings. The curve also expresses the 

function defined by (2.42)–(2.46). The unit for the vertical axis scale is K; the horizontal axis expresses 

( )h1010p  in the unit of the reciprocal of angstrom. 

 

 

Using the explicit forms (2.42)–(2.46) and the parameter values (2.47)–(2.66), 

we determined the function form ( )pf . In other words, the Galilean invariant term is 

determined concretely. The value of ( )0f  is shown on page 393 of reference [24]: 

 
( ) Bk.f ×−≈ 1670  . (2.67) 

Consequently, the nonlinear term is expressed as 
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( ) ( )( ) Bk.mpcf 16722
12

1 −−= pp
   

for 10 pp ≤≤  (2.68a) 

( ) ( ) ( ) ( ) ( )( )
( ) B

MMMMB

k.m             

ppgppgppgppggkf

16722
2
1

5
5

4
4

3
3

2
202

1

−−

−+−+−+−+=

p

p

 

                               for 21 ppp ≤≤  (2.68b) 

( ) ( ) ( ) Bk.m
rm

pp
f 1672

2
2

2
0

2
1 −⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

×
−

+Δ= pp
     

for 32 ppp ≤≤  (2.68c)
 

( ) ( ) ( ) ( )( )
( ) Bk.m            

pp bpp bpp cbf

16722
2
1

3
33

2
323102

1

−−

−+−+−+=

p

p

 
for 43 ppp ≤≤  (2.68d)

 

( ) ( ) ( ) ( )( ) Bk.mpp dpp ddf 167222
424102

1 −−−+−+= pp  

                         for h10
4 1063 ×≤≤ .pp  (2.68e)

 

 
 

The parameter values are shown in Eqs. (2.47)–(2.66). 

The excitation energy of dressed boson depends upon T via the nonlinear 

dependence (which is discussed in detail in subsequent chapters) when the temperature 

becomes high. The nonlinear mechanism was investigated by the authors in several 

previous studies [12], [19], [20], [22], and [27]. 
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III. Temperature Dependence of the Excitation Energy 
 

Nonlinearity in Eq. (2.21) produces the temperature dependence of the 

excitation energy. We examine the dressed boson energy. The energy of one dressed 

boson is an increase value of the total energy when one dressed boson is added to the 

system. Therefore, the dressed boson energy is defined as 

p
p n

E
δ
δω = . (3.1) 

Substitution of (2.21) into (3.1) yields 

( ) ( ) ( )∑∑ −−−+=
t s,

ts
q

qp tsqpp nnf
N

nf
Nm

T 2

2 12
2

ω , (3.2) 

 

where we have used ( ) ( )pqqp −=− ff . The dressed boson energy depends upon the 

distribution { }qn , as is readily apparent in Eq. (3.2). The distribution { }qn  varies with 

the change of temperature: the dressed boson energy is temperature-dependent. This 

nonlinear effect has been examined in the literature [12]. 
 

3.1 Dressed Boson distribution 

We examine the number distribution of dressed bosons in this section. The 

calculation method determining the distribution function is explained separately in two 
cases of λTT <  and λTT > . 

 
3.1.1 Case of λTT <  

The energy pω  depends upon the number distribution of the other dressed 

bosons. This property produces a two-fluid state with different velocities of the 
superfluid component and the normal fluid component for λTT < . The complex 

mechanism will be examined in chapter VIII. We study the case for 0=nv  and 0=sv  

in this chapter, where nv  and sv  respectively represent the velocities of normal fluid 

and superfluid components. 
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For 0== sn vv , the number distribution of dressed bosons in a thermal 

equilibrium is given as the following. 

 

( )( ) ( )( ) 1exp
1

B −−
=

TkT
n

μωp
p

 (3.3) 

( ) μω ≈T0      (for λTT < ) (3.4) 

 

Therein, μ  is the chemical potential and Bk  is Boltzmann’s constant. This distribution 

is a well-known form in boson system, except the nonlinear mechanism of Eq. (3.2). The 
derivation is explained in details in chapter VIII. The chemical potential μ  is nearly 

equal to 0ω  when a temperature T is lower than the λ transition temperature λT . 

Therein, 0n  becomes a macroscopic number (for λTT < ). Consequently, Bose–Einstein 

condensation of the dressed bosons appears. 

The dressed boson energy in the Bose condensate is 0ω ; therefore the 

excitation energy from the Bose condensate is the difference between pω  and 0ω . 

 

( ) ( ) ( ) ( ) ( )( )∑ −−−+=−=
q

qpp qqpp nff
Nm

TTT 2
2

2

0ωωε  (3.5) 

Hereinafter, we call an excitation from the Bose–Einstein condensate excitation from 

BEC. We denote the excitation energy from BEC as ( )Tpε ; then we obtain the 

simultaneous equations as the following. 
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( ) ( )( ) 1exp
1

B −
=

TkT
n

p
p ε

 (3.6a) 

( ) ( ) ( )( ) ( ) ( )( )∑
≠

−−−+
−

+=
0

0
2 202

2 q
qp qqppp nff

NN
nff

m
Tε  (3.6b) 

We cannot exactly solve these simultaneous equations because of their nonlinearity. 

Nevertheless, it is possible to find approximate solutions, as explained in section 3.2. 

At 0=T , all dressed bosons have momentum of zero ( Nn =0 ). Accordingly, 

Eq. (3.6b) becomes 

( ) ( ) ( )( )
0

2
02

2

p

p pp

ε

ε

=

−+=

        

ff
m

T
, (3.7)

 

where we have used (2.41). In this case, the number of dressed bosons becomes 

( )( ) 1exp
1

B
0 −

=
Tk

n
p

p ε
   (near zero Kelvin). (3.8) 

Consequently, the momentum distribution of dressed bosons near zero Kelvin is equal to 

the number distribution of the elementary excitations in the Landau theory. The dressed 

boson energy with momentum zero at zero Kelvin is 

 ( ) ( ) ( ) ( )001020 00200 fnnf
N

nf
N

=−=ω . (3.9) 

This concept does not exist in the Landau theory. This value is the chemical potential of 

liquid helium at zero Kelvin. The excitation energy 0ωω −p  from the Bose–Einstein 

condensate depends upon the temperature value when the temperature becomes high. The 

dependence is calculated in section 3.2. 
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3.1.2 Case of λTT >  

In this case, the value of 0n  is not a macroscopic number. Therefore, the 

simultaneous equations are the following. 

 

( )( ) ( )( ) 1exp
1

B −−
=

TkT
n

μωp
p

 (3.10a) 

( ) ( ) ( )∑∑ −−−+=
t s,

ts
q

qp tsqpp nnf
N

nf
Nm

T 2

2 12
2

ω  (3.10b) 

 
There is no singularity in the simultaneous equations (3.10a,b) because of ( ) μω >T0  

for λTT > . These simultaneous equations are solvable approximately. The method is 

discussed below. 

 

3.2 Integral equation for determining dressed boson energy 

  

3.2.1 Integral equation 

 

We substitute (3.6a) into (3.6b) to rewrite the simultaneous equations to an 

integral equation as in the following expression. 

 

 ( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )∑
≠ −

−−−+
−

+=
0 B

0
2

1exp
1202

2 q q
p qqppp

TkT
ff

NN
nff

m
T

ε
ε

 (3.11) 

There is no singularity in the summation (3.11) because the term at 0=q  is removed 

from the summation. For that reason, we can rewrite the summation into integration as 

( ) ( ) ( )( )
( )

( ) ( )( ) ( ) ( )( )∫∫∫ −
−−−+−+= qqqppp

q
p

3

B
30

2

d
1exp

1
2
202

2 TkT
ff

N
Vnff

Nm
T

επ
ε

h

 (3.12) 
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where we have used momentum interval Lhπ2  and 3LV = . The number 0n  of the 

condensed dressed bosons is  

( ) ( ) ( )( )∫∫∫ −
−= q

q

3

B
30 d

1exp
1

2 TkT
VNn

επh
 , (3.13) 

 

which is derived from number conservation (2.15). Substitution of (3.13) into (3.12) 

yields the equation shown below. 

( ) ( ) ( )( )
( ) ( ) ( )( )

( )
( ) ( )( ) ( ) ( )( )∫∫∫

∫∫∫

−
−−−+

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
−−+=

qqqp

qpp

q

q
p

3

B
3

3

B
3

2

d
1exp

1
2
2             

d
1exp

1
2

02
2

TkT
ff

N
V

TkT
VNff

Nm
T

επ

επ
ε

h

h   (3.14) 

Substituting the function form (2.41) into (3.14), we obtain the following expression.  

( ) ( )( )
( ) ( ) ( )( )

( )
( ) ( ) ( )( ) ( ) ( )( )∫∫∫

∫∫∫

−
+−−−+

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
−−+=

−− qqqp

qpp

q
qqp

q
pp

3

B

2020
3

3

B
3

20
2

d
1exp

122
2

           

d
1exp

1
2

12
2

TkT
mm

N
V

TkTN
Vm

m
T

ε
εε

π

επ
εε

h

h

 (3.15) 

These two integrations in (3.15) are gathered into an integration as shown below. 

( )
( )

( ) ( ) ( ) ( )( ) ( ) ( )( )

( )
( )( ) ( ) ( )( )∫∫∫

∫∫∫

−
•+−−+=

−
++−−−−×

×+=

−−

−−

qqp

qpqqp

q
qqp

q
qqp

p

3

B

000
3

0

3

B

222000

3
0

d
1exp

122
2

d
1exp

1222

2
 

TkT
m

N
V

TkT
mmm

N
VT

pp

p

p

ε
εεε

π
ε

ε
εεε

π
εε

h

h

 (3.16) 
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The term including ( )m22 qp •  disappears by integration of (3.16) because the dressed 

boson energy ( )Tpε  is spherically symmetric for the momentum vector. Then we obtain 

( )
( )

( ) ( ) ( )( )∫∫∫ −
−−+= −− q

q
qqpp

3

B

000
3

0 d
1exp

1
2 TkTN
VT pp ε

εεε
π

εε
h

 (3.17) 

where qdq td dd 23 ϕ=q  and ( )pqt qp •== θcos . Performing integration by angle 

ϕ , the result is as shown below. 

( )
( ) ( ) ( )( )∫ ∫

∞

= −=
+− −

⎟
⎠
⎞⎜

⎝
⎛ −−+=

 0

1

1

2

B

000
23

0 d 
1exp

1 d
2

2
22

q t
pqqpqtpp qq

TkT
t

N
VT

q
p ε

εεε
π

πεε
h

 (3.18) 

We define the kernel function as 

( ) ∫
−= +− ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−=

1

1

000
222t

pq
qpqtp

tdq,pK εεε . (3.19) 

Making use of the kernel (3.19), integral equation (3.18) takes the following form. 

 

( )
( )

( ) ( ) ( )( )∫
∞

= −
+=

0

2

B
3

0 d
1exp

1,
2

2

q
p qq

TkT
qpK

N
VT

q
p επ

πεε
h

 (3.20) 

 

We can approximately solve this integral equation using an iteration method. The details 

are explained in subsequent sections. 



36 

3.2.2 Approximate solution in the first order 

The excitation number from the Bose–Einstein condensate is very small when the 

temperature is very low, i.e. lower than 1.3 K. Therefore, we can apply 0
pε  for ( )Tpε  of 

the right-hand-side of (3.20); then obtain the first approximation of ( )Tpε . We describe 

the first approximation energy by ( )T,p1ε  and obtain the following expression:  

( )
( )

( ) ( )( )∫
∞

= −
+=

0

2

B
03

0
1 d

1exp
1,

2
2,

q q
p qq

Tk
qpK

N
VTp

επ
πεε

h
. (3.21) 

In this case, we obtain the first approximation of the distribution function for dressed 

bosons as the following. 

( ) ( ) ( )( ) 1,exp
1,

B1
1 −

=
TkTp

Tpn
ε

 (3.22) 

We can use the approximation forms of (3.21) and (3.22) for evaluating thermodynamic 

functions in a low-temperature region. Higher order approximations are examined in the 

next section. 

 

3.2.3 Approximate solution in higher order 

Iteration is useful to solve the integral equation of (3.20). Replacing ( )Tpε  in the 

right-hand-side of (3.20) with ( )T,p1ε , we obtain the second order solution ( )T,p2ε  as 

follows. 

( )
( )

( ) ( ) ( )( )∫
∞

= −
+=

0

2

B1
3

0
2 d

1,exp
1,

2
2,

q
p qq

TkTq
qpK

N
VTp

επ
πεε

h
 (3.23) 

The second order distribution function of dressed bosons is given as 
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( ) ( ) ( )( ) 1,exp
1,

B2
2 −

=
TkTp

Tpn
ε

 .

 (3.24) 

The j-th order approximation is obtainable from using the (j-1)-th order approximation, 

as follows. 

( )
( )

( ) ( ) ( )( )∫
∞

= − −
+=

0

2

B1
3

0 d
1,exp

1,
2

2,
q j

pj qq
TkTq

qpK
N

VTp
επ

πεε
h

 (3.25) 

( ) ( ) ( )( ) 1,exp
1,

B −
=

TkTp
Tpn

j
j ε

 (3.26) 

Long calculation time is necessary to evaluate ( )T,pjε  and ( )T,pn j  because 

the integrations in (3.19) and (3.25) are very complicated. The second order 

approximations (3.23) and (3.24) are calculated numerically; thereafter the theoretical 

values of the entropy and specific heat are calculated using the second order approximate 

values explained in chapters IV and V. 

The excitation energy of the dressed boson depends on the temperature via the 

nonlinear effect. The velocity of the dressed boson becomes small and vanishes at the λ 

point when the temperature approaches the λ point. That property was discussed first in 

the relevant literature [27]. Details are examined in Sec. 5.4. 
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IV. Calculation of Entropy 
 

The entropy of liquid helium is given as the following equation. 

( ) ( ){ }∑ −+++=
p

ppp
11log1log nnnkS B

 (4.1) 

In that equation, Bk  is the Boltzmann constant, and pn  is the number distribution of 

dressed bosons. The derivation of (4.1) is explained in detail in sections (8.6) and (8.15) 

of chapter VIII. Substitution of (3.6a) into (4.1) gives  
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The total entropy S has a macroscopic magnitude; in fact, it is proportional to the total 

number N. The entropy of superfluid component superS  is given by the term with 0=p  

on the right-hand-side of Eq. (4.2) as the following. 

( ) ( ) ( )00
0

0super 1log1log nkn
Tk
TnkS B

B
B +=

⎭
⎬
⎫

⎩
⎨
⎧

++=
ε  (4.3a) 

0super ⎯⎯ →⎯ ∞→NNS  (4.3b) 

Therefore, the entropy of superfluid component is not a macroscopic value. For that 

reason, all entropy belongs to the normal fluid component (which comprises dressed 

bosons with nonzero momentum). The summation in (4.2) can be changed to integration, 

as the following expression shows. 
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The spherical symmetric property gives 

( )
( ) ( )

∫
∞

⎭
⎬
⎫

⎩
⎨
⎧

++=
0

2
3 d1log

2
4 ppn

Tk
T

nVkS
B

B p
p

p

ε

π
π
h

. (4.5) 

 

We substitute (3.6a) into (4.5), and obtain 
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Then, the entropy per unit mass is expressed from (4.5) or (4.6) as the following. 
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Therein, VmN=ρ  is the mass density of liquid helium. We calculate the entropy 

using the approximate solution described in chapter III. 

 

4.1 Evaluation using iteration method 

We execute the calculation of entropy using second order approximations 

(3.23) and (3.24), which necessitates a very long computing time to obtain the kernel 
function ( )q,pK , the first order energy ( )T,p1ε , and the second order energy ( )T,p2ε . 

When we calculate the integrations in (3.19), (3.21), (3.23), and (4.7a) numerically, the 

necessary CPU time is extremely long and the result cannot be obtained within any 

reasonable time. Therefore, we consider another method for obtaining the approximate 

values using a computer program. 

We produce value tables for ( )q,pK , ( )T,p1ε , and ( )T,p2ε  using a 

computer. We calculate the kernel ( )q,pK  in the region of 
1

630
−

≤≤
o

h A .p  and 

1

630
−

≤≤
o

h A .q  numerically for the interval of 0.01
1−o

A . Then, we obtain a list of 

about 105 values of them. These values are stored in computer memories. It is worth 

noting at this point that the contributions from 
1

63
−

>
o

h A .p  or 
1

63
−

>
o

h A .q  are 

negligibly small; for that reason, we abbreviate the momentum region. Next, we produce 

a computer program producing an approximate value of the kernel for arbitrary momenta 

(p, q) via the list of about 105 values. Using this program, we can numerically calculate 
( )T,p1ε  using only a short CPU time. We can then produce a list of function values of 

( )T,p1ε  for about 104 points of (p, T). The list of ( )T,p1ε  enables the calculation of 

( )T,p2ε  in (3.23) with a short CPU time. We can also produce a list of function values 

of ( )T,p2ε  for about 104 points of (p, T). 
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The second order approximation value of the entropy per unit mass is 

expressed as 
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 (4.8) 

 

Consequently, we can evaluate the entropy per unit mass described in (4.8) using the list 
of function values of ( )T,p2ε . The numerical results are portrayed in Fig. 4.1 and 4.2. 

 

 

Fig. 4.1 Entropy of liquid helium on a logarithmic scale. 

Dots indicate the experimental data. The curve expresses the calculation results obtained using the nonlinear 

theory. 
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Fig. 4.2 Entropy of liquid helium on a linear scale. 

Dots indicate the experimental data. The curve shows calculation results obtained using the nonlinear theory. 

 

The vertical axis of Fig. 4.1 is a logarithmic scale; the vertical axis of Fig. 4.2 is a linear 

scale. As portrayed in those figures, the calculation values show good agreement with the 

experimental data for the region of K .T 12≤ . This calculation is executed using the 

Mathematica program (The source list is shown in end of this book).  

It is noteworthy that the present calculation incorporates only the experimental 

data of excitation energy obtained at 1.1 K. In marked contrast, traditional theories have 

used the data of excitation energy obtained at several different temperatures or have 

adjusted parameter values for different temperatures to fit the experimental data. Our 

calculation in this section uses no such an artificial method. Nevertheless, the present 

results show good agreement with experimental data of the entropy for 0<T<2.1 K. 

 

4.2 Traditional theories 

4.2.1 Landau Theory 

Landau calculated thermodynamic functions by applying the excitation energy 

0
pε . The theoretical value of the entropy is expressed as the sum of phonon part phS  
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(reference [3] Khalatnikov, page 11) and roton part rS  (reference [3] Khalatnikov, page 

12). 

The entropy of phonon part per unit mass is  

35

245
16

⎟
⎠

⎞
⎜
⎝

⎛=
c

Tkk
mN
S B

B
ph

hπρ
π

, (4.9) 

where c is the phonon velocity and ρ  is the mass density of liquid helium. The roton part 

per unit mass is expressed as 
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where Δ  is the roton minimum energy, μ is the effective mass of roton, and 0p  is the 

momentum of roton minimum. The total entropy per unit mass is as shown below. 
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We use the parameters shown below. 

c =238 [m/s] (4.12a) 
ρ  = 145.5 [kg/m3] (4.12b) 

]K[ 606.8=Δ Bk  (4.12c) 

]kg[ 10063.116.0 27−×=×= mμ  (4.12d) 

( ) ]A[ 92.110
1

10
0

−

=
o

hp  (4.12e) 

where m is the mass of helium atom. The temperature dependence of Landau’s entropy is 

portrayed in Fig. 4.3 and 4.4. 
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Fig. 4.3 Entropy of Landau Theory for temperatures lower than 1.1 K 

Calculated values are expressed by the curve. Dots show the experimental data. 

 

 

Fig. 4.4 Entropy of Landau Theory for temperatures higher than 1.0 K 

Calculated values are expressed by the curve. Dots show the experimental data. 

 

Figure 4.3 shows that Landau’s calculation results of entropy have good agreement with 

the experimental data obtained at less than 1.1 K. Nevertheless, Landau’s entropy is 

approximately 60% of the experimental value at 2.1 K, as portrayed in Fig. 4.4. To 

improve the Landau theory for the region of K.T 11> , many researchers have 
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introduced the temperature dependence of excitation energy. We explain their works in 

later sections of this article. 

 
4.2.2 BCY Theory 

To take account of the temperature dependence of excitation energy, P. J. 

Bendt, R. D. Cowan, and J. L. Yarnell extended Landau’s theory [13]. We designate their 

calculation BCY calculation. The momentum range was divided into four intervals: the 

phonon region, maxon region, roton region, and high-momentum region. Respective 

forms of the excitation energy for each momentum region are expressed as follows: 

The excitation energy in phonon region is given as 

( ) ( )pTTp 1v=ε , (4.13) 

where ( )T1v  represents the velocity of the first sound. The excitation energy in maxon 

region is given by a parabolic curve as 

( ) ( )( )( )210
B 113.1105.11 −−= hpakTpε , (4.14) 

where parameter   a  is determined from the conditions of continuous connection among 

different momentum regions. 

In the roton region ( ( ) 18210581 10 .p. ≤≤ h ), the excitation energy is 

calculated using interpolation of the experimental data of neutron scatterings at 1.1 K and 

1.8 K. In other words: 

( ) data  alexperiment    theof  formulaion  interpolat=Tpε . (4.15) 

The roton minimum energy ( )TΔ  is applied to the following interpolation formulas 

(a–f):(page 1390 in [13]). 
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Formula (a): ( ) 700840688 T ..kT B −=Δ  (4.16a) 

Formula (b): ( ) 601550698 T ..kT B −=Δ  (4.16b) 

Formula (c): ( ) 502890708 T ..kT B −=Δ  (4.16c) 

Formula (d): ( ) ( )ρρnB  ..kT 5641678 −=Δ  (4.16d) 

Formula (e): ( ) excitation
22  1035.568.8 NkT B

−×−=Δ  (4.16e) 

Formula (f): ( ) heavy
22  1093.566.8 NkT B

−×−=Δ  (4.16f) 

These coefficients were determined to fit the experimental data of excitation energy at 1.1 

and 1.8 K. Formulas (c) and (d) yielded better agreement with entropy measurements 

than the other formulas written in Ref. [13]. 

The excitation energy in high-momentum region was defined as 

( ) ( ) bpTTp −= 1vε . (4.17) 

Parameter b  is also determined according to the continuous condition between different 

regions. The phonon velocity used the value at each temperature. Consequently, the 

energy dependence is complicated, as described above. Then, they evaluated the 

theoretical values of entropy and specific heat. The result of entropy calculation is 

portrayed in Fig. 4.5; it shows good agreement with the experimental data for 

K .T 41< . 
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Fig. 4.5 BCY calculation results for the entropy of liquid helium 

The curve expresses the results of BCY theory. Dots show experimental values of entropy. 

 

For K .TK . 2241 << , their result differs from the experimental data. The entropy 

value of the BCY calculation is about 70% of the experimental value at 2.1 K. The BCY 

calculation uses many temperature dependences, as described above. 

 

4.2.3 BD Theory 

To explain the experimental results for higher temperature, J. S. Brooks and R. 

J. Donnelly improved the theoretical calculation of entropy and specific heat of liquid 

helium. We designate their theory as BD theory. Their results were obtained through a 

lengthy series of investigations [14]. 

They obtained the numerical values of excitation energies ( )Tpε  by making use 

of various experimental data. For better understanding of the details of pressure 
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dependence and temperature dependence, reference [14] is helpful. We present their 

result for entropy in Fig. 4.6. 

 

  

Fig. 4.6 Entropy of the BD theory 

Large dots signify the experimental data. Small dots show results obtained using the BD theory. The scale of 

entropy is measured in units of [J/(g ·K)] 

 

Their results show good agreement with experimental data. It is noteworthy 

that their results are derived from use of the experimental data obtained at many different 

temperatures. In contrast, our theoretical results in section 4.1 are derived from 

experimental data at a temperature 1.1 K only. 

The calculated entropy values of the BD theory deviate from the experimental 

data near the λ transition. Deviations are more readily apparent in the specific heat than in 

entropy. That fact is discussed in the next chapter. 
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V. Specific heat 
 

A logarithmic divergence appears in experimental data of specific heat at the 
temperature λT  of the λ transition (see Sec. 5.3). However, the calculated functions of 

the traditional theories have no singularity (see Sec. 5.1). We investigate the singularity 

on the basis of the nonlinear theory presented in Sec. 5.5. 

The derivative of (4.7a) gives the isobaric specific heat per unit mass.  
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Here, the derivatives are performed under a constant pressure. Differentiation of (3.6a) by 

the temperature yields 
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which gives the following. 
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Substitution of this equation into the second integral of (5.1) yields the following.  
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On page 101 of reference [19], we expressed the heat capacity of liquid helium with total 
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mass M as 
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where V is the volume of liquid helium. 

Using the derivative of dressed boson number (5.2), Eq. (5.4a) is rewritten as follows. 
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We execute differentiation ( )( ) TTkB ∂ε∂ p , and obtain the following. 
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Using the number distribution (3.6a), the isobaric specific heat per unit mass is described 

as  
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Thereby, the isobaric specific heat of liquid helium per unit mass is expressed using the 

excitation energy from the Bose–Einstein condensate and the number distribution of the 

dressed bosons in the nonlinear theory. The numerical calculations are executed in Sec. 

5.2 and 5.6. 

 



51 

5.1 Various calculation methods 

Many physicists have calculated the specific heat using their own methods. We 

first explain the traditional calculations of specific heat before explaining the results of 

the nonlinear theory.  

 

5.1.1 Calculation of Specific Heat using Landau Theory 

 

Landau calculated the specific heat by applying the elementary excitation energy 

0
pε . His excitation energy is independent of the temperature. Therefore, the 

right-hand-side of (5.7) can be evaluated. He obtained the approximate analytic forms for 

phonon part phC  and roton part rC  per unit mass as follows: (see page 11 and 12 in 

Khalatnikov’s book [3]). 
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The specific heat per unit mass is given as the sum of two contributions: (5.8) and (5.9). 
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Therein, the parameter values are already shown in (4.12). Landau’s results are drawn in 

Figs. 5.1 and 5.2. The results show good agreement with the experimental data for 

K .T 01≤ , as presented in Fig. 5.1. 
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Fig. 5.1 Specific heat of the Landau theory for K .T 11≤  
The dots represent the experimental data [15]. The curve expresses Landau’s calculation results for the 

specific heat of liquid helium. The scale of specific heat is [J/(g ·K)]. 

 

 

 

Fig. 5.2 Specific heat of the Landau theory in units of [J/(g ·K)] for K .T 01≥  
Dots express experimental data [15]. The curve shows Landau’s results. 

 

 

Landau’s results deviate from the experimental values for K .T 31>  under the 

saturated vapor pressure, as portrayed in Fig. 5.2. Many researchers have made efforts to 
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decrease the disagreement between theoretical values and experimental values for 

K .T 31> . Two approaches among them are explained in the following sections. 

 

5.1.2 Calculation of Specific Heat using BCY Theory 

As described in chapter IV, P. J. Bendt, R. D. Cowan, and J. L. Yarnell 

calculated the specific heat via use of the temperature dependence of excitation energy. 

Their results are improved to be better fitting with the experimental data than in the 

Landau theory. The calculated values are depicted in Fig. 5.3. 

 

Fig. 5.3 Calculated values of specific heat in BCY theory in units of [J/(g·K)] 
The curve shows the theoretical result. The dots express experimental values [15]. 

 

However, the result of BCY theory is still smaller than 50% of the experimental data of 

specific heat at 2.1 K. 

 

5.1.3 Calculation of Specific Heat using BD Theory 

In addition, J. S. Brooks and R. J. Donnelly considered the temperature and 

pressure dependences for single excitation energy of liquid helium. Their calculated 

values of specific heat are presented in Fig. 5.4, which show good agreement with 

experimental data for K .T 02< . 
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Fig. 5.4 Specific heat calculated using BD theory on the scale of [J/(g · K)] 
Large red dots represent experimental values [15]; small black dots show calculated values of the specific 

heat in BD theory  

 

 

Their roton parameters are adjusted so that their results fit the experimental values. 

However, the results deviate by approximately 10% from experimental data at 

K .T 12= . The deviation increases approaching the λ transition. They have used only 

regular functions without singularity. On the other hand, the experimental behavior 
shows a logarithmic divergence at K .TT 1722≈= λ . Accordingly, BD theory cannot 

explain the logarithmic divergence. 

We discuss the origin of the singularity in sections 5.3–5.6. Then, it is clarified 

that the nonlinear structure of the total energy causes the logarithmic singularity of the 

specific heat. 

 

5.2 Evaluation for T<2.15 using the iteration method  

The nonlinear theory has clarified that the excitation energy from the 

Bose–Einstein condensate of the dressed bosons varies with temperature. As discussed in 

chapter III, the kernel function ( )q,pK  can be calculated numerically based on Eq. 

(3.19) using the analytical forms (2.42)–(2.46). Thereafter, we numerically calculated the 
first order solutions ( )T,p1ε  and ( )T,pn1  using Eq. (3.21) and Eq. (3.22), and also the 

second order solutions ( )T,p2ε  and ( )T,pn2  using Eq. (3.23) and Eq. (3.24). The 

calculation has already been completed in chapter IV to obtain the entropy values. Using 
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these numerical values of the second order energy ( )T,p2ε  and the second order 

distribution function ( )T,pn2 , we can calculate the second order approximation values 

of specific heat. 

 

( )
( )( ) ( ) ( )

( )
( )( ) ( ) ( )( ) ( ) ( ) ( )

∫

∫
∞

∞

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

⎥
⎦

⎤
⎢
⎣

⎡
++⎟

⎠
⎞

⎜
⎝
⎛=

0

22

B

2
B

2

B

2
B2

2
23

0

2
2

B

2
23B

d,,,,exp,
2
4        

d,,,1log
2
4

pp
T

Tp
Tk

Tpk
Tk

TpTkTpTpnV

ppTpn
Tk

TpTpn
T
VTkC

P

P
P

∂
∂εεεε

π
π

ε
∂
∂

π
π

h

h

 (5.11) 

The evaluated results are presented in Fig. 5.5. 

 

 

Fig. 5.5 The second order results of specific heat via the nonlinear theory 
The curve shows calculated values of ( )]K)J/(g[log P10 ⋅C  of the nonlinear theory. Red dots indicate the 

experimental data [15]. 

 

 

As presented in this figure, the theoretical values of the second order show good 

agreement with experimental data for K .T 12≤ . It is noteworthy that the present 

calculation uses the experimental values of excitation energy only for 1.1 K. Of course 

the iteration method is insufficient in close vicinity of the λ transition temperature. We 
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discuss the origin of the logarithmic divergence in Secs. 5.5 and 5.6. 

 

5.3 Logarithmic divergence of specific heat at the λ point 

The experimental data of specific heat have a logarithmic divergence at the λ 

point [15]. We portray that behavior in Fig. 5.6, where the scale of specific heat is 

[J/(mol·K)]. Therefore the values in Fig. 5.6 are approximately four times larger than the 

values shown previously in Figs. 5.1–5.4. 

 

 

Fig. 5.6 Experimental data of Specific Heat for saturated vapor pressure 

The unit of CS is J/mol·K. The horizontal axis shows ( )( )λTT−1log10
. 

 

It is difficult to measure the specific heat in close vicinity of the λ point, i.e. in the 

region of ( ) 5101 −<− λTT . Gravity acts on liquid helium on the earth. Accordingly, the 

upper part of liquid helium has pressure that is less than in the lower part of liquid helium. 

This pressure gradient yields deviation of the λ transition temperatures. In other words, 

the lower part of liquid helium has a λ transition temperature value that is smaller than in 

the upper part. To eliminate this deviation, microgravity or zero gravity technology is 

necessary to measure the specific heat, for instance, the environment on the space shuttle. 
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Those data were obtained in the space shuttle by Lipa et al. [16]. The experimental results 

are presented in Fig. 5.7. (The authors extend particular appreciation to professor Lipa for 

these data.). The temperature dependence shows logarithmic divergence at the λ point. 

 

 

Fig. 5.7 Experimental results of specific heat in space shuttle by Lipa et al. [16] 

Specific heat values CS are shown in units of [J/mol·K] on the vertical axis. The horizontal axis shows 

( )( )λTT−1log10
. 

 

Landau theory and its improved theories (BCY theory and BD theory) cannot 

explain the logarithmic singularity of specific heat at the λ point. Moreover, our second 

order solution in the previous section is insufficient to explain the singularity. Infinitely 

numerous iterations are necessary to obtain the singularity. 

Deriving this singularity, we will examine the energy spectrum near the λ 

point in the next section. According to the examination of the spectrum, the cause of the 

singularity is clarified in section 5.5. The specific heat near the λ point is calculated 

numerically using the nonlinear theory described in section 5.6. 
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5.4 Dressed boson energy near the λ point 

The elementary excitation energy is measurable in inelastic scatterings of 

neutron or in Brillouin scatterings of laser light. The detected energy value for a small 

momentum is more precise in Brillouin scattering experiments of laser light than in 

inelastic neutron scattering experiments. Therefore, we reexamine the data of spectrum in 

Brillouin scattering in greater detail. 

There are many experimental measurements of Brillouin scatterings in liquid 

helium [17]. We present one datum in Fig. 5.8. The data were measured by Vaughan, 

Vinen, and Palin as on page 533 of reference [17]. Therein four peaks are detected whose 

two central peaks represent the second sound peaks (Stokes peak and anti-Stokes peak) 

and whose remaining two peaks indicate the first sound peaks. The detected width of the 

second sound peak is almost equal to the instrumental width: the intrinsic width of the 

second sound is extremely small. The width of the second sound peak was also detected 
by Winteling, Holmes, and Greytak; its value is less than 1.5 MHz for ]K[1.0<− TTλ , 

as shown on page 429 of reference [17]. The value 1.5 MHz is the instrumental width; 

therefore the intrinsic width of second sound is smaller than 1.5 MHz. It is readily 

apparent in Fig. 5.8 that the second sound width is less than the width of the first sound 

peak near the λ point. 

 

  

Fig. 5.8 Spectrum of Brillouin scattering in liquid helium [17] 

Data measured at   T = Tλ −0.0005[K]. 
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In these measurements [17], the second sound width is smaller than one-sixth 

of the width of the first sound. Accordingly, the lifetime of the second sound is six times 

longer than the lifetime of the first sound because the lifetime is directly related to the 

inverse of the width. That is to say, the second sound mode is more stable than the first 

sound mode. 

In the Landau theory, the theoretical width of the second sound peak becomes 

infinitely large at the λ point. The discrepancy between Landau’s result and the 

experimental result suggests that the second sound peak detected in Brillouin scattering 

represents an elementary excitation, i.e. excitation of the dressed boson from 

Bose–Einstein condensate. The nonlinear theory of this article also supports that 

supposition. We explain it below. 

The excitation energy of dressed boson from Bose–Einstein condensate pε  is 

equal to 0
pε  at 0=T . The excitation energy from BEC has a value that differs from 0

pε  

when the temperature becomes high. We first examine the functional form of the 

excitation energy from BEC for a very small value of p. The summation in (3.2) can be 

rewritten to an integration, except q=0 because of smallness of momentum interval 
( )Lhπ2 : 

( )
( )

( ) Xqqnf
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N
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m q
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d dcosd
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π
ω qp qppp

h
,
 (5.12)

 

where 
0n  represents the number of dressed bosons in the Bose–Einstein condensate, and 

X is independent of momentum p as 
 

( )∑ −=
t s,

tsts nnf
N

X 2
1 . (5.13) 

We use the approximation form of ( )qp −f  in a small momentum as 
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( ) ( )( ) ( ) ( )( ) ( )0Order0Order 2
2
120

2
1 fcff +−+−=+−+=− − qpqpqpqp qpε  , 

where c is the phonon velocity at zero Kelvin. The integral region in (5.12) is divided into 
a small momentum region Aqq <  and a large momentum region Aqq >  , where Aq  is 

an adequately small momentum. Consequently, we obtain  
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where Y is the constant part independent of p. The first integral in (5.14) is 
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Therein, we examine only the case of Aqp <  because of the smallness of p. We can also 

use the approximate function form for a small momentum q as  

uq
Tkn B≈q , (5.16) 

where the value of u represents the velocity of the excitation in a small momentum. This 

value is determined later. Accordingly, the integral in (5.15) is equal to 
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The second integral in (5.14) is expressed as the following. 
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These calculation results imply the following expansion. 

( ) ( )alueconstant vOrder 20 ++= pc
N
n

ppω  

Consequently, the velocity of the dressed boson for a small momentum is directly 

related to n0  as 

( )20
0 Order pcp

N
n

+=−ωωp  . (5.17) 

Therefore, the velocity of the excitation from BEC is expected to decrease when the 

temperature approaches the λ point. This property shows agreement with the property of 

the second sound; it was first examined in reference [27]. Accordingly, it is reasonable 

that we consider the excitation of the dressed boson from BEC to be the second sound 

mode for a small momentum near the λ point. The reasons are summarized below: 

1. The excitation mode of the dressed boson from BEC is expected to disappear in 

λTT >  because of disappearance of Bose condensate. The second sound mode also 

disappears in λTT > . 

2. The velocity of the dressed boson from BEC in a small momentum is expected to 

decrease when the temperature approaches the λ point. Moreover, the velocity for a very 

small momentum approaches zero at the λ point because of Eq. (5.17) and 

00 ⎯⎯⎯ →⎯
→ λTTn . The velocity of the second sound mode has the same property. 



62 

3. The width of the second sound peak in Brillouin scattering is extremely small near the 

λ point; therefore, the mode represents the elementary excitation. 

Consequently, we consider the second sound to be the dressed boson excitation 

from BEC. Then, the dressed boson energy near the λ point can be determined using the 

experimental data. The experimental results given in reference [18] show that the second 

sound velocity u near the λ point depends on the temperature as 

( ) ( ) 2131
2 11 λλ TTDTTcu −+−= . (5.18) 

According to our viewpoint for the second sound, the excitation energy pε  from BEC 

has the same velocity as Eq. (5.18). For a large momentum p, pε  is proportional to 2p  

because the kinetic energy occupies a main part of the total energy. Consequently, the 

function form of excitation energy from BEC might be equal to 

( )( ) ( )( ) 212313
2 11 bpTTDpapTTpc +−++−= λλε p

, (5.19) 

where 2c  and D are determined from experimental data of the second sound velocity, 

and where a and b are parameters. This energy form certainly has the second sound 

velocity as 
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20

11lim λλ

ε
TTDTTc

pp
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⎜⎜
⎝

⎛
∂

∂
→

p , 

at p=0. We therefore determined the functional form of pε  for a small momentum near 

the λ point. This form is used in the phonon region. The discussion in the next section 

clarifies that the theoretical form of specific heat has a logarithmic divergence at the λ 

point. 
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5.5 Origin of the logarithmic divergence in specific heat 

The theoretical form of specific heat is derived from Eq. (5.7). We examine the 

last integration of Eq. (5.7), which is 
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The logarithmic singularity of specific heat is produced from the integral including the 

last derivative as 
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This integral region is divided into a small momentum region and a large momentum 

region, as presented in the following. 
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We can use the energy form of (5.19) for the first integral in (5.21) because 1q  is small. 

We can also use the following approximations for a small value of p near the λ point. 
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Accordingly, the integrand of (5.21) is nearly equal to the following. 
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These approximations yield the following expression.  
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We write only a singular term at the λ  transition temperature as  
 

( )
( )( ) partregular1log

92
4 B
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π TT
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h

 . (5.25) 

 

This theoretical result shows that the logarithmic divergence of the specific heat is 

derived from the nonlinear property of the total energy, as presented in Eq. (2.21). On the 
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other hand, the logarithmic singularity does not exist in the theoretical results of the 

Landau theory, BCY theory, or BD theory because their phonon velocity at the λ point is 

not zero. 

 

 

5.6 Evaluation of specific heat in nonlinear theory near the λ point  

 

We next calculate the temperature dependence of the specific heat near the λ 

point on the basis of the nonlinear theory. The theoretical value of the isobaric specific 

heat per unit mass is given as shown in Eq. (5.7) where the integration range is separable 

into four momentum regions: phonon, maxon, roton, and higher momentum. We use four 

functional forms of the excitation energy from BEC, two of which are the same 

functional forms for the roton region and for high-momentum region as those in the BD 

theory. (We obtain almost same result even if we use the second order energy form (3.23) 

for roton region and for high-momentum region.) For the phonon region, we use Eq. 

(5.19). Moreover, the function parameters in the maxon region are determined such that 

the excitation energy and its tangent are connected continuously to both neighbor curves. 

The integrations in Eq. (5.7) are evaluated using a computer in the temperature 
range ( )( ) 04010 .TT <−< λ , the results of which are presented in Fig. 5.9 (see 

reference [19]). The mathematica program of this calculation is attached in end of this 

book. The upper curve expresses our calculated values of specific heat. Dots in Fig. 5.9 

portray the experimental data [15] of specific heat for a saturated vapor pressure. Our 

calculation is performed under pressure P=0.05 bar. The difference between saturated 

vapor pressure and P=0.05 bar is negligibly small. The middle curve and the lower curve 

in Fig. 5.9 depict the results of the BD theory and the BCY theory respectively. 
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Fig. 5.9 Calculation result of the nonlinear theory for the specific heat 
The upper curve portrays the calculation result of the nonlinear theory. The middle curve and the lower curve 

represent the results of the BD theory and the BCY theory respectively. Small red dots indicate the data of 

Lipa et al [16]. Large blue dots represent the data of references [15]. The specific heat values CS are shown in 

units of [J/(mol·K)]. The horizontal axis shows ( )( )λTT−1log10
. 

 

 

As that figure depicts, the result of the nonlinear theory agree well with the experimental 
data for ( )( ) 04.010 <−< λTT : the nonlinear theory produces logarithmic divergence 

of specific heat at the λ point. On the other hand, the curve of BD theory depicts no 

divergent behavior. Consequently, the present theory is inferred to explain the 

temperature dependence of specific heat in superfluid helium well for the whole 

temperature region. The second order solution in Sec. 5.2 is applicable to 

]K[1.20 << T ; and the present method in this section is applicable to 

λTT << ]K[1.2 . 

The transition temperature for Bose-Einstein condensation of dressed bosons 

is simultaneously calculated and the result is 2.172 K using the same parameter values as 

in the calculation of specific heat mentioned above. It can be seen in the mathematica 

program attached in this book.  
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VI. Bose–Einstein condensate of dressed bosons 
 

The properties of a Bose–Einstein condensate are studied for nonlinear theory. 

 

6.1 Number of condensed dressed bosons near the λ point 

Using the method explained in sections 5.5 and 5.6, we examine the 

Bose-condensed number of dressed bosons near the λ point. The dressed boson number 

in the Bose–Einstein condensate and the dressed boson number in the excited states are 

denoted respectively as superN  and normalN . The number normalN  is defined as 

( ) ( )∫
∞

≠
=

0 0

2
3normal d4

2 p p ppnVN π
πh

 (6.1) 

where 

( ) ( )[ ]( )1exp B −−= Tkn μωpp
 , and (6.2) 

0ωμ =    (for λTT < ). (6.3) 

The number superN  is defined as 

0nNsuper = . (6.4) 

The total number conservation of dressed bosons gives the following relation as 

NNN normalsuper =+  (6.5) 

That is to say, the total number of dressed bosons is equal to the total number of helium 

atoms N in liquid helium. The excited dressed boson number approaches N at the λ point, 

and superN  approaches zero, as shown in the following. 

NN TTnormal ⎯⎯⎯ →⎯
→ λ

 (6.6a) 

0⎯⎯⎯ →⎯
→ λTTsuperN  (6.6b) 
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We can evaluate the integration (6.1) using the same method as that used in 

sections 5.5 and 5.6. Near the λ point, we adopt the excitation energy from BEC in the 

phonon region as 

( )( ) ( )( ) 212313
2

0

11 bpTTDpapTTpc +−++−=

==−=−

λλ

εωωμω ppp
 

 (for 10 qp << ). (6.7) 

Coefficients c2 and D are determined as explained in Sec. 5.4. All functional forms are 
adopted to be equal to those of chapter 5. The integration (6.1) is also separable into four 

regions. Consequently, the integration can be calculated numerically using a computer. 
The temperature dependence of NNnormal  is portrayed in Fig. 6.1. 

  

Fig. 6.1. The red curve shows the calculated values of NNnormal . 

It is shown here that the value of NNnormal  is certainly equal to 1.0 at the λ point, namely at 

( ) 01 =− λTT . 

 

In the integration in (6.1), the contribution from the phonon region is 87.0%, the 

contribution from the roton region is 8.8%, the contribution from the maxon region is 

2.7%, and the contribution from the high-momentum region is 1.5% at the λ point. 

Accordingly, the total fraction of dressed bosons with nonzero momenta becomes 100% 
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of liquid helium at the λ point. That is to say, the Bose condensate of dressed bosons with 

momentum zero disappears at the λ point. 

It is illustrative to examine the number of excitations in the Landau theory. 

The total excitation number of the Landau theory is approximately 14% of the total 

number of helium atoms at the λ point. Accordingly, it remains unclear in terms of the 

Landau theory whether the λ transition results from Bose–Einstein condensation. 

The number of dressed bosons inside the Bose–Einstein condensate, 

0nNsuper = , has a temperature dependence near the λ point as depicted in Fig. 6.2 (see 

reference [20]). 

 

Fig. 6.2 Dots represent the calculated values of ( )NNsuper10log  

 

 
The function form of ( ) 311 λTT−  is plotted as a black line, which well fits the calculated 

value of n0 N . Therefore, the critical exponent of n0 N  is equal to 1/3. This 

mechanism is reexamined via an analytic method presented in the next section. 

 

 

6.2 Critical index of condensed dressed boson number near the λ point 

 

We use the functional form of energy as in chapter V: Eq. (5.22b) is applied to the 

dressed boson energy as 
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( ) 313
0 ap  tpc2p +≈− ωω , (6.8) 

where 

λTTt −= 1 , (6.9) 

for a small momentum region ( spp <<0 ) and for a vicinity of the λ point. We divide 

the integral (6.1) into two regions, spp <<0  and pps < , as 

( ) ( )
⎟
⎠
⎞⎜

⎝
⎛ += ∫∫

∞

≠ s

s

p p

p

p p ppnppnm
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2
3
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ρπ
π
h

 , (6.10) 

where  
NVm =ρ . (6.11) 

Therein, m is the mass of a helium atom and ρ  is the mass density of liquid helium. The 

dressed boson number in the first region is nearly equal to the following. 

( ) ( )( ) ( ) 313
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=
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Substitution of this equation into (6.10) yields 
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 (6.13) 

The first integral shows a singular behavior at the λ point, but the second integral has no 

singularity. Therefore, the second integral can be expanded into a Maclaurin series of t  

as 

( )2
10

2 Orderd ttGGppn
sp p ++=∫

∞  . (6.14) 

The first integral is expressed using the hyper geometric function as 

( )
( )[ ]

31

3
3
5

3
1

3
22

 0

2
313 2

 ,-,,tric2F1Hypergeome 
d1

t
tpap

pp
ap  tp

ssps =
+

∫  . (6.15) 

 

This value is expanded to the following series: 
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where ( )xΓ  is the Gamma function. The second term on the right-hand-side of (6.16) has 

a singular value for its derivative by t  at 0=t . This expansion is explained in detail in 

Appendix II. Substitution of (6.14) and (6.16) into (6.13) yields the following expansion. 
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The fraction NNnormal  becomes 1 at the λ point because the Bose–Einstein condensate 

disappears at λT . This property is expressed by the equation shown below. 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟

⎠
⎞

⎜
⎝
⎛= 031

2

B
3

 
2

 41 G
a
p

c
Tkm sλ

λρπ
π
h

 (6.18) 

The fraction of condensed dressed boson number for the total number is  

( )
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 . (6.19) 

 

The function depends upon the temperature as 31t , which means that the critical index of 
Nn0  is 1/3. The result shows good agreement with the numerical calculation, as 

depicted in Fig. 6.2. 
This temperature dependence ( ) 31

0 1 λTTNn −∝  shows that the dressed boson 

velocity is directly related to ( ) 311 λTT−  based on Eq. (5.17). Consequently, this 

analytical result reproduces that the second sound velocity is directly related to 

( ) 311 λTT−  near the λ point. 

 

 

6.3 No friction against macroscopic body 

 

The Landau theory has clarified that the background flow cannot be excited using 

a collision against a macroscopic body. We also examine a collision of the dressed bosons 

against a macroscopic body. The dressed bosons inside the Bose condensate cannot be 
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excited but the dressed bosons outside the Bose condensate can transfer to the other 

momentum state by a collision against a macroscopic body. This mechanism is examined 
as follows: The macroscopic body has a velocity v , an initial energy iE  and an initial 

momentum iP  as  

2

2
1 vMEi =  (6.20) 

vP Mi = , (6.21) 

where M and v  respectively signify the mass and the velocity of the macroscopic body. 
We consider the case in which this macroscopic body loses momentum q  by the 

collision. The final energy fE  and the final momentum fP  of the macroscopic body are 

given as 

qPP −= if  , and (6.22) 

( ) qvqqvqv
•−≈+•−=

−
= iif E

M
E

M
ME

22

22

 , (6.23) 

where the final equality in (6.23) is derived from neglecting the value ( )Mq 22  because 

q is a microscopic value and M is a macroscopic value. When the initial momentum of the 
dressed boson is described by Ap  and the final momentum of the dressed boson is 

described by Bp , the energy-momentum conservation is expressed as the following. 

AiBf pPpP +=+  (6.24) 

AiBf EE pp ωω +=+  (6.25) 

Then, we obtain the following equation from (6.22–25). 
qpp += AB  (6.26) 

qvpp •+= AB ωω  (6.27) 

The transition of a dressed boson from momentum Ap  to pB  is drawn in Fig. 6.3. 
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Fig. 6.3 Transition of the dressed bosons by a collision against a macroscopic body 

This figure shows the case of 0== zy pp . The horizontal axis indicates ( )h1010xp . The dressed 

boson at point C cannot transfer to any state. The dressed boson at point A can transfer to point B. 

 

In Fig. 6.3, the gradient value of the arrows is ( )θcos v  where θ  is the angle between 

v  and q . The dressed boson with 0≠Ap  can transfer to momentum Bp  (at point B) 

via a collision against a macroscopic body. However, there is no transition of the dressed 
bosons with zero momentum ( 0=Cp ) for a velocity value smaller than the critical value 

vc. The critical velocity is the gradient of a tangential line from point C to the roton 

curve. This criterion is the same as that of Landau’s mechanism. However, it is 

noteworthy that no quasi-particle exists at 0=p  in the Landau theory because the 

density wave has no quantized mode at zero momentum. Landau assumed the 

background flow. The background flow is not excited via a collision against a 

macroscopic body; therefore, the background flow has been considered to be the 

superfluid component of liquid helium. 

On the other hand, all dressed bosons are in the eigenstates of the total 

Hamiltonian. Only the dressed bosons in the Bose condensate have no friction against a 

macroscopic body, as shown clearly in Fig. 6.3. Therefore, the dressed bosons in the Bose 
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condensate are the superfluid component, and the dressed bosons with nonzero 

momentum are the normal fluid component (Later in chapter VIII, we examine the case 

in which Bose condensation occurs at nonzero momentum: the case of running 

superfluid.). Consequently the superfluid component comprises the dressed bosons in a 

Bose condensate. 

The ratio of the dressed boson number with zero momentum to the total 
number of helium atoms, Nn0 , signifies the number fraction of superfluid component 

to the total liquid helium: 
Nns 0=η . (6.28) 

The number fraction of normal fluid component is 

∑
≠

=
0p

p Nnnη . (6.29) 

The temperature dependences of the number fractions were calculated in Sec. 6.1 and 6.2. 

It is noteworthy here that the quantities ηs  and ηn  are not mass fractions, but number 

fractions. The following equation is derived from the total number conservation. 

11
0

0 ==⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=+ ∑

≠ N
Nnn

Nns
p

pηη  (6.30) 

In that equation, we used (2.15). These number fractions have typical values at 0=T  

and λTT = . 

10 == sn   , ηη     (at 0=T ) (6.31) 

01 == sn   , ηη    (at λTT = ) (6.32) 

 

The Bose condensate of the dressed bosons occupies 100% of the total number at 

zero Kelvin. The dressed bosons inside the Bose condensate cannot receive a friction 

force from a macroscopic body. Consequently, the dressed bosons with zero momentum 

are the superfluid component. Accordingly, Eq. (6.31) means that the superfluid 

component occupies 100% and the normal component disappears at zero Kelvin. 

On the other hand, at the λ point, the fraction of Bose condensate of dressed 
bosons, sη , disappears and the value of nη  becomes 1: the normal fluid component of 

dressed bosons occupies 100% of liquid helium at λTT = . 

Number 0n  is not equal to the number of helium atoms with zero momentum. 
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As presented in chapter II, the dressed boson operator *A0  is defined by the unitary 

transformation U from the operator *a0  of helium atom as  

1
00

−= UUaA **  . (6.33) 

The operator is approximately expressed as 

( ) L++= ∑ +
s,r

sr
*
s

*
r

** aaas,rgaA 00 α  , (6.34a) 

where 
1≠α  . (6.34b) 

Therefore, the dressed boson number in the Bose condensate is  

 

( ) ( ) 0000000 aaaaau,tgaaaas,rgaAAn *

u,t
ut

*
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s,r
sr

*
s

*
r
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⎠
⎞
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⎛ ++⎟

⎠
⎞

⎜
⎝
⎛ ++== ∑∑ ++ LL αα  . 

 (6.35) 

As described above, the dressed boson number with zero momentum is not equal to the 

number of helium atoms with zero momentum. The experimental data show that the 

number of helium atoms with zero momentum is a few percent of the total number of 

helium atoms at an ultra-low temperature. 

Next we point out features of a one-dimensional (1D) boson system. The 

difference between 00 AA*  and 00aa*  is remarkable in a 1D boson system with 

delta-functional potential. The expected values of 00 AA*  and 00aa*  are, in the case of 

infinitely large coupling constant for the ground state: 

10
*
0 ⎯⎯ →⎯ ∞→NNGAAG  and  (6.36) 

00
*
0 ⎯⎯ →⎯ ∞→NNGaaG , (6.37) 

where G  is the ground state. 
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VII. λ transition and phase diagram 
 

7.1 Transition temperature of Bose–Einstein condensation 

The phase diagram of liquid helium can be determined based on the nonlinear 
theory by calculating the temperature at which nη  becomes 1. That is to say, we evaluate 

the temperature value at which the dressed boson condensation disappears. The 
difference value μω −0  is zero for λTT <  ( 0ω  is the lowest energy of a dressed boson 

and μ is the chemical potential) because the Bose condensate exists (see Eq. (3.4), and 

see (8.28) for more details). At λTT > , μω −0  becomes a positive value because the 

Bose–Einstein condensate disappears. This property is presented schematically in Fig. 

7.1. 

 

Fig. 7.1 Schematic figure for behavior of μω −0  

 
The temperature dependence of NNnormal  and Nn0  is portrayed schematically in 

Fig. 7.2, where the value of NNnormal  is equal to 1 for T > Tλ . 

 

 

Fig. 7.2. The fraction of Bose condensate and the fraction of normal fluid component 
The blue curve represents Nn0  of Bose condensate; the dashed curve represents NNnormal
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London calculated the transition temperature, the result of which is 

approximately 3.2 K for saturated vapor pressure [21]. It is noteworthy that the Bose 

condensate in London’s theory is not superfluid because London’s bosons with zero 

momentum are excited via a collision against a macroscopic body. On the other hand, the 

condensed dressed boson described in the present theory cannot be excited by collision 

against a macroscopic body because of its nonlinear form of energy, as clarified in Sec. 

6.3. 

The lowest energy is zero in London’s theory. Therefore, London’s chemical 
potential is equal to zero for λTT < . This result does not agree with the experimental 

data. In the nonlinear theory, ( )T0ω  depends upon the temperature. Therefore, the 

chemical potential ( )T0ωμ =  depends also upon T for λTT < . This property shows 

good agreement with the experimental result. 
The fraction NNnormal  in the nonlinear theory has been calculated 

numerically in Sec. 6.1 for λTT < . The fraction value depends upon the temperature. We 

find a value of transition temperature where the fraction NNnormal  becomes 1. For 

pressure P=0.05 bar, we obtain the value λT  as 

K172.2=λT  for bar05.0=P . (7.1) 

After changing the pressure value, we evaluate the transition temperature of 

Bose–Einstein condensation of the dressed bosons. Thereby, we obtain the phase diagram 
of He I and II (helium I represents a normal liquid for λTT > . Helium II represents a 

superfluid state for λTT < ). The numerical result is portrayed in Fig. 7.3 (see reference 

[22]).  
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experimental data

calculated value in 
this paper

Landau theory

London theory

bar

K
  

Fig. 7.3 Phase diagrams of the three theories 
The red curve shows results obtained using the nonlinear theory; the black curve represents results obtained 

using the London theory. For the Landau theory, the transition temperature is calculated in reference [21] 

 

London’s result shows that the transition temperature becomes large for the 

increment of pressure value. The experimental value of the λ  transition temperature 

decreases for the increment of pressure value. The calculation results of the nonlinear 
theory show good agreement with experimental data. The decrement of λT  for the 

increment of pressure results from a nonlinear form of the total energy and by decrement 

of the roton minimum energy for the increment of pressure. 

In the Landau theory, the λ  transition is not caused by Bose–Einstein 
condensation. The excitation number TheoryLandau 

normalN  depends upon the temperature. The 

temperature dependence of NN TheoryLandau 
normal

 is depicted schematically in Fig. 7.4. 

 

Fig. 7.4 Temperature dependence of NN TheoryLandau 
normal  

The value of NN TheoryLandau 
normal

 at the λ point is approximately 0.14. 
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As might be apparent in Fig. 7.4, NN TheoryLandau 
normal  is only 14% at the λ point. In addition, 

NN TheoryLandau 
normal  is larger than 1 for BTT >  where BT  is the temperature at the point B. 

It might be difficult to consider the case of 1TheoryLandau 
normal >NN , although the number 

TheoryLandau 
normalN  is not directly related to the total number of helium atoms. In the Landau 

theory, the transition temperature is determined by the calculation of mass density, which 

is explained in section 7.2. 

 

7.2 λ transition temperature in Landau Theory  

 

Landau calculated the mass density of normal fluid, which is described by 

nρ (see reference [3]). The functional form is presented on page 15 of Khalatnikov’s 

book [3]. 

 

r2
ph

n n
kT

p
c
E

33
4 2

0+=ρ  (7.2) 

Rough dependence of nρ  upon the temperature is portrayed in Fig. 7.5. 

 

Fig. 7.5 Temperature dependence of 
nρ  in the Landau theory 

M/V is the mass density of liquid helium  

 

 

The transition temperature in the Landau theory is determined as the 
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temperature at which the calculated value of nρ  is equal to M/V ( nρ , M, and V 

respectively denote the mass density of normal fluid component, the total mass, and the 

volume of liquid helium). The value is shown as approximately 2.8 K on page 195 of the 

book by Landau and Lifshitz [21]. 

 

K][8.2Landau =λT  (7.3) 

 
By that logic, the calculated value of nρ  is greater than the total mass density M/N of 

liquid helium for LandauTT λ> . It is difficult to conceive of a normal fluid having a mass 

that is greater than the total mass of liquid helium. Therefore, the Landau theory is 
inapplicable to a liquid helium system for λTT > . 
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VIII. Two-fluid mechanism caused by nonlinear energy form 
 

In Landau’s work, elementary excitations are considered to be density waves 

in liquid helium. Accordingly, Landau’s elementary excitations with momentum zero 

never exist. Landau’s normal fluid component is constructed by the excitation modes, but 

his superfluid component is a background flow. The substantial existence of the 

background flow is unknown. 

On the other hand, in the present theory, dressed bosons with momentum zero 

exist as described above. The total number of dressed bosons is conserved and is equal to 

the total number of helium atoms. This number conservation causes the Bose–Einstein 

condensation of dressed bosons. Moreover, the condensation occurs at any momentum 

value inside some region. This property is derived from the nonlinear form of the total 

energy of liquid helium. We first examine the distribution function of the dressed bosons. 

 

8.1 Determination of the distribution function of the dressed bosons 

 

By the present theory, the total number N, the total energy E, and the total 
momentum totP  of the dressed bosons are conserved. We consider a micro-canonical 

ensemble of the dressed bosons where N, E, and totP  are fixed to each value. Next we 

find the momentum distribution of the dressed bosons at equilibrium. 
First, we count the quantum levels. The momentum interval from xp  to 

xx pp Δ+  contains ( )hπ2LpxΔ  levels where L is the side length of the cubic container 

filled with liquid helium. Therefore, the number of quantum levels, X, inside the 

momentum region zyx ppp ΔΔΔ  becomes  

( )( ) ( )33 22 hh ππ VpppLpppX zyxzyx ΔΔΔ=ΔΔΔ= , (8.1) 

where 3LV =  is the volume of the container. Next, we designate the number of the 

dressed bosons inside the momentum region zyx ppp ΔΔΔ  by Y as 

∑ ∑ ∑
Δ+≤≤ Δ+≤≤ Δ+≤≤

=
xpxpxsxp ypypysyp zpzpzszp

nY s , (8.2) 
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where the running variables ( )zyx s,s,s  have values within the momentum range 

xxxx ppsp Δ+≤≤ , yyyy ppsp Δ+≤≤ , and zzzz ppsp Δ+≤≤ . Accordingly, the 

mean number of dressed bosons per quantum level is 

( )
∑ ∑ ∑

Δ+≤≤ Δ+≤≤ Δ+≤≤ΔΔΔ
==

xpxpxsxp ypypysyp zpzpzszpzyx
n

Vppp
XYn sp

32 hπ
, (8.3) 

where the upper line in pn  denotes the mean value. Here, the momentum region 

zyx ppp ΔΔΔ  is sufficiently small, but contains an enormous number of levels. These two 

conditions are satisfied simultaneously because the value of V is a macroscopically large 

value. 

The Y dressed bosons are distributed among the X levels. To quantify the 

modes of the distributions, first we determine the number of all possible ways of 

distribution expressed by ΔΩ , which is equal to 

( ) ( ){ }!!1!1 YXYX −−+=ΔΩ , (8.4) 

where we have used the bosonic property that any number of dressed bosons can occupy 

a single quantum level. Taking the logarithm of both sides of Eq. (8.4), we obtain 

( ) ( ) ( )
( ) ( )
( ) ( ) ( )[ ]

( )
( ) ( ) ( )( )[ ]1

3 1log1log
2

1log1log
1log1log

loglogloglog

−
+++

ΔΔΔ
=

+++=
+++=

−−++≈ΔΩ

ppp
zyx nnn
Vppp

YXXYXYX
YXYXYX

YYXXYXYX

hπ

, (8.5) 

where we have used Eqs. (8.1)–(8.4) and Stirling’s formula. The total number of the 

distribution modes Ω  is the multi-product of ΔΩ  as  
∏ ΔΩ=Ω , 

which gives  

∑ ΔΩ=Ω loglog  . 
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Summing up Eq. (8.5) over the whole momentum space, we obtain the total number of 

the distribution ways as 

( ) ( ) ( )( )[ ]∑
−

+++≈Ω
statesall

1
1log1loglog ppp nnn  . (8.6) 

The total number of dressed bosons N, the total energy E, and the total momentum totP  

are given as 

∑=
p

pnN , (8.7) 

∑=
p

ppP ntot , (8.8) 
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nnf
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 (8.9) 

where we have used Eq. (2.20) for the total energy. Although we can exchange (8.9) to a 

simpler form (2.21), we study the most general case in section 8.1. 

We find the distribution function in which the number of states, Ω , becomes a 
maximum value under fixing the values of N, E and totP . The maximization derives the 

following relation by making use of Lagrange multipliers. 
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Therein the functional derivatives are the following. 
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1=
pn

N
δ
δ

 (8.13a) 

pP

p

=
n
tot

δ
δ

 (8.13b) 

It is noteworthy in Eq. (8.12b) that we neglect the total number dependence of functions 
L ,f ,f ,f 432 . Substitution of (8.11), (8.12a) and (8.13a,b) into (8.10) gives  

( )( ) ( )pupp •−−=+
−

μωβ
1

1log n  , (8.14a) 

which yields 

( )( ) 1exp
1

−•−−
=

pup
p μωβ

n  , (8.14b) 

 
where uββμβ −− ,,  are the Lagrange multipliers. The well-known relation between 

the entropy S and the number of states Ω  is 

Ω= logBkS , (8.15) 

where Bk  is Boltzmann’s constant. Accordingly, the distribution function { pn } has a 

local maximum entropy when it satisfies (8.12b) and (8.14b). 

We examine the physical meanings of the Lagrange multipliers 
uββμβ −− ,, . The following relation is derived using Eq. (8.10) when the distribution 

function { pn } of the liquid helium changes slightly by { pnδ }: 
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which yields 

{ }totNEkS Pu δδμδβδ •−−= B . 

Therefore, for 0=u , we obtain 

NS
k

E δμδ
β

δ +=
B

1 , (8.16a) 

where we have fixed the volume of liquid helium, namely 0=Vδ . As is well known, the 

thermodynamic relation gives 
NdSdTVdPEd μ++−= .(8.16b) 

Comparison of (8.16a) and (8.16b) yields the following. 

potentialchemical,1

B

== μβ
Tk

 (8.17) 

Therefore, knowing the physical meaning of the Lagrange multipliers, the distribution 

function of the dressed boson { pn } is determined using the following simultaneous 

equations. 
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The coupled integral equation (8.18 a, b) has a single solution for λTT > . 

However, infinitely many solutions satisfy the coupled integral equation (8.18 a, b) for 

λTT <  because there are infinitely many values for the condensed momentum. To better 

elucidate this mechanism, we examine the following simple example in which there are 

only two quantum levels with a nonlinear form of energy. Which level has lower energy 

depends upon the distribution of bosons in the two levels. 
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8.2 Explanation of level inversion 

 

We study this simple system which includes only two levels. The total energy 

of the system is given as  

 

21122211 nnfnEnEE ++= , (8.19) 

 
in which 1n  and 2n  are boson numbers belonging to level 1 and 2, respectively, and the 

following inequalities hold: 

 

21 EE <  and 012 >f . (8.20) 

 

The energy (8.19) would become a linear form with respect to the boson numbers if the 
coefficient 12f  were equal to zero. Then, the energy of level 1 would always be lower 

than that of level 2 because of the inequality 21 EE < .  

On the other hand, when 012 >f , the total energy has a nonlinear form. In this 

case, which of level 1 or 2 has a lower energy depends upon the number distribution 

{ }21 n,n . This fact is understood by studying the boson energy. The value of iω  is 

defined as the energy increase, when we add one bose particle to level i (i=1 or 2): 

 

212111 nfEnE +=∂∂=ω , 112222 nfEnE +=∂∂=ω . (8.21) 

 
As the number 2n  becomes larger, the energy 1ω  becomes large because of 012 >f , 

reaches the value of 2ω , and finally becomes larger than 2ω . Consequently, the energy 

magnitudes of the two levels are reversed by increasing the occupation number at the 

higher level, as presented Fig. 8.1. 
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Fig. 8.1 Number dependence of dressed boson energies for two levels 

2ω is smaller than 1ω  when Ann >2  

 

This example shows the level inversion mechanism which results from nonlinear form of 

the energy. A similar inversion between energy magnitudes of levels also occurs in the 

present theory because the total energy (2.20) has a nonlinear form. 

 

 

8.3 Various values of momentum at which dressed bosons condense 

 

Galilean invariant terms of the total energy have nonlinear forms. Therefore 

Eqs. (8.18a) and (8.18b) are never separated from each other. These nonlinear terms 

produce multiple solutions that satisfy the coupled integral equation (8.18a, b) for 

λTT < . 

To elucidate this mechanism more precisely, we consider a case at an ultra-low 

temperature. We restrict ourselves to the following number distribution { pn }, where 

almost all dressed bosons have momentum Q: 

 

1≈Qn , namely, QQ nnN <<− . (8.22) 

 

The condensed momentum Q can have any value within some momentum range. We 

explain this mechanism in the energy form of (2.21). In this case, the dressed boson 
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energy pω  is expressed as in Eq. (3.2). 

( ) ( ) ( )∑∑ −−−+=
t s,

ts
q

qp tsqpp nnf
N

nf
Nm

T 2

2 12
2

ω  (8.23) 

 

The summations in Eq. (8.23) are approximately equal to the following form because Qn  

is large. 

( ) ( ) ( )termssmall12
2 2

2

+−−−+≈ QQQp QQQpp nnf
N

nf
Nm

ω  (8.24) 

 

Therein, the Galilean invariant term f is expressed as Eq. (2.41). 

 

( ) ( )( ) ( )0220
2
1 fmf p +−= pp ε  (8.25) 

 

Then, Eq. (8.24) becomes the following. 

( ) ( )( ) ( ) ( ) ( )termssmall0022
2

2
20

2

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+−−+≈ − f

N
nf

N
nm

N
n

m
QQ

Qp
Q

p Qpp εω  

 (8.26) 

We present the momentum dependence of pω  schematically in Fig. 8.2. 
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Fig. 8.2 Momentum dependence of dressed boson energy pω . 

The dashed line represents pu •+μ  

 

As might be readily apparent from this figure, ( )pup •−− μω  has a minimum value at 

Qp = ; the value is approximately zero. 

( ) 0≈•−− QuQ μω  (8.27) 

  

We examine this value more precisely. Equation (8.18a) is written at Qp =  as follows. 

( ) ( )( )

Qu

Qu

Q

Q
Q

•−−
≈

−•−−
=

μω

μω
Tk

Tk
n

B

B 1exp
1

 

Therefore, the chemical potential μ  relates to the dressed boson energy as follows. 

Q
Q Qu

n
TkB−•−= ωμ  (8.28) 

In that equation, the magnitude of 
Qn
TkB  is an order of 10-23. Accordingly, the chemical 

potential μ  deviates from QuQ •−ω  by an extremely small value 
Qn
TkB− . 
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We consider another value of the condensed momentum which is expressed by 

Q′ . In this case, we obtain another energy form as the following expression. 

 ( ) ( )( ) ( ) ( ) ( )termssmall0022
2

2
20

2

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+′−−+≈′ ′′

′−
′ f

N
nf

N
nm

N
n

m
QQ

Qp
Q

p Qpp εω

 (8.29) 

The form of (8.29) differs from that of (8.26) because of QQ ≠′ . Accordingly, we can 

consider infinitely many solutions corresponding to infinitely many values of the 

condensed momentum. 

It has been clarified that infinite multiple solutions exist in the coupled integral 
equation (8.18a, b) under fixing of the values of uandT . That is to say, the condensed 

momentum value of Q can be taken to be an arbitrary value within some momentum 

region (This restriction within the region is necessary to satisfy positiveness of 

( )QpuQp −•−−ωω ). Therefore, we can choose any value for two vectors u and Q. 

This mechanism produces a two-fluid state with two arbitrary velocities of the superfluid 

component and the normal fluid component. As presented Fig. 8.2, the dressed bosons 

with momentum Q have minimum energy because of the level inversion mechanism via 

Bose condensation at Q. 

In London’s theory, the Bose condensate must have the same value as the 

velocity of the center of mass because no level inversion appears. Consequently, the 

nonlinear mechanism is important for explaining the properties of superfluid helium. 

The following is also worth noting. A running superfluid component can be 

produced experimentally using the following process. A vessel filled with He I (normal 

liquid) is rotated at a constant angular velocity. Accordingly, the liquid helium has a 

constant angular velocity. Then, after the liquid helium is cooled by vaporization of the 
liquid helium, the temperature becomes lower than the λ temperature ( λTT < ). The 

superfluid component appears, and has non-zero velocity. Thereafter, the vessel is 

stopped. Then the normal fluid component also stops because of the viscosity of the 

normal fluid component. Therefore, we can produce the state in which the superfluid 

velocity differs from the normal fluid velocity. 
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8.4 Iteration method 

 

In this section, we find the approximate solutions corresponding to the 

two-fluid state of He II using iteration.  

Eq. (8.27) yields the following equation. 

 

( )Qpupu Qpp −•−−=•−− ωωμω  (8.30) 

 

Using Eq. (8.23), we obtain 

( ) ( ) ( ) ( )( )∑ −−−+
−

=−
q

qQp qQqpQp nff
Nm

TT 2
2

22
ωω . (8.31) 

Consequently, we can rewrite the coupled integral equation (8.18a, b) to the following 

equations. 

( )( ) ( )( ) 1
1

−−•−−
=

Tkexp
n

BQpuQp
p ωω

    (for Qp ≠ ) (8.32a) 

( ) ( ) ( )

( ) ( ) ( )( )∑ −−−+−•−
−

=

−•−−

q
q

Qp

qQqpQpuQp

Qpu

nff
Nm

TT

2
2

22

ωω
 (8.32b) 

 

We can solve the coupled integral equation via iteration similarly to that 

explained in sections 3.2.2 and 3.2.3. We choose the zero-th order energy (i.e. the starting 

form of the energy in the iteration) as  

( ) ( )( ) ( )02
2

20
2

0 fm
m

+−−+= − Qpp
Qpp εω  , (8.33) 

which is derived from Eq. (8.26) for 1=
N
nQ . It is noteworthy that the form depends 

upon the momentum value Q in the Bose condensate. 

The zero-th order distribution function is given by altering the energy form 

( )Tpω  to that of 0
pω  in Eq. (8.32a). 
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( )( ) ( )( ) 1exp
1

B
00

0

−−•−−
=

Tk
n

QpuQp
p ωω

   (for Qp ≠ ) (8.34) 

This distribution function depends upon two vectors: Q and u. We introduce the first 

order functions as follows. 

( ) ( ) ( )

( ) ( ) ( )( )

( ) ( )( )
N
n

ff          

nff
Nm

T ,T ,

0

0
22

11

2
0

2
2

Q

Qq
q

Qp

qQqpQpuQp

QpuQp

−−+

−−−+−•−
−

=

−•−−

∑
≠

ωω

 (8.35) 

Therein, the zero-th approximation number of the dressed bosons in the Bose condensate 

is given as 

∑
≠

−=
Qq

qQ
00 nNn , (8.36) 

which is nearly equal to N at an ultra-cold temperature. Then, the first order form of the 

distribution function is given as the following expression. 

( ) ( ) ( ) ( )( ) ( )( ) 1 , ,exp
1 ,

B11
1 −−•−−

=
TkTT

Tn
QpuQp

p
ωω

   (for  p ≠ Q)  

 (8.37) 

 

We express the ( )1+l -th order forms of the functions using the l –th order 

forms. 

( ) ( ) ( )

( ) ( ) ( )( ) ( )

( ) ( )( ) ( )
N

T ,nff          

T ,nff
Nm

T ,T ,

QQp

qqQqpQpuQp

QpuQp

Qq

l

l

ll

20

2
2

22
11

−−+

−−−+−•−
−

=

−•−−

∑
≠

++ ωω

 (8.38) 

Therein, the   l–th approximation number of the condensed dressed bosons is given as 

( ) ( )∑
≠

−=
Qq

qQ T ,nNT ,n ll  . (8.39) 

Then, the ( )1+l –th order form of the distribution function is expressed as 
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( ) ( ) ( ) ( )( ) ( )( ) 1 , ,exp
1 ,

B11
1 −−•−−

=
++

+ TkTT
Tn

QpuQp
p

ll

l ωω
 . (8.40) 

 

These relations (8.38), (8.39), and (8.40) depend on the values of T, N, V, u, and Q. 

Incidentally, in the bulk limit, these functions depend upon N/V. We can thereby express 

the higher order forms in our iteration method. We assume convergence of the series in 

the limit of ∞→l ; then we obtain the following functions. 

( ) ( )TVNT  , lim , , , pQup l
l

ωω
∞→

=  for λTT <   (8.41) 

( ) ( )TnVNTn  , lim , , , pQup l
l ∞→

=  for λTT <  (8.42) 

These functions are the solutions of the coupled equation (8.18a, b). Using the iteration 

method, we can adopt an arbitrary value of Q in fixing the values of T, N, V, and u. 

Consequently, we obtain infinitely multiple solutions for the coupled integral equation 
(8.18a, b) at λTT < . 

On the other hand, no Bose condensate exists at λTT >  in the coupled 

equation (8.18a, b): no condensed momentum Q exists. Therefore, the coupled equations 

(8.18a, b) have only one set of solutions. 

( ) ( )TVNT  , lim , , pup l
l

ωω
∞→

=  for λTT >   (8.43) 

( ) ( )TnVNTn  , lim , , pup l
l ∞→

=  for λTT >  (8.44) 

We have discussed determination of the number distribution of dressed bosons in both 
cases of λTT <  and λTT > . Accordingly, the present theory is applicable to a liquid 

helium system for any temperature region: He I and He II. On the other hand, the Landau 
theory cannot treat a liquid helium system at λTT > . The next chapter will address 

nonlinear properties of the solutions. 
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IX. Properties of the solutions 
 

The solutions of the coupled equations (8.18a) and (8.18b) have important 

properties, which are summarized in 9.1–9.5. 
 

9.1 Existence of the λ transition 

 

As described in previous chapters, each solution contains the Bose condensate 

at an ultra-cold temperature, but the condensate disappears at a high temperature. 

Therefore, the λ transition is derived naturally from the nonlinear theory. 

 

9.2 Superfluidity 

 

The Bose condensate of the dressed bosons gives no friction against a rigid body 

because the condensed dressed bosons cannot transfer to the other momentum in a 

collision against a macroscopic rigid body. This mechanism is derived from the nonlinear 

energy form, as discussed in Sec. 6.3. Therefore, the superfluid component in liquid 

helium comprises the condensed dressed bosons. The lack of a friction against a rigid 

body is apparent in Fig. 8.2 for the condensed dreesed bosons with momentum Q . 

 

9.3 Coexistence of two interpenetrating fluids 

(Why are the two fluid-states so stable?) 

 

It is a surprising fact that the superfluid component flows permanently in spite 

of penetration of the normal fluid component. This phenomenon was described by 

Kojima et al. [9] using a vessel similar to that portrayed in Fig. 9.1. 
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Fig. 9.1 Measurement of persistent current velocity for the superfluid component 

 

 

The vessel has a narrow annular cavity (inner radius = 5.01 cm, outer radius = 5.48 cm, 

depth = 0.50 cm) that is packed with Al2O3 powder (grain size 
o

A 325~170 ). First the 

vessel is filled with He I and is rotated at a constant angular velocity. Then, the liquid 

helium is cooled by vaporization of the liquid helium; the temperature becomes lower 
than the λ transition temperature ( λTT < ). Thereafter, the vessel is stopped. Using 

fourth-sound techniques, H. Kojima et al. [9] measured the decreasing rate of superfluid 

velocity. In their paper, the highest decay rate observed is 0.63% per decade. The current 

decay is 11% during a time interval equal to the age of the earth if this decay rate 

continues indefinitely. Therefore, the persistent currents of superfluid are indeed 

persistent. Accordingly, two-fluid states of superfluid helium are extremely stable. 

This phenomenon is clearly explained using the nonlinear theory because 
infinitely many solutions appear at λTT < . The distribution function of the dressed 

bosons depends upon the two vectors u and Q as in Eq. (8.42) or (8.18a,b). This property 

implies that there are infinitely numerous equilibrium states with two velocities of 

superfluid component and normal fluid component that mutually differ. The distribution 

function of dressed bosons satisfies the coupled integral equations. The coupled 
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equations represent the condition maximizing the entropy. Therefore, the solutions have 

local maximum entropy. This nonlinear mechanism ensures the excellent stability of 

two-fluid states with two different velocities. 

 

 

9.4 Zero entropy of the superfluid component 

 

In our theory, the superfluid component comprises a macroscopically large 

number of the dressed bosons with only one momentum value. This non-spreading of the 

momentum-distribution yields that the superfluid component has entropy zero. As 

examined in chapter IV, the Bose condensate of the dressed bosons has entropy of 

( )0super 1log nkS B +=  . 

However, this value is extremely small in comparison to the total entropy S. 

0super ⎯⎯ →⎯ ∞→NSS  (9.1) 

All entropy of superfluid helium belongs to the normal fluid component, which 

comprises the dressed bosons outside the Bose condensate, as shown in Eq. (4.4). 

1normal ⎯⎯ →⎯ ∞→NSS  (9.2) 

 

That is to say, the entropy of Bose-condensed dressed bosons is zero. 

The momentum-distribution of helium atoms was measured in neutron 

scattering experiments. The results showed that helium atoms with zero momentum 

comprise a few percent of all helium atoms. Some researchers have asserted that this 

percentage is the ratio of Bose condensate to the total helium atoms. However, the helium 

atoms with zero momentum are not in the eigenstate of the total Hamiltonian because the 

atoms interact mutually. Therefore, this percentage does not represent the ratio of the real 

Bose condensate to the total liquid helium. In the nonlinear theory, the dressed bosons 

with momentum zero constitute 100% of the total dressed bosons at the temperature zero. 
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This situation is also clearly apparent in a 1D boson system. As shown in 

Eqs.(A1.17) and (A1.18) in Appendix I, the original free bosons with momentum zero do 

not constitute any fraction of the total bosons in the ground state. Nevertheless, the 

dressed bosons with momentum zero constitute 100% of the ground state. 

 

 

9.5 Galilean covariance of the distribution functions 

 

All solutions of the coupled equations (8.18a, 8.18b) are Galilean covariant. 
We prove this covariance for the two cases of λTT <  and λTT > . 

 
(First case : λTT < ) 

In the previous chapter, we used iteration method to obtain the solutions. We 

consider one solution with vectors u and Q. 

( ) ( )TVNT  , lim , , , pQupp l
l

ωωω
∞→

==  (9.3a) 

( ) ( )TnVNTnn  , lim , , , pQupp l
l ∞→

==  (9.3b) 

We also write the second solution for the other vectors u′  and Q′ . 

( )Qupp ′′=′  , ,VN ,Tωω  (9.3c) 

( )Qupp ′′=′  , ,VN ,Tnn  (9.3d) 

Therein, the vectors u′  and Q′  are related to the following. 

vuu +=′  (9.4) 

vQQ m+=′  (9.5) 

The coupled equations (8.32 a, b) are  

( )( ) ( )( ) 1exp
1

B −−•−−
=

Tk
n

QpuQp
p ωω

, (9.6a) 

( )

( ) ( ) ( )( )∑ −−−+−•−
−

=

−•−−

q
q

Qp

qQqpQpuQp

Qpu

nff
Nm
2

2

22

ωω
, (9.6b) 
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( )( ) ( )( ) 1exp
1

B −′−•′−′−′
=′

′ Tk
n

QpuQp
p ωω

 , and (9.6c) 

( )

( ) ( ) ( )( )∑ ′−′−−+′−•′−
′−

=

′−•′−′−′ ′

q
q

Qp

qQqpQpuQp

Qpu

nff
Nm
2

2

22

ωω
. (9.6d) 

 
We use the momenta vp m+  and vq m+  in (9.6c, 9.6d) and then obtain the following 

expressions. 

( )( ) ( )( ) 1exp
1

B −′−+•′−′−′
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+ Tkm
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vp ωω

 (9.7) 
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 (9.8) 

When we substitute the relations (9.4) and (9.5) into Eq. (9.8), we obtain these 

expressions. 
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22
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ωω

 

 

This equation is identical to (9.6b) using the assumption of qvq nn m =′ + . 

( )
( )Qpu

Qvpu

Qp

Qvp

−•−−=

′−+•′−′−′ ′+

ωω

ωω

       

mm
 (9.9) 
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Substitution of (9.9) into (9.7) produces the following relation. 

pvp nn m =′ +  (9.10) 

 

This relation (9.10) is exactly the same as the assumed equation. Therefore the 

assumption is certainly correct. These relations (9.9) and (9.10) confirm the Galilean 

covariance between the solutions of the coupled equations (8.18a, 8.18b). 

 
(Second case: λTT > ) 

Next we examine Galilean covariance in the second case. We respectively use 

the solutions (8.43) and (8.44) for pω  and pn . 

 

( ) ( )TVNT  , lim , , pupp l
l

ωωω
∞→

==  (9.11a) 

( ) ( )TnVNTnn  , lim , , pupp l
l ∞→

==  (9.11b) 

In the case of vuu +=′ , we obtain another solution. 

( )upp ′=′  ,VN ,Tωω  (9.11c) 

( )upp ′=′  ,VN ,Tnn  (9.11d) 

Using the energy form of (3.2), the coupled integral equations are satisfied as shown. 

( ) ( )( ) 1exp
1

B −•−−
=

Tk
n

pup
p μω

 (9.12a) 

( ) ( )∑∑ −−−+=
t s,

ts
q

qp tsqpp nnf
N

nf
Nm 2

2 12
2

ω  (9.12b) 
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( ) ( )( ) 1exp
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B −•′−′−′
=′
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pup
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 (9.12c) 

( ) ( )∑∑ ′′−−′−+=′
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qp tsqpp nnf
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nf
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2 12
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ω  (9.12d) 

Equation (9.12d) is rewritten as the following. 
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They give the following expressions. 
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It is noteworthy that the value of chemical potential μ′  in Eq. (9.12c) differs from that of 

μ  in (9.12a). The value of μ′  is defined as 

vuv •−−=′ mm 2

2
1

μμ  . (9.13) 

We can derive the following relation if we assume the relation qvq nn m =′ + . 

( )
pu

vpu

p

vp

•−−=

+•′−′−′ +

μω

μω

                

mm
 (9.14) 

Substitution of (9.14) into (9.12c) reproduces the assumed relation as 

pvp nn m =′ + . (9.15) 
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Accordingly, (9.14) and (9.15) are satisfied by the solutions of the coupled integral 

equation (8.18a, 8.18b). As a result, Galilean covariance is verified for the coupled 

integral equations derived in the nonlinear theory. 
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X. Contribution of dressed bosons in several phenomena 
 

The Landau theory is based on the excitation modes of phonons and rotons, the 

total number of which is not conserved. For that reason, there is no chemical potential for 

Landau’s elementary excitation modes. However, the dressed bosons in the nonlinear 

theory have chemical potential, the value of which is expressed by Eq. (8.28). 

QuQu Q
Q

Q •−≈−•−= ωωμ
n

TkB     (for λTT < ) (10.1) 

When both the superfluid component and normal fluid component have zero velocity, Eq. 

(10.1) becomes  

0ωμ ≈    (for λTT < ) , (10.2) 

which has already been obtained in Eq. (3.4). The relation between the chemical potential 

μ and the energy of the dressed bosons in the Bose condensate produces the characteristic 

phenomena in superfluid helium. We discuss London’s relation in Sec. 10.1 and Wyatt’s 

quantum evaporation in Sec.10.2. 

 

10.1  London’s relation in the fountain effect 

We consider a U-tube whose center part is packed with fine powder, as 

illustrated in Fig. 10.1. Therein the powder size is a few hundred angstroms. 

 

 

 

 

 

 

 

 

 

 

Fig. 10.1 Schematic figure depicting the fountain effect 

Both sides of the U-tube are filled with He II. We designate the left side as 

“part 1” and call the right side part “part 2”. The normal fluid component cannot pass 

h

P 1 , T 1 P 2 , T 2

T h is p a r t i s p a c k e d w i th f in e p o w d e r

h e a t e r

A B

 l



103 

through the central channel of the U-tube because of the fine powder. Only the superfluid 

component can pass through the central channel because of its non-viscosity. The two 

liquid heliums inside part 1 and part 2 have different temperatures and different pressures 

from each other when we apply an electric current to the heater in Fig. 10.1. The two 

liquid heliums reach quasi-equilibrium. We respectively designate the temperatures and 
pressures at positions A and B as 1T  and 2T , and 1P  and 2P . Positions A and B have the 

same height as that shown in Fig. 10.1. The heights of two liquid surfaces for part 1 and 
part 2 differ. Therefore, the pressures 1P  and 2P  are related as  

lgPP ρ+= 12 , (10.3) 

where g is the acceleration of gravity and l  is the height difference of liquid surfaces 

presented in Fig. 10.1. Therein we have neglected a small variation of the mass density 
ρ  caused by pressure dependence. At that time, the temperatures 1T  and 2T , and the 

pressures 1P  and 2P  are mutually related. We will derive the relation between these four 

values on the basis of the microscopic viewpoint of the nonlinear theory. 

In the experiment presented in Fig. 10.1, both values of u and Q are zero. 

 

u = 0 and Q = 0  (10.4) 
Therefore, the chemical potentials 21 μμ  and  at positions A and B are given by Eqs. 

(10.2) and (8.41). 

 
( )0011101  , ,VN ,Tωμ =  (10.5a) 

( )0022202  , ,VN ,Tωμ =  (10.5b) 

 

The Bose-condensed dressed bosons can pass through the central channel of the 

U-tube; then the connected system reaches a quasi-equilibrium state. At the 

quasi-equilibrium, the energy of a dressed boson inside the Bose condensate in part 1 is 

expected to be equal to that in part 2. (If the energy of condensed dressed bosons at A is 

greater than that at B, then the condensed dressed bosons transfer from A to B, and vice 

versa.) We can express this equality of the dressed boson energies in the Bose 

condensates. 

 
( ) ( )0000 22201110  , ,VN ,T , ,VN ,T ωω =  (10.6) 
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This relation and Eqs. (10.5a,b) give the following equation. 

21 μμ  =  (10.7) 

In that equation, the chemical potentials depend on the temperature and pressure. 

 
( )111 P ,T= μμ  (10.8a) 

( )222 P ,T= μμ  (10.8b) 

The thermodynamic relations are well known to yield the following.  

 

( ) ( ) PdNVTdNS    

Pd
P

Td
T

d
TP

+−=

⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛=

∂
∂μ

∂
∂μμ

 (10.9) 

Therein, ( )NS  and ( )NV  are the entropy and volume per particle (i.e. per dressed 

boson). This equation derives the following relation. 

 

( ) ( )
( ) ( ) ( ) PNVTNSP ,T               

PP ,TTP ,T
Δ+Δ−=

Δ+Δ+=

11

1122

μ
μμ

 (10.10) 

where the temperature differnce and pressure difference between part 1 and part 2 are 

expressed as  

12 TTT −=Δ , and 12 PPP −=Δ . (10.11) 

 

Therein we have assumed the differences  ΔT  and   ΔP  to be small. Substitution of 

(10.7) into (10.10) yields  
( ) ( ) 0=Δ+Δ− PNVTNS . (10.12) 

 

Denoting the number density and the entropy per dressed boson as   η and s , 

respectively, we obtain the following equalities. 
VN=η  (10.13a) 

NSs =  (10.13b) 

ηs
T
P

=
Δ
Δ

 (10.13c) 

 

This relation was obtained by H. London [23] from phenomenological 
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considerations. We derived this relation from the Bose condensation of dressed bosons on 

the basis of the nonlinear theory. Regarding the experiment illustrated in Fig. 10.1, the 

pressure difference  ΔP  is given by Eq. (10.3). Substitution of (10.3) into (10.13c) 

yields  
( )12 TTsg −= ηρ l  . (10.14) 

The relation between the mass density and the number density is 
ηρ m=  . (10.15) 

It is substituted into Eq. (10.14); then the following equation is derived as 
( )12 TTsmg −=l  . (10.16) 

In F. London’s theory (neglecting the inter-atomic potentials), the chemical 

potential is always zero. In that view, his chemical potential does not depend upon the 

temperature and the pressure. In Landau’s theory, the number of excitations is not 

conserved. For that reason, the theory does not engender H. London’s relation (10.13c). 

On the other hand, in the new viewpoint presented herein, relation (10.13c) is derived 

naturally from the nonlinear property of the dressed boson energy. 

Actually, H. London’s relation engenders the famous “fountain effect” 

phenomenon illustrated in Fig. 10.2. The powder absorbs the radiation from the left-hand 

side and is warmed. Therefore, the warmed superfluid helium has higher pressure, and a 

fountain of liquid helium gushes, as presented in Fig. 10.2. 
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Fig. 10.2 Fountain effect in superfluid helium 

 

 

10.2 Refraction and reflection of the dressed boson beam at a gas–liquid boundary 

 

Wyatt et al. discovered the phenomenon of quantum evaporation. In the 

phenomenon, a phonon or a roton in superfluid helium ejects a 4He atom into the helium 

gas through a single quantum-process (see Ref. [24]). We can explain that phenomenon in 

terms of the nonlinear theory. The dressed boson throws off its interaction cloud at the 

gas-liquid boundary when one dressed boson in the superfluid helium approaches the 

liquid surface. Then, the dressed boson becomes a 4He atom and rushes out of the liquid 

helium into the vapor. It is our explanation for quantum evaporation. 

We first examine a reversal process of the quantum evaporation. Figure 10.3 

shows the surface between superfluid and gas of helium at Z=0. A helium atom with 

energy E rushes into liquid helium at Z=0 X=0. Its momentum value is pA. The atom 

interacts with other helium atoms and is dressed with the interaction cloud when the 

helium atom enters the superfluid helium. 

Powder

Liquid He II

Vessel 

Cotton wool 

Radiatio
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Fig. 10.3 Triple refraction at the boundary between a superfluid and gas 

The helium atom has an energy value E between E1 and E2 defined in Eq. (10.19). 

 

The energy is expected to be conserved at the liquid–gas boundary. That is to say, the 

energy of the atom inside the gas is equal to an energy of eigenstate inside superfluid 

helium, i.e. the energy of the dressed boson. 

At an ultra-low temperature, the dressed boson energy is expressed as 

( )000 f+= pp εω  , (10.17) 

which is derived from Eqs. (3.5), (3.7), and (3.9) (it is also derived from (8.33)). The 

value of ( )0f  is presented in reference [24] as  

 
( ) Bk.f ×−≈ 1670 . (10.18) 

We show the energy of dressed boson and the energy of helium atom in a gas in Fig. 10.4. 

The helium atom in gas has only kinetic energy because of the negligibly slight 

interaction. 
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Fig. 10.4 Energy of dressed boson in liquid helium and energy of helium atom in a dilute 

gas 

 

 

We consider one example with an energy value E in the region E1<E<E2 where 

( ) ( )0 energymaxon    ,0 energyroton 21 fEfE +=+=  .(10.19) 

In this case, dressed bosons of three kinds have energy value E, as presented in Fig. 10.4. 

DCB
A ===
m

E qqq
p ωωω
2

2

=  (10.20) 

Therefore, the helium atom A in Fig. 10.4 changes to the dressed boson B or C or D at the 

liquid-gas boundary. The group velocity is expressed as 

p
p

∂
∂ω

=  velocitygroop  . (10.21) 

This value is positive for B and D, but is negative for C in Fig. 10.4. Accordingly, the 

velocity direction of dressed boson at B and D is the same direction as its momentum; 

however, the velocity direction at C is the opposite direction of its momentum, as 

portrayed in Fig. 10.3. The momentum magnitudes of the dressed bosons B, C, and D are 

   ωp
0 kB

   p
2 2mkB( )

    f 0( ) kB

    energy kB

   
p 1010h( )

A
B C D

    E kB
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obtained as qA, qB, and qC respectively from Fig. 10.4. The surface between the liquid and 

gas gives the helium atom a force that is vertical to the surface. Therefore, the momentum 

of the direction Z is not conserved, but the parallel momentum to the surface is conserved. 

This conservation yields the following relation. 

DDCCBBAA sin  sin  sin  sin θθθϕ qqqp ===  (10.22) 

We calculate the angles for an example as follows: The example is the case of E=5kB and 

o15=Aϕ . Using energy conservation (10.20), we can obtain the momentum magnitudes 

as follows: 

≈hAp 0.9A
-1

, ≈hBq 0.7A
-1

, ≈hCq 1.5A
-1

, ≈hDq 2.2A
-1 

(10.23) 

where A
-1

 indicates the reciprocal of angstrom. Then, (10.22) gives 

DAADCAACBAAB sinsin  ,sinsin  ,sinsin qpqpqp ϕθϕθϕθ === . (10.24) 

Substitution of     ϕA = 15o  gives the values of angles as follows. 

°≈°≈°≈ 6919 DCB  ,  , θθθ  (10.25) 

 

Quantum evaporation is the reverse process of that discussed above, as 

discovered by Wyatt et al. [24]. In a boundary between liquid and gas, triple refraction 

occurs when a beam of helium atoms has an appropriate energy and direction. Similarly, 

there is a triple reflection of a dressed boson beam at a boundary between the superfluid 

helium and a solid wall. In the triple refraction and triple reflection, the branching ratios 

are calculable from the interaction at the boundary. The branching ratio with a large 

momentum transfer is predicted to be smaller than that with a small momentum transfer. 

More comprehensive investigation is explained in Ref. [29], where the ratios of the 

transmission rates are calculated and the triple reflection is also discussed. 
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XI. Thermodynamic functions 
 

In this chapter, we express various thermodynamic functions in terms of the 

distribution function of dressed bosons in the case of u=Q=0.  

 

Entropy S is obtainable using Eq. (4.1). 

( ) ( ){ }∑ −+++=
p

ppp
11log1log nnnkS B

 (11.1) 

The total energy is expressed as Eq. (2.21) as (a more general case has the energy form 

(2.20)) 

( )∑∑ −+=
qp

qp
p

p qpp
 ,

nnf
N

n
m

E 1
2

2
. (11.2) 

We calculate the free energy F of the present system. 

( )

( ) ( ){ }∑

∑∑
−+++−

−+=

−=

p
ppp

qp
qp

p
p qpp

1

 ,

2

1log1log      

1
2

   

nnnTk

nnf
N

n
m

TSEF

B

 (11.3)
 

Therein the factor ( )11log −+ pn  is expressed as  

( ) ( ) ( )Tkn B
11log μω −=+ −

pp
 , (11.4) 

which is derived from (3.3) or (8.18a) in the case of u=Q=0. Substitution of this equation 

into (11.3) yields the following expression. 
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 (11.5) 

The Gibbs free energy is equal to Nμ . The chemical potential is equal to 0ω  for 

the case of λTT < . Accordingly,  

( ) ( ) ( )∑∑ −−===
t s,

ts
q

q tsq nnf
N

nfTNNG 120ωμ . (11.6) 

Equation (11.5) and (11.6) gives PV as follows. 

( )

( ) ∑∑

∑∑
+++

−−−=

−=−=
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qp
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p qpp
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2  (11.7) 

Consequently, the pressure P is expressed as 

( )

( )
     

11log       

1
2

1
 ,

2

∑∑

∑∑

+++

−−−=

p
pp

p
p

qp
qp

p
p qpp

n
V

n
V

Tk

nnf
NV

n
mV

P

B ω . 
(11.8) 

We can also express the enthalpy H using Eqs. (11.2) and (11.7) as the following. 

( ) ∑∑ ++=+=
p

pp
p

p nnTkPVEH ω1logB
 (11.9) 

Therefore, we obtained various kinds of thermodynamic functions E, F, H, G, S, and P. 

The functions can also be calculated using a different process. As an example, the entropy 

and pressure are calculated using the partial derivatives of the free energy F. The 

calculations are executed in Appendix III. Of course, our results through this different 

process are the same as the previous calculation results in this section. In the calculation 
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of the partial derivative by V, it is noteworthy that the intervals of the momentum-levels 

vary according to the change of the volume. The details are provided in Appendix III.  

If the temperature dependence of the energies does not satisfy the coupled 

nonlinear equations (8.18a) and (8.18b), then two calculation results of one 

thermodynamic function via two different processes are not in mutual agreement. The 

calculation results are incredible when the temperature dependence of elementary 

excitation energy is artificially chosen (where the energy form does not generally satisfy 

the coupled equation). 

Regarding the quantum dynamics of a many-body system, its eigenenergies do 

not include temperature variable. The temperature variable appears in statistical physics. 

The temperature dependence of excitation energy is caused by changing of quasi particle 

distribution via changing of a temperature value. Therefore the variation of excitation 

energy does not occur in linear form of eigenenergy like ∑=
p

ppnE ε  because the 

excitation energy is independent of quasi particle distribution. Consequently it is doubtful 

to apply both use of linear form like ∑=
p

ppnE ε  and use of the temperature dependence 

of pε  simultaneously. If the simultaneous use is employed, two calculation results of one 

thermodynamic function via two different processes are not in mutual agreement as 

mentiond above. However, the methods are used widely to explain the temperature 

dependence of excitation energy. In this article, we have created the more reliable method 

described above. 
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XII. Discussion and Conclusions 
 

A nonlinear mechanism has been examined in the previous chapters for a 

liquid helium system. The total Hamiltonian has a Galilean covariant form. Therefore, 

the diagonalized form of the total Hamiltonian has a nonlinear form with respect to the 

number operators of the dressed bosons. This nonlinearity yields the coupled integral 

equations determining the momentum distribution of dressed bosons. These coupled 

equations have infinitely numerous solutions at a temperature lower than the λ point. The 

nonlinearity produces remarkable properties; for example, two-fluid mechanism, 

logarithmic divergence of specific heat, critical exponent at the λ point, fountain effect, 

quantum evaporation, and so on. 

In this final chapter, we briefly discuss a few phenomena expected from the 

present theory. 

 

 

12.1 Width of elementary excitation energy 

 
The dynamic structure factor ( )ν,qS  has been measured in experiments of 

neutron scattering [25] or laser-light scattering [17] of superfluid helium, where q denotes 
the momentum transfer and ν  is the energy transfer. The function form of ( )ν,qS  has a 

peak for changing of energy transfer ν  under fixing of q. According to Landau’s theory, 

the peak width becomes larger as the temperature approaches the λ point. On the other 

hand, the nonlinear theory predicts that the dynamic structure factor has a delta-function 

peak produced by excitation of a dressed boson inside the Bose condensate to the other 

momentum state. For the momentum transfer q, the dressed boson has the following 

momentum value. 

 

(Initial momentum)=0, (Final momentum)=q (12.1) 

(Energy transfer)= 0ωων −= q  

 (12.2) 
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The Bose condensate disappears at a temperature higher than the λ- point. Therefore, the 
delta-function peak also disappears at λTT > . 

We can consider another excitation of dressed boson outside the Bose 

condensate. In the excitation, the initial momentum and final momentum are expressed as 

follows. 

 

(Initial momentum)=k, (Final momentum)=k+q( 0≠k ) (12.3) 

(Energy transfer)= kqk ωων −= +  (12.4) 

 

The values of momentum k ( 0≠k ) are distributed in a wide region. Therefore, the 

energy transfer has various values. This excitation process produces a broad peak in 
( )ν,qS . Moreover, we can consider the multiple excitations. These excitations also have 

a broad peak. As an example, we present the schematic behavior of ( )ν,qS
 
at the 

momentum transfer of roton minimum rotonqq =  in Fig. 12.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12.1 Schematic diagram of dynamic structure factor predicted using the present 

theory 

ν/νroton 
S(q,ν) 

T 
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As presented in Fig. 12.1, in the nonlinear theory, it is predicted that a sharp peak appears 
at λTT <  , but disappears at λTT > . This sharp peak has an instrumental width. The 

peak energy value of the broad peak differs from that of the sharp peak. The behavior 

depends on the distribution of the dressed bosons. 

We can see precise behaviors of the dynamic structure factor for an extremely 

small momentum transfer in laser light scatterings. Experimental results were obtained 

from many experiments [17]. Four peaks are detected. Two correspond to the first sound 

peak and second sound peak of the Stokes process. The other two peaks belong to the 

anti-Stokes process. The peak width of the second sound is smaller than that of the first 

sound near the λ point [17]. The experimental width of the second sound peak is equal to 

the instrumental linewidth. This fact is a strong impetus to consider the second sound 

peak near the λ point as the excitation mode from the Bose–Einstein condensate. 

This second sound peak had not been detected in any neutron scattering. 

However, the authors surmise that the peak will also be discovered in neutron scatterings 

if the instrumental linewidth becomes narrower and if the neutron scattering is carried out 

in an extremely small momentum transfer near the λ point. (The dynamic structure factor 

( )ν,qS  observed in neutron scatterings should have the same peaks as in Brillouin 

scattering of laser-light.) The relevant details are discussed in references [26] and [27]. 

Brillouin scattering of laser light in superfluid helium has been measured using 

a Fabry-Perot interferometer, as described in the related literature [17]. The other 

techniques are investigated to improve accuracy. Eden and Swinny measured Brillouin 

spectra of xenon gas using an optical beating technique [30]. Sakai and Takagi improved 

the technique and then achieved a small instrumental linewidth [31]. The second sound 

peak width will be much smaller than that in Fabry-Perot measurement if this technique 

is applied to measure the Brillouin spectra of superfluid helium. 

 

12.2 Temperature gap appearing in rotating superfluid helium: 

 (Temperature dependence of critical velocity) 

We discuss the temperature dependence of the critical velocity of a superfluid 

component for the case with zero velocity of normal fluid component. As explained in 

Sec. 5.4, the energy of the dressed boson near the λ point is expressed as in Eq. (5.17). 
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( ) 0
20 Order ωω ++= pcp

N
n

p  (12.5) 

This energy form derives the velocity of the dressed boson for a small momentum near 

the λ point as 

( ) 310 TTc
N
n

p
−∝= λ∂

∂ωp . (12.6) 

This velocity of the dressed boson becomes smaller than Landau’s critical velocity in a 

vicinity of the λ point. Accordingly, the critical velocity of the present theory is given as  

( ) 31TTVC −∝ λ   (near the λ point). (12.7) 

We drew a schematic figure of the critical velocity near the λ point in Fig. 12.2. 

 

 

 

 

 

 

 

 

 

Fig. 12.2 Critical velocity   VC  near the λ point 

 

We next consider the following experiment: We prepare a toroidal vessel filled 

with liquid helium. We rotate the vessel around its axis at a temperature higher than  Tλ . 

The liquid helium rotates with the vessel. The superfluid component of the dressed 
bosons appears at λTT <  if we lower the temperature while holding the angular velocity 

constant. These condensed dressed bosons continue to flow along the toroidal channel. 

The angular velocity of the superfluid component does not change because of the lack of 

friction, even when we stop the vessel. Subsequently, we heat this state of superfluid 

helium. What phenomenon will occur?  

Critical velocity 

 Tλ

    VSuper

  TA
T

A
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Our answer is as follows: In this experiment, we express the superfluid 

velocity by SuperV . This value is smaller than the critical velocity CV  at an adequately 

low temperature as presented in Fig. 12.2. When the temperature value is increased, CV  

varies to be a smaller value. Accordingly the value of SuperV  becomes equal to the 

critical velocity CV  at temperature TA, as seen in Fig. 12.2. Thereafter the 

Bose-condensed dressed bosons transfer to the other momentum states. Then, frictional 

heat is generated and the temperature becomes high to the value TB suddenly. The 

behavior is presented in Fig. 12.3. That is to say, the temperature value jumps from TA to 

TB at time t0. For that reason, a temperature gap appears in the experiment. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 12.3 Time dependence of temperature 

The horizontal axis represents the time value and the vertical axis represents the temperature. 

 

 

We can determine the temperature dependence of the critical velocity near the 

λ point if this phenomenon is discovered. The measurement is repeated for various values 

of SuperV  and the value TA is detected for each value of SuperV . We plot the values (TA, 

TB 
TA 

t0
t

Temperature 
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SuperV ) and then we obtain the temperature dependence of the critical velocity. Related 

details are discussed in a previous report [28]. 

 

 

12.3 A. C. Josephson effect in superfluid helium 

In superfluid helium, the ac Josephson effect might occur. A few groups 

attempted to verify this phenomenon [32]. They consider that the phenomena are 

produced using a phase slip of the vortex. They detected oscillations with very low 

frequencies. However, it is difficult to confirm the relation between the frequency and the 

difference of pressures. 

We examined this phenomenon in reference [33]. The dressed bosons in the 

Bose condensate oscillate between two superfluid heliums connected through a pinhole. 

Then, we can derive the relation as 

 
( )hl π2mgf = ,  (12.8) 

 

where f is the frequency, m is the mass of helium atom, g is the gravitational acceleration, 

  l  is the difference of the heights of the two superfluid heliums, and ( )hπ2  is Planck’s 

constant. This relation is derived from the fact that the energy of the Bose condensed 

dressed boson is equal to the chemical potential (see reference [33]). If experiments are 

executed in a higher pressure difference, high-frequency oscillation might be detected, 

and the relation might be confirmed (approximately 1 MHz per centimeter difference in 

height). 

 

(Conclusion) 

The concept of the dressed boson and nonlinear mechanism of the energy form 

are valuable for investigation of liquid helium. The authors earnestly hope that this new 

viewpoint will be used to improve investigations of superfluid helium and other 

many-boson systems. 
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Appendix I 
 

We summarize the dynamics of a 1D many-boson system described by the 

Hamiltonian: 

 

( )( ) ( )( ) ∑∑ −++=
k,q,p

qp
*

kq
*

kp
p

p
*
p aaaaLgaampH 222 , (A1.1) 

 

where pa  and *
pa  respectively signify the annihilation and creation operators of a 

boson, m is the mass of the boson, and L is the length of the 1D space. The commutation 

relations among these operators are 

 

[ ] qpqp aa ,
*, δ= , [ ] 0, =qp aa , [ ] 0, ** =qp aa . (A1.2)  

 

The Hamiltonian is diagonalized completely by the unitary operator U, which was 

obtained by S. Sasaki and T. Kebukawa [10]. The unitary operator is denoted as UN  for 

the total boson number N. Then, the unitary operator UN  is given as 
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 (A1.3)  

in the case of an infinitely large coupling constant g. 

Therein, ( )∏=
q

qqqqq n
N

!1
321 ,, Lα , (where 0 ! = 1) , (A1.4) 

⎪
⎩

⎪
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⎧

>
=

<−
=

jiL
ji

jiL
kij

 for 
 for 0

 for 

h

h

π

π
, (A1.5) 

h  = (Planck’s constant) / ( )π2  (A1.6) 
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jiij pp −=  (A1.7) 

Nqq,q,q L321α  is the normalization constant of the free state. All the running momenta 

Nqq,q,q L321  and the transfer-momenta ijp  take the values ( )×Lhπ2  integer 

because of the periodic boundary condition as follows:  

 

 ( ) ( ) integer2integer,2 ×=×= LpLq iji hh ππ . (A1.8)  

 

We proved in an earlier paper [10] that this operator U satisfies the unitary relations 

1=UU*  and 1=*UU . The unitary operator U diagonalizes the total Hamiltonian 
(A1.1), and the diagonalized form becomes the following form at an infinitely large limit 

of g (see Ref. [11]):  
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* hh ππ
 . (A1.9) 

 We define the new creation and annihilation operators as 

 

1−= UUaA pp , and 1−= UUaA *
p

*
p , (A1.10) 

 

which represent the operators of the "dressed boson". We can reexpress the total 

Hamiltonian using only the number operators of dressed bosons { }s
*
s AA  as the 

following. 
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 (A1.11) 

For a finite coupling constant, we can expand the diagonalized form of the 
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Hamiltonian into the power series of (1/g). The result up to the second order, is the 

following. 
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Rewriting this expression in a form resembling Eq. (3.18), we obtain  

 

(total energy) = ( ) ( )3
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where the following hold. 
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As might be readily apparent from this expression, all Postulates of Sec. 1 are definitely 

satisfied in the present 1D system. There is an interesting property of the ground-state, 

which is 

 ( ) 1stateGroundstateGround1 0
*
0 =−− AAN , for any value of g, (A1.17) 

( ) 0stateGroundstateGround1 0
*
0 =−− aaN , for ∞→g  ∞→N . (A1.18) 

The dressed bosons with momentum zero occupy 100% in the ground-state, but the 
original free bosons with momentum zero occupy 0% in the ground-state for ∞→g  
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and ∞→N .  
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Appendix II 
 

The left-hand-side of (6.15) can be expanded to the series of t as follows: The 

integral of (6.15) is rewritten as the following. 
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Here, we introduce a new variable y as 

( ) tapy 3=  . (A2.3) 

 

Changing the integral variable p to ( ) tap3 , we obtain the following expressions. 
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We denote the upper limit of y by ys  as 

( ) tapy ss
3=  . (A2.5) 

Equation (A2.4) becomes the following. 
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The upper limit ys  becomes very large when the value of t  is small. Therefore, the 

integration (A2.6) is expanded to the expression shown below. 
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The first integral in the right-hand-side of (A2.7) is 
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The second integral in the right-hand-side of (A2.7) is as shown below. 
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The integral value is expanded to the series of ys  as 
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Substitution of (A2.8) and (A2.10) into (A2.7) yields the following. 



126 

( )
( ) ( )

( ) ( )

( ) ( )
( )

( ) ( )
( ) ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−+

Γ
Γ−Γ

+=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛+

Γ
Γ−Γ

+=

−⎟
⎠
⎞

⎜
⎝
⎛+

Γ
Γ−Γ

+=
+

−−∫

537

2

234
3
1

3
5

3
1

32

31

31

35

332

3132

332

31

3
1

3
5

3
1

32

31

31

35
32

31
32

32

31

3
1

3
5

3
1

32

31

31 0

2
313

3
Order

62
                                

Order
32

1
32

                                

Order
32

1
32

d1

ss

s

ss

s

ss
sp

pa
t

pa
t

a
t

a
p

ap
t

a
t

ap
t

a
t

a
t

a
p

y
a
ty

a
t

a
t

a
ppp

ap  tp
s

 

 (A2.11) 

This equation is equivalent to (6.16). 
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Appendix III 
We have expressed the entropy and the pressure using the number distribution 

of dressed bosons in chapter XI. We will derive the function forms via another process in 

this Appendix. First, we calculate the partial derivative of free energy F (F is expressed in 

(11.3)) by T while fixing the values of N and V, as 
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where we have used the symmetry property of ( ) ( )pqqp −=− ff . The coefficient 

( )11log −+ pn  in the last term of (A3.1) is rewritten using of Eqs. (11.4) and (3.2) as 
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Substitution of (A3.2) into (A3.1) yields the following expression. 
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The second term of the right-hand side of Eq. (A3.3) is rewritten as 
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Therein the total number N is fixed in the partial derivative; therefore this term becomes 

zero. Substitution of (A3.4) into (A3.3) yields 
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Consequently, Eq. (A3.5) reproduces Eq. (11.1). 

 

Next, we take the partial derivative of F by volume V in fixing the values of T 

and N. It is important in this differentiation by V that the level interval of the momenta 

varies along with the change of the volume. At the thermodynamic limit, the summation 

can be replaced with integration. Consequently, we obtain the partial derivative by V for 

the example shown below. 
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Applying the same procedure to the partial derivative of F, we obtain 
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Substitution of (A3.2) into (A3.6) yields 

( )

( ) ( ){ } ( )∑ ∑∑

∑∑

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−++++−

−+=⎟
⎠
⎞

⎜
⎝
⎛

−

p

p

t s,
ts

p
ppp

qp
qp

p
p

ts

qpp

TN

B

TN

V
n

nnf
N

nnn
V

Tk

nnf
NV

n
mVV

F

,
2

1

 ,

2

,

11log1log      

2
2

1

∂
∂

μ

∂
∂

.
(A3.7) 

Therein the last partial derivative must be treated carefully because of the following 

relation:  
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The left-hand side of Eq. (A3.8) is zero because of the fixed value of N. Thus, we obtain 
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Substitution of (A3.9) into (A3.7) yields the following expression. 
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We substitute equation (A3.2), i.e. 

( ) ( ) ( )Tkn B
11log μω −=+ −

pp
 ,

 

into (A3.10); then we obtain the following. 
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Consequently, we obtain the function form of pressure as shown below. 
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This result has the same form as that in (11.8). Therefore, the pressure calculation has 

reproduced the same result via a process that differs from the one presented in chapter XI. 
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Mathematica Program 1 (Determination of nonlinear term) 
This program determines the function forms (2.68a-e) and the perameter values of 
(2.47)-(2.66). 
 

(*  This program determines the non-linear functional form of dressed bosons *) 

(*  ======== constant values ========  *) 

(*  NA:Avogadro number   *) 

NA=6.0221367*10^23 

(*  hbar:Planck's constant/(2 Pi)   *) 

hbar=6.6260755*10^-34/(2*Pi) 

(*  kB:Boltzmann constant   *) 

kB=1.380658*10^-23 

(* m=mass of He atom, unit: kg  *) 

m=(4.002602/(6.0221367*10^23))*10^-3 

(* roh= mass density of liquid helium, 

         at saturated vapor pressure and 1.1Kelvin unit: kg/m^3  *) 

roh=145.5 

(* numberDensity: number density of liquid helium unit: 1/m^3   *) 

numberDensity=roh/m 

(* energyData is the excitation energy data by neutron scatterings.  \ 

{(momentum/hbar)*10^-10, data=energy/Boltzmann constant}  namely,  

  unit {angstrom^-1,Kelvin} *) 

energyData={{0.0894,1.6131},{0.0946,1.7175},{0.1150,2.1005},{0.1210, 

      2.2514},{0.1390,2.6111},{0.1430,2.6343},{0.1594,2.9709},{0.1767, 

      3.2958},{0.1818,3.3887},{0.1938,3.6324},{0.1990,3.7368},{0.2000, 

      3.7000},{0.2110,3.9689},{0.2162,4.0850},{0.2278,4.2822},{0.2329, 

      4.3867},{0.2445,4.6072},{0.2495,4.7116},{0.2611,4.9205},{0.2776, 

      5.2339},{0.2825,5.3267},{0.2938,5.5240},{0.2988,5.6284},{0.3000, 

      5.5700},{0.3000,5.6500},{0.4000,7.4000},{0.4036,7.6361},{0.4082, 

      7.7173},{0.4187,7.9146},{0.4232,7.9958},{0.4355,8.1815},{0.4498, 

      8.3788},{0.4643,8.6457},{0.4785,8.8662},{0.4926,9.1099},{0.5000, 

      9.1500},{0.5605,10.1544},{0.6000,10.7500},{0.6243,11.0015},{0.6965, 

      11.8023},{0.7000,11.7500},{0.7649,12.4173},{0.8000,12.7200},{0.8000, 

      12.6500},{0.8300,12.8815},{0.8925,13.2297},{0.9000,13.1500},{1.0000, 

      13.5500},{1.1000,13.8000},{1.1300,13.8200},{1.2000,13.7500},{1.3000, 

      13.5000},{1.4000,12.9500},{1.5000,12.2000},{1.6000,11.2000},{1.7000, 

      10.2500},{1.8000,9.2500},{1.8800,8.6940},{1.8900,8.6570},{1.9000, 

      8.7000},{1.9000,8.6540},{1.9000,8.6340},{1.9100,8.6350},{1.9100, 
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      8.6160},{1.9150,8.6110},{1.9200,8.6260},{1.9200,8.6100},{1.9250, 

      8.6060},{1.9300,8.6260},{1.9300,8.6060},{1.9350,8.6300},{1.9350, 

      8.6120},{1.9400,8.6300},{1.9400,8.6090},{1.9500,8.6500},{1.9500, 

      8.6330},{1.9600,8.6830},{1.9600,8.6720},{1.9700,8.6950},{2.0000, 

      8.9500},{2.1000,10.0000},{2.2000,11.6500},{2.3000,13.5500},{2.4000, 

      15.5000},{2.5000,16.4500},{2.6000,17.0000},{2.7000,17.3000},{2.8000, 

      17.5000},{2.9000,17.7000},{3.0000,17.8500},{3.1000,18.0000},{3.2000, 

      18.1500},{3.3000,18.3000},{3.4000,18.3500},{3.5000,18.4000},{3.6000, 

      18.4500}} 

(* We use phonon velocity value 238 which is the experimental value at \ 

0.2-1.0K. *) 

(* We use roton minimum energy = 

    8.61*kB  at p/(10^10*hbar) = 1.92 from experimental data   *)  

(* eData is the data for high momentum (momentum/(hbar*10^10))>2.4   *)  

eData={}; Do[ 

  If[energyData[[n,1]]>2.4,eData=Join[eData,{energyData[[n]]}]],{n,1, 

    Length[energyData]}] 

eData 

(* best fit curve of the excitation energy  

      for momentum p=>2.55*10^10*hbar        *) 

func=Fit[eData,{1,kkk,kkk^2},kkk] 

ggg=ListPlot[eData,PlotStyle\[Rule]{PointSize[0.015],RGBColor[1,0,0]}] 

gg=Plot[func,{kkk,2.5,3.6}] 

Show[ggg,gg] 

g=ListPlot[energyData,PlotStyle\[Rule]{PointSize[0.015],RGBColor[1,0,0]}] 

(* ==== elementary excitation energy near zero Kelvin  *) 

(*  velocity of first sound =c1=238 :unit:[m/s] *) 

(*  e0phonon is the phonon energy at zero Kelvin :unit:J,   

  where p is momentum. 

      This function is equal to (2.42) in chaper II of my book  *) 

e0phonon[p_]:=c1*p 

c1=238. 

(*  dPhonon is the derivative of phonon energy by momentum   *) 

dPhonon[p_]:=c1 

(*  maxon energy at zero Kelvin :unit:J. 

            This function is equal to (2.43) in chaper II of my book  *) 

e0maxon[p_]:= 

  maxon1*kB+(maxon2+maxon3*(p-pMax)+maxon4*(p-pMax)^2+ 
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          maxon5*(p-pMax)^3)(p-pMax)^2 

maxon1=13.82;pMax=1.13*10^10*hbar 

(* Maximum energy data in maxon region is 13.82 at pMax= 

    1.13. Therefore we use the data in this program. *) 

dMaxon[p_]:=(2*maxon2+3*maxon3*(p-pMax)+4*maxon4*(p-pMax)^2+5* 

          maxon5*(p-pMax)^3)(p-pMax) 

(*  roton energy at zero Kelvin :unit:J. 

            This function is equal to (2.44) in chaper II of my book  *) 

e0roton[p_]:=fDelta0*kB+1/(2*fM0*m)*(p-fQ0*10^10*hbar)^2 

fDelta0=8.61;fQ0=1.92;fM0=0.153 

dRoton[p_]:=1/(fM0*m)*(p-fQ0*10^10*hbar) 

(* e0high1 is the excitation energy for higher region 1 

      p3<=p<p4. 

        This function is equal to (2.45) in chaper II of my book *) 

e0high1[p_]:=hh+c1*(p-p3)+aaa*(p-p3)^2+bbb*(p-p3)^3 

dHigh1[p_]:=c1+2*aaa*(p-p3)+3*bbb*(p-p3)^2 

(* hh is the energy at p=p3 *) 

(* higher energy region 2 

    This function is equal to (2.46) in chaper II of my book *) 

e0high2[p_]:=kB*func/.{kkk\[Rule]p/(10^10*hbar)} 

(* p1 is the momentum of upper bound for phonon : its momentum unit:kg m/sec *) 

(* p2 is the momentum of lower bound for roton : its momentum unit:kg m/sec *) 

(* p3 is the momentum of upper bound for roton : its momentum unit:kg m/sec, 

  p3 is determined by equality of derivative coefficient at the boundary \ 

between roton and higher region *) 

(* p4 is the momentum of upper bound for higher region 1 :  

    its momentum unit:kg m/sec  *) 

p1=0.5*10^10*hbar;p2=1.78*10^10*hbar;p4=2.55*10^10*hbar; 

(* Solve the parameters in order to connect the excitation energy functions \ 

in three regions. *) 

sol=Solve[{e0maxon[p1]==e0phonon[p1],dMaxon[p1]\[Equal]dPhonon[p1], 

      e0maxon[p2]==e0roton[p2],dMaxon[p2]\[Equal]dRoton[p2]},{maxon2,maxon3, 

      maxon4,maxon5}] 

maxon2=maxon2/.sol[[1,1]] 

maxon3=maxon3/.sol[[1,2]] 

maxon4=maxon4/.sol[[1,3]] 

maxon5=maxon5/.sol[[1,4]] 

(* Solve the parameter p3 in order to connect the excitation energy at the \ 
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boundary between roton and higer region. *) 

sol=Solve[dRoton[p3]\[Equal]c1,p3] 

p3=p3/.sol[[1,1]] 

(* Solve the parameter hh in order to connect the excitation energy \ 

continuously *) 

sol=Solve[e0roton[p3]\[Equal]hh,hh] 

hh=hh/.sol[[1,1]] 

D[e0high2[p],p]/.p\[Rule]p4 

(* Solve the parameters aaa and bbb in order to connect the excitation energy \ 

at p=p4 continuously *) 

sol=Solve[{e0high1[p4]\[Equal]e0high2[p4], 

      dHigh1[p4]\[Equal]D[e0high2[p],p]/.p\[Rule]p4},{aaa,bbb}] 

aaa=aaa/.sol[[1,1]];bbb=bbb/.sol[[1,2]] 

(* We define new function e0[p]. 

        This function is equal to the function defined by (2.42)-(2.46) in \ 

chapter II of my book *) 

e0[p_]:=e0phonon[p]/;0<=p<p1 

e0[p_]:=e0maxon[p]/;p1<=p<p2 

e0[p_]:=e0roton[p]/;p2<=p<p3 

e0[p_]:=e0high1[p]/;p3<=p<p4 

e0[p_]:=e0high2[p]/;p4<=p 

(* We will confirm that the function of func is identical to High2  *) 

func 

(*  The function High2[k] is equal to (2.46) in chaper II of my book,  

  but the variable k is different from p  *) 

High2[k_]:=dd0+dd1*(k-p4/(10^10*hbar))+dd2*(k-p4/(10^10*hbar))^2 

dd0=func/.kkk->p4/(10^10*hbar) 

dd1=D[func,kkk]/.kkk->p4/(10^10*hbar) 

dd2=D[func,{kkk,2}]/2 

(* test of  (HIgh2=func)      *) 

{High2[2.6],func/.kkk\[Rule]2.6} 

{High2[2.9],func/.kkk\[Rule]2.9} 

(* We write parameter values (2.47)-(2.66) in chapter II of Sasaki's book.   

        The parameters in Sasaki's book are related by the following equation \ 

*) 

(* c1=c1, Delta=fDelta0*kB; p0=fQ0*10^10*hbar; r=fM0 *) 

c1 

fDelta0 
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fQ0 

fM0 

(* g0=maxon1 ; pM=pMax  *) 

maxon1 

pMax/(10^10*hbar) 

(* d0=dd0*kB ; d1=dd1*kB/(10^10*hbar) ; d2=dd2*kB/(10^10*hbar)^2  *) 

dd0 

dd1 

dd2 

(* p1=p1 ; p2=p2 ; p3=p3 ; p4=p4   *) 

p1/(10^10*hbar) 

p2/(10^10*hbar) 

p3/(10^10*hbar) 

p4/(10^10*hbar) 

(* b0=hh, g2=magnon2/kB , g3=magnon3/kB , g4=magnon4/kB, g5=magnon5/kB,  

  b2=aaa, b3=bbb  *) 

hh/kB 

maxon2*(10^10*hbar)^2/kB 

maxon3*(10^10*hbar)^3/kB 

maxon4*(10^10*hbar)^4/kB 

maxon5*(10^10*hbar)^5/kB 

aaa*(10^10*hbar)^2/kB 

bbb*(10^10*hbar)^3/kB 

(* We show that the experimental data of elementary excitation energy are \ 

agreement with the function e0  *) 

ge0=Plot[e0[k*10^10*hbar]/kB,{k,0,3.6}] 

Show[g,ge0] 

(* We show the behavior of elementary excitation energy in the region of -3.6< 

    k<3.6  *) 

ge0=Plot[e0[Abs[k]*10^10*hbar]/kB,{k,-3.6,3.6}] 

 

 

 

Mathematica Program 2 (Approxmation in second order) 
This program determines the kernel function and the temperature dependence of the 
dressed boson excitation energy from Bose-Einstein condensate. The kernel values and 
the energy values are saved in the files “kernelListNonLinearTheory”, 
“e1ListNonLinearTheory” and “e2ListNonLinearTheory”. Therefore further calculations 
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can start from reading these three files.  
 

(*  This program is used the parameters which are determined by experimental \ 

data at 1.1K. The values are shown in (2.47)-(2.66) of this book.  *) 

(* These parameters are almost equal to ones of Bendt et al.  

      If we change the fuctional forms in phonon region and high \ 

momentumregion 2,   

  we can obtain more sutable parameters fitting to experimental data of \ 

elementary excitation energy *) 

(* Running time of this program is about 3 hours at first running. 

       This program makes the three files "kernelListNonLinearTheory", \ 

"e1ListNonLinearTheory", "e2ListNonLinearTheory". *) 

(*  ======== constant values ========  *) 

(*  NA:Avogadro number   *) 

NA=6.0221367*10^23 

(*  hbar:Planck's constant/(2 Pi)   *) 

hbar=6.6260755*10^-34/(2*Pi) 

(*  kB:Boltzmann constant   *) 

kB=1.380658*10^-23 

(* m=mass of He atom, unit: kg  *) 

m=(4.002602/(6.0221367*10^23))*10^-3 

(* roh= mass density of liquid helium, 

         at saturated vapor pressure and 1.1Kelvin unit: kg/m^3  *) 

roh=145.5 

(* numberDensity: number density of liquid helium unit: 1/m^3   *) 

numberDensity=roh/m 

(* We set the function of excitation energy *) 

(* Parameter values of (2.47)-(2.66)  *) 

c1=238. 

delta=8.61*kB 

p0=1.92*10^10*hbar 

r=0.153 

g0=13.82 

pM=1.13*10^10*hbar 

d0=16.7526*kB 

d1=3.22877*kB/(10^10*hbar) 

d2=-1.56968*kB/(10^10*hbar)^2 

p1=0.5*10^10*hbar 
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p2=1.78*10^10*hbar 

p3=2.1495*10^10*hbar 

p4=2.55*10^10*hbar 

b0=10.696*kB 

b2=14.4344*kB/(10^10*hbar)^2 

b3=-55.0958*kB/(10^10*hbar)^3 

g2=-10.8805/(10^10*hbar)^2 

g3=-1.81497/(10^10*hbar)^3 

g4=-0.966809/(10^10*hbar)^4 

g5=7.19044/(10^10*hbar)^5 

(* We define new function e0 *) 

e0[p_]:=c1*p/;0<=p<p1 

e0[p_]:=kB*(g0+g2*(p-pM)^2+g3*(p-pM)^3+g4*(p-pM)^4+g5*(p-pM)^5) /;p1<=p<p2 

e0[p_]:=delta+(1/(2*m*r))*(p-p0)^2 /;p2<=p<p3 

e0[p_]:=b0+c1*(p-p3)+b2*(p-p3)^2+b3*(p-p3)^3 /;p3<=p<p4 

e0[p_]:=d0+d1*(p-p4)+d2*(p-p4)^2 /;p4<=p 

ge0=Plot[e0[k*10^10*hbar]/kB,{k,0,3.6}] 

energyData={{0.0894,1.6131},{0.0946,1.7175},{0.1150,2.1005},{0.1210, 

      2.2514},{0.1390,2.6111},{0.1430,2.6343},{0.1594,2.9709},{0.1767, 

      3.2958},{0.1818,3.3887},{0.1938,3.6324},{0.1990,3.7368},{0.2000, 

      3.7000},{0.2110,3.9689},{0.2162,4.0850},{0.2278,4.2822},{0.2329, 

      4.3867},{0.2445,4.6072},{0.2495,4.7116},{0.2611,4.9205},{0.2776, 

      5.2339},{0.2825,5.3267},{0.2938,5.5240},{0.2988,5.6284},{0.3000, 

      5.5700},{0.3000,5.6500},{0.4000,7.4000},{0.4036,7.6361},{0.4082, 

      7.7173},{0.4187,7.9146},{0.4232,7.9958},{0.4355,8.1815},{0.4498, 

      8.3788},{0.4643,8.6457},{0.4785,8.8662},{0.4926,9.1099},{0.5000, 

      9.1500},{0.5605,10.1544},{0.6000,10.7500},{0.6243,11.0015},{0.6965, 

      11.8023},{0.7000,11.7500},{0.7649,12.4173},{0.8000,12.7200},{0.8000, 

      12.6500},{0.8300,12.8815},{0.8925,13.2297},{0.9000,13.1500},{1.0000, 

      13.5500},{1.1000,13.8000},{1.1300,13.8200},{1.2000,13.7500},{1.3000, 

      13.5000},{1.4000,12.9500},{1.5000,12.2000},{1.6000,11.2000},{1.7000, 

      10.2500},{1.8000,9.2500},{1.8800,8.6940},{1.8900,8.6570},{1.9000, 

      8.7000},{1.9000,8.6540},{1.9000,8.6340},{1.9100,8.6350},{1.9100, 

      8.6160},{1.9150,8.6110},{1.9200,8.6260},{1.9200,8.6100},{1.9250, 

      8.6060},{1.9300,8.6260},{1.9300,8.6060},{1.9350,8.6300},{1.9350, 

      8.6120},{1.9400,8.6300},{1.9400,8.6090},{1.9500,8.6500},{1.9500, 

      8.6330},{1.9600,8.6830},{1.9600,8.6720},{1.9700,8.6950},{2.0000, 

      8.9500},{2.1000,10.0000},{2.2000,11.6500},{2.3000,13.5500},{2.4000, 
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      15.5000},{2.5000,16.4500},{2.6000,17.0000},{2.7000,17.3000},{2.8000, 

      17.5000},{2.9000,17.7000},{3.0000,17.8500},{3.1000,18.0000},{3.2000, 

      18.1500},{3.3000,18.3000},{3.4000,18.3500},{3.5000,18.4000},{3.6000, 

      18.4500}} 

g=ListPlot[energyData,PlotStyle\[Rule]{PointSize[0.015],RGBColor[1,0,0]}] 

Show[g,ge0] 

(*   function kernel is defined as below    *) 

kernel[p_,q_]:= 

  NIntegrate[e0[Sqrt[Abs[p^2-2*p*q*t+q^2]]],{t,-1,1}]-2*e0[p]-2*e0[q]/; 

    p≠0||q≠0 

kernel[p_,q_]:=0/;p==0 && q==0 

(*   Approximation of function kernel is defined as below    *) 

(* Next command should be done at the first execution of program in order to \ 

make the file "kernelListNonLinearTheory".  

      Making of the file needs a long time. Therefore,  

  we should read the file in the second execution.   *) 

kList=Table[{x,y,kernel[x*10^10*hbar,y*10^10*hbar]},{x,0,3.62,0.01},{y,0,3.62, 

        0.01}]>>"kernelListNonLinearTheory" 

OpenRead["kernelListNonLinearTheory"];kList= 

  Get["kernelListNonLinearTheory"];Close["kernelListNonLinearTheory"] 

kApp1[p_,q_]:= 

  z/.{x=p/(10^10*hbar);y=q/(10^10*hbar);nx=IntegerPart[x*100]+1; 

      ny=IntegerPart[y*100]+1;a00=kList[[nx,ny,3]];a10=kList[[nx+1,ny,3]]; 

      a01=kList[[nx,ny+1,3]];a11=kList[[nx+1,ny+1,3]]; 

      z->a11*(100*x-nx+1)*(100*y-ny+1)+a10*(100*x-nx+1)*(1-100*y+ny-1)+ 

          a01*(1-100*x+nx-1)*(100*y-ny+1)+a00*(1-100*x+nx-1)*(1-100*y+ny-1)} 

kApp3[p_,q_]:= 

  z/.{x=p/(10^10*hbar);y=q/(10^10*hbar);nx=IntegerPart[x*100]; 

      ny=IntegerPart[y*100];tx=100*x-nx-0.5;ty=100*y-ny-0.5; 

      zz1=kList[[nx,ny,3]];zz2=kList[[nx+1,ny,3]];zz3=kList[[nx+2,ny,3]]; 

      zz4=kList[[nx+3,ny,3]]; 

      z1=((zz2+zz3)/2-(zz1-zz2-zz3+zz4)/ 

                16)+((zz3-zz2)-(zz4-zz1-3*zz3+3*zz2)/24)* 

            tx+(zz1-zz2-zz3+zz4)/4*tx^2+(zz4-zz1-3*zz3+3*zz2)/6*tx^3; 

      zz1=kList[[nx,ny+1,3]];zz2=kList[[nx+1,ny+1,3]]; 

      zz3=kList[[nx+2,ny+1,3]];zz4=kList[[nx+3,ny+1,3]]; 

      z2=((zz2+zz3)/2-(zz1-zz2-zz3+zz4)/ 

                16)+((zz3-zz2)-(zz4-zz1-3*zz3+3*zz2)/24)* 
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            tx+(zz1-zz2-zz3+zz4)/4*tx^2+(zz4-zz1-3*zz3+3*zz2)/6*tx^3; 

      zz1=kList[[nx,ny+2,3]];zz2=kList[[nx+1,ny+2,3]]; 

      zz3=kList[[nx+2,ny+2,3]];zz4=kList[[nx+3,ny+2,3]]; 

      z3=((zz2+zz3)/2-(zz1-zz2-zz3+zz4)/ 

                16)+((zz3-zz2)-(zz4-zz1-3*zz3+3*zz2)/24)* 

            tx+(zz1-zz2-zz3+zz4)/4*tx^2+(zz4-zz1-3*zz3+3*zz2)/6*tx^3; 

      zz1=kList[[nx,ny+3,3]];zz2=kList[[nx+1,ny+3,3]]; 

      zz3=kList[[nx+2,ny+3,3]];zz4=kList[[nx+3,ny+3,3]]; 

      z4=((zz2+zz3)/2-(zz1-zz2-zz3+zz4)/ 

                16)+((zz3-zz2)-(zz4-zz1-3*zz3+3*zz2)/24)* 

            tx+(zz1-zz2-zz3+zz4)/4*tx^2+(zz4-zz1-3*zz3+3*zz2)/6*tx^3; 

      z->((z2+z3)/2-(z1-z2-z3+z4)/16)+((z3-z2)-(z4-z1-3*z3+3*z2)/24)* 

            ty+(z1-z2-z3+z4)/4*ty^2+(z4-z1-3*z3+3*z2)/6*ty^3} 

kApprox[p_,q_]:=kApp1[p,q]/;p<=0.01*10^10*hbar || q<=0.01*10^10*hbar  

kApprox[p_,q_]:= 

  kApp3[p,q]/; 

    0.01*10^10*hbar<p<=3.6*10^10*hbar && 0.01*10^10*hbar<q<=3.6*10^10*hbar  

(* ======= test of approximation ========  *) 

pp=1.135*10^10*hbar;qq=1.875*10^10*hbar;{kernel[pp,qq], 

  kApprox[pp,qq],(kApprox[pp,qq]-kernel[pp,qq])/kernel[pp,qq]} 

pp=0.005*10^10*hbar;qq=1.875*10^10*hbar;{kernel[pp,qq], 

  kApprox[pp,qq],(kApprox[pp,qq]-kernel[pp,qq])/kernel[pp,qq]} 

(* result 

    kApp1 is worse function than kApp3,  

  and therefore kApprox has larger error for p<=0.01*10^10*hbar ||  

    q<=0.01*10^10*hbar than in the other region   *) 

pp=1.555*10^10*hbar;qq=1.555*10^10*hbar;t1=TimeUsed[];Do[ 

  kernel[pp,qq],{pp,1.556*10^10*hbar,1.566*10^10*hbar,0.0001*10^10*hbar}];t2= 

  TimeUsed[];Do[ 

  kApprox[pp,qq],{pp,1.556*10^10*hbar,1.566*10^10*hbar,0.0001*10^10*hbar}];t3= 

  TimeUsed[];{t2-t1,t3-t2} 

(* This result shows that the approximation is precise for almost all region,  

  and is more speedy program *) 

(* ======= end of approximation test ========  *) 

(* nnn[q_,T_] is the dreesed boson number in zeroth order aproximation *) 

nnn[q_,T_]:=1/(Exp[e0[q]/(kB*T)]-0.9999999) 

(* Divergence occurs because of numerical evaluation error,  

  when denominator is extremely small. Therefore,  
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  we change the value 1 to 0.9999999 ; 

  Deviation caused by this change is negligibly small  *) 

(* excitation energy of first order *) 

e1[p_,T_]:=e0[p]+r1[p,T]/;p≠0 && T≠0 

e1[p_,T_]:=e0[p]/; p≠0 && T==0 

e1[p_,T_]:=0/;p==0 

(* recidual part of energy: r1 *) 

r1[p_,T_]:=(2Pi/(numberDensity(2Pi*hbar)^3))* 

    NIntegrate[kApprox[p,q]*nnn[q,T]*q^2,{q,0,3.6*10^10*hbar}, 

      PrecisionGoal\[Rule]4] 

(* The integral region is 0\[LessEqual]q\[LessEqual]3.6*10^10*hbar,  

  and the contribution from q> 

    3.6*10^10* 

      hbar is negligibly small.  

        Therefore we have neglected the higher momentum region. *) 

(* ======== approximation of e1[p,T] ========= *) 

(* Next command should be done at the first execution of program in order to \ 

make the file "e1ListNonLinearTheory". Making of the file needs a long time.  

      Therefore, we should read the file in the second execution.   *) 

e1List=Table[{k,T,e1[k*10^10*hbar,T]},{k,0,3.6,0.01},{T,0,2.4, 

        0.1}]>>"e1ListNonLinearTheory" 

OpenRead["e1ListNonLinearTheory"];e1List= 

  Get["e1ListNonLinearTheory"];Close["e1ListNonLinearTheory"] 

e1App1[p_,T_]:= 

  z/.{x=p/(10^10*hbar);y=T;nx=IntegerPart[x*100];ny=IntegerPart[y*10]; 

      tx=x*100-nx;ty=y*10-ny;zz1=e1List[[nx+1,ny+1,3]]; 

      zz2=e1List[[nx+2,ny+1,3]]; 

      z1=tx*zz2+(1-tx)*zz1; 

      zz1=e1List[[nx+1,ny+2,3]];zz2=e1List[[nx+2,ny+2,3]]; 

      z2=tx*zz2+(1-tx)*zz1;z\[Rule]ty*z2+(1-ty)*z1} 

e1App3[p_,T_]:=z/.{x=p/(10^10*hbar);y=T;nx=IntegerPart[x*100]; 

      ny=IntegerPart[y*10];tx=100*x-nx-0.5;ty=10*y-ny-0.5; 

      zz1=e1List[[nx,ny,3]];zz2=e1List[[nx+1,ny,3]];zz3=e1List[[nx+2,ny,3]]; 

      zz4=e1List[[nx+3,ny,3]]; 

      z1=((zz2+zz3)/2-(zz1-zz2-zz3+zz4)/ 

                16)+((zz3-zz2)-(zz4-zz1-3*zz3+3*zz2)/24)* 

            tx+(zz1-zz2-zz3+zz4)/4*tx^2+(zz4-zz1-3*zz3+3*zz2)/6*tx^3; 

      zz1=e1List[[nx,ny+1,3]];zz2=e1List[[nx+1,ny+1,3]]; 
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      zz3=e1List[[nx+2,ny+1,3]]; 

      zz4=e1List[[nx+3,ny+1,3]]; 

      z2=((zz2+zz3)/2-(zz1-zz2-zz3+zz4)/ 

                16)+((zz3-zz2)-(zz4-zz1-3*zz3+3*zz2)/24)* 

            tx+(zz1-zz2-zz3+zz4)/4*tx^2+(zz4-zz1-3*zz3+3*zz2)/6*tx^3; 

      zz1=e1List[[nx,ny+2,3]];zz2=e1List[[nx+1,ny+2,3]]; 

      zz3=e1List[[nx+2,ny+2,3]];zz4=e1List[[nx+3,ny+2,3]]; 

      z3=((zz2+zz3)/2-(zz1-zz2-zz3+zz4)/ 

                16)+((zz3-zz2)-(zz4-zz1-3*zz3+3*zz2)/24)* 

            tx+(zz1-zz2-zz3+zz4)/4*tx^2+(zz4-zz1-3*zz3+3*zz2)/6*tx^3; 

      zz1=e1List[[nx,ny+3,3]];zz2=e1List[[nx+1,ny+3,3]]; 

      zz3=e1List[[nx+2,ny+3,3]];zz4=e1List[[nx+3,ny+3,3]]; 

      z4=((zz2+zz3)/2-(zz1-zz2-zz3+zz4)/ 

                16)+((zz3-zz2)-(zz4-zz1-3*zz3+3*zz2)/24)* 

            tx+(zz1-zz2-zz3+zz4)/4*tx^2+(zz4-zz1-3*zz3+3*zz2)/6*tx^3; 

      z\[Rule]((z2+z3)/2-(z1-z2-z3+z4)/16)+((z3-z2)-(z4-z1-3*z3+3*z2)/24)* 

            ty+(z1-z2-z3+z4)/4*ty^2+(z4-z1-3*z3+3*z2)/6*ty^3} 

e1Approx[p_,T_]:=e1[p,T]/;p==3.6*10^10*hbar 

e1Approx[p_,T_]:= 

  e1App1[p,T]/; 

    0\[LessEqual]p\[LessEqual]0.01*10^10*hbar ||  

      3.59*10^10*hbar\[LessEqual]p<3.6*10^10*hbar || T\[LessEqual]0.1 

e1Approx[p_,T_]:= 

  e1App3[p,T]/;0.01*10^10*hbar<p<3.59*10^10*hbar && 0.1<T\[LessEqual]2.2 

(* ======= test of approximation for e1 =======  *) 

T=1.85;pp=1.155*10^10*hbar;{e1[pp,T], 

  e1Approx[pp,T],(e1Approx[pp,T]-e1[pp,T])/e1[pp,T]} 

T=1.85;pp=0.005*10^10*hbar;{e1[pp,T], 

  e1Approx[pp,T],(e1Approx[pp,T]-e1[pp,T])/e1[pp,T]} 

T=1.85;pp=1.155*10^10*hbar;t1=TimeUsed[];Do[ 

  e1[pp,T],{pp,1.556*10^10*hbar,1.566*10^10*hbar,0.0001*10^10*hbar}];t2= 

  TimeUsed[];Do[ 

  e1Approx[pp,T],{pp,1.556*10^10*hbar,1.566*10^10*hbar,0.0001*10^10*hbar}];t3= 

  TimeUsed[];{t2-t1,t3-t2} 

(* This result shows that the approximation is precise for all region,  

  and is more speedy program *) 

(* ===\[Equal] end of test ===========  *) 

(* ------------------------------- *) 
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(* excitation energy of second order *) 

(* n1[q_,T_] is the dreesed boson number in first order aproximation *) 

n1[q_,T_]:=1/(Exp[e1Approx[q,T]/(kB*T)]-0.9999999) 

e2[p_,T_]:=e0[p]+r2[p,T]/;p≠0 && T≠0 

e2[p_,T_]:=e0[p]/; p≠0 && T==0 

e2[p_,T_]:=0/;p==0 

(* recidual part of energy: r2 *) 

r2[p_,T_]:=(2Pi/(numberDensity(2Pi*hbar)^3))* 

    NIntegrate[kApprox[p,q]*n1[q,T]*q^2,{q,0,3.6*10^10*hbar}, 

      PrecisionGoal\[Rule]4] 

(* The integral region is 0\[LessEqual]q\[LessEqual]3.6*10^10*hbar,  

  and the contribution from q> 

    3.6*10^10* 

      hbar is negligibly small.  

        Therefore we have neglected the higher momentum region. *) 

(* ======== approximation of e2[p,T] ========= *) 

(* Next command should be done at the first execution of program in order to \ 

make the file "e2ListNonLinearTheory". Making of the file needs a long time.  

      Therefore, we should read the file in the second execution.   *) 

e2List=Table[{k,T,e2[k*10^10*hbar,T]},{k,0,3.6,0.01},{T,0,2.2, 

        0.1}]>>"e2ListNonLinearTheory" 

OpenRead["e2ListNonLinearTheory"];e2List= 

  Get["e2ListNonLinearTheory"];Close["e2ListNonLinearTheory"] 

e2App1[p_,T_]:= 

  z/.{x=p/(10^10*hbar);y=T;nx=IntegerPart[x*100];ny=IntegerPart[y*10]; 

      tx=x*100-nx;ty=y*10-ny;zz1=e2List[[nx+1,ny+1,3]]; 

      zz2=e2List[[nx+2,ny+1,3]]; 

      z1=tx*zz2+(1-tx)*zz1; 

      zz1=e2List[[nx+1,ny+2,3]];zz2=e2List[[nx+2,ny+2,3]]; 

      z2=tx*zz2+(1-tx)*zz1;z\[Rule]ty*z2+(1-ty)*z1} 

e2App3[p_,T_]:=z/.{x=p/(10^10*hbar);y=T;nx=IntegerPart[x*100]; 

      ny=IntegerPart[y*10];tx=100*x-nx-0.5;ty=10*y-ny-0.5; 

      zz1=e2List[[nx,ny,3]];zz2=e2List[[nx+1,ny,3]];zz3=e2List[[nx+2,ny,3]]; 

      zz4=e2List[[nx+3,ny,3]]; 

      z1=((zz2+zz3)/2-(zz1-zz2-zz3+zz4)/ 

                16)+((zz3-zz2)-(zz4-zz1-3*zz3+3*zz2)/24)* 

            tx+(zz1-zz2-zz3+zz4)/4*tx^2+(zz4-zz1-3*zz3+3*zz2)/6*tx^3; 

      zz1=e2List[[nx,ny+1,3]];zz2=e2List[[nx+1,ny+1,3]]; 
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      zz3=e2List[[nx+2,ny+1,3]]; 

      zz4=e2List[[nx+3,ny+1,3]]; 

      z2=((zz2+zz3)/2-(zz1-zz2-zz3+zz4)/ 

                16)+((zz3-zz2)-(zz4-zz1-3*zz3+3*zz2)/24)* 

            tx+(zz1-zz2-zz3+zz4)/4*tx^2+(zz4-zz1-3*zz3+3*zz2)/6*tx^3; 

      zz1=e2List[[nx,ny+2,3]];zz2=e2List[[nx+1,ny+2,3]]; 

      zz3=e2List[[nx+2,ny+2,3]];zz4=e2List[[nx+3,ny+2,3]]; 

      z3=((zz2+zz3)/2-(zz1-zz2-zz3+zz4)/ 

                16)+((zz3-zz2)-(zz4-zz1-3*zz3+3*zz2)/24)* 

            tx+(zz1-zz2-zz3+zz4)/4*tx^2+(zz4-zz1-3*zz3+3*zz2)/6*tx^3; 

      zz1=e2List[[nx,ny+3,3]];zz2=e2List[[nx+1,ny+3,3]]; 

      zz3=e2List[[nx+2,ny+3,3]];zz4=e2List[[nx+3,ny+3,3]]; 

      z4=((zz2+zz3)/2-(zz1-zz2-zz3+zz4)/ 

                16)+((zz3-zz2)-(zz4-zz1-3*zz3+3*zz2)/24)* 

            tx+(zz1-zz2-zz3+zz4)/4*tx^2+(zz4-zz1-3*zz3+3*zz2)/6*tx^3; 

      z\[Rule]((z2+z3)/2-(z1-z2-z3+z4)/16)+((z3-z2)-(z4-z1-3*z3+3*z2)/24)* 

            ty+(z1-z2-z3+z4)/4*ty^2+(z4-z1-3*z3+3*z2)/6*ty^3} 

e2Approx[p_,T_]:=e0[p]/; T\[Equal]0.0 

e2Approx[p_,T_]:=e2[p,T]/;p==3.6*10^10*hbar || T\[Equal]2.2 

e2Approx[p_,T_]:= 

  e2App1[p,T]/; 

    0\[LessEqual]p\[LessEqual]0.01*10^10*hbar ||  

      3.59*10^10*hbar\[LessEqual]p<3.6*10^10*hbar ||0< T\[LessEqual]0.1||   

      2.1\[LessEqual]T<2.2 

e2Approx[p_,T_]:=e2App3[p,T]/;0.01*10^10*hbar<p<3.59*10^10*hbar && 0.1<T<2.1 

(* ======= test of approximation for e2 =======  *) 

T=1.85;pp=1.155*10^10*hbar;{e2[pp,T], 

  e2Approx[pp,T],(e2Approx[pp,T]-e2[pp,T])/e2[pp,T]} 

(* ===\[Equal] end of test ===========  *) 

 

 

 

Mathematica Program 3 (Calculation of entropy) 
This program determines the temperature dependence of entropy.  
 

(*  This program calculates entropy  *) 

(* The excitation energy values of the second order are already saved in the \ 

files "e2ListNonLinearTheory"  *) 
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(*  ======== constant values ========  *) 

(*  NA:Avogadro number   *) 

NA=6.0221367*10^23 

(*  hbar:Planck's constant/(2 Pi)   *) 

hbar=6.6260755*10^-34/(2*Pi) 

(*  kB:Boltzmann constant   *) 

kB=1.380658*10^-23 

(* m=mass of He atom, unit: kg  *) 

m=(4.002602/(6.0221367*10^23))*10^-3 

(* roh= mass density of liquid helium, 

         at saturated vapor pressure and 1.1Kelvin unit: kg/m^3  *) 

roh=145.5 

(* numberDensity: number density of liquid helium unit: 1/m^3   *) 

numberDensity=roh/m 

(* We set the function of excitation energy *) 

(* Parameter values of (2.47)-(2.66)  *) 

c1=238. 

delta=8.61*kB 

p0=1.92*10^10*hbar 

r=0.153 

g0=13.82 

pM=1.13*10^10*hbar 

d0=16.7526*kB 

d1=3.22877*kB/(10^10*hbar) 

d2=-1.56968*kB/(10^10*hbar)^2 

p1=0.5*10^10*hbar 

p2=1.78*10^10*hbar 

p3=2.1495*10^10*hbar 

p4=2.55*10^10*hbar 

b0=10.696*kB 

b2=14.4344*kB/(10^10*hbar)^2 

b3=-55.0958*kB/(10^10*hbar)^3 

g2=-10.8805/(10^10*hbar)^2 

g3=-1.81497/(10^10*hbar)^3 

g4=-0.966809/(10^10*hbar)^4 

g5=7.19044/(10^10*hbar)^5 

(* We define new function e0 *) 

e0[p_]:=c1*p/;0<=p<p1 
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e0[p_]:=kB*(g0+g2*(p-pM)^2+g3*(p-pM)^3+g4*(p-pM)^4+g5*(p-pM)^5) /;p1<=p<p2 

e0[p_]:=delta+(1/(2*m*r))*(p-p0)^2 /;p2<=p<p3 

e0[p_]:=b0+c1*(p-p3)+b2*(p-p3)^2+b3*(p-p3)^3 /;p3<=p<p4 

e0[p_]:=d0+d1*(p-p4)+d2*(p-p4)^2 /;p4<=p 

(* nnn[q_,T_] is the dreesed boson number in zeroth order aproximation *) 

nnn[q_,T_]:=1/(Exp[e0[q]/(kB*T)]-0.9999999) 

(* ======== approximation of e1[p,T] ========= *) 

(* We read the file "e1ListNonLinearTheory". Then,  

  we calculate the approximate value of e1[p,T].   *) 

OpenRead["e1ListNonLinearTheory"];e1List= 

  Get["e1ListNonLinearTheory"];Close["e1ListNonLinearTheory"] 

e1App1[p_,T_]:= 

  z/.{x=p/(10^10*hbar);y=T;nx=IntegerPart[x*100];ny=IntegerPart[y*10]; 

      tx=x*100-nx;ty=y*10-ny;zz1=e1List[[nx+1,ny+1,3]]; 

      zz2=e1List[[nx+2,ny+1,3]]; 

      z1=tx*zz2+(1-tx)*zz1; 

      zz1=e1List[[nx+1,ny+2,3]];zz2=e1List[[nx+2,ny+2,3]]; 

      z2=tx*zz2+(1-tx)*zz1;z\[Rule]ty*z2+(1-ty)*z1} 

e1App3[p_,T_]:=z/.{x=p/(10^10*hbar);y=T;nx=IntegerPart[x*100]; 

      ny=IntegerPart[y*10];tx=100*x-nx-0.5;ty=10*y-ny-0.5; 

      zz1=e1List[[nx,ny,3]];zz2=e1List[[nx+1,ny,3]];zz3=e1List[[nx+2,ny,3]]; 

      zz4=e1List[[nx+3,ny,3]]; 

      z1=((zz2+zz3)/2-(zz1-zz2-zz3+zz4)/ 

                16)+((zz3-zz2)-(zz4-zz1-3*zz3+3*zz2)/24)* 

            tx+(zz1-zz2-zz3+zz4)/4*tx^2+(zz4-zz1-3*zz3+3*zz2)/6*tx^3; 

      zz1=e1List[[nx,ny+1,3]];zz2=e1List[[nx+1,ny+1,3]]; 

      zz3=e1List[[nx+2,ny+1,3]]; 

      zz4=e1List[[nx+3,ny+1,3]]; 

      z2=((zz2+zz3)/2-(zz1-zz2-zz3+zz4)/ 

                16)+((zz3-zz2)-(zz4-zz1-3*zz3+3*zz2)/24)* 

            tx+(zz1-zz2-zz3+zz4)/4*tx^2+(zz4-zz1-3*zz3+3*zz2)/6*tx^3; 

      zz1=e1List[[nx,ny+2,3]];zz2=e1List[[nx+1,ny+2,3]]; 

      zz3=e1List[[nx+2,ny+2,3]];zz4=e1List[[nx+3,ny+2,3]]; 

      z3=((zz2+zz3)/2-(zz1-zz2-zz3+zz4)/ 

                16)+((zz3-zz2)-(zz4-zz1-3*zz3+3*zz2)/24)* 

            tx+(zz1-zz2-zz3+zz4)/4*tx^2+(zz4-zz1-3*zz3+3*zz2)/6*tx^3; 

      zz1=e1List[[nx,ny+3,3]];zz2=e1List[[nx+1,ny+3,3]]; 

      zz3=e1List[[nx+2,ny+3,3]];zz4=e1List[[nx+3,ny+3,3]]; 
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      z4=((zz2+zz3)/2-(zz1-zz2-zz3+zz4)/ 

                16)+((zz3-zz2)-(zz4-zz1-3*zz3+3*zz2)/24)* 

            tx+(zz1-zz2-zz3+zz4)/4*tx^2+(zz4-zz1-3*zz3+3*zz2)/6*tx^3; 

      z\[Rule]((z2+z3)/2-(z1-z2-z3+z4)/16)+((z3-z2)-(z4-z1-3*z3+3*z2)/24)* 

            ty+(z1-z2-z3+z4)/4*ty^2+(z4-z1-3*z3+3*z2)/6*ty^3} 

e1Approx[p_,T_]:=e1[p,T]/;p==3.6*10^10*hbar 

e1Approx[p_,T_]:= 

  e1App1[p,T]/; 

    0\[LessEqual]p\[LessEqual]0.01*10^10*hbar ||  

      3.59*10^10*hbar\[LessEqual]p<3.6*10^10*hbar || T\[LessEqual]0.1 

e1Approx[p_,T_]:= 

  e1App3[p,T]/;0.01*10^10*hbar<p<3.59*10^10*hbar && 0.1<T\[LessEqual]2.2 

(* n1[q_,T_] is the dreesed boson number in first order aproximation *) 

n1[q_,T_]:=1/(Exp[e1Approx[q,T]/(kB*T)]-0.9999999) 

(* ======== approximation of e2[p,T] ========= *) 

(* We read the file "e2ListNonLinearTheory". Then,  

  we calculate the approximate value of e2[p,T].   *) 

OpenRead["e2ListNonLinearTheory"];e2List= 

  Get["e2ListNonLinearTheory"];Close["e2ListNonLinearTheory"] 

e2App1[p_,T_]:= 

  z/.{x=p/(10^10*hbar);y=T;nx=IntegerPart[x*100];ny=IntegerPart[y*10]; 

      tx=x*100-nx;ty=y*10-ny;zz1=e2List[[nx+1,ny+1,3]]; 

      zz2=e2List[[nx+2,ny+1,3]]; 

      z1=tx*zz2+(1-tx)*zz1; 

      zz1=e2List[[nx+1,ny+2,3]];zz2=e2List[[nx+2,ny+2,3]]; 

      z2=tx*zz2+(1-tx)*zz1;z\[Rule]ty*z2+(1-ty)*z1} 

e2App3[p_,T_]:=z/.{x=p/(10^10*hbar);y=T;nx=IntegerPart[x*100]; 

      ny=IntegerPart[y*10];tx=100*x-nx-0.5;ty=10*y-ny-0.5; 

      zz1=e2List[[nx,ny,3]];zz2=e2List[[nx+1,ny,3]];zz3=e2List[[nx+2,ny,3]]; 

      zz4=e2List[[nx+3,ny,3]]; 

      z1=((zz2+zz3)/2-(zz1-zz2-zz3+zz4)/ 

                16)+((zz3-zz2)-(zz4-zz1-3*zz3+3*zz2)/24)* 

            tx+(zz1-zz2-zz3+zz4)/4*tx^2+(zz4-zz1-3*zz3+3*zz2)/6*tx^3; 

      zz1=e2List[[nx,ny+1,3]];zz2=e2List[[nx+1,ny+1,3]]; 

      zz3=e2List[[nx+2,ny+1,3]]; 

      zz4=e2List[[nx+3,ny+1,3]]; 

      z2=((zz2+zz3)/2-(zz1-zz2-zz3+zz4)/ 

                16)+((zz3-zz2)-(zz4-zz1-3*zz3+3*zz2)/24)* 
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            tx+(zz1-zz2-zz3+zz4)/4*tx^2+(zz4-zz1-3*zz3+3*zz2)/6*tx^3; 

      zz1=e2List[[nx,ny+2,3]];zz2=e2List[[nx+1,ny+2,3]]; 

      zz3=e2List[[nx+2,ny+2,3]];zz4=e2List[[nx+3,ny+2,3]]; 

      z3=((zz2+zz3)/2-(zz1-zz2-zz3+zz4)/ 

                16)+((zz3-zz2)-(zz4-zz1-3*zz3+3*zz2)/24)* 

            tx+(zz1-zz2-zz3+zz4)/4*tx^2+(zz4-zz1-3*zz3+3*zz2)/6*tx^3; 

      zz1=e2List[[nx,ny+3,3]];zz2=e2List[[nx+1,ny+3,3]]; 

      zz3=e2List[[nx+2,ny+3,3]];zz4=e2List[[nx+3,ny+3,3]]; 

      z4=((zz2+zz3)/2-(zz1-zz2-zz3+zz4)/ 

                16)+((zz3-zz2)-(zz4-zz1-3*zz3+3*zz2)/24)* 

            tx+(zz1-zz2-zz3+zz4)/4*tx^2+(zz4-zz1-3*zz3+3*zz2)/6*tx^3; 

      z\[Rule]((z2+z3)/2-(z1-z2-z3+z4)/16)+((z3-z2)-(z4-z1-3*z3+3*z2)/24)* 

            ty+(z1-z2-z3+z4)/4*ty^2+(z4-z1-3*z3+3*z2)/6*ty^3} 

e2Approx[p_,T_]:=e0[p]/; T\[Equal]0.0 

e2Approx[p_,T_]:=e2[p,T]/;p==3.6*10^10*hbar || T\[Equal]2.2 

e2Approx[p_,T_]:= 

  e2App1[p,T]/; 

    0\[LessEqual]p\[LessEqual]0.01*10^10*hbar ||  

      3.59*10^10*hbar\[LessEqual]p<3.6*10^10*hbar ||0< T\[LessEqual]0.1||   

      2.1\[LessEqual]T<2.2 

e2Approx[p_,T_]:=e2App3[p,T]/;0.01*10^10*hbar<p<3.59*10^10*hbar && 0.1<T<2.1 

(* n2[q_,T_] is the dreesed boson number in the second order aproximation *) 

n2[q_,T_]:=1/(Exp[e2Approx[q,T]/(kB*T)]-0.9999999) 

(* ============================== *) 

(* calculation of entropy per atom    *) 

(* zeroth order entropy s0[T] (per atom)    *) 

s0[T_]:=(kB*4*Pi/(numberDensity*(2*Pi*hbar)^3))* 

    NIntegrate[(Log[1+nnn[p,T]]+(e0[p]/(kB*T))nnn[p,T])*p^2,{p,0, 

        3.6*10^10*hbar}] 

(* first order entropy s1[T] (per atom)    *) 

s1[T_]:=(kB*4*Pi/(numberDensity*(2*Pi*hbar)^3))* 

    NIntegrate[(Log[1+n1[p,T]]+(e1Approx[p,T]/(kB*T))n1[p,T])*p^2,{p,0, 

        3.6*10^10*hbar},PrecisionGoal\[Rule]4] 

(* second order entropy s2[T] (per atom)    *) 

s2[T_]:=(kB*4*Pi/(numberDensity*(2*Pi*hbar)^3))* 

    NIntegrate[(Log[1+n2[p,T]]+(e2Approx[p,T]/(kB*T))n2[p,T])*p^2,{p,0, 

        3.6*10^10*hbar},PrecisionGoal\[Rule]4] 

(* Calculation result of entropy: 
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      s2[T]/m indicates entropy per kg, (s2[T]/m)/ 

      1000 indicates entropy per g *) 

Table[{T,(s0[T]/m)/1000,(s1[T]/m)/1000,(s2[T]/m)/1000},{T,0.5,2.15,0.05}] 

(* The List obtained above indicates{temperature, entropy of zeroth order,  

      first order, second order} 

    where the entropy unit is J/(K*g)   *) 

(* entropyExp is the entropies of experiment *) 

entropyExp={{0.2,0.00005},{0.3,0.00018},{0.4,0.00044},{0.5,0.00085},{0.6, 

      0.00147},{0.7,0.00276},{0.8,0.00475},{0.9,0.00885},{1.0,0.0168},{1.1, 

      0.0304},{1.2,0.0523},{1.3,0.0853},{1.4,0.132},{1.5,0.197},{1.6, 

      0.284},{1.7,0.395},{1.8,0.535},{1.9,0.715},{2.0,0.940},{2.1,1.24}} 

gExp=ListPlot[entropyExp,PlotStyle\[Rule]{RGBColor[1,0,0],PointSize[0.02]}] 

entropyCal=Table[{T,(s2[T]/m)/1000},{T,0.2,2.15,0.005}]; 

gCal=ListPlot[entropyCal,PlotStyle\[Rule]{RGBColor[0,0,0],PointSize[0.007]}] 

Show[gExp,gCal] 

entropyExpLog10= 

    Table[{entropyExp[[n,1]],Log[10,entropyExp[[n,2]]]},{n,1, 

        Length[entropyExp]}]; 

entropyCalLog10= 

    Table[{entropyCal[[n,1]],Log[10,entropyCal[[n,2]]]},{n,1, 

        Length[entropyCal]}]; 

gExpLog10= 

  ListPlot[entropyExpLog10,PlotStyle\[Rule]{RGBColor[1,0,0],PointSize[0.02]}] 

gCalLog10= 

  ListPlot[entropyCalLog10,PlotStyle\[Rule]{RGBColor[0,0,0],PointSize[0.005]}] 

Show[gExpLog10,gCalLog10] 

 

 

 

Mathematica Program 4 (Calculation of specific heat for 0.2-2.15K) 
This program calculates the temperature dependence of specific heat in the temperature 
region 0.2 - 2.15 K.  
 

(*  This program "AppendixSpecificHeat0.2-2.15.nb" uses the excitation energy \ 

form at 1.1 K calculated by program "AppendixEnergyForm" *) 

(* This program also uses the two files "e1ListNonLinearTheory",  

  "e2ListNonLinearTheory" which are obtained by the program \ 

"AppendixKernelEnergy". *) 
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(*  ======== constant values ========  *) 

(*  NA:Avogadro number   *) 

NA=6.0221367*10^23 

(*  hbar:Planck's constant/(2 Pi)   *) 

hbar=6.6260755*10^-34/(2*Pi) 

(*  kB:Boltzmann constant   *) 

kB=1.380658*10^-23 

(* m=mass of He atom, unit: kg  *) 

m=(4.002602/(6.0221367*10^23))*10^-3 

(* roh= mass density of liquid helium, 

         at saturated vapor pressure and 1.1Kelvin unit: kg/m^3  *) 

roh=145.5 

(* numberDensity: number density of liquid helium unit: 1/m^3   *) 

numberDensity=roh/m 

(* We set the function of excitation energy *) 

(* Parameter values of (2.47)-(2.66)  *) 

c1=238. 

delta=8.61*kB 

p0=1.92*10^10*hbar 

r=0.153 

g0=13.82 

pM=1.13*10^10*hbar 

d0=16.7526*kB 

d1=3.22877*kB/(10^10*hbar) 

d2=-1.56968*kB/(10^10*hbar)^2 

p1=0.5*10^10*hbar 

p2=1.78*10^10*hbar 

p3=2.1495*10^10*hbar 

p4=2.55*10^10*hbar 

b0=10.696*kB 

b2=14.4344*kB/(10^10*hbar)^2 

b3=-55.0958*kB/(10^10*hbar)^3 

g2=-10.8805/(10^10*hbar)^2 

g3=-1.81497/(10^10*hbar)^3 

g4=-0.966809/(10^10*hbar)^4 

g5=7.19044/(10^10*hbar)^5 

(* We define new function e0 *) 

e0[p_]:=c1*p/;0<=p<p1 
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e0[p_]:=kB*(g0+g2*(p-pM)^2+g3*(p-pM)^3+g4*(p-pM)^4+g5*(p-pM)^5) /;p1<=p<p2 

e0[p_]:=delta+(1/(2*m*r))*(p-p0)^2 /;p2<=p<p3 

e0[p_]:=b0+c1*(p-p3)+b2*(p-p3)^2+b3*(p-p3)^3 /;p3<=p<p4 

e0[p_]:=d0+d1*(p-p4)+d2*(p-p4)^2 /;p4<=p 

(* nnn[q_,T_] is the dreesed boson number in zeroth order aproximation *) 

nnn[q_,T_]:=1/(Exp[e0[q]/(kB*T)]-0.9999999) 

(* ======== approximation of e1[p,T] ========= *) 

(* We read the file "e1ListNonLinearTheory". Then,  

  we calculate the approximate value of e1[p,T].   *) 

OpenRead["e1ListNonLinearTheory"];e1List= 

  Get["e1ListNonLinearTheory"];Close["e1ListNonLinearTheory"] 

e1App1[p_,T_]:= 

  z/.{x=p/(10^10*hbar);y=T;nx=IntegerPart[x*100];ny=IntegerPart[y*10]; 

      tx=x*100-nx;ty=y*10-ny;zz1=e1List[[nx+1,ny+1,3]]; 

      zz2=e1List[[nx+2,ny+1,3]]; 

      z1=tx*zz2+(1-tx)*zz1; 

      zz1=e1List[[nx+1,ny+2,3]];zz2=e1List[[nx+2,ny+2,3]]; 

      z2=tx*zz2+(1-tx)*zz1;z\[Rule]ty*z2+(1-ty)*z1} 

e1App3[p_,T_]:=z/.{x=p/(10^10*hbar);y=T;nx=IntegerPart[x*100]; 

      ny=IntegerPart[y*10];tx=100*x-nx-0.5;ty=10*y-ny-0.5; 

      zz1=e1List[[nx,ny,3]];zz2=e1List[[nx+1,ny,3]];zz3=e1List[[nx+2,ny,3]]; 

      zz4=e1List[[nx+3,ny,3]]; 

      z1=((zz2+zz3)/2-(zz1-zz2-zz3+zz4)/ 

                16)+((zz3-zz2)-(zz4-zz1-3*zz3+3*zz2)/24)* 

            tx+(zz1-zz2-zz3+zz4)/4*tx^2+(zz4-zz1-3*zz3+3*zz2)/6*tx^3; 

      zz1=e1List[[nx,ny+1,3]];zz2=e1List[[nx+1,ny+1,3]]; 

      zz3=e1List[[nx+2,ny+1,3]]; 

      zz4=e1List[[nx+3,ny+1,3]]; 

      z2=((zz2+zz3)/2-(zz1-zz2-zz3+zz4)/ 

                16)+((zz3-zz2)-(zz4-zz1-3*zz3+3*zz2)/24)* 

            tx+(zz1-zz2-zz3+zz4)/4*tx^2+(zz4-zz1-3*zz3+3*zz2)/6*tx^3; 

      zz1=e1List[[nx,ny+2,3]];zz2=e1List[[nx+1,ny+2,3]]; 

      zz3=e1List[[nx+2,ny+2,3]];zz4=e1List[[nx+3,ny+2,3]]; 

      z3=((zz2+zz3)/2-(zz1-zz2-zz3+zz4)/ 

                16)+((zz3-zz2)-(zz4-zz1-3*zz3+3*zz2)/24)* 

            tx+(zz1-zz2-zz3+zz4)/4*tx^2+(zz4-zz1-3*zz3+3*zz2)/6*tx^3; 

      zz1=e1List[[nx,ny+3,3]];zz2=e1List[[nx+1,ny+3,3]]; 

      zz3=e1List[[nx+2,ny+3,3]];zz4=e1List[[nx+3,ny+3,3]]; 
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      z4=((zz2+zz3)/2-(zz1-zz2-zz3+zz4)/ 

                16)+((zz3-zz2)-(zz4-zz1-3*zz3+3*zz2)/24)* 

            tx+(zz1-zz2-zz3+zz4)/4*tx^2+(zz4-zz1-3*zz3+3*zz2)/6*tx^3; 

      z\[Rule]((z2+z3)/2-(z1-z2-z3+z4)/16)+((z3-z2)-(z4-z1-3*z3+3*z2)/24)* 

            ty+(z1-z2-z3+z4)/4*ty^2+(z4-z1-3*z3+3*z2)/6*ty^3} 

e1Approx[p_,T_]:=e1[p,T]/;p==3.6*10^10*hbar 

e1Approx[p_,T_]:= 

  e1App1[p,T]/; 

    0\[LessEqual]p\[LessEqual]0.01*10^10*hbar ||  

      3.59*10^10*hbar\[LessEqual]p<3.6*10^10*hbar || T\[LessEqual]0.1 

e1Approx[p_,T_]:= 

  e1App3[p,T]/;0.01*10^10*hbar<p<3.59*10^10*hbar && 0.1<T\[LessEqual]2.2 

(* n1[q_,T_] is the dreesed boson number in first order aproximation *) 

n1[q_,T_]:=1/(Exp[e1Approx[q,T]/(kB*T)]-0.9999999) 

(* ======== approximation of e2[p,T] ========= *) 

(* We read the file "e2ListNonLinearTheory". Then,  

  we calculate the approximate value of e2[p,T].   *) 

OpenRead["e2ListNonLinearTheory"];e2List= 

  Get["e2ListNonLinearTheory"];Close["e2ListNonLinearTheory"] 

e2App1[p_,T_]:= 

  z/.{x=p/(10^10*hbar);y=T;nx=IntegerPart[x*100];ny=IntegerPart[y*10]; 

      tx=x*100-nx;ty=y*10-ny;zz1=e2List[[nx+1,ny+1,3]]; 

      zz2=e2List[[nx+2,ny+1,3]]; 

      z1=tx*zz2+(1-tx)*zz1; 

      zz1=e2List[[nx+1,ny+2,3]];zz2=e2List[[nx+2,ny+2,3]]; 

      z2=tx*zz2+(1-tx)*zz1;z\[Rule]ty*z2+(1-ty)*z1} 

e2App3[p_,T_]:=z/.{x=p/(10^10*hbar);y=T;nx=IntegerPart[x*100]; 

      ny=IntegerPart[y*10];tx=100*x-nx-0.5;ty=10*y-ny-0.5; 

      zz1=e2List[[nx,ny,3]];zz2=e2List[[nx+1,ny,3]];zz3=e2List[[nx+2,ny,3]]; 

      zz4=e2List[[nx+3,ny,3]]; 

      z1=((zz2+zz3)/2-(zz1-zz2-zz3+zz4)/ 

                16)+((zz3-zz2)-(zz4-zz1-3*zz3+3*zz2)/24)* 

            tx+(zz1-zz2-zz3+zz4)/4*tx^2+(zz4-zz1-3*zz3+3*zz2)/6*tx^3; 

      zz1=e2List[[nx,ny+1,3]];zz2=e2List[[nx+1,ny+1,3]]; 

      zz3=e2List[[nx+2,ny+1,3]]; 

      zz4=e2List[[nx+3,ny+1,3]]; 

      z2=((zz2+zz3)/2-(zz1-zz2-zz3+zz4)/ 

                16)+((zz3-zz2)-(zz4-zz1-3*zz3+3*zz2)/24)* 
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            tx+(zz1-zz2-zz3+zz4)/4*tx^2+(zz4-zz1-3*zz3+3*zz2)/6*tx^3; 

      zz1=e2List[[nx,ny+2,3]];zz2=e2List[[nx+1,ny+2,3]]; 

      zz3=e2List[[nx+2,ny+2,3]];zz4=e2List[[nx+3,ny+2,3]]; 

      z3=((zz2+zz3)/2-(zz1-zz2-zz3+zz4)/ 

                16)+((zz3-zz2)-(zz4-zz1-3*zz3+3*zz2)/24)* 

            tx+(zz1-zz2-zz3+zz4)/4*tx^2+(zz4-zz1-3*zz3+3*zz2)/6*tx^3; 

      zz1=e2List[[nx,ny+3,3]];zz2=e2List[[nx+1,ny+3,3]]; 

      zz3=e2List[[nx+2,ny+3,3]];zz4=e2List[[nx+3,ny+3,3]]; 

      z4=((zz2+zz3)/2-(zz1-zz2-zz3+zz4)/ 

                16)+((zz3-zz2)-(zz4-zz1-3*zz3+3*zz2)/24)* 

            tx+(zz1-zz2-zz3+zz4)/4*tx^2+(zz4-zz1-3*zz3+3*zz2)/6*tx^3; 

      z\[Rule]((z2+z3)/2-(z1-z2-z3+z4)/16)+((z3-z2)-(z4-z1-3*z3+3*z2)/24)* 

            ty+(z1-z2-z3+z4)/4*ty^2+(z4-z1-3*z3+3*z2)/6*ty^3} 

e2Approx[p_,T_]:=e0[p]/; T\[Equal]0.0 

e2Approx[p_,T_]:=e2[p,T]/;p==3.6*10^10*hbar || T\[Equal]2.2 

e2Approx[p_,T_]:= 

  e2App1[p,T]/; 

    0\[LessEqual]p\[LessEqual]0.01*10^10*hbar ||  

      3.59*10^10*hbar\[LessEqual]p<3.6*10^10*hbar ||0< T\[LessEqual]0.1||   

      2.1\[LessEqual]T<2.2 

e2Approx[p_,T_]:=e2App3[p,T]/;0.01*10^10*hbar<p<3.59*10^10*hbar && 0.1<T<2.1 

(* ======== approximation for the derivative of e2[p,T]  

        We should note that dTe2Approx[p,T]  is not defined at p= 

    3.6*10^10*hbar. Also it is not defined at T=2.2. ========= *) 

dTe2App1[p_,T_]:= 

  z/.{x=p/(10^10*hbar);y=T;nx=IntegerPart[x*100];ny=IntegerPart[y*10]; 

      tx=x*100-nx;ty=y*10-ny;zz1=e2List[[nx+1,ny+1,3]]; 

      zz2=e2List[[nx+2,ny+1,3]]; 

      z1=tx*zz2+(1-tx)*zz1; 

      zz1=e2List[[nx+1,ny+2,3]];zz2=e2List[[nx+2,ny+2,3]]; 

      z2=tx*zz2+(1-tx)*zz1;z\[Rule]10*z2-10*z1} 

dTe2App3[p_,T_]:=z/.{x=p/(10^10*hbar);y=T;nx=IntegerPart[x*100]; 

      ny=IntegerPart[y*10];tx=100*x-nx-0.5;ty=10*y-ny-0.5; 

      zz1=e2List[[nx,ny,3]];zz2=e2List[[nx+1,ny,3]];zz3=e2List[[nx+2,ny,3]]; 

      zz4=e2List[[nx+3,ny,3]]; 

      z1=((zz2+zz3)/2-(zz1-zz2-zz3+zz4)/ 

                16)+((zz3-zz2)-(zz4-zz1-3*zz3+3*zz2)/24)* 

            tx+(zz1-zz2-zz3+zz4)/4*tx^2+(zz4-zz1-3*zz3+3*zz2)/6*tx^3; 
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      zz1=e2List[[nx,ny+1,3]];zz2=e2List[[nx+1,ny+1,3]]; 

      zz3=e2List[[nx+2,ny+1,3]]; 

      zz4=e2List[[nx+3,ny+1,3]]; 

      z2=((zz2+zz3)/2-(zz1-zz2-zz3+zz4)/ 

                16)+((zz3-zz2)-(zz4-zz1-3*zz3+3*zz2)/24)* 

            tx+(zz1-zz2-zz3+zz4)/4*tx^2+(zz4-zz1-3*zz3+3*zz2)/6*tx^3; 

      zz1=e2List[[nx,ny+2,3]];zz2=e2List[[nx+1,ny+2,3]]; 

      zz3=e2List[[nx+2,ny+2,3]];zz4=e2List[[nx+3,ny+2,3]]; 

      z3=((zz2+zz3)/2-(zz1-zz2-zz3+zz4)/ 

                16)+((zz3-zz2)-(zz4-zz1-3*zz3+3*zz2)/24)* 

            tx+(zz1-zz2-zz3+zz4)/4*tx^2+(zz4-zz1-3*zz3+3*zz2)/6*tx^3; 

      zz1=e2List[[nx,ny+3,3]];zz2=e2List[[nx+1,ny+3,3]]; 

      zz3=e2List[[nx+2,ny+3,3]];zz4=e2List[[nx+3,ny+3,3]]; 

      z4=((zz2+zz3)/2-(zz1-zz2-zz3+zz4)/ 

                16)+((zz3-zz2)-(zz4-zz1-3*zz3+3*zz2)/24)* 

            tx+(zz1-zz2-zz3+zz4)/4*tx^2+(zz4-zz1-3*zz3+3*zz2)/6*tx^3; 

      z\[Rule]10(((z3-z2)-(z4-z1-3*z3+3*z2)/24)+(z1-z2-z3+z4)/2* 

                ty+(z4-z1-3*z3+3*z2)/2*ty^2)} 

dTe2Approx[p_,T_]:=0/; T\[Equal]0.0 

dTe2Approx[p_,T_]:= 

  dTe2App1[p,T]/; 

    0\[LessEqual]p\[LessEqual]0.01*10^10*hbar ||  

      3.59*10^10*hbar\[LessEqual]p<3.6*10^10*hbar ||0< T\[LessEqual]0.1||   

      2.1\[LessEqual]T<2.2 

dTe2Approx[p_,T_]:= 

  dTe2App3[p,T]/;0.01*10^10*hbar<p<3.59*10^10*hbar && 0.1<T<2.1 

(* ======= test of approximation for derivative of e2 by T =======  *) 

T=1.65;pp=1.155*10^10*hbar;{dTe2App1[pp,T], 

  dTe2App3[pp,T],(dTe2App1[pp,T]-dTe2App3[pp,T])/dTe2App3[pp,T]} 

{-1.19005×10\^-23,-1.18632×10\^-23,0.00313924} 

T=2.199999;pp=3.599999*10^10*hbar;dTe2Approx[pp,T] 

-6.14294×10\^-23 

(* ===\[Equal] end of test ===========  *) 

(* ============================== *) 

(* calculation of specific heat per atom    *) 

(* zeroth order specific heat C0[T] (per atom)    *) 

C0[T_]:=(4*Pi/(numberDensity*(2*Pi*hbar)^3))* 

    NIntegrate[((nnn[p,T])^2*Exp[e0[p]/(kB*T)](e0[p]/(kB*T))^2)*kB*p^2,{p,0, 
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        3.6*10^10*hbar}] 

(* second order specific heat C2[T] (per atom)    *) 

(* n2[q_,T_] is the dreesed boson number in second order aproximation *) 

n2[q_,T_]:=1/(Exp[e2Approx[q,T]/(kB*T)]-0.9999999) 

C2[T_]:=(4*Pi/(numberDensity*(2*Pi*hbar)^3))* 

    NIntegrate[(n2[p,T])^2* 

        Exp[e2Approx[p,T]/(kB*T)]*((e2Approx[p,T]/(kB*T))^2* 

              kB-(e2Approx[p,T]/(kB*T))*dTe2Approx[p,T])*p^2,{p,0, 

        3.599999*10^10*hbar}] 

T=1.9;C2[T]/m/1000 

(* The next Table is the calculated List as{temperature,  

      specific heat of zeroth order, second order}  *) 

Table[{T,(C0[T]/m)/1000,(C2[T]/m)/1000},{T,0.2,2.15,0.05}] 

(* We make the list of specific heat{temperature, 

        specific heat (unit:J/(K*g)} *) 

t1=TimeUsed[];specificHeatCal=Table[{T,C2[T]/m/1000},{T,0.2,2.15,0.005}];t2= 

  TimeUsed[];t2-t1 

(* specificHeatExp is the specific heat of experiment *) 

specificHeatExp={{0.2,0.0002},{0.3,0.0005},{0.4,0.0013},{0.5,0.0025},{0.6, 

      0.0044},{0.7,0.0098},{0.8,0.0222},{0.9,0.0510},{1.0,0.1042},{1.1, 

      0.191},{1.2,0.322},{1.3,0.516},{1.4,0.780},{1.5,1.127},{1.6,1.572},{1.7, 

      2.11},{1.8,2.81},{1.9,3.79},{2.0,5.18},{2.1,7.51}} 

gExp=ListPlot[specificHeatExp, 

    PlotStyle\[Rule]{RGBColor[1,0,0],PointSize[0.02]}] 

specificExpLog10= 

    Table[{specificHeatExp[[n,1]],Log[10,specificHeatExp[[n,2]]]},{n,1, 

        Length[specificHeatExp]}]; 

specificCalLog10= 

    Table[{specificHeatCal[[n,1]],Log[10,specificHeatCal[[n,2]]]},{n,1, 

        Length[specificHeatCal]}]; 

gExpLog10= 

  ListPlot[specificExpLog10,PlotStyle\[Rule]{RGBColor[1,0,0],PointSize[0.02]}] 

gCalLog10= 

  ListPlot[specificCalLog10, 

    PlotStyle\[Rule]{RGBColor[0,0,0],PointSize[0.005]}] 

Show[gExpLog10,gCalLog10] 
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Mathematica program 5 (Calculation of specific heat near the λ point) 

 

This program calculates specific heat near the λ point. We use the temperature 

dependence of experimental data for  second sound verocity. 

 
(* Calculation of Specific Heat near the lambda transition  *) 

(*  alpha:   

    expansion coefficient of liquid helium near lambda transition : 

        unit:K^-1    

        where T and P indicate the temperature and pressure respectively.*) 

\!\(alpha[P_, T_] =  

    0.20821014177938688`\[InvisibleSpace] - 0.19315882351879696`\ P +  

      0.001665065420298923`\ P\^2 + 5.000779466327585`*^-6\ P\^3 -  

      3.3575696795459315`*^-7\ P\^4 - 0.1817968215507505`\ T +  

      0.1935429711624159`\ P\ T - 0.00042826241460284105`\ P\^2\ T +  

      0.035644114587116915`\ T\^2 - 0.04892332663996617`\ P\ T\^2 -  

      0.00024311096857724168`\ P\^2\ T\^2\) 

(*     energy of phonon part (second sound) :unit:J   *) 

\!\( (*\ \ velocity\ of\ second\ sound\  = \(21.547\ tt\^\(1/3\) -  

          0.35276\ P\ tt\^\(1/3\) + 32.226\ \@tt - 0.27876\ P\ \@tt +  

          0.0051713\ P\^2\ \@tt\ \ \ \ where\ tt = 1 - T/Tlambda\)\ \ *) \) 

energyPhonon[tt_,p_]:= 

  p(c1+c2*P)(tt+(a*p/(2*m))^3)^(1/3)+p(d1+d2*P+d3*P^2)(tt+(b*p/(2*m))^2)^(1/2) 

(* dedTPhonon = the derivative coefficient, namely D[energyPhonon,T]   *) 

dedTPhonon[tt_, 

    p_]:=-(1/(3*Tlambda))* 

      p*(c1+c2*P)(tt+(a*p/(2*m))^3)^(-2/3)-(1/(2*Tlambda))* 

      p(d1+d2*P+d3*P^2)(tt+(b*p/(2*m))^2)^(-1/2) 

derivPhonon[tt_, 

    p_]:=(c1+c2*P)(tt+(a*p/(2*m))^3)^(1/3)+(d1+d2*P+ 

          d3*P^2)(tt+(b*p/(2*m))^2)^(1/2)+(a*p/(2*m))^3*(c1+ 

          c2*P)(tt+(a*p/(2*m))^3)^(-2/3)+(b*p/(2*m))^2*(d1+d2*P+ 

          d3*P^2)(tt+(b*p/(2*m))^2)^(-1/2) 

c1=21.547;c2=-0.35276;d1=32.226;d2=-0.27876;d3=0.0051713;bb=0.565;b= 

  bb*(1-(c1+c2*P)a)/(d1+d2*P+d3*P^2) 

(*   functions   *) 
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exPhonon[tt_,q_]:=Exp[energyPhonon[tt,q*hbar]/(kB*Tlambda*(1-tt))] 

nPhonon[tt_,q_]:=1/(exPhonon[tt,q]-1) 

fPhonon[tt_,q_]:= 

  alpha[P,Tlambda*(1-tt)]*(kB*Tlambda*(1-tt)*Log[1+nPhonon[tt,q]]+ 

          energyPhonon[tt,q*hbar]*nPhonon[tt,q])+ 

    exPhonon[tt, 

        q]*(energyPhonon[tt, 

            q*hbar]/(kB*Tlambda*(1-tt)))(energyPhonon[tt, 

              q*hbar]/(Tlambda*(1-tt))-dedTPhonon[tt,q*hbar])*nPhonon[tt,q]^2 

(*  specific heat for phonon region:   unit is J/(mole K)    *) 

q1=0.47*10^10 

cPhonon[tt_]:= 

  NIntegrate[fPhonon[tt,q]*q^2/((1000/4.0026)*roh*2*Pi^2),{q,1,q1}] 

(* ================ *) 

(*  energy form of thermal roton   *) 

(*  These function forms are derived from BD theory.     

        fDelta=roton minimum energy, unit K 

      fQ=roton minimum wave vector,unit A^-1 

      fMeff=effective mass of roton,ratio to the mass of He atom    *) 

\!\(fDelta[P_, T_] =  

    11.817996949160221`\[InvisibleSpace] + 0.005462313498632458`\ P +  

      0.00007060004218597404`\ P\^2 - 1.994136758893095`\ T -  

      0.03904567848829687`\ P\ T - 0.0004472451972962349`\ P\^2\ T\) 

(* cD is the derivative coefficient D[fDelta,T]   *) 

\!\(cD = \(-1.994136758893095`\)\  -  

      0.03904567848829687`\ P\  - \(\(0.0004472451972962349`\)\(\ \ 

\)\(P\^2\)\(\ \)\)\) 

\!\(fQ[P_, T_] =  

    1.9117207681118162`\[InvisibleSpace] - 0.0025819515490051043`\ P +  

      0.0002580457099968077`\ P\^2 + 0.0019883653842202686`\ T +  

      0.005281830335301087`\ P\ T - 0.00018934972954181802`\ P\^2\ T\) 

(* cQ is the derivative coefficient D[fQ,T]   *) 

\!\(cQ = \(+0.0019883653842202686`\)\  +  

      0.005281830335301087`\ P\  - \(\(0.00018934972954181802`\)\(\ \ 

\)\(P\^2\)\(\ \)\)\) 

\!\(fMeff[P_, T_] =  

    0.21803261551944467`\[InvisibleSpace] + 0.00003466145724840003`\ P +  

      5.577735788725462`*^-7\ P\^2 - 0.03676347248658116`\ T -  
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      0.0007115671371523195`\ P\ T - 7.100620816409547`*^-6\ P\^2\ T\) 

(* cM is the derivative coefficient D[fMeff,T]   *) 

\!\(cM = \(-0.03676347248658116`\)\  -  

      0.0007115671371523195`\ P\  - \(\(7.100620816409547`*^-6\)\(\ \ 

\)\(P\^2\)\(\ \)\)\) 

(* energyRoton=roton energy, unit J   *) 

energyRoton[tt_,p_]:= 

  1/(2*fMeff[P,Tlambda*(1-tt)]*m)*(p-fQ[P,Tlambda*(1-tt)]*10^10*hbar)^2+ 

    fDelta[P,Tlambda*(1-tt)]*kB 

(* derivRoton is the derivative coefficient D[energyRoton,p]   *) 

derivRoton[tt_,p_]:= 

  1/(fMeff[P,Tlambda*(1-tt)]*m)*(p-fQ[P,Tlambda*(1-tt)]*10^10*hbar) 

d2Roton[tt_,p_]:=1/(fMeff[P,Tlambda*(1-tt)]*m) 

(* dedTRoton is the derivative coefficient D[energyRoton,T]   *) 

dedTRoton[tt_, 

    p_]:=-cM/(2*fMeff[P,Tlambda*(1-tt)]^2*m)*(p- 

            fQ[P,Tlambda*(1-tt)]*10^10*hbar)^2-2(cQ*10^10* 

          hbar/(2*fMeff[P,Tlambda*(1-tt)]*m))*(p- 

          fQ[P,Tlambda*(1-tt)]*10^10*hbar)+cD*kB 

(* calculation of heat capacity for roton region  *) 

exRoton[tt_,q_]:=Exp[energyRoton[tt,q*hbar]/(kB*Tlambda*(1-tt))] 

nRoton[tt_,q_]:=1/(exRoton[tt,q]-1) 

fRoton[tt_,q_]:= 

  alpha[P,Tlambda*(1-tt)]*(kB*Tlambda*(1-tt)*Log[1+nRoton[tt,q]]+ 

          energyRoton[tt,q*hbar]*nRoton[tt,q])+ 

    exRoton[tt, 

        q]*(energyRoton[tt, 

            q*hbar]/(kB*Tlambda*(1-tt)))(energyRoton[tt, 

              q*hbar]/(Tlambda*(1-tt))-dedTRoton[tt,q*hbar])*nRoton[tt,q]^2 

(*  specific heat for roton region:   unit is J/(mole K)    *) 

q2=1.75*10^10 

(*  We will set q3 after *) 

cRoton[tt_]:=NIntegrate[fRoton[tt,q]*q^2/((1000/4.0026)*roh*2*Pi^2),{q,q2,q3}] 

(* ==================== constant values   *) 

(* NA:Avogadro constant   *) 

NA=6.0221367*10^23 

hbar=6.626*10^-34/(2*Pi) 

h=6.626*10^-34 
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kB=1.381*10^-23 

(* m=mass of He atom, unit: kg  *) 

m=(4.0026/(6.0221367*10^23))*10^-3 

\!\( (*\ \ \((0.02210\[InvisibleSpace] + 0.0002426\ P -  

          2.621*10^\(-6\)\ P\^2)\)\  = \  

      number\ of\ atoms\ per\ unit\ volume\ 1  Å\^\(-3\)\ \ *) \) 

(*  roh is the mass density which depends on P and T. unit:kg/m^3  ========= *) 

\!\(roh =  

    m*10^30*\((0.02210\[InvisibleSpace] + 0.0002426\ P -  

          2.621*10^\(-6\)\ P\^2)\)\) 

roh=146.89+1.6125 P-0.01742 P^2 

(* These two expressions of roh are equivalent. *) 

\!\(Tlambda = 2.1725 - 0.00977\ P - 0.000127\ P\^2\) 

T=Tlambda*(1-tt) 

(* energy function for maxon *) 

(* maxon1 is a peak energy of maxon which is derived from BD (Brooks & \ 

Donnelly) theory  unit: K *) 

\!\(maxon1 =  

    3.206405433445097`\[InvisibleSpace] + 0.27134388495988193`\ P -  

      0.011766735067301868`\ P\^2 + 0.00039726430827396715`\ P\^3 -  

      5.301226864013549`*^-6\ P\^4 + 12.668467578023716`\ T -  

      0.09966957241809207`\ P\ T - 3.8815941717254123`\ T\^2 +  

      0.023402114681846813`\ P\ T\^2\) 

(* maxon curve *) 

pMax=1.4*10^10*hbar 

energyMaxon[tt_,p_]:= 

  maxon1*kB+(maxon2+maxon3*(p-pMax)+maxon4*(p-pMax)^2+ 

          maxon5*(p-pMax)^3)(p-pMax)^2 

derivMaxon[p_]:= 

  2*maxon2*(p-pMax)+3*maxon3*(p-pMax)^2+4*maxon4*(p-pMax)^3+5* 

      maxon5*(p-pMax)^4 

energyMaxon[tt,q1*hbar] 

energyPhonon[tt,q1*hbar] 

energyRoton[tt,q2*hbar] 

sol=Solve[{energyMaxon[tt,q1*hbar]==energyPhonon[tt,q1*hbar], 

        derivMaxon[q1*hbar]\[Equal]derivPhonon[tt,q1*hbar], 

        energyMaxon[tt,q2*hbar]==energyRoton[tt,q2*hbar], 

        derivMaxon[q2*hbar]\[Equal]derivRoton[tt,q2*hbar]},{maxon2,maxon3, 
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        maxon4,maxon5}]; 

maxon2=maxon2/.sol[[1,1]] 

maxon3=maxon3/.sol[[1,2]] 

maxon4=maxon4/.sol[[1,3]] 

maxon5=maxon5/.sol[[1,4]] 

(*   define functions  This definition is important. We donot use ":=".  

      This delayed definition ":="  derives the incorrect result. *) 

dedTMaxon[tt_,p_]=-D[energyMaxon[tt,p],tt]/Tlambda 

(* calculation of heat capacity for maxon region  *) 

exMaxon[tt_,q_]:=Exp[energyMaxon[tt,q*hbar]/(kB*Tlambda*(1-tt))] 

nMaxon[tt_,q_]:=1/(exMaxon[tt,q]-1) 

fMaxon[tt_,q_]:= 

  alpha[P,Tlambda*(1-tt)]*(kB*Tlambda*(1-tt)*Log[1+nMaxon[tt,q]]+ 

          energyMaxon[tt,q*hbar]*nMaxon[tt,q])+ 

    exMaxon[tt, 

        q]*(energyMaxon[tt, 

            q*hbar]/(kB*Tlambda*(1-tt)))(energyMaxon[tt, 

              q*hbar]/(Tlambda*(1-tt))-dedTMaxon[tt,q*hbar])*nMaxon[tt,q]^2 

(*  specific heat for maxon region:   unit is J/(mole K)    *) 

cMaxon[tt_]:= 

  NIntegrate[fMaxon[tt,q]*q^2/((1000/4.0026)*roh*2*Pi^2),{q,10^10,q2}] 

cPhMaxon[tt_]:= 

  NIntegrate[fMaxon[tt,q]*q^2/((1000/4.0026)*roh*2*Pi^2),{q,q1,10^10}] 

(* high momentum curve  *) 

firstVelocity={{0.05,237},{2.533125`,257},{5.06625`,273},{10.1325`, 

      300},{15.19875`,326},{20.265`,346},{25.33125`,365}} 

h1=Fit[firstVelocity,{1,P,P^2},P] 

p3List=Table[ 

      Join[{P,tt},p/.Solve[derivRoton[tt,p]\[Equal]h1,p]],{tt,0,0.01, 

        0.002},{P,0,29}]; 

p3List=Join[p3List[[1]],p3List[[2]],p3List[[3]],p3List[[4]],p3List[[5]], 

      p3List[[6]]]; 

p3=Fit[p3List,{1,P,tt,P*tt},{P,tt}] 

q3=p3/hbar 

h2=energyRoton[tt,p3] 

energyHigh[tt_,p_]:=h1*(p-p3)+h2 

Clear[tt];dedTHigh[tt_,p_]=-D[energyHigh[tt,p],tt]/Tlambda 

(* calculation of heat capacity for High momentum region  q3 < q < 5*10^10 *) 
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exHigh[tt_,q_]:=Exp[energyHigh[tt,q*hbar]/(kB*Tlambda*(1-tt))] 

nHigh[tt_,q_]:=1/(exHigh[tt,q]-1) 

fHigh[tt_,q_]:= 

  alpha[P,Tlambda*(1-tt)]*(kB*Tlambda*(1-tt)*Log[1+nHigh[tt,q]]+ 

          energyHigh[tt,q*hbar]*nHigh[tt,q])+ 

    exHigh[tt, 

        q]*(energyHigh[tt, 

            q*hbar]/(kB*Tlambda*(1-tt)))(energyHigh[tt, 

              q*hbar]/(Tlambda*(1-tt))-dedTHigh[tt,q*hbar])*nHigh[tt,q]^2 

(*  specific heat for High momentum region :   unit is J/(mole K)    *) 

cHigh[tt_]:= 

  NIntegrate[fHigh[tt,q]*q^2/((1000/4.0026)*roh*2*Pi^2),{q,q3,5*10^10}] 

(* Figure of function form of excitation energy *) 

P=0.05;ttt=0.01;a=0.005426;g1=Plot[energyPhonon[ttt,p]/kB,{p,0,q1*hbar}] 

q2 

q3 

P=0.05;tt=0.01;g2=Plot[energyMaxon[tt,p]/kB,{p,q1*hbar,q2*hbar}] 

P=0.05;tt=0.01;g3=Plot[energyRoton[tt,p]/kB,{p,q2*hbar,q3*hbar}] 

P=0.05;tt=0.01;g4=Plot[energyHigh[tt,p]/kB,{p,q3*hbar,2.6*10^10*hbar}] 

pMax/hbar 

Show[g1,g2,g3,g4] 

Show[g1,g2,PlotRange\[Rule]{0,5}] 

(*  next functions indicate the fractions of the dressed boson numbers inside \ 

various momentum regions for the total number of helium atoms  *) 

(*  fraction1 = phonon region / total   *) 

ratioPhonon[tt_]:=NIntegrate[nPhonon[tt,q]*q^2/((roh/m)*2*Pi^2),{q,1,q1}] 

(*  fraction2 = Maxon region / total   *) 

ratioMaxon[tt_]:=NIntegrate[nMaxon[tt,q]*q^2/((roh/m)*2*Pi^2),{q,10^10,q2}] 

(*  fraction3 = the region between phonon and maxon / total   *) 

ratioPhMaxon[tt_]:=NIntegrate[nMaxon[tt,q]*q^2/((roh/m)*2*Pi^2),{q,q1,10^10}] 

(*  fraction4 = roton region / total   *) 

ratioRoton[tt_]:=NIntegrate[nRoton[tt,q]*q^2/((roh/m)*2*Pi^2),{q,q2,q3}] 

(*  fraction5 = High momentum region / total   *) 

ratioHigh[tt_]:=NIntegrate[nHigh[tt,q]*q^2/((roh/m)*2*Pi^2),{q,q3,5*10^10}] 

ratioHR[tt_]:=ratioHigh[tt]+ratioRoton[tt]; 

ratioHRM[tt_]:=ratioHR[tt]+ratioMaxon[tt]; 

ratioTotal[tt_]:=ratioPhonon[tt]+ratioPhMaxon[tt]+ratioHRM[tt] 

(* Next, we clarify that the transition temperature is certainly equal to the \ 
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T=Tlambda=2.172 K  *) 

P=0.05;tt=0;ratioPhonon[tt]+ratioPhMaxon[tt] 

P=0.05;tt=0;ratioMaxon[tt] 

P=0.05;tt=0;ratioRoton[tt] 

P=0.05;tt=0;ratioHigh[tt] 

P=0.05;tt=0;ratioTotal[tt] 

Tlambda 

(* This result indicates that the total number of dressed bosons with non- 

      zero momentum is equal to the total number of helium atoms at T= 

    Tlambda. Accordingly,  

  Bose condensation disappears at T=Tlambda. That is to say,  

  the transition temperature is certainly equal to Tlambda *)  

(* calculation of heat capacity, 

  make the list area  *) 

r=Table[{0.1,n},{n,1,15}] 

(* calculation of heat capacity of roton;  

  momentum region from q2*hbar to q3*hbar *) 

P=0.05;tt=0.01;cRoton[tt] 

P=0.05;Do[{tt=2^-n/128;r[[n,1]]=tt;r[[n,2]]=cRoton[tt]},{n,1,15}] 

(*  heat capacity (unit:J/(K\[Bullet]mole)) of roton region  

          horizontal axis is t=1-T/Tlambda *) 

g1=ListPlot[r,PlotStyle->PointSize[0.02]] 

Clear[tt];cRotonFit[tt_]=Fit[r,{1,tt},tt] 

(* calculation of maxon momentum region from 1 to 1.75 A^-1  *) 

(*  heat capacity (unit:J/(K\[Bullet]mole)) for maxon region  

        from 1 to 1.75 A^-1 *) 

tt=0.01;cMaxon[tt] 

P=0.05;Do[{tt=2^-n/128;r[[n,1]]=tt;r[[n,2]]=cMaxon[tt]},{n,1,15}] 

g1=ListPlot[r,PlotStyle->PointSize[0.02]] 

Clear[tt];cMaxonFit[tt_]=Fit[r,{1,tt},tt] 

(* calculation of phonon-maxon momentum region from q1 to 1 A^-1  *) 

(*  heat capacity (unit:J/(K\[Bullet]mole)) for phonon- 

    maxon region from q1 to 1 A^-1 *) 

P=0.05;Do[{tt=2^-n/128;r[[n,1]]=tt;r[[n,2]]=cPhMaxon[tt]},{n,1,15}] 

g1=ListPlot[r,PlotStyle->PointSize[0.02]] 

Clear[tt];cPhMaxonFit[tt_]=Fit[r,{1,tt},tt] 

(* calculation of another momentum region from q3 to 5 A^-1  *) 

Do[{P=0.05;tt=2^-n/128;r[[n,1]]=tt;r[[n,2]]=cHigh[tt]},{n,1,15}];ListPlot[r, 
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  PlotStyle->PointSize[0.02]] 

Clear[tt];cHighFit[tt_]=Fit[r,{1,tt},tt] 

Clear[tt];cRotonFit[tt] 

cMaxonFit[tt] 

cHighFit[tt] 

(* experimental data of heat capacity for svp   *) 

(*   CsDataLow={{t=(1-T/Tlambda),Cs},\[Bullet]\[Bullet]\[Bullet]\[Bullet]} 

      Cs:unit is J/(mole K)    *) 

CsDataLow={{6.6758747697974216`*^-6,76},{4.511970534069982`*^-6, 

      78},{2.5782688766114177`*^-6,83.5`},{6.583793738489871`*^-6, 

      77.1`},{3.7292817679558014`*^-6,80.5`},{4.604051565377532`*^-6, 

      77.7`},{8.47145488029466`*^-6,75.9`},{2.302025782688766`*^-6, 

      82.8`},{8.747697974217312`*^-6,74},{3.2228360957642724`*^-6, 

      81.9`},{2.9926335174953956`*^-6,82.2`},{1.1049723756906076`*^-6, 

      86.8`},{0.00008291896869244934`,63.7`},{0.000015750460405156538`, 

      71.8`},{0.003007366482504604`,44.67`},{0.0028540515653775324`, 

      44.92`},{0.0026988950276243093`,45.25`},{0.002541436464088398`, 

      45.54`},{0.002379834254143646`,45.93`},{0.002222375690607735`, 

      46.27`},{0.0019129834254143646`,47.07`},{0.001757366482504604`, 

      47.6`},{0.0016012891344383059`,48.06`},{0.001443830570902394`, 

      48.61`},{0.001285451197053407`,49.23`},{0.0011325966850828728`, 

      49.88`},{0.000979281767955801`,50.65`},{0.0008084714548802946`, 

      51.71`},{0.0006523941068139964`,52.85`},{0.0004986187845303868`, 

      54.28`},{0.0003450736648250461`,56.2`},{0.00022895948434622468`, 

      58.32`},{0.00013282688766114178`,61.05`},{0.00005902394106813996`, 

      65.28`},{0.0007923572744014733`,51.84`},{0.0007163904235727441`, 

      52.28`},{0.0006395027624309393`,52.93`},{0.0005626151012891344`, 

      53.58`},{0.0004857274401473297`,54.44`},{0.0004088858195211787`, 

      55.22`},{0.000331353591160221`,56.36`},{0.0004640883977900552`, 

      54.6`},{0.00038637200736648243`,55.56`},{0.0003088397790055249`, 

      56.72`},{0.00023158379373848986`,58.3`},{0.0001541436464088398`, 

      60.31`},{0.00007757826887661141`,63.88`},{0.00022398710865561693`, 

      58.34`},{0.00014631675874769796`,60.5`},{0.00005593922651933702`, 

      65.37`},{0.00023825966850828727`,57.97`},{0.0001626611418047882`, 

      60.04`},{0.00008517495395948435`,63.29`},{0.007739410681399631`, 

      39.17`},{0.004604051565377532`,42.3`},{0.003066298342541436`, 

      44.6`},{0.0006823204419889503`,52.6`},{0.0005308471454880295`, 

      54.02`},{0.0003670349907918969`,55.92`},{0.00020635359116022098`, 
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      58.98`},{0.002012891344383057`,46.86`},{0.0016984346224677715`, 

      47.79`},{0.0013964088397790053`,48.86`},{0.0007941988950276243`, 

      51.79`},{0.0004930939226519337`,54.28`},{0.00021818600368324123`, 

      58.46`},{0.000056169429097605894`,65.51`},{0.007315837937384899`, 

      39.48`},{0.006533149171270718`,39.76`},{0.004990791896869245`, 

      41.76`},{0.004216850828729282`,42.76`},{0.0034507366482504605`, 

      43.89`},{0.00268232044198895`,45.3`},{0.0021404235727440148`, 

      46.52`},{0.0012094843462246777`,49.61`},{0.000901012891344383`, 

      51.12`},{0.0005920810313075507`,53.32`},{0.00028747697974217313`, 

      57.03`},{0.0000998158379373849`,62.4`},{0.016445672191528544`, 

      34.04`},{0.014742173112338858`,34.94`},{0.012767034990791896`, 

      35.89`},{0.011063535911602211`,36.97`}} 

CsDataLipa={{0.0091136`,38.294`},{0.0075245`,39.44`},{0.0063279`, 

      40.449`},{0.0048267`,41.991`},{0.0037505`,43.384`},{0.0033287`, 

      44.034`},{0.0026579000000000004`,45.247`},{0.002016`, 

      46.744`},{0.0016499`,47.778`},{0.0011681999999999999`, 

      49.584`},{0.0010217`,50.278`},{0.00077205`,51.734`},{0.00065997`, 

      52.535`},{0.00048398`,54.11`},{0.00036973`, 

      55.491`},{0.00024743000000000003`,57.548`},{0.0001862`, 

      58.987`},{0.00014084`,60.394999999999996`},{0.00010746`, 

      61.775000000000006`},{0.000081065`,63.166`},{0.000060605`, 

      64.615`},{0.00004564`,66.03099999999999`},{0.000039284000000000005`, 

      66.774`},{0.000029536`,68.215`},{0.000025569`, 

      68.905`},{0.000018917999999999997`,70.389`},{0.000013931`, 

      71.894`},{0.000011789`,72.69099999999999`},{0.000010101`, 

      73.465`},{7.1855999999999994`*^-6,75.127`},{5.2386999999999995`*^-6, 

      76.6`},{3.7254999999999997`*^-6,78.282`},{3.0057`*^-6, 

      79.27199999999999`},{2.501`*^-6,80.22`},{1.9984`*^-6, 

      81.214`},{1.6451`*^-6,82.228`},{9.015`*^-7,85.095`},{5.8475`*^-7, 

      87.091`},{4.0001`*^-7,88.965`},{2.8675`*^-7,90.447`},{2.382`*^-7, 

      91.46600000000001`},{1.9685`*^-7,92.212`},{1.4472`*^-7, 

      93.734`},{1.3269`*^-7,93.811`},{9.4706`*^-8, 

      95.544`},{7.165899999999999`*^-8,96.836`},{5.8321`*^-8, 

      97.98400000000001`},{5.004`*^-8,98.051`},{4.0329`*^-8, 

      99.24300000000001`},{2.9670999999999998`*^-8,101.04`},{2.4924`*^-8, 

      102.72`},{2.0000999999999998`*^-8,103.53`},{1.572`*^-8, 

      104.28999999999999`},{1.2073`*^-8,106.22`},{9.794199999999999`*^-9, 

      108.13000000000001`},{7.8027`*^-9,105.77`},{6.2719`*^-9, 
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      108.75999999999999`},{4.8799`*^-9,108.38000000000001`},{4.01`*^-9, 

      110.92`},{3.1344`*^-9,108.71000000000001`},{2.4785`*^-9, 

      111.91`},{1.9753`*^-9,116.07000000000001`},{1.5505`*^-9, 

      118.`},{1.2454999999999999`*^-9,116.91`},{1.0115`*^-9, 

      111.97`},{7.9398`*^-10,122.09`}} 

data1=ListPlot[CsDataLow,PlotStyle\[Rule]{RGBColor[1,0,0],PointSize[0.01]}] 

data2=ListPlot[CsDataLipa,PlotStyle\[Rule]{RGBColor[0,0,1],PointSize[0.01]}] 

P=0.05;th= 

  Plot[{cHighFit[ttt],cRotonFit[ttt]+cHighFit[ttt], 

      cMaxonFit[ttt]+cRotonFit[ttt]+cHighFit[ttt], 

      cPhonon[ttt]+cMaxonFit[ttt]+cPhMaxonFit[ttt]+cRotonFit[ttt]+ 

        cHighFit[ttt]},{ttt,0.0000000001,0.017}, 

    PlotStyle\[Rule]{RGBColor[1,0,1],RGBColor[0,1,0],RGBColor[0,0,1], 

        RGBColor[1,0,0]}] 

Show[data1,data2,th,PlotRange\[Rule]{{0,0.017},{0,125}}] 

CsDataLowLog= 

    Table[{Log[10,CsDataLow[[n,1]]],CsDataLow[[n,2]]},{n,1, 

        Length[CsDataLow]}]; 

dataLowLog= 

  ListPlot[CsDataLowLog,PlotStyle\[Rule]{RGBColor[0,0,1],PointSize[0.02]}] 

CsDataLipaLog= 

    Table[{Log[10,CsDataLipa[[n,1]]],CsDataLipa[[n,2]]},{n,1, 

        Length[CsDataLipa]}]; 

dataLipaLog= 

  ListPlot[CsDataLipaLog,PlotStyle\[Rule]{RGBColor[1,0,0],PointSize[0.012]}] 

theoryLog= 

  ParametricPlot[{xx, 

      cPhonon[10^xx]+cRotonFit[10^xx]+cMaxonFit[10^xx]+cPhMaxonFit[10^xx]+ 

        cHighFit[10^xx]},{xx,-9.2,-1.6}, 

    PlotRange\[Rule]{{-9.2,-1.6},{20,125}}, 

    PlotStyle\[Rule]{Thickness[0.0045]}] 

Show[dataLowLog,dataLipaLog,theoryLog,PlotRange\[Rule]{{-9.2,-1.6},{0,125}}] 

 


