
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title 生物配列解析のためのカーネル設計

Author(s) 金, 大真

Citation

Issue Date 2003-12

Type Thesis or Dissertation

Text version author

URL http://hdl.handle.net/10119/805

Rights

Description Supervisor:佐藤　賢二, 知識科学研究科, 博士

Doctoral Thesis

Designing Kernels
for

Biological Sequence Data Analysis

by

Taishin KIN

Supervised by Kenji Satou, Ph.D.

School of Knowldge Science
Japan Advanced Institute of Science and Technology

Dec. 2003

Copyright c�2003 by Taishin Kin

Abstract

IN order to uncover the nature of life, it is very important to understand the nature of biolog-
ical sequences such as DNAs, RNAs or proteins. Our research focuses on a fundamental
issue of modeling and comparison of biological sequence data in general. The objectives

of this research are to propose a general framework where modeling and comparison of bio-
logical sequence data can be organized and to develop efficient methods to extract features of
biological sequence data.

Firstly, we proposed the Self-Identification Learning (SIL) for a system based on hidden
Markov models to predict protein coding regions. SIL is a learning algorithm that does not
require training data. By making use of its prediction results for its training data in the next
iteration, it trains itself through iterative feedback loop of learning and prediction. Whereas
existing genefinding systems are not useful when there are insufficient training data of a target
organism because a high quality training dataset is indispensable to perform accurate predic-
tions, SIL allows to perform genefinding in such a case.

Many of genefinding systems uses a discriminative property known as dicodon usage mea-
sure (DUM), one of the best measures that distinguishes protein coding regions and non-coding
regions. It has been widely believed that the biological meanings of DUM can be decomposed
into several biological properties while such belief is not backed by any objective examination.
We found that a portion of dicodon usage parameters suffices to yield reasonable performance
for prediction of coding regions. Hinted by this indication of redundancy of DUM, we de-
vised six dicodon approximators based on some combinations of biological properties because
a good dicodon approximator will lead to understanding biological meanings of dicodon and
to a good basement for designing a better prediction measure. We carried out performance
comparisons among DUM and the six approximators by using 17 microbial plus 6 eukaryotic
genomic sequence data. However, no approximators could match performance of DUM. Thus
dicodon usage cannot be interpreted with the approximators we devised. This result revokes
conventional belief on the biological meanings of DUM.

Use of DUM is limited to discriminating coding and non-coding regions. Therefore we
started to find a general method to extract features of sequences by thinking two essential issues
of biological sequence data analysis i.e. “what is the feature of biological sequence?” and “how
we can utilize such features for analysis?” We proposed a novel method to extract features of
biological sequence data, the marginalized kernel, that is a general framework to design similar-
ity measures among biological sequences. There are two properties dealt with this framework:
feature representation and similarity quantification. We use latent variable models (e.g. hidden
Markov models) for the feature representations, which allows to bind a hidden variable to a
certain biological feature. The hidden variables can be estimated with regular algorithms. The
highlight of our method is that we use all probable estimations which allow us to incorporate
implicit feature representations. We use kernel functions for similarity quantification so that we
can exploit kernel methods such as support vector machines for discriminant analysis. In order
to evaluate validity of our method, we performed computational experiments to classify gyrB
protein sequence data. The experiments show that our method successfully classified most of
the proteins.

i

We developed a novel method: the marginalized kernel for RNA sequence data, which de-
fines similarities between RNA sequences by utilizing stochastic context free grammar (SCFG).
With our method, powerful multivariate analysis tools such as support vector machines, kernel
PCA and etc. become available to RNA sequence data analysis. We demonstrated performance
of our method with clustering experiments by using kernel PCA and supervised classification
experiments by using support vector machines. The experiments show promising results.

ii

Acknowledgment

Firstly, I would like to put my best appreciation to my family. Dr. Satou is a gracious person
who should be listed here in the first place. I would like to express my profound appreciation
to Dr. Konagaya for his thickest support to my student life and research activity. I also greatly
appreciate Dr. Asai and Dr. Tsuda for their remarkable criticism and contribution to my re-
search. Dr. Takahashi has been giving me coherent and practical advise to carry my research
activity on. Dr. Akiyama gave me a precious opportunity to continue and expand my research
activity. All of students of Genetic Knowledge System Laboratory of Japan Advanced Institute
of Science and Technology has been of the best assistance in every aspect of my student life. I
thank them from my heart profoundly. Let me express my special appreciation to Mr. T. Onishi
and Mr. and Mrs. Unto.

iii

To my grand father...

iv

Contents

Abstract i

Acknowledgment iii

1 Introduction 1
1.1 Molecular Biology . 1

1.1.1 Cell . 1
1.1.2 Double Helix . 2
1.1.3 Transcription and Splicing . 2
1.1.4 Translation . 2

1.2 Human Genome Project . 2
1.3 Analysis of Biological Sequence Data . 3

1.3.1 Gene Finding . 3
1.3.2 Hidden Markov Model . 4

1.4 Outline of the Thesis . 4

2 A Study on Dicodon-oriented Genefinding using Self-Identification Learning 6
2.1 Introduction . 6

2.1.1 The Dicodon Usage Measure . 7
2.1.2 Self-identification Learning Method 7

2.2 Evaluation of Self-identification Learning . 12
2.2.1 Method . 12
2.2.2 Results and Discussion . 16
2.2.3 Conclusion for the preliminary examination 17

2.3 Evaluation of Dicodon Usage Measure . 24
2.3.1 Models . 24
2.3.2 Evaluation of models . 25
2.3.3 Result . 28
2.3.4 Discussion . 30

2.4 Summary . 31

3 Kernel Design for Biological Sequence Data 39
3.1 Introduction . 39
3.2 Kernel . 40
3.3 Kernel Design for Protein/DNA Sequences 42

3.3.1 Designing Count Kernels . 42
3.3.2 Count Kernels for Labeled Biological Sequences 44
3.3.3 Count Kernels for Biological Sequences without Labels 45

v

3.3.4 Computing MCKs with a Hidden Markov Model 46
3.3.5 Connections to Fisher Kernels . 47

3.4 Computational Experiments . 48
3.5 Summary . 49

4 Marginalized Kernels for RNA Sequence Data Analysis 52
4.1 Introduction . 52
4.2 RNA Secondary Structure . 53
4.3 Grammar of RNA . 53
4.4 SCFG . 56
4.5 Kernel PCA . 57
4.6 Kernel Design for RNA Sequences . 58

4.6.1 Count Kernels for RNAs . 58
4.6.2 Marginalized Count Kernels for RNAs 61

4.7 Computational Experiments . 63
4.7.1 Clustering Human tRNA Sequence Data 63
4.7.2 Clustering snoRNA Sequence Data 63
4.7.3 Supervised classification . 65

4.8 Summary . 65

5 Conclusion 72

Bibliography 74

Publications 82

A Microbial Genomes 83

B Softwares 84
B.1 HMM software . 84
B.2 SCFG software . 85

vi

List of Figures

2.1 Translation process of mRNA . 8
2.2 Derivability of coding measures . 11
2.3 Self-identification and generic learning . 12
2.4 Overview of genefinding . 13
2.5 Dicodon-oriented HMM . 15
2.6 Measures for prediction accuracy . 15
2.7 Results of genefinding (a) . 18
2.8 Results of genefinding (b) . 19
2.9 Results of genefinding (c) . 20
2.10 Correlation coefficient and the number of trained HMM parameters (a) 21
2.11 Correlation coefficient and the number of trained HMM parameters (b) 22
2.12 Correlation coefficient and the number of trained HMM parameters (c) 23
2.13 Dicodon approximation . 26
2.14 Profile of coding potentials . 29
2.15 Histogram of coding/non-coding potentials for E.coli 30
2.16 Sensitivity+Specificity versus relative training data size (a) 33
2.17 Sensitivity+Specificity versus relative training data size (b) 34
2.18 Sensitivity+Specificity versus relative training data size (c) 35
2.19 Sensitivity+Specificity versus relative training data size (d) 36
2.20 Sensitivity+Specificity versus relative training data size (e) 37
2.21 Averaged square errors . 38

3.1 Projection into feature space . 42
3.2 Protein sequence and its secondary structure 44
3.3 Kernel matrices of gyrB . 50
3.4 Evaluation of kernels in clustering . 51

4.1 Types of single- and double-stranded regions in RNA secondary structure . . . 54
4.2 An example of an RNA sequence and a representation of the secondary structure

using a CFG matrix. 55
4.3 Counting RNA labels . 59
4.4 Results of kernel PCA . 64
4.5 snoRNAs . 66
4.6 Grammar for snoRNAs . 67
4.7 Kernel PCA for Yeast snoRNAs . 68
4.8 ROC curves from the supervised classifications (a) 69
4.9 ROC curves from the supervised classifications (b) 70
4.10 ROC curves from the supervised classifications (c) 71

vii

List of Tables

2.1 Codon usage (a) . 9
2.2 Codon usage (b) . 10
2.3 Performances of coding region measures . 10
2.4 Recognition result for 17 microbial genomic sequence data 17
2.5 Maximum sensitivity+specificity . 32

3.1 Mean error rates of supervised classification 49

4.1 Values of ��
��� . 56

A.1 17 microbial and 6 eukaryotic genomic sequence data 83

viii

Chapter 1

Introduction

This chapter provides some essential backgrounds of computational biology that is an emerging
research area of biology that applies or develops computational theories or methods in order to
solve biological conundrums. Though there are many research topics regarding this area, this
chapter mainly focuses on biological sequences such as DNA, RNA and proteins.

1.1 Molecular Biology

1.1.1 Cell

A human is a living organism that consists of 60 billion (���� ����) animal cells. Although the
human is such a complex lifeform, one single cell is thought to be an unit of life because, in
this world, there are the most primitive living organisms which consist of only one cell. Such
the organisms are called unicellular organism which embrace the great kingdom of bacteria and
fungi. On the other hand, we human beings, as well as plants, fishes, reptiles and insects, are
called multicellular organism. However, the unicellular/multicellular separation is not a good
criterion in terms of evolution. Because there are great deal of differences between bacteria and
fungi wherease the both organisms are unicellular. The differences are presented inside of their
cells. Bacteria cells always lack certain organella which are found in fungal cells. Those are
nuclei and cytoskeleton. A nuclei is a spherical membrane containing many complex molecules
including chromosomes that will be discribed later. A cytoskeleton is a scafold that supports
and maintains physical formation of a cell. The bottom line is that there are two types of
cells: one is called prokaryotic cell which lacks nuclei and cytoskeleton, and the other is called
eukaryotic cell which encompasses a fungal cell and multicellular organism cells. Provided
that, evolutionary sound classification of living organisms are based on the class of cell whether
it is prokaryotic or eukaryotic. Thus we classify every organism into prokaryote or eukaryote
(the former has further differentiation i.e. eubacteria and archaea).

No matter which class a cell belongs, each cell has one or more chromosomes inside. A
chromosome is a chain of chromatins; a compound of DNA (deoxyribo-nucleic acid) and pro-
tein molecules. Nature of a chromatin is a chain of DNA winded around a reel-like protein
which is called histon octamer. In 1944, DNA is found to be a chemical polymer which consists
of four types of nucleic acids; adenine (A), guanine (G), cytosine (C) and thymine (T) and,
much more importantly, carries genetic information.

1

1.1.2 Double Helix

In 1953, J.D. Watson and F.H.C. Crick found that DNA is a double-helical strand of nucleic
acids. A part of DNA looks like following illustration:

�� � � � � � � � � � 	�

� � � � � �
	� � � � � � � � � � ��

�� and 	� are labels indicate direction of DNA strand 1. DNA double helix has two strands
which are essentially same but are aligning reverse complementary order each other. The two
complementary strands; one from �� to 	� and the other is running reverse direction. The bar
symbols indicate hydrogen bonds for base pairs: A–T and G–C (Watson-Click pairs) between
two strands.

1.1.3 Transcription and Splicing

Certain parts of DNA are copied to RNA (ribo-nucleic acid) called messenger RNA (mRNA)
through a series of complex molecular reactions called “transcription.” A region transcribed to
mRNA is called gene2, which is the very region that encodes genetic information. However, not
all the region has genetic information. After transcription, mRNAs are processed via splicing
that is a complex process involving several proteins called spliceosomes. Spliceosomes “cut
out” (splice) certain parts of mRNA and concatenate remaining parts. The cut-out parts are
called introns, and the remaining parts are called exons. Only eukaryotic genes have exon–
intron structure. Since introns are spliced from mRNAs then resolved and recycled as individual
nucleic acids, they have not particular genetic information. Spliced mRNA is called mature
mRNA while pre-mRNA is used for distinguishing mRNA before spliced.

1.1.4 Translation

After splicing, some of mRNAs are used for protein synthesis called “translation.” Protein; a
chain of amino acids is synthesized according to information written in mRNA. In translation,
mRNA is treated as a chain of triplets:

��� � �� � ��� �� � ��� �� � ���� �� � � � � �
������� ��� ��� ��� ��� � � �

A triplet of nucleic acids in mRNA corresponds to a certain amino acid (see Figure. 2.1 for
details). The correspondence is called genetic code (see Table. 2.1). Some other genes work as
functional RNAs (fRNAs) without being translated.

1.2 Human Genome Project

Genome is a word stands for all of genetic information of DNA letters contained in a whole set
of chromosomes. Human Genome Project (HGP) is a join effort of international researchers to

�These labels are originated with positions of chemical bonds in nucleic acids.
�Also a region that controls transcription is included.

2

determine every bit of human genome that consists of 3 billion letters (3.2 giga base) of AGTC.
In April 2003, HGP announced completion3 of their ten-year-long effort. The achievement of
HGP is significant because human genome data is the most important and fundamental resource
for scientific researches: genetics – clarifying evolutionary root of homo sapiens, pathology –
finding mechanisms of diseases including cancers that involve a set of genes, pharmacology –
drug discovery and design based on findings, molecular biology – genome comparison that un-
veils “what differentiates human nature from another?” and many other researches. According
to HGP (press release for draft human genome from The Welcome Trust Sanger Institute), only
1.1% to 1.4% of human genome encodes protein-coding regions. There are approximately
31,000 to 34,000 protein-coding genes in human genome that is 28% of genes transcribed
to mRNAs. These estimations indicates that human genome has quite generous redundancy
because most part of chromosomes do not convey any evolutionary significant information.
Nonetheless, since genome is very long text of AGCTs, there is no obvious boundaries to
discriminate genes and non-genes. Therefore, intensive analysis of genome sequence data is
required to further investigate nature of human genome. Such analysis usually requires compu-
tational power because one needs to deal with large amount of information processing.

1.3 Analysis of Biological Sequence Data

Here we use biological sequence data to refer to DNA, RNA, genome or protein sequence data.
DNA/RNA sequence is a molecular chain of nucleic acids (A, G, C, T or U). Genome sequence
is also a chain of AGCTs. Protein sequence is a chain of amino acids. There are 20 admissible
amino acids in a chain. We add “data” to refer to digital form of these sequences. Thus genome
sequence data is a set of digital files storing letters of genome sequence. There are varieties of
analysis regarding biological sequence data. In this thesis, we focus on two major research area
that play very important role in genome sequence data analysis. They are sequence similarity
and gene finding.

1.3.1 Gene Finding

Gene finding is a computational method to find protein coding regions out of genomic sequences
and it has been studied extensively for nearly a couple of decades. Methods for gene finding are
roughly divided into two categories:

� Sequence similarity search

� Stochastic models based on statistical regularities in coding region; coding measures

Sequence similarity search is one of the earliest but the most valuable methods for gene
finding. A protein coding region can be identified by finding regions show high similarity to a
queried protein sequence which is available in databases such as Swiss-Prot [73], GenBank [11]
and DDBJ [69]. Methods for similarity search are quite well developed [105] and realized as
a variety of software tools such as Blast [2], Fasta [78], ALN [41], BLAT [57] and so on. The
reason why sequence similarity search works for gene finding is originated from a mechanism
of molecular evolution. The mutation is one of the major factor to cause genomic diversity
among all living organisms, which is a phenomenon that cause modifications to genomes such

�Here, “completion” means that 99% of human genome was determined at 99.99% of accuracy.

3

as deletion, insertion and substitution of a nucleotide. A myriad of mutations are piled up
on a genome through hundreds of millions of years across tens of thousands of generations.
Naturally, mutations are very rare in coding regions because a mutation can often cause critical
dysfunction of a gene which may, in turn, lead the host organism to death. Consequently, many
living organisms started to have a certain mechanism to prevent and correct “errors” in coding
regions which are caused by random mutations. A clear advantage of similarity search is that
it allows identifying function of detected coding region as well as its position when function of
the matching protein is annotated in advance.

Gene finding using stochastic models is useful to detect coding regions where no similar
protein sequences are available in databases. The models are designed to integrate molecular
biological attributes and signal patterns that help detecting specific feature of coding regions.
Since initial breaking of genetic code by Nirenberg and Matthaei in 1961, molecular biology
has been clarified many details of genomes that help designing theoretical models of coding
regions. Some of the well known features of coding regions are codon usage and GC content.
Both of them can be observed as compositional biases particularly in coding regions, which
are consequences of the evolutionary pressure [74]. Since the early initiation of computational
biology, a bunch of gene models have been developed. It was straight forward to use such
attributes for defining probabilistic models to recognize coding regions. Early studies on gene
finding by Shepherd [92], Fickett [33] and Staden & McLachlan [96] showed that statistical
criteria based on compositional biases of amino-acids and codon usage can be used to identify
coding regions. More details about gene finding can be found in summaries of gene finding
problems contributed by Fickett [34]. Evaluation of several gene finding programs was offered
by Burset and by Guigo [21].

1.3.2 Hidden Markov Model

Wide variety of gene finding algorithms based on machine learning approach have been de-
veloped since Stormo and et al. [98] first introduced an algorithm using neural networks for
detection of translation start sites. Most of all gene finding programs make use of the high level
syntax of genes resulting from general understandings of transcription, splicing, and transla-
tion [34]. Searls [90] suggested that a linguistic approach to the analysis of features in DNA
sequences could be beneficial. This approach is first applied to identification of protein coding
region by Dong and Searls [29], where a formal definite clause grammar of genes is described.

Hidden Markov model (HMM) [80] is one of the major stochastic language model and has
been widely used for natural language processing. Application of HMM to biological sequence
analysis was first introduced independently by Churchill [22], Asai et al. [4], Krogh et al. [60]
and Dong & Searls [29]. HMM provides several advantages such as flexible description of
signal patterns and virtually direct translation of biological attributes to HMM network. That is
why HMM are widely used for biological sequence data analysis ([52, 107, 106]).

1.4 Outline of the Thesis

The objective of this research is to develop novel methods to extract features of biological se-
quence data in general. Following chapters of this thesis are organized as follows: Firstly,
in chapter 2, we investigated a discriminative property known as dicodon usage, the best dis-
criminative measure that helps distinguishing protein coding regions and non-coding regions.

4

However, its biological semantics is not clarified yet. Aim of this investigation is to clarify
biological meanings of the dicodon usage. We devised several dicodon approximators based on
some combinations of apparent biological properties in order to emulate dicodon usage. The
investigation was carried out fairly comprehensively by using seventeen microbial plus several
eukaryotic sequence data. Although some approximators sometimes scored as good as dicodon
does, no approximators could match performance of dicodon usage. Therefore dicodon usage
cannot be interpreted with the approximators devised here. Hence biological meanings of di-
codon usage is yet to be known. Even though dicodon usage is still the best player in the field of
practical gene finding, its use is limited to provide statistical criteria for discriminating coding
and non-coding regions. Therefore we started to find a method to extract features of biological
sequence data from a fundamental point of view.

Secondly, in chapter 3, we proposed a novel method to extract features of biological se-
quence data, that is a general framework to design similarity measures. This provides a frame-
work to define similarity measures that take account of biological features implied by sequence
data. There are two properties that should be defined in this framework: feature representa-
tion and similarity quantification. The feature representation is to define a model to represent
features (e.g. secondary/tertiary structures of proteins or exon–intron boundaries of DNAs) of
biological sequences. In this framework, we use latent variable model (e.g. hidden Markov
models) for the feature representations, which allows us to bind a hidden variable to a certain
feature. The hidden variables can be estimated in a probabilistic manner such as maximum like-
lihood or expectation–maximization from a biological sequence data through a latent variable
model. Instead of using only one best estimation (e.g. Viterbi result of HMMs) which cannot be
proven to be true, we use all probable estimations that allow us to incorporate implicit feature
representations. The similarity quantification is to quantify the similarity between two biologi-
cal sequences. We use kernel functions for this purpose so that we can exploit kernel methods
such as support vector machines for discriminant analysis. In order to evaluate validity of our
method, we performed computational experiments to classify gyrB protein sequence data. The
experiments show that our method successfully classified most of the proteins.

In chapter 4, We developed a novel method to define similarities between RNA sequence
data by utilizing stochastic context free grammar, that is capable of describing secondary struc-
tures of RNAs, into our framework. We demonstrate performance of our method with cluster-
ing experiments of human transfer RNAs (tRNA) by using kernel PCA. The experiments show
promising results. We apply our method to more practical problem that is to extract features
of small nucleolar RNAs (snoRNA). snoRNAs are small RNAs that play an important role in
a splicing reaction of ribosomal RNA precursors. The major difficulty of feature extraction
from snoRNAs is that their common secondary structures are not known well. However, the
experiments show that our method successfully captured features of snoRNAs.

We summarize and put conclusion for this thesis in chapter 5.

5

Chapter 2

A Study on Dicodon-oriented Genefinding
using Self-Identification Learning

2.1 Introduction

In this chapter we focus on one of the major open problems of computational biology, that is
prediction of protein coding region in genomic sequences (commonly known as ”genefinding,”
”gene prediction” or ”gene identification”) of every species ranging from prokaryotes (mainly
bacteria) and eukaryotes (such as yeast, plant, worm, and human). Because, the clarification of
biological functions of genes has been one of the primary goals of computational biology. The
genefinding is very important for the functional clarification of genes and complete automation
of the genefinding is also demanded because a large quantity of genomic sequence data is being
piled up on a host of databases and waiting to be analyzed. Such incessant increase of demands
makes the genefinding more crucial.

Main stream of the genefinding has been targeting higher eukaryotic (especially human)
genomic sequences which have more complicated genomic structure thus more challenging to
predict than prokaryotic genome. The genefinding with higher eukaryotic genomic sequences
requires precise definition of the sequence dependence of molecular biological mechanisms
such as:

� the basic biochemical processes of DNA to RNA transcription

� RNA translation and splicing(i.e. exons and introns)

� knowledge about the sequence properties of known genes

Although the above mechanisms have been under intensive investigation, heaps of knowledge
are still waiting to be discovered. So the gene finding has been a computational and analytical
method to full fill the void of knowledge on these mechanisms. While the prediction problem
is hard and challenging, it increases its importance regarding recent shift in emphasis of the
Human Genome Project from reading every nucleotide of human genomic sequence to finding
functional role of every genes. In order to get clues to find the functions of genes, we need to
find exactly where those genes reside in a lengthy sequence of nucleotides with aids of compu-
tational methods.

This chapter emphasizes precision modeling of genomic sequences; especially discrimi-
nation of protein coding/non-coding regions based on the dicodon usage measure which has

6

been known as one of the most precise among protein coding measures. Although Fickett and
Tung gave an objective and quantitative evidence to the superiority of the dicodon usage mea-
sure [35], there has been no sufficient investigation taken for the dicodon usage measure to
clarify the biological background to explain why the dicodon works such well. This chapter
aims to investigate and clarify the biological semantics of the dicodon usage measure.

2.1.1 The Dicodon Usage Measure

This chapter focuses on the statistical regularities in coding regions, where the dicodon usage
measure should be discussed. Fickett and Tung evaluated every coding measures known to
the public and showed that the dicodon usage measure is one of the best measures among
others [35]. Every protein coding region is translated from nucleotides to amino-acids, in a
triplet basis, under a rule of genetic code. The triplet is called Codon. Figure 2.1 shows how
the translation occur in the molecular world. It is well known that the occurrence of codon has
peculiar bias which means not every codon is used evenly in a genomic sequence and thus the
codon can be used as a measure of coding region. Such unevenness is called codon usage and
denoted as a conditional probability:

��������� � �����
��������������� ���

��
�

where � is for a codon, ���� is for an amino-acid corresponds to � and � stands for an amino-
acid. Table 2.1 to 2.1.1 show differences between coding and non-coding region for E. coli.

Although the codon usage measure offers simple description for coding regions, it just pro-
duces lower scores (specificity and sensitivity) than other measures such as dicodon usage mea-
sure [35] (see also Table 2.1.1). The measures that perform better than the codon usage measure
belong to hexamer-n measure. The hexamer-n measure (for n = 0, 1, 2) counts all hexamers
(i.e. six nucleotide) offset by n from the starting base. Dicodon usage measure is identical to
hexamer-0 measure. Hexamer-1 and 2 measures perform slightly worse than dicodon usage
measure. Dicodon usage measure can be denoted as a conditional probability ���������� where
�� for a codon and ���� for its next codon.

The simple calculation shows that the codon usage measure has 1,220 parameters for 61
codons and 20 amino-acids, and the dicodon usage measure has 3,721 parameters. Notice that
the dicodon usage measure performs slightly better than the codon usage measure that has only
one-third of the parameters. This simple fact implies that the dicodon usage measure is more
redundant than the genefinding actually requires. Besides, our preliminary examination (ex-
plained later) indicated the same conclusion. Fickett stated that the dicodon usage or hexamer-n
measure contains all of other known measures such as codon usage, diamino-acid, and din-
ucleotide bias [35] (see also Figure 2.2). According to the redundancy indicated above, it is
reasonable that not all of these measures does not need to be included by the dicodon usage
measure. This thesis focuses on this very point and tries to clarify which measure is the most
important and which is the least important.

2.1.2 Self-identification Learning Method

Self-identification learning [6, 7] is relatively new approach that does not require training
sequence while most other algorithms require the training sequence. Conventional learning
scheme is trained by training sequence in order to obtain optimum set of parameters. However,

7

Figure 2.1: Translation process of mRNA is shown. The elongation phase of protein synthesis
on a ribosome. The three-step cycle shown is repeated over and over during the synthesis of
a protein. An aminoacyl-tRNA molecule binds to the A-site on the ribosome in step 1, a new
peptide bond is formed in step 2, and the ribosome moves a distance of three nucleotides along
the mRNA chain in step 3, ejecting an old tRNA molecule and ”resetting” the ribosome so that
the next aminoacyl-tRNA molecule can bind.

8

Table 2.1: Codon usage (a): Differences of codon usages between coding (CD) and non-coding
(NC) region in E.coli (a). Notice that codon usages in coding regions are heavily biased or
apparently different from the non-coding regions.

Amino Acid CODON USAGE(CD) USAGE(NC)
Ala GCA 0.213 0.288

GCC 0.270 0.241
GCG 0.356 0.258
GCT 0.161 0.213

Arg AGA 0.039 0.177
AGG 0.023 0.176
CGA 0.065 0.132
CGC 0.398 0.190
CGG 0.098 0.168
CGT 0.378 0.157

Asn AAC 0.550 0.397
AAT 0.450 0.603

Asp GAC 0.372 0.358
GAT 0.628 0.642

Cys TGC 0.556 0.505
TGT 0.444 0.495

Gln CAA 0.347 0.518
CAG 0.653 0.482
GAA 0.689 0.622
GAG 0.311 0.378

Gly GGA 0.109 0.252
GGC 0.403 0.284
GGG 0.151 0.222
GGT 0.337 0.243

His CAC 0.429 0.406
CAT 0.571 0.594

Ile ATA 0.073 0.325
ATC 0.420 0.256
ATT 0.507 0.419

Leu CTA 0.037 0.093
CTC 0.104 0.116
CTG 0.496 0.169
CTT 0.104 0.168
TTA 0.131 0.264
TTG 0.128 0.191

Lys AAA 0.765 0.680
AAG 0.235 0.320

Met ATG 1.000 1.000

9

Table 2.2: Codon usage (b): Codon Usage differences between coding and non-coding region
in E.coli (b) (continued).

Amino Acid CODON USAGE(CD) USAGE(NC)
Phe TTC 0.426 0.328

TTT 0.574 0.672
Pro CCA 0.191 0.241

CCC 0.124 0.224
CCG 0.525 0.258
CCT 0.159 0.277

Ser AGC 0.277 0.161
AGT 0.151 0.154
TCA 0.124 0.239
TCC 0.149 0.151
TCG 0.154 0.125
TCT 0.146 0.171

Thr ACA 0.132 0.308
ACC 0.434 0.219
ACG 0.268 0.239
ACT 0.166 0.234

Trp TGG 1.000 1.000
Tyr TAC 0.431 0.372

TAT 0.569 0.628
Val GTA 0.154 0.238

GTC 0.216 0.190
GTG 0.371 0.233
GTT 0.259 0.340

Table 2.3: Performances of coding region measures are shown. Percentage accuracy (average of
specificity and sensitivity) of the coding measures in predicting phase-specific coding (excerpt
from [35] Table 3).

Measure Human 54 Human 108 Human 162 E.coli 54 Human 54
Penrose Penrose Penrose Penrose Classical

Dicodon Usage (Hexamer-0) 80.7 84.3 85.4 88.7 -
Hexamer-2 79.5 82.8 84.2 87.2 -
Hexamer-1 78.6 82.0 83.3 87.1 -
Codon Usage 78.0 81.0 82.1 86.9 81.7
Diamino-acid Usage 77.2 84.9 87.7 84.2 -
Amino-Acid Usage 75.3 81.1 83.6 83.3 76.2

10

Dicodon & Hexamar-1, 2

Hexamar

RepeatDinucleotide bias

Dinucleotide frame

CodonDiamino

Amino
Stability hydrophobicity

Composition

Entropy

Codon prototype

Position Asymmetry

Figure 2.2: Derivability of coding measures: Each measure is derivable from any measure above
it and connected to it by a line (excerpt from [34] Figure 1).

such strategy becomes totally impossible when there is no datum available for the training and,
possibly in many cases, such circumstances can be arisen especially for practical gene finding
where we can not expect to have correct data in advance. For example, practical genefinding
often requires gene prediction against totally new species –which means there is no previously
acquired similar or phylogenicaly related genomic sequence data– therefore no training data can
be effective if not offered. Besides, the self-identification learning can directly reflect data spe-
cific attributes to its output although the generic learning scheme tends to treat such attributes
as noise. This feature of the self-identification learning is very important especially for gene
finding that is applied to new, thus previously unknown, species. Because such attributes are
essential for genefinding against the new species and the generic learning scheme with training
data, which obviously do not include new data, usually fails identify coding regions in such new
species. The self-identification learning can obtain optimal parameters without training data in
following way(see also Figure 2.3):

� It simply starts its learning with uniform learning parameters

� The first trial finds several coding regions with uniform initial parameters

� Re-calculate parameters(i.e. dicodon usages) according to the regions found

� Iterate learning with revised parameters until it reaches plateau of learning curve

Efficiency of the self-identification largely depends, by its nature, on the number of its learn-
ing parameters as well as the size of training data. When it employs a large set of parameters,
it requires a large set of training data. The model is not accurate with insufficient training data.

11

Generic Learning Scheme Self-Identification Learning

Training Data

Optimal
parameters

Model is trained in advance

Input Output

Data specific attributes
are treated as noise

Output

Model is trained on-line
by its own output

Input

Data specific attributes
are learned by the Model

Iterate until the output
become stable

Parameter update

Figure 2.3: Side-by-side comparison between generic learning scheme and self-identification
learning. Notice that the generic learning scheme needs training data which is based on previ-
ously acquired data although the self-identification learning does not need such data. Thus the
self-identification learning reflects data specific attributes to its output while such attributes are
treated as noise in the generic learning scheme.

On the other hand, the model is not accurate when the number of parameters is too large for
the amount of training data. This problem can be generalized as a problem of complexity and
accuracy of a model. Hence we have to consider trade-off between the complexity of the model
and the accuracy.

In this chapter, we fed short fragments of microbial genomic sequence data to our genefind-
ing system in order to evaluate the robustness of the self-identification learning against short
training data.

2.2 Evaluation of Self-identification Learning

Two examination/analysis were performed. The first is computational genefinding using dicodon-
oriented HMM with self-identification learning and the second is evaluation of dicodon usage
measure. The former provides reason of the latter evaluation that is the reason to ask what
make dicodon usage measure such redundant. Firstly, evaluation of self-identification learning
is provided in this section.

2.2.1 Method

We used a dicodon oriented HMM genefinding system with self-identification learning [6] as a
test-bed for the evaluation. Two objectives are set and they are:

� to purely evaluate gene identification accuracy for our system

� to evaluate robustness of self-identification learning against short training data

12

17 Microbial genomic
sequence data (GenBank)

Short fragments

1/1
1/2
1/4
1/8

1/128
1/256

Uniform HMM
parameters

HTK (H2Vite)

Updated HMM
parameters

HTK (H2Vite)

Gaining optimal
parameters by

self-identification
learning with

short fragments

1/1

Genefinding result

Evaluation of self-
identification learning

using optimized
HMM parameters

by every short
fragment

Figure 2.4: A brief overview of the genefinding examination to evaluate self-identification
learning.

System Overview

We built a genefinding system that is incorporated with HTK (HMM Tool Kit) [109] which
is a commercial(Entropic Inc.) software toolkit for building continuous density HMM based
speech recognizers. Although the HTK is designed for dealing with continuous density dis-
tributions, the differences are minor between the continuous and discrete probability distri-
butions. Therefore HTK offers seamless platform to the gene finding. HTK uses Baum-
Welch algorithm(a.k.a. Expectation-Maximization algorithm) [9] for learning its parameters,
and uses Viterbi algorithm [50] for coding region recognition. Figure 2.4 provides at-a-glance
overview of our genefinding examination. Actually, by nature of our evaluation method, we
used only H2Vite which is a part of the toolkit and provides coding region recognition alone
with Viterbi algorithm. For the examination, we used 17 microbial complete genomic sequence
data [59, 27, 38, 61, 97, 13, 36, 101, 37, 17, 45, 93, 23, 56, 52, 39, 3, 32] available from Gen-
Bank [11] (see Appendix A). We evaluated the data size dependency of the self-identification
learning with short fragments of the sequence data such as 1/2, 1/4, 1/8, ..., and 1/256 of com-
plete sequence.

Dicodon Oriented HMM

Figure 2.5 shows overview of the dicodon oriented HMM network which uses simple grammar
to describe protein coding regions in a microbial genomic sequence because we need to keep
the system as simple as possible in order to facilitate analysis focused on the dicodon usage
measure. In microbial genome, and also in several eukaryotic no-internal-exon genome such as
yeast, every protein coding region can be described, for 5’ to 3’ strand, as arbitrary iteration of

13

codons that is sandwiched by start(5’) and stop(3’) codons, and for 3’ to 5’ (complementary)
strand, as arbitrary iteration of complementary codons that is sandwiched by complementary
start(3’) and stop(5’) codons. Most of coding regions are connected by a spacer i.e. non-
coding region which actually is arbitrary, but definitely shorter than coding regions, length of
nucleotides. However, the genome structure is not such simple because:

� non-coding regions are occasionally not exist between coding regions

� coding regions are occasionally overlapped each other

Functions to handle these exceptions are not implemented in our system because such imple-
mentation has nothing to do with the evaluation of the dicodon usage measure and we just
wanted to keep our system simple.

In figure 2.5 each rectangle corresponds to a certain structural item that forms a protein
coding region structure. The non-code state corresponds to a non-coding region and is a single
state and emits four output; A, C, G, and T. The start codon state corresponds to a start codon
region and is a small HMM that has 11 single output states and 3 transition parameters inside
when there are three possible start codons are expected 1. The stop codon is conceptually
identical to the start codon state. The Dicodon state corresponds to a coding region sandwiched
by start and stop codons and is an HMM that has 185 single output states and 3,782 transition
parameters inside. As the total, the HMM has 7,568 transition parameters.

Self-identification Learning

The initial parameters of the dicodon oriented HMM have uniform value. For example, non-
code state has uniform distribution for every output probability i.e. 1/4 for A, C, G, and T.
The self-identification learning begins the genefinding with this pre-learning condition. H2Vite
outputs a file denoting the prediction where in the sequence belong to a state with likelihood
calculated by Viterbi algorithm. The output from H2Vite is parsed by a Perl script and statistical
data is accumulated to update HMM parameters i.e. emission parameters for non-code state and
transition parameters

for start/stop codon dicodon state. During the statistical data accumulation, the system
rejects apparently false answer that do not comply coding region grammar implemented in
HMM network. Hence the HMM is trained by correct or possibly correct prediction results
although it is never fed training data in advance. Then H2Vite try recognition again, but this
time, with updated HMM parameters. The above procedures are iterated until the recognition
accuracy become maximum.

In order to evaluate the robustness of the self-identification learning, we used short frag-
ments of microbial genome sequence data such as 1/2, 1/4, 1/8, and such of whole genomic
sequence data to train the HMM as described above. After the HMM is trained, the model starts
to find protein coding regions from a whole genomic sequence data and we can see how the
HMM can predict coding regions accurately with a short fragment of training data. Therefore
we can evaluate data length dependency of self-identification learning.

�When there are less than three admissible start codons, the number of the HMM states are reduced to less than
11

14

Begin
State

End
State

Start
Codon

di-Codon Stop
Codon

Start
Codon

di-Codon
Stop

Codon

complementary

non-code
state

Figure 2.5: A network diagram of a dicodon-oriented HMM. ”Start Codon” state emits possible
three start codons(ATG, TTG, GTG). ”Stop Codon” state emits possible three stop codons(TAA,
TAG, TGA). ”di-Codon” state emits possible 61 dicodons iteratively.

REALITY

PREDICTION

TN FN TP FP TN FN TP FN TN

REALITY

P
R

E
D

IC
T

IO
N TP FP

FN TN

non codingcoding

co
di

n
g

n
on

 c
od

in
g

TP+FP

FN+TN

TP

TP+FN
Sn=

Sensitivity

TP

TP+FP
Sp=

Specificity

Figure 2.6: Measures for prediction accuracy at the nucleotide level (excerpt from [21] Fig-
ure 1).

15

2.2.2 Results and Discussion

The prediction accuracy is evaluated by counting TP(true positive): number of bases predicted
as inside of coding regions correctly, TN(true negative): number of bases predicted as outside
of coding regions correctly, FP(false positive): number of bases predicted as inside of coding
regions incorrectly, and FN(false negative): number of bases predicted as outside of coding re-
gions incorrectly. There are common measures to evaluate prediction accuracy at the nucleotide
level [21] (see also Figure 2.6):

� Sensitivity:

�	 �

�

� � �

� Specificity:

�� �

�

� � ��

� Correlation Coefficient:

�� �
�
� �
�� �� � �� ��

�
� � ��� �
 � �� �� �
� � �� �� �
 � ��

Additionally, simple nucleotide level prediction accuracy is given by

� �

� �

� �
 � �� � �
�

Table 2.2.3 shows the highest prediction accuracy (nucleotide level) �, sensitivity �	, speci-
ficity ��, and correlation coefficient �� for 17 microbial genomic sequence data. As a com-
parison for the score we got, the table includes scores obtained by another similar research by
Audic and Claverie [7]. Please note that the objectives of this research do not include getting
high prediction accuracy and our system is far simple than that of the Audic and Claveries’,
however our prediction accuracy exceeds their score over most species.

Figure 2.7 to 2.9 show dependency of �, �	, �� and �� on training data size for each
microbial genomic sequence data. �	 stays constantly high level over all sequence data because
almost all bacteria contains very small number of non-coding regions comparing to coding
regions. Hence � is much smaller than
� . ��,� and �� draw similar proposition because
of the same reason. There are apparent degradation of prediction accuracy for short training
data size. However, the prediction accuracy stays high until the training data size is lowered to
around 1/16 of whole data size.

Figure 2.10 to 2.12 show the number of learned HMM parameters versus training data size
for each microbial genomic sequence data. The results shown in the figure vary widely for each
sequence data because there are many differences caused by evolutionary diversity. Some of
the sequence data require very small amount of HMM parameters, far below from the param-
eter size of codon usage measure i.e. 1,220, to identify protein coding regions. On the other
hand, some of the sequence data require more than 1,220 parameters to be learned to attain
good prediction accuracy. Besides the maximum number of HMM parameters often results
in lower prediction accuracy i.e. over fitting. Typical proportion is shown in Archaeoglobus

16

Table 2.4: Recognition result for 17 microbial genomic sequence data. CC stands for corre-
lation coefficient. R stands for nucleotide-level prediction accuracy. And R* shows another
nucleotide-level prediction accuracy by Audic and Claverie [7].

Species Sensitivity Specificity CC R R*
Archaeoglobus fulgidus 0.97 0.97 0.65 0.94 0.92
Aquifex aeolicus 0.98 0.97 0.60 0.95 -
Borrelia burgdorferi 0.98 0.99 0.81 0.97 -
Bacillus subtilis 0.98 0.98 0.82 0.96 0.87
Chlamydia trachomatis 0.98 0.99 0.87 0.97 -
Escherichia coli 0.95 0.99 0.81 0.95 0.91
Haemophilus influenzae 0.98 0.96 0.80 0.95 0.90
Helicobacter pylori 0.98 0.97 0.75 0.95 0.93
Mycoplasma genitalium 0.98 0.92 0.54 0.91 0.96
Methanococcus jannaschii 0.98 0.98 0.85 0.97 0.89
Mycoplasma pneumoniae 0.98 0.95 0.69 0.93 0.92
Methanobacterium thermoautotrophicum 0.97 0.99 0.81 0.96 0.93
Mycobacterium tuberculosis 0.96 0.98 0.72 0.95 -
Pyrococcus horikoshii 0.97 0.94 0.61 0.92 -
Rickettsia prowazekii 0.98 0.98 0.93 0.97 -
Synechocystis PCC6803 0.96 0.99 0.82 0.96 0.91
Treponema pallidum 0.97 0.97 0.65 0.95 -

fulgidus, Borrelia burgdorferi, Chlamydia trachomatis, Escherichia coli, Haemophilus infulen-
zae, Methanococcus jannaschii, Mycobacterium tuberculosis, Pyrococcus horikoshii, Rickettsia
prowazekii, and Treponema pallidum.

Therefore it is obvious that not all of HMM parameters are needed to identify protein coding
regions with reasonable accuracy. Consequently, this evidence leads to a conclusion that the
dicodon usage measure is redundant for the genefinding.

2.2.3 Conclusion for the preliminary examination

Our evaluation shows that the dicodon usage measure is redundant for the gene finding. The
result implies that we can use a measure that has smaller size of parameters for genefinding in
reasonable accuracy. Fickett and Tung indicated that the dicodon usage measure performs better
than codon usage measure [35]. Their evaluation shows that prediction accuracy by the dicodon
usage measure exceeds that by the codon usage measure but merely showing slightly better
accuracy 1.3 considering the difference of parameter size among them. Although we found that
the dicodon usage measure is too large in its parameter size and codon usage measure does
not perform as good as the dicodon usage measure, the intermediate measure, which performs
as accurate as the dicodon and has less parameter size than the dicodon, is not discovered
yet. Thus our next investigation should be to find the most significant element in the dicodon
usage measure which make it better than the codon usage measure so that we can discover the
intermediate measure. The next section deals with the investigation.

17

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

10000 100000 1e+06 1e+07

M
ea

su
re

s

Training Data Size [nt]

Recognition Measures vs Training Data Size
(Archaeoglobus fulgidus)

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

10000 100000 1e+06 1e+07

M
ea

su
re

s

Training Data Size [nt]

Recognition Measures vs Training Data Size
(Aquifex aeolicus)

R
Sn
Sp
CC

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1000 10000 100000 1e+06

M
ea

su
re

s

Training Data Size [nt]

Recognition Measures vs Training Data Size
(Borrelia burgdorferi)

R
Sn
Sp
CC

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

10000 100000 1e+06 1e+07

M
ea

su
re

s

Training Data Size [nt]

Recognition Measures vs Training Data Size
(Bacillus subtilis)

R
Sn
Sp
CC

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1000 10000 100000 1e+06 1e+07

M
ea

su
re

s

Training Data Size [nt]

Recognition Measures vs Training Data Size
(Chlamydia trachomatis)

R
Sn
Sp
CC

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

10000 100000 1e+06 1e+07

M
ea

su
re

s

Training Data Size [nt]

Recognition Measures vs Training Data Size
(Escherichia coli)

R
Sn
Sp
CC

Figure 2.7: Results of genefinding (a). Measures: recognition accuracy (R), sensitivity (Sn),
specificity (Sp), and correlation coefficient (CC) for 17 microbial genomic sequence data are
shown. We used 1000,000, 500,000, 300,000, 150,000, 75,000, 32,500, 15,000, and 7,500 nt of
fragments out of complete genomic sequences for training data of the dicodon-oriented HMM.

18

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

10000 100000 1e+06 1e+07

M
ea

su
re

s

Training Data Size [nt]

Recognition Measures vs Training Data Size
(Haemophilus influenzae)

R
Sn
Sp
CC

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

10000 100000 1e+06 1e+07

M
ea

su
re

s

Training Data Size [nt]

Recognition Measures vs Training Data Size
(Helicobacter pylori)

R
Sn
Sp
CC

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10000 100000 1e+06

M
ea

su
re

s

Training Data Size [nt]

Recognition Measures vs Training Data Size
(Mycoplasma genitalium)

R
Sn
Sp
CC

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

10000 100000 1e+06 1e+07

M
ea

su
re

s

Training Data Size [nt]

Recognition Measures vs Training Data Size
(Methanococcus jannaschii)

R
Sn
Sp
CC

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1000 10000 100000 1e+06

M
ea

su
re

s

Training Data Size [nt]

Recognition Measures vs Training Data Size
(Mycoplasma pneumoniae)

R
Sn
Sp
CC

0.7

0.75

0.8

0.85

0.9

0.95

1

10000 100000 1e+06 1e+07

M
ea

su
re

s

Training Data Size [nt]

Recognition Measures vs Training Data Size
(Methanobacterium thermoautotrophicum)

R
Sn
Sp
CC

Figure 2.8: Results of genefinding (b) continued

19

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

10000 100000 1e+06 1e+07

M
ea

su
re

s

Training Data Size [nt]

Recognition Measures vs Training Data Size
(Mycobacterium tuberculosis)

R
Sn
Sp
CC

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

10000 100000 1e+06 1e+07

M
ea

su
re

s

Training Data Size [nt]

Recognition Measures vs Training Data Size
(Pyrococcus horikoshii)

R
Sn
Sp
CC

0.4

0.5

0.6

0.7

0.8

0.9

1

1000 10000 100000 1e+06 1e+07

M
ea

su
re

s

Training Data Size [nt]

Recognition Measures vs Training Data Size
(Rickettsia prowazekii)

R
Sn
Sp
CC

0.75

0.8

0.85

0.9

0.95

1

10000 100000 1e+06 1e+07

M
ea

su
re

s

Training Data Size [nt]

Recognition Measures vs Training Data Size
(Synechocystis PCC6803)

R
Sn
Sp
CC

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1000 10000 100000 1e+06 1e+07

M
ea

su
re

s

Training Data Size [nt]

Recognition Measures vs Training Data Size
(Treponema pallidum)

R
Sn
Sp
CC

Figure 2.9: Results of genefinding (c) continued

20

0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

1000 10000 100000 1e+06 1e+07
0

500

1000

1500

2000

2500

3000

3500

C
or

re
la

tio
n

C
oe

ffi
ci

en
t

N
um

be
r

of
 L

ea
rn

ed
 H

M
M

 P
ar

am
.

Training Data Size [nt]

HMM Parameters vs Training Data Size
(Archaeoglobus fulgidus)

HMM Param.
CC

0.53

0.54

0.55

0.56

0.57

0.58

0.59

0.6

0.61

1000 10000 100000 1e+06 1e+07
0

500

1000

1500

2000

2500

3000

C
or

re
la

tio
n

C
oe

ffi
ci

en
t

N
um

be
r

of
 L

ea
rn

ed
 H

M
M

 P
ar

am
.

Training Data Size [nt]

HMM Parameters vs Training Data Size
(Aquifex aeolicus)

HMM Param.
CC

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1000 10000 100000 1e+06
0

500

1000

1500

2000

2500

C
or

re
la

tio
n

C
oe

ffi
ci

en
t

N
um

be
r

of
 L

ea
rn

ed
 H

M
M

 P
ar

am
.

Training Data Size [nt]

HMM Parameters vs Training Data Size
(Borrelia burgdorferi)

HMM Param.
CC

0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

0.82

10000 100000 1e+06 1e+07
0

500

1000

1500

2000

2500

3000

3500

C
or

re
la

tio
n

C
oe

ffi
ci

en
t

N
um

be
r

of
 L

ea
rn

ed
 H

M
M

 P
ar

am
.

Training Data Size [nt]

HMM Parameters vs Training Data Size
(Bacillus subtilis)

HMM Param.
CC

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1000 10000 100000 1e+06 1e+07
0

500

1000

1500

2000

2500

3000

C
or

re
la

tio
n

C
oe

ffi
ci

en
t

N
um

be
r

of
 L

ea
rn

ed
 H

M
M

 P
ar

am
.

Training Data Size [nt]

HMM Parameters vs Training Data Size
(Chlamydia trachomatis)

HMM Param.
CC

0.68

0.7

0.72

0.74

0.76

0.78

0.8

0.82

10000 100000 1e+06 1e+07
0

500

1000

1500

2000

2500

3000

3500

4000

C
or

re
la

tio
n

C
oe

ffi
ci

en
t

N
um

be
r

of
 L

ea
rn

ed
 H

M
M

 P
ar

am
.

Training Data Size [nt]

HMM Parameters vs Training Data Size
(Escherichia coli)

HMM Param.
CC

Figure 2.10: Correlation coefficient and the number of trained HMM parameters for 17 micro-
bial genomic sequence data. (a)

21

0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

1000 10000 100000 1e+06 1e+07
0

500

1000

1500

2000

2500

3000

3500

C
or

re
la

tio
n

C
oe

ffi
ci

en
t

N
um

be
r

of
 L

ea
rn

ed
 H

M
M

 P
ar

am
.

Training Data Size [nt]

HMM Parameters vs Training Data Size
(Haemophilus influenzae)

HMM Param.
CC

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

1000 10000 100000 1e+06 1e+07
0

500

1000

1500

2000

2500

3000

3500

C
or

re
la

tio
n

C
oe

ffi
ci

en
t

N
um

be
r

of
 L

ea
rn

ed
 H

M
M

 P
ar

am
.

Training Data Size [nt]

HMM Parameters vs Training Data Size
(Helicobacter pylori)

HMM Param.
CC

0.36

0.38

0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

10000 100000 1e+06
200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

C
or

re
la

tio
n

C
oe

ffi
ci

en
t

N
um

be
r

of
 L

ea
rn

ed
 H

M
M

 P
ar

am
.

Training Data Size [nt]

HMM Parameters vs Training Data Size
(Mycoplasma genitalium)

HMM Param.
CC

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

1000 10000 100000 1e+06 1e+07
0

500

1000

1500

2000

2500

3000

C
or

re
la

tio
n

C
oe

ffi
ci

en
t

N
um

be
r

of
 L

ea
rn

ed
 H

M
M

 P
ar

am
.

Training Data Size [nt]

HMM Parameters vs Training Data Size
(Methanococcus jannaschii)

HMM Param.
CC

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

1000 10000 100000 1e+06
0

500

1000

1500

2000

2500

3000

C
or

re
la

tio
n

C
oe

ffi
ci

en
t

N
um

be
r

of
 L

ea
rn

ed
 H

M
M

 P
ar

am
.

Training Data Size [nt]

HMM Parameters vs Training Data Size
(Mycoplasma pneumoniae)

HMM Param.
CC

0.73

0.74

0.75

0.76

0.77

0.78

0.79

0.8

0.81

0.82

1000 10000 100000 1e+06 1e+07
0

500

1000

1500

2000

2500

3000

3500

C
or

re
la

tio
n

C
oe

ffi
ci

en
t

N
um

be
r

of
 L

ea
rn

ed
 H

M
M

 P
ar

am
.

Training Data Size [nt]

HMM Parameters vs Training Data Size
(Methanobacterium thermoautotrophicum)

HMM Param.
CC

Figure 2.11: Correlation coefficient and the number of trained HMM parameters for 17 micro-
bial genomic sequence data. (b)

22

0.62

0.63

0.64

0.65

0.66

0.67

0.68

0.69

0.7

0.71

0.72

0.73

10000 100000 1e+06 1e+07
0

500

1000

1500

2000

2500

3000

3500

C
or

re
la

tio
n

C
oe

ffi
ci

en
t

N
um

be
r

of
 L

ea
rn

ed
 H

M
M

 P
ar

am
.

Training Data Size [nt]

HMM Parameters vs Training Data Size
(Mycobacterium tuberculosis)

HMM Param.
CC

0.51

0.52

0.53

0.54

0.55

0.56

0.57

0.58

0.59

0.6

0.61

0.62

1000 10000 100000 1e+06 1e+07
0

500

1000

1500

2000

2500

3000

3500

C
or

re
la

tio
n

C
oe

ffi
ci

en
t

N
um

be
r

of
 L

ea
rn

ed
 H

M
M

 P
ar

am
.

Training Data Size [nt]

HMM Parameters vs Training Data Size
(Pyrococcus horikoshii)

HMM Param.
CC

0.4

0.5

0.6

0.7

0.8

0.9

1

1000 10000 100000 1e+06 1e+07
0

500

1000

1500

2000

2500

3000

C
or

re
la

tio
n

C
oe

ffi
ci

en
t

N
um

be
r

of
 L

ea
rn

ed
 H

M
M

 P
ar

am
.

Training Data Size [nt]

HMM Parameters vs Training Data Size
(Rickettsia prowazekii)

0.76

0.77

0.78

0.79

0.8

0.81

0.82

0.83

10000 100000 1e+06 1e+07
0

500

1000

1500

2000

2500

3000

3500

C
or

re
la

tio
n

C
oe

ffi
ci

en
t

N
um

be
r

of
 L

ea
rn

ed
 H

M
M

 P
ar

am
.

Training Data Size [nt]

HMM Parameters vs Training Data Size
(Synechocystis PCC6803)

HMM Param.
CC

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

1000 10000 100000 1e+06 1e+07
0

500

1000

1500

2000

2500

3000

C
or

re
la

tio
n

C
oe

ffi
ci

en
t

N
um

be
r

of
 L

ea
rn

ed
 H

M
M

 P
ar

am
.

Training Data Size [nt]

HMM Parameters vs Training Data Size
(Treponema pallidum)

HMM Param.
CC

Figure 2.12: Correlation coefficient and the number of trained HMM parameters for 17 micro-
bial genomic sequence data. (c)

23

2.3 Evaluation of Dicodon Usage Measure

According to our preliminary examination described above, the redundancy of the dicodon
usage measure should be investigated. In this section, we prepared several different probabilistic
models to emulate the dicodon model with smaller size of parameters. The size of parameters
ranging from 461 to 1,024, is far bellow from the dicodon model which has 3,721. However,
as our preliminary examination showed, protein coding regions in some microbial genomic
sequence data require very small number of HMM parameters. Thus the models with small size
of parameters should be evaluated objectively and quantitatively.

2.3.1 Models

There are 61 possible codons, possible dicodon counts up to 3,721. Hence the size of the
parametric space of the dicodon model is 3,721. The size matters when we examine genefinding
that uses self-identification learning. The self-identification learning with too many parameters
usually fails to produce good result because it requires too large training data while they are not
sufficiently available. On the other hand, accuracy of a model hardly gets high enough when
the model conveys too few parameters.

Fickett and Tung [35] evaluated many protein coding measures including diaminoacid,
codon usage, and dinucleotide bias. These measures never perform better than dicodon usage.
However, dicodon can be represented by combinations of these well known biological attributes
in certain degree. Figure 2.13 depicts each attributes contained in a nucleotide hexamer.

We presumed that the product of diamino-acid, codon usage, and G+C content emulates
dicodon usage very well. Because, (i) there presumably are structural information of proteins
embedded in coding regions that corresponds to the diamino-acid information. The diamino-
acid information employs fairly larger amount of information (��� �� � ��� parameters) than
the information derived by a pair of dinucleotides (����� � ��� parameters). (ii) codon usage
determines third nucleotide which follows a couple of nucleotides determined by an amino-acid.
The amino-acid information is derived from diamino-acid information. (iii) the third nucleotide
might have a modification according to G+C content.

Based on the idea (i) to (iii), we defined the models B to F. Every model is a probabilis-
tic representation of nucleotide hexamer with emphasis on the codon usage, C+G content and
diamino-acid. The model B is a simple product of diamino-acid and codon usage and it does
not use C+C content in order to evaluate how this model behave worse than those using C+G
content information. The models C and D include correction term. In the model D, we supposed
a certain bias among each nucleotide instead of seeing G-C and A-T are identical respectively.
In this model, the codon usage is modified by a relation between its own third nucleotide and
that of preceded codon. The model E uses two codon usage sets, which are used selectively
regarding C+G content of the preceded codon. The model F uses four codon usage sets, which
are used based on nucleotide-wise rather on C+G content-wise. The model G is more similar to
the dicodon model than the other models. Because this model is a dicodon model without dis-
tinction of G-C and A-T at its third nucleotide position. The model conveys smaller parameter
size (1,024) than that of the dicodon, but it is the largest among the other emulator models.

When these models perform well enough in comparison with dicodon model, that would
help us to clarify which attribute is the most crucial to the dicodon model.

A) the dicodon model:

24

��� �� � 	� �� parameters
��������� � ��������� (2.1)

B) model of pair amino-acid and codon usage:
��� �� � �� � ��� parameters

�	������� � �������������������������� (2.2)

C) model of pair amino-acid and codon usage modified by C+G content:
��� �� � �� � � � ��	 parameters

�
������� � ���������������	����������� � ��� �	�������������������� (2.3)

D) model of pair amino-acid and codon usage modified by pair C+G content:
��� �� � �� � �� � � � ! parameters

��������� � ���������������
����������� � ��� �
���������������������� (2.4)

E) model of pair amino-acid and codon usage with C+G content dependency:
��� �� � �� �� � ��� parameters

��������� � ������������������������� ��������� (2.5)

F) model of pair amino-acid and codon usage with pair C+G content dependency:
��� �� � �� �� � ��� parameters

�� ������� � ������������������������� ���������� (2.6)

G) model of shrunk dicodon usage:
	�� 	� � ���� parameters

��������� � ��������������� (2.7)

���� stands for an amino-acid which corresponds to a codon �. The function ������ returns
”GC” if the third nucleotide in a codon � is ”G” or ”C”. Otherwise it returns ”AT”. Henceforth
the probability ������
 � stands for a probability to have a codon looks like ”XXG” or ”XXC”
right after a codon ”XXA” or ”XXT”. Another function ������� returns the third nucleotide of a
codon �. ����������� �������� represents two codon usages. One is a codon usage observed right
after a codon including ”G” or ”C”. The another is a codon usage observed right after a codon
which has ”A” or ”T”. ����������� ��������� represents four codon usages that correspond to
a third nucleotide of a preceded codon ��. It is calculated so that the square error between the
dicodon model become minimal. For model G, ���� represents shrunk codon. Shrunk codon
does not distinguish G-C, and A-T. For instance, ������ � ������ and ������ �
����
 �.

2.3.2 Evaluation of models

In order to evaluate these six models(B to G) against the dicodon model, We used 17 microbial
genomic sequences [59, 27, 38, 61, 97, 13, 36, 101, 37, 17, 45, 93, 23, 56, 52, 39, 3] and C.
elegance [32] genome sequences obtained from GenBank and took following procedure:

1. So-called Jack knife strategy is applied here.

25

Hexamar

dicodon

diamino

C+G content

codon codon

amino acid (2.32 N) amino acid (2.32 N)

N N N N N N

N N N N N N

N N NN N N NN

N NNN NN NN NN

Figure 2.13: The hexamer treats six nucleotide as one unit thus is identical to 6 nucleotide win-
dow frame examination. The codon binds three nucleotide as one datum thus the dicodon stands
for a pair of codons. A codon corresponds to an amino-acid but an amino-acid corresponds to
one or more codons and there are only 20 possible aminoacids while there are 64 possible
codons. 8 amino-acids(family box) are determined by 2 nucleotides. 12 amino-acids(2-codon
set) are determined by 2.5 nucleotides. 1 aminoacid(2-codon set+1) is determined by 2.75
nucleotides. Approximately, an amino-acid is determined by 2.32 nucleotides. C+G content
stands for a biased possibility to have a C or G in the third position of codon. Thus it can not be
defined by single nucleotide but a certain length of window frame should be considered.

26

2. Several size of Learning sets and Testing sets are prepared in order to evaluate perfor-
mance and robustness of each model.

3. When an examined genomic sequence has N genes, we take N/n genes out of the sequence
randomly(� ��	� �� � �� �).

4. The extracted genes are used for the Learning sets.

5. Rest of the genes and the non-coding regions are used as the Testing set.

6. Train six models and the dicodon model using the Learning set.

7. Accumulate coding potentials ���� of every coding region in the Testing set based on the
six models.

8. Train the dicodon model using the Testing set and accumulate a coding potential ����.

9. Obtain profiles of coding potentials for coding regions and non-coding regions.

10. Evaluate every models in two ways: Approximation error and Learning/Testing evalua-
tion.

A coding potential, for model �, of a coding region � � ���� ��� � � � � ��� which consists of
n codons can be computed as follows:

������� �
�

	
��" ������ ��� ���� ��� (2.8)

�
�

	
��" ��������� � � � �����������

�
�

	

��
���

��" ������������

Approximation error

The models B to F are approximations of the dicodon model. Therefore, we can evaluate these
models in terms of approximation error of each models against the dicodon model.

� We split a sequence into the learning sequence and the testing sequence.

� AT is the dicodon model that was trained with testing sequence.

� AL is the dicodon model that was trained with learning sequence.

� Other models are all trained with learning sequence.

� Compute coding potentials of coding/non-coding regions in the testing sequence for every
model.

� We calculated square errors between coding potentials ���� and coding potentials of the
other model �.

���� �
�
�

��������� ���������� (2.9)

where � � ������� ���� �.

27

� This evaluation shows how these models accurately approximate the dicodon model.

Evaluation of Learning/Testing

Here we define a measure to evaluate an accuracy to distinguish coding regions and non-coding
regions for each model. Then compute ”distances”, based on the measure, between profiles
of coding/non-coding regions, and evaluate specificity/sensitivity of six models based on the
distance(defined below) of each model.

We obtained profiles of coding/non-coding regions look like Figure 2.15. Two heaps of
coding/non-coding regions are overlapped each other in certain degree. When we have a coding
potential x for a predicted coding region, and the potential goes a midst of two heap, it has a
probability to belong to a coding region and another probability for a noncoding region simul-
taneously. When the overlap, based on a model, is wider than that of other model, we need
to do a stochastic decision for every predicted coding region whether it belongs to coding or
non-coding regions more frequently than other model. This means we have to make one more
guess after prediction of coding region. On the other hand, if a model has narrower overlap,
most predicted coding regions are easily distinguished without guess. This can be a measure
for relative accuracy of a model against other models.

Then, we defined a distance d using the measure described above (see Figure 2.14).

� � �	���� � ������� �	���� � ������ (2.10)

�	��� �
� ���
� ��� � ����� ����� �
� ���
� ��� � �� ��� (2.11)

��� �
��

������

������� ���� �
�����

��� ������ (2.12)

� ��� �
�����
���

������� �� ��� �
��

������
������ (2.13)

As shown above, we take � of the equilibrium where sensitivity and specificity become
equivalent.

2.3.3 Result

Table 2.4 shows maximum sensitivity+specificity of every model for 14 microbial genomic
sequence data and 14 eukaryotic genomic sequence data. Mean sensitivity+specificity is shown
in bottom of the table. Although the mean sensitivity+specificity shows that the dicodon and
the model G (shrunk dicodon model) yield equivalent value, the details are different in each
species. The dicodon scores higher than the model G in 15 species while the model G scores
higher in other species. Figure 2.16 to 2.20 show sensitivity+specificity versus relative training
data size of 14 microbial genomic sequence data and 14 eukaryotic genomic sequence data. The
sensitivity+specificity scores tend to wobble because of the jack knife strategy. The jack knife
strategy requires approximation in order to get smooth result. However we did just one time
examination. Figure 2.21 shows comparisons of average square errors for coding region and
non-coding region. The square errors are calculated against coding potential of dicodon model
for each six models(B to G).

28

A B

TP(x)

FP(x)

x

coding potencial

(a)

A B

TN(x) FN(x)

x

coding potencial

(b)

A B coding potencialx

FN(x)

(c)

FP(x)

Figure 2.14: Profile of coding potentials for coding(right heap) and non-coding(left heap) re-
gions. The two heaps have overlapped area #���$. We set a threshold coding potential x within
#���$. (a) For coding potentials over x are taken to be coding regions. So cross-hatched area be-
come false negatives. (b) For coding potentials under x are taken to be non-coding regions. The
cross-hatched area become false positives. (c) We take x so that the sensitivity and specificity
become equivalent. According to the definition of sensitivity and specificity, �� ��� � ����
when �	��� � �����.

29

0
5

10
15
20
25
30
35
40
45
50

0 50 100 150 200 250 300 350

P
op

ul
at

io
n

Coding Potential(x4.3x10^3)

Histgram of Coding Potential for Coding/Noncoding Regions
(Escherichia coli)

Figure 2.15: Actual histogram of coding/non-coding potential for E.coli

2.3.4 Discussion

Our evaluation shows that the dicodon model outperforms other six models(B to G) in terms of
specificity and sensitivity (Table 2.4 and Figure 2.16 to 2.20). Besides, none of the emulation
models(B to F) get closer than the model G in terms of approximation error (Figure 2.21).

The models B to F apparently failed emulating the dicodon model. This means that the
information among a pair of codon conveys richer feature of coding regions than a mere combi-
nation of the diamino, codon usage, and C+G content, and the diamino-acid simply drops some
crucial information in the coding region. Performance of the model B, which is the simplest, is
constantly low among the other models. This corresponds to an evidence of the significance of
C+G content. The model C performs slightly better than the B but it is not so apparent. While
the model C has information of C+G content, linear interpolation of codon usage and C+G con-
tent did not work so much in this case. The model D performs better than the B and C. Although
the differences of its performance between this model and the B, C are clearer than that of B
and C, its performance improvement is poor. However, we should notice that nucleotide-wise
bias at the third nucleotide is more significant than C+G content. The performance of the model
E shows clearer improvements. This result indicates that the second codon usage depends on
the C+G content of the first codon. The result of the model F is the best among the models B
to F. With this result, there apparently is dependency of the second codon usage on the third
nucleotide of the first codon rather on the C+G content. This indicates that a bias at the third
nucleotide is not so uniform among G-C and A-T, and C+G content model is not sufficient for
describing this bias. Therefore we should consider A, T, C, G individually. The model G scores
the nearest performance to the dicodon model. Let us take a look at this result not from per-
formance improvement but from performance decline. Only difference between this model and
the dicodon model is that this model does not distinguish G-C and A-T at the third nucleotide.
Again, this shows that the peculiar bias at third nucleotide that is indicated by the result of the
model D and F.

Considering the difference between diamino and dicodon, dependency of the third nu-

30

cleotide of second codon on the first codon is important for describing superiority of the di-
codon. Although the diamino-acid and codon usage are undoubtedly important attributes of
dicodon, our result shows that C+G content is not enough for describing peculiar bias which is
found at the third nucleotide.

2.4 Summary

Firstly, we showed that the redundancy of dicodon usage measure for genefinding based on the
result obtained from our preliminary genefinding examination using dicodon oriented HMM
with self-identification learning method, which showed that the HMM was able to predict pro-
tein coding region in microbial genomic sequence data with far less parameter size than the
HMM employed. According to the fact, we performed the evaluation of the dicodon usage
measure using 6 probabilistic models that emulate the dicodon usage measure with less pa-
rameter size than that in order to clarify the most significant element consists of the dicodon.
However, the all emulation models, except shrunk dicodon model, failed to attain such high ac-
curacy provided by the dicodon model. Although the shrunk dicodon model produced the result
close to that of the dicodon model, it can not be identical to the dicodon based on the result of
our evaluation. This fact showed that the dicodon usage measure can not be described by codon
usage, pair amino acid, and C+G content. This negative result negates the widely believed com-
mon sense and, more importantly, proposed a new fact that a certain important element other
than codon usage, pair amino-acid, and C+G content is still missing. This research does not
deal with the missing element but indicated that the C+G content is not sufficient to emulate the
dicodon model.

31

Table 2.5: Maximum sensitivity+specificity of every model for 14 microbial genomic sequence
data and 14 eukaryotic genomic sequence data. Mean sensitivity+specificity is shown in bottom
of the table.

Species dicodon B C D E F G
Archaeoglobus fulgidus 1.976 1.960 1.962 1.960 1.961 1.965 1.976
Aquifex aeolicus 1.924 1.910 1.908 1.908 1.913 1.918 1.932
Borrelia burgdorferi 1.954 1.887 1.887 1.890 1.882 1.911 1.950
Bacillus subtilis 1.950 1.923 1.923 1.924 1.923 1.932 1.949
Chlamydia trachomatis 1.962 1.887 1.891 1.887 1.898 1.902 1.962
Escherichia coli 1.959 1.940 1.941 1.941 1.941 1.944 1.959
Haemophilus influenzae 1.951 1.926 1.924 1.926 1.920 1.932 1.946
Mycoplasma genitalium 1.881 1.821 1.785 1.813 1.833 1.840 1.873
Methanococcus jannaschii 1.973 1.920 1.921 1.918 1.924 1.940 1.970
Mycoplasma pneumoniae 1.856 1.823 1.833 1.823 1.831 1.835 1.856
Methanobacterium 1.956 1.946 1.946 1.947 1.950 1.950 1.954
Rickettsia prowazekii 1.975 1.920 1.923 1.920 1.931 1.930 1.970
Synechocystis sp. 1.946 1.922 1.922 1.923 1.923 1.932 1.950
Treponeuma pallidum 1.900 1.880 1.877 1.877 1.872 1.899 1.918
C. elegance(Chr I) 1.931 1.758 1.759 1.759 1.799 1.805 1.921
C. elegance(Chr II) 1.927 1.753 1.752 1.760 1.795 1.798 1.923
C. elegance(Chr III) 1.930 1.769 1.774 1.782 1.804 1.816 1.919
C. elegance(Chr IV) 1.946 1.816 1.819 1.822 1.846 1.859 1.938
C. elegance(Chr V) 1.929 1.739 1.743 1.744 1.778 1.798 1.918
Saccharomyces cerevisiae(Chr II) 1.755 1.615 1.644 1.639 1.620 1.681 1.780
Saccharomyces cerevisiae(Chr III) 1.674 1.545 1.523 1.545 1.536 1.549 1.709
Saccharomyces cerevisiae(Chr IV) 1.904 1.828 1.815 1.827 1.834 1.847 1.907
Saccharomyces cerevisiae(Chr VI) 1.724 1.597 1.605 1.580 1.642 1.591 1.742
Saccharomyces cerevisiae(Chr VIII) 1.847 1.672 1.678 1.714 1.700 1.754 1.832
Saccharomyces cerevisiae(Chr X) 1.835 1.727 1.725 1.727 1.748 1.762 1.843
Saccharomyces cerevisiae(Chr XI) 1.861 1.689 1.704 1.717 1.730 1.753 1.849
Saccharomyces cerevisiae(Chr XIII) 1.888 1.781 1.786 1.794 1.801 1.812 1.887
MEAN 1.896 1.808 1.809 1.812 1.822 1.834 1.896

32

1.92

1.925

1.93

1.935

1.94

1.945

1.95

1.955

1.96

1.965

1.97

1.975

0.2 0.3 0.4 0.5 0.6 0.7 0.8

S
en

si
tiv

ity
+

S
pe

ci
fic

ity

Relative Training Data Size

Sensitivity+Specificity vs Relative Training Data Size
(Archaeoglobus fulgidus)

dicodon
B
C
D
E
F
G

1.74

1.76

1.78

1.8

1.82

1.84

1.86

1.88

1.9

1.92

1.94

0.2 0.3 0.4 0.5 0.6 0.7 0.8

S
en

si
tiv

ity
+

S
pe

ci
fic

ity

Relative Training Data Size

Sensitivity+Specificity vs Relative Training Data Size
(Aquifex aeolicus)

dicodon
B
C
D
E
F
G

1.65

1.7

1.75

1.8

1.85

1.9

1.95

0.2 0.3 0.4 0.5 0.6 0.7 0.8

S
en

si
tiv

ity
+

S
pe

ci
fic

ity

Relative Training Data Size

Sensitivity+Specificity vs Relative Training Data Size
(Borrelia burgdorferi)

dicodon
B
C
D
E
F
G

1.82

1.84

1.86

1.88

1.9

1.92

1.94

1.96

0.2 0.3 0.4 0.5 0.6 0.7 0.8

S
en

si
tiv

ity
+

S
pe

ci
fic

ity

Relative Training Data Size

Sensitivity+Specificity vs Relative Training Data Size
(Bacillus subtilis)

1.75

1.8

1.85

1.9

1.95

2

0.2 0.3 0.4 0.5 0.6 0.7 0.8

S
en

si
tiv

ity
+

S
pe

ci
fic

ity

Relative Training Data Size

Sensitivity+Specificity vs Relative Training Data Size
(Chlamydia trachomatis)

dicodon
B
C
D
E
F
G

1.87

1.88

1.89

1.9

1.91

1.92

1.93

1.94

1.95

1.96

0.2 0.3 0.4 0.5 0.6 0.7 0.8

S
en

si
tiv

ity
+

S
pe

ci
fic

ity

Relative Training Data Size

Sensitivity+Specificity vs Relative Training Data Size
(Escherichia coli)

dicodon
B
C
D
E
F
G

Figure 2.16: Sensitivity+Specificity versus relative training data size for 14 microbial genomic
sequence data and 14 eukaryotic genomic sequence data (a)

33

1.85

1.86

1.87

1.88

1.89

1.9

1.91

1.92

1.93

1.94

1.95

0.2 0.3 0.4 0.5 0.6 0.7 0.8

S
en

si
tiv

ity
+

S
pe

ci
fic

ity

Relative Training Data Size

Sensitivity+Specificity vs Relative Training Data Size
(Haemophilus influenzae)

dicodon
B
C
D
E
F
G

1.5

1.55

1.6

1.65

1.7

1.75

1.8

1.85

1.9

0.2 0.3 0.4 0.5 0.6 0.7 0.8

S
en

si
tiv

ity
+

S
pe

ci
fic

ity

Relative Training Data Size

Sensitivity+Specificity vs Relative Training Data Size
(Mycoplasma genitalium)

dicodon
B
C
D
E
F
G

1.8

1.82

1.84

1.86

1.88

1.9

1.92

1.94

1.96

1.98

0.2 0.3 0.4 0.5 0.6 0.7 0.8

S
en

si
tiv

ity
+

S
pe

ci
fic

ity

Relative Training Data Size

Sensitivity+Specificity vs Relative Training Data Size
(Methanococcus jannaschii)

dicodon
B
C
D
E
F
G

1.6

1.65

1.7

1.75

1.8

1.85

1.9

0.2 0.3 0.4 0.5 0.6 0.7 0.8

S
en

si
tiv

ity
+

S
pe

ci
fic

ity

Relative Training Data Size

Sensitivity+Specificity vs Relative Training Data Size
(Mycoplasma pneumoniae)

dicodon
B
C
D
E
F
G

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.2 0.3 0.4 0.5 0.6 0.7 0.8

S
en

si
tiv

ity
+

S
pe

ci
fic

ity

Relative Training Data Size

Sensitivity+Specificity vs Relative Training Data Size
(Mecobacterium tuberculosis)

dicodon
B
C
D
E
F
G

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.2 0.3 0.4 0.5 0.6 0.7 0.8

S
en

si
tiv

ity
+

S
pe

ci
fic

ity

Relative Training Data Size

Sensitivity+Specificity vs Relative Training Data Size
(Pyrococcus horikoshii)

dicodon
B
C
D
E
F
G

Figure 2.17: Sensitivity+specificity versus relative training data size (b) continued

34

1.78

1.8

1.82

1.84

1.86

1.88

1.9

1.92

1.94

1.96

1.98

0.2 0.3 0.4 0.5 0.6 0.7 0.8

S
en

si
tiv

ity
+

S
pe

ci
fic

ity

Relative Training Data Size

Sensitivity+Specificity vs Relative Training Data Size
(Rickettsia prowazekii)

dicodon
B
C
D
E
F
G

1.84

1.85

1.86

1.87

1.88

1.89

1.9

1.91

1.92

1.93

1.94

1.95

0.2 0.3 0.4 0.5 0.6 0.7 0.8
S

en
si

tiv
ity

+
S

pe
ci

fic
ity

Relative Training Data Size

Sensitivity+Specificity vs Relative Training Data Size
(Synechocystis sp.)

dicodon
B
C
D
E
F
G

1.74

1.76

1.78

1.8

1.82

1.84

1.86

1.88

1.9

1.92

0.2 0.3 0.4 0.5 0.6 0.7 0.8

S
en

si
tiv

ity
+

S
pe

ci
fic

ity

Relative Training Data Size

Sensitivity+Specificity vs Relative Training Data Size
(Treponeuma pallidum)

dicodon
B
C
D
E
F
G

Figure 2.18: Sensitivity+Specificity versus relative training data size (c) continued

35

1.5

1.55

1.6

1.65

1.7

1.75

1.8

1.85

1.9

1.95

0.2 0.3 0.4 0.5 0.6 0.7 0.8

S
en

si
tiv

ity
+

S
pe

ci
fic

ity

Relative Training Data Size

Sensitivity+Specificity vs Relative Training Data Size
(C. elegance(Chr I))

dicodon
B
C
D
E
F
G

1.5

1.55

1.6

1.65

1.7

1.75

1.8

1.85

1.9

1.95

0.2 0.3 0.4 0.5 0.6 0.7 0.8

S
en

si
tiv

ity
+

S
pe

ci
fic

ity

Relative Training Data Size

Sensitivity+Specificity vs Relative Training Data Size
(C. elegance(Chr II))

dicodon
B
C
D
E
F
G

1.55

1.6

1.65

1.7

1.75

1.8

1.85

1.9

1.95

0.2 0.3 0.4 0.5 0.6 0.7 0.8

S
en

si
tiv

ity
+

S
pe

ci
fic

ity

Relative Training Data Size

Sensitivity+Specificity vs Relative Training Data Size
(C. elegance(Chr III))

dicodon
B
C
D
E
F
G

1.65

1.7

1.75

1.8

1.85

1.9

1.95

0.2 0.3 0.4 0.5 0.6 0.7 0.8

S
en

si
tiv

ity
+

S
pe

ci
fic

ity

Relative Training Data Size

Sensitivity+Specificity vs Relative Training Data Size
(C. elegance(Chr IV))

dicodon
B
C
D
E
F
G

1.5

1.55

1.6

1.65

1.7

1.75

1.8

1.85

1.9

1.95

0.2 0.3 0.4 0.5 0.6 0.7 0.8

S
en

si
tiv

ity
+

S
pe

ci
fic

ity

Relative Training Data Size

Sensitivity+Specificity vs Relative Training Data Size
(C. elegance(Chr V))

dicodon
B
C
D
E
F
G

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0.2 0.3 0.4 0.5 0.6 0.7 0.8

S
en

si
tiv

ity
+

S
pe

ci
fic

ity

Relative Training Data Size

Sensitivity+Specificity vs Relative Training Data Size
(Saccharomyces cerevisiae(Chr II))

dicodon
B
C
D
E
F
G

Figure 2.19: Sensitivity+Specificity versus relative training data size (d) continued

36

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0.2 0.3 0.4 0.5 0.6 0.7 0.8

S
en

si
tiv

ity
+

S
pe

ci
fic

ity

Relative Training Data Size

Sensitivity+Specificity vs Relative Training Data Size
(Saccharomyces cerevisiae(Chr III))

dicodon
B
C
D
E
F
G

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0.2 0.3 0.4 0.5 0.6 0.7 0.8

S
en

si
tiv

ity
+

S
pe

ci
fic

ity

Relative Training Data Size

Sensitivity+Specificity vs Relative Training Data Size
(Saccharomyces cerevisiae(Chr IV))

dicodon
B
C
D
E
F
G

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0.2 0.3 0.4 0.5 0.6 0.7 0.8

S
en

si
tiv

ity
+

S
pe

ci
fic

ity

Relative Training Data Size

Sensitivity+Specificity vs Relative Training Data Size
(Saccharomyces cerevisiae(Chr VIII))

dicodon
B
C
D
E
F
G

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0.2 0.3 0.4 0.5 0.6 0.7 0.8

S
en

si
tiv

ity
+

S
pe

ci
fic

ity

Relative Training Data Size

Sensitivity+Specificity vs Relative Training Data Size
(Saccharomyces cerevisiae(Chr X))

dicodon
B
C
D
E
F
G

1.45

1.5

1.55

1.6

1.65

1.7

1.75

1.8

1.85

1.9

0.2 0.3 0.4 0.5 0.6 0.7 0.8

S
en

si
tiv

ity
+

S
pe

ci
fic

ity

Relative Training Data Size

Sensitivity+Specificity vs Relative Training Data Size
(Saccharomyces cerevisiae(Chr XI))

dicodon
B
C
D
E
F
G

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0.2 0.3 0.4 0.5 0.6 0.7 0.8

S
en

si
tiv

ity
+

S
pe

ci
fic

ity

Relative Training Data Size

Sensitivity+Specificity vs Relative Training Data Size
(Saccharomyces cerevisiae(Chr XIII))

dicodon
B
C
D
E
F
G

Figure 2.20: Sensitivity+Specificity versus relative training data size (e) continued

37

0

2e-05

4e-05

6e-05

8e-05

0.0001

0.00012

0.00014

0.2 0.3 0.4 0.5 0.6 0.7 0.8

S
q
u
a
r
e

e
r
r
o
r

Relative Learning seq. length

Comparison of Square errors against Dicodon model(coding region)

dicodon
B
C
D
E
F
G

1e-06

1e-05

0.0001

0.001

0.01

0.2 0.3 0.4 0.5 0.6 0.7 0.8

S
q
u
a
r
e

e
r
r
o
r

Relative Learning seq. length

Comparison of Square errors against Dicodon model(noncoding region)

dicodon
B
C
D
E
F
G

Figure 2.21: Figures show square errors of the coding potentials of testing sequences (above:
coding regions, bellow:non-coding regions) for each models against the coding potential of
dicodon model that was trained with testing sequences. The square errors are average values
over 13 microbial and 2 eukaryotic genomes.

38

Chapter 3

Kernel Design for Biological Sequence
Data

3.1 Introduction

Since a biological sequence is usually represented as a text that consists of a finite set of char-
acters that represent nucleotides or amino acids, designing models based on formal languages
have been constantly proposed since the early era of bioinformatics 1 [44, 24, 90, 29, 91, 25,
5, 48, 64, 46]. Therefore, we find the first applications of hidden Markov models (HMMs) [80]
to biological sequences [100, 4, 16] in fairly early stage of bioinformatics. HMM is one of
probabilistic formal language models that represents a biological sequence as a time-series data
set generated from a certain stochastic process that behaves as a Markov process2.

Several examples of biological sequence models by using HMMs are bacterial protein cod-
ing regions [60], human genes [18], secondary structure of proteins [4], profiles of protein func-
tional families [95], and conserved motif sequences [42]. One of the major reasons why HMMs
are used for such a wide range of biological sequence data is that ease of building models with
HMMs. Representing biological sequences with HMMs is identical to building a grammar of
the sequences. For example, let us think of defining a simple grammar for bacterial protein
coding regions (CDS). According to some basic biological knowledge, CDS begins with a start
codon, then repeats of intermediate codons follow and ends with a stop codon. This knowl-
edge can be almost intuitively converted to an HMM network that emits start codon symbols at
first state next to initial state, iteratively emits intermediate codons at second state, finally emits
stop codon at the third state. Such an aspect of HMMs is very useful for biological sequence
data analysis. However, there are some difficulty to use HMMs. In most cases of biological
sequence data analysis, HMMs are used for pattern recognition problems such as gene finding
discussed in previous chapter. HMMs themselves do not deal with label information which is
crucial to pattern recognition problems. Instead of yielding a label whether a query matches to
a trained pattern or not, HMMs provide likelihood, a probability that represents how a query

�Aside from bioinformatics, another major stream of researches that involve DNA and formal language theory
is DNA computing [1] which aims utilizing the nature of DNAs as computational resources.

�A random process whose future probabilities are determined by its most recent values. More precisely, a
stochastic process ���� is called Markov if for every � and �� � �� � � � � ��, we have � ������ � ������� �
��� � � � � ������ � � ������ � �����������. To model biological sequences by using HMMs is based on hypothesis
that every occurrence of a nucleotide or an amino acid in a sequence depends on its preceding nucleotides or amino
acids.

39

is similar to a trained pattern. Therefore, HMM users need to devise appropriate discriminator
to classify queries into positives or negatives based on their likelihoods. However, there is no
method to deliver good discriminator in general as far as we know. Performance of the discrim-
inator basically depends on quality of HMMs, in other words, quality of biological sequence
models. Unfortunately, building good sequence models is usually very difficult task because
even though newly discovered facts of molecular biology are rapidly piled up in daily basis,
there are still lots of things are kept unexplained for biological sequences. In our point of view,
these two problems should be addressed.

Jaakkola and et al. coined a novel method introducing a kernel method for biological se-
quence data analysis [47]. Their method presents a way to deliver Fisher kernel from protein
sequence data by utilizing HMMs, then a support vector machine (SVM) [26] is used for clas-
sifying queries. They presented a method to introduce SVMs as a back-end of HMMs. This ad-
dresses the problem that use of HMMs requires auxiliary discriminators. Especially, SVMs are
known to be a very good method for pattern recognitions such as text categorizations [49, 30],
image pattern recognitions [75, 79, 76, 83, 12], hand-written character recognitions [67, 10, 14]
and so on. The Fisher kernel has been successfully applied to many tasks e.g. protein classi-
fication [47, 53], microarray data classification [15, 70], promoter region detection [77], and
translation initiation site recognition [110]. Unfortunately, their method is tightly bound to
HMMs due to the Fisher kernels which derivation requires fairly complex mathematical oper-
ations. Thus their method has difficulty for designing kernels for varieties of HMMs or even
other latent variable models. We propose a novel framework for kernel design that allows sep-
arating kernel design from latent variable models. Using the framework, we show that Fisher
kernel is a special case of marginalized kernels, which gives another viewpoint to the Fisher ker-
nel theory. Although our approach can be applied to any object, we particularly derive several
marginalized kernels useful for biological sequences (e.g. DNA and proteins). The effective-
ness of marginalized kernels is illustrated in the task of classifying bacterial gyrase subunit B
(gyrB) amino acid sequences.

In this chapter, Sec. 3.2 gives brief overview of kernels in general. Sec. 3.3 presents con-
ceptual illustration of our kernel design framework as well as mathematical descriptions includ-
ing connection to Fisher kernels. Computational experiments demonstrating performances of
marginalized kernels are presented in Sec. 3.4, in comparison with the Fisher kernel, by using
gyrB amino acid sequence data. Summary is given in Sec. 3.5.

3.2 Kernel

Here we give a fundamental idea of a kernel in general. Readers aware of this topic may skip this
section. Readers need more details are encouraged to consult one of the appropriate textbooks
such as [26, 88].

Let us think of a discriminant analysis that separates � from � (��� � �) as shown in figure
3.1 (left). If we can define a non-linear function % & � 	 � which maps the data points from
� to � where � �
%��� & � � �� and we can use a linear discriminator (figure 3.1 right). �
is called a feature space and %��� is called a feature vector. The linear discriminator ���� can

40

be written as follows in respect to %���:

���� �
��
���

������� � � (3.1)

� �� � %���� �
���� � �� ���� � ��

where � is a parameter obtained from training data � (positive training data) and � (negative
training data). � can be represented as a linear combination of training data as follows (�� is a
class label of each training data):

���� �
��
���

����%���� (3.2)

� � ���� ���� �� � ���

where �� is a weight for each training points. In regard to Eqn. 3.1 and 3.2, ���� can be rewritten
as a sum of dot products between the training data � and test data �:

���� �
��
���

�����%���� � %���� �� (3.3)

In general, finding % is not an easy task. However, if we know the actual value of the fea-
ture vector %��� or the dot product �%���� � %��� without knowing %, we can bypass several
complications of non-linear discriminant analysis 3. Such a method involving the direct com-
putation is called kernel [26]. In this case, kernel is a dot product between two feature vectors
�%���� � %���. In more general form, a kernel for all �� �� � � is defined as 4:

 ��� ��� � �%��� � %����� (3.4)

Since a kernel is a generic similarity measure in Hilbert space, a kernel must satisfy follow-
ing conditions [26]:
symmetry,

 ��� ��� � ���� ��

inequality,
 ��� ��� � ��� �� ���� ���

and positive semi-definiteness (Mercer’s theorem [68]):
Let ! be a finite input space with ��� � �� a symmetric function on !. Then ��� � �� is a
kernel function if and only if the matrix

� � � ���� ����
�
�����

is positive semi-definite (has non-negative eigenvalues). We call such a matrix the kernel matrix.

�This bypass technique is called kernel trick
�Although a kernel presented here is a linear kernel, there are several other kernel functions such as polynomial,

radial basis function, and sigmoid kernels. All these functions are various definitions of a dot product in Hilbert
space. One can choose a kernel function which best reflects desired aspects of target objects.

41

X F
x

x
x

x

x
o

o

o

o

φ(x)

φ(x)

φ(x)

φ(x)

φ(x)

φ(o)

φ(o)

φ(o)

φ(o)

φ

Figure 3.1: A projection into feature space � where “features” of data points become clear thus
easily discriminated (borrowed from [26] pp. 28). %��� and %��� is called feature vectors of
original data points � and �.

3.3 Kernel Design for Protein/DNA Sequences

A biological sequence is a chain of molecules such as nucleotides or amino acids. In this
section, the “biological sequence” is refereed to a protein or a DNA sequence. The discourse
begins with designing the most simple kernel called count kernel. Then design of kernels based
on stochastic models, specifically HMMs, which we call the marginalized count kernels are
presented.

3.3.1 Designing Count Kernels

For example, here is a nucleotide sequence,

��������

. We count the occurrence of each nucleotide in the example sequence based on an assumption
that counting each composition in a sequence reflects a basic feature of the sequence 5 Counting
compositions results in a vector

�� �
�� 	
�� �
�� �

	

�
		

�
	
�
�

�
��

A dot product between two of such vectors is called a count kernel 6

For a formal representation, let � � ���� ��� � � � � ��� represents a biological sequence which
length is 	, where �� �
�� � � � � "� denotes �-th compositional symbol. " is 4 for nucleic acid
sequence or 20 for amino acid sequence. 	 varies per sequence. # is one of the compositional

�Counting compositions in biological sequences is a fundamental analysis in molecular biology. In the age of
early molecular biology, many analysis were done on macro-scopic compositional aspects of biological sequences
such as [99].

�Actual computation of count kernel involves normalizing counting vectors by multiplying normalization co-
efficient that is the inverse of sequence length to each compositional count.

42

symbols e.g. # �
������
� for nucleotide sequences. Then a feature vector %��� and its
kernel is defined as:

%��� � ������� ������ � � � � ������

����� �
�

	

��
���

Æ #�� � #$

Æ��� �

�
� �� � $%&'�
� �� � �()*'��

where �+	 is a normalization factor in regards to the length of the sequence. A kernel computed
with a couple of the 1st order count feature vectors is the 1st order count kernel which is
represented as:

 ������ � �%��� � %���� �
��
���

���������
�� (3.5)

It is fairly straightforward to devise a more complex feature vector by counting the occurrence
of two consecutive nucleotides in a sequence. Such a model is called a bi-gram model. It has
been known that we can exploit much more crucial information of a biological sequence by
using the bi-gram model [4] [58]. Counting the two consecutive nucleotides in the example
sequence reads:

��� �
�� � �
��� �
��� �
��� �
�� � �
��� �
�� � �
��� �
��� �
��� �
��� �
�� � �
��� �
�� � �

	

�
																										

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
��������������������������

Thus the feature vector is 16 (�� �) dimensional. Such feature vector is defined as:

%��� � �������� ������� � � � � �������

������ �
�

	� �

����
���

Æ #�� � #� ���� � ,$ � (3.6)

and the 2nd order count kernel is defined as:

 ������ �
��
���

��
���

�����������
��� (3.7)

43

1 1 2 3
1.3......0......7..0.........O..........

Sequence: MNIFEMLRIDEGLRLKIYKDTEGYYTIGIGHLLTKSP...
2nd.Str.: HHHHHHHHH EEEEEE TTS EEEETTEEEESSS...

Figure 3.2: A part of protein sequence and its secondary structure (a snapshot from a secondary
structure assignment software DSSP [51]). Numbers presented over the sequence indicate po-
sitions of amino acids. For the label codes, H=alpha helix, E=extended strand participating in
beta ladder, T=hydrogen bonded turn, S=bend and white space=no particular structure.

3.3.2 Count Kernels for Labeled Biological Sequences

Fig. 3.2 shows a part of a protein sequence along with the labels indicating its secondary struc-
tures. The labels indicate that “I” (isoleucine) at 3rd position and “I” at 17th position have
different preferences because they are attached to different labels “H” and “E.” We call such
labels attached to a sequence the context information. The count kernel does not exploit much
information out of a sequence because it monotonically treats every compositions without being
sensitive to which context the symbol belongs. However, it is very important to take account
of such context information especially for biological sequence data. For instance, significance
of observing a certain nucleotide in a protein coding region differs from observing the same
nucleotide in a non-coding region. In such a case, the context means coding/non-coding. We
can exploit the context information of the sequence data when it is available. Let us represent
such context information as a series of labels:

� � ���� � � � � ���� �� �
�� � � � � "��

where each label �� is bound to �-th symbol �� in a sequence �. We use � for representing a
combined sequence of the symbols and labels i.e.

� � ������

Then we define the 1st order joint feature vector as:

%��� �
�
������� �

�
����� � � � � ������

�
��� ��� �

�

	

��
���

Æ #�� � #� �� � ,$ � (3.8)

and the 1st order joint kernel is defined as:

 ��� ��� �
��
���

��
���

��� ����
�
� ��

��� (3.9)

We can take the bi-gram approach also for this. The 2nd order joint feature vector exploits two
consecutive symbols and labels:

������� �
�

	� �

����
���

Æ #�� � (� �� � &� ���� � �� ���� � -$ � (3.10)

44

where each of (and � represents a symbol and each of & and - is a label. The 2nd order joint
kernel is defined as follows:

 ��� ��� �
��
��

��
���

��
���

��
���

��������
�
����

��� (3.11)

3.3.3 Count Kernels for Biological Sequences without Labels

Let us think of a case we have to deal with sequence data without knowing the context in-
formation but we try to estimate the contexts by using some prediction tools. Actually, there
are varieties of prediction tools for biological sequences are available. We can estimate the
coding/non-coding regions of a genomic sequence with several ab initio gene finding programs
such as GenScan [18], Glimmer [28], GeneMark [66] etc. For protein secondary structure pre-
diction, several tools are available: PREDATOR [40], PSSP [85], NPS [43] etc. By using the
predicted context information, we are able to compute the joint kernels (3.9 and 3.11) as if the
context information was given in advance.

In the case of using stochastic models where we can define the likelihood function ������,
the optimal labels '� such that

'� � argmax
�
������

can be estimated with maximum likelihood estimation. In terms of HMM, '� can be computed
with Viterbi algorithm [50].

However, since we do not know the correct �, it is impossible to verify if '� is truly optimal.
Besides, it is usually unlikely that a very reliable stochastic model is available to do estimations.
Hence, instead of using only the most probable estimation, we take account of all the probable
estimations over a sequence. It is inevitable to include noise with this approach, but inclusion
of the correct estimation and all of its proximities is expected to reduce the risk of noise. We
show how this can be done by using stochastic models.

Firstly, we replace Æ #�� � � � � $ used in Eqn. 3.8 and 3.10 with probability functions, which
are defined on a stochastic model ., respectively correspond to them. For Eqn. 3.8, we replace

Æ #�� � ,$ � �� �

with
� � ���� � ,��� .� � �� (3.12)

which is a probability to observe a label , at �-th position of the given sequence �. Hence the
1st order marginalized count feature vector can be defined as a probabilistic rewrite of Eqn. 3.8
as:

-�� ��� �
�

	

��
���

���� � ,���Æ #�� � #$

�
�

	

��
��������

���� � ,���� (3.13)

And the 1st order marginalized count kernel (MCK) is defined as follows:

 ������ �
��
���

��
���

-�� ���-
�
� ��

��� (3.14)

45

For Eqn. 3.10,
Æ #�� � &� ���� � -$ � �� �

is replaced with
� � ���� � &� ���� � -��� .� � �� (3.15)

which is a joint probability to observe both a label & at �-th position and - at ��� ��-th position
in �. Then, as a probabilistic rewrite of Eqn. 3.10, we define the 2nd order marginalized count
feature vector as:

-������ �
�

	� �

����
���

���� � &� ���� � -���Æ #�� � (� ���� � �$

�
�

	� �

����
��������������

���� � &� ���� � -���� (3.16)

And the 2nd order MCK is defined as:

 ������ �
��
��

��
���

��
���

��
���

-������-
�
����

��� (3.17)

3.3.4 Computing MCKs with a Hidden Markov Model

Readers are supposed to have knowledge on HMMs in order to understand the following dis-
course. Please consult with an appropriate material such as [80] for general description of
HMMs.

Two stochastic parameters are required to compute MCKs. One is the probability repre-
sented as Eqn. 3.12 and the other is Eqn. 3.15. In terms of HMM, the labels as we refereed with
� correspond to a series of hidden states of HMMs. Therefore we use a term “state” in place of
“label.” Here we think of a case where each symbol �� in a sequence � corresponds to a hidden
state ��. Hence,

� � ���� ��� � � � � ����
where 	 is the length of sequence �. When the probability distribution ����.� is represented as
an HMM (.), the posterior probability 7 ������� .� is computed easily by the forward-backward
algorithm [31]. An HMM is described as

����.� �
�
�

������.� �
�
�

/��'����#
��
���

(������'����$���� (3.18)

where the HMM parameters . �
(� '� /� �� are transition probabilities, emission probabilities,
initial state distribution and terminal state distribution, respectively. Here the parameters are
supposed to be optimized in advance such that

� � argmax
�

����.�� (3.19)

�By the nature of HMMs, we do not observe which hidden state is corresponding to � �, but we can estimate its
probability after observing �. Therefore, the probability is called posterior probability.

46

where � is the training data set. The forward and backward algorithms provide the forward
and backward probabilities respectively,

���,� � ����� � � � � ��� �� � ,��

0��,� � ������� � � � � ����� � ,��
Then the posterior probability is described as

���� � ,��� �� � �

���������,�0��,�� (3.20)

where ������ is a likelihood of a sequence � in respect to an HMM �. The probability ���� �
&� ���� � -��� is denoted as:

���� � &� ���� � -��� �� � �

���������&�(��'�����0����-�� (3.21)

Now one can compute MCKs over HMMs by applying Eqn. 3.20 and 3.21 to Eqn. 3.13 and 3.16
respectively. It is worth noting that Eqn. 3.20 and 3.21 are probabilities regularly computed
in HMMs during training phase by using Baum-Welch algorithm [8]. Therefore, no special
computation is required to prepare parameters to compute the feature vectors.

3.3.5 Connections to Fisher Kernels

We derive the Fisher kernel (FK) [47] from HMMs and discuss its connection to MCKs. The
joint distribution of HMM is described as (Eqn. 3.18)

�������� � /��'����#
��
���

(������'����$��� �

where � is optimized in advance such that Eqn. 3.19. As in the literature [47], we take the
derivatives with respect to emission probabilities ' only:

1

1'��
��" �������� � 	-

�
� ���

'��
� 	

��
���

-�� ���� (3.22)

where -�� ��� is a marginalized count defined in Eqn. 3.13. Note that the second term of
Eqn. 3.22 comes from the constraint of emission probabilities

��

��� '�� � �. If we do not
use the Fisher information matrix as in [47], the joint kernel is described as

�� ��" ����������� ��" ���
�������� (3.23)

This is rewritten as

��
���

��
���

		�

'���
�-�� ���� (-�� �����-

�
� ��

��� (-�� ��
���� (3.24)

where

(-�� ��� � '��

��
����

-�
�

� ����

47

This has a similar form to the marginalized count kernel (3.14), however the count is centralized
and the dot product is taken with respect to the weight ��

�

��
��

� The weight is dependent on the length
	, so a proper normalization is needed for the Fisher kernel. Since '�� represent the emission
probability that symbol # is produced from state ,, the weight becomes large when the symbol
is rarely produced from state ,. It makes sense, because the occurrence of a rare symbol is
a strong clue of high similarity. However this weight is still arguable, because a huge weight
can appear when '�� is very small. In addition, FK has potential advantages when applied to
biological sequences where the background noise has to be concerned in general.

3.4 Computational Experiments

In this section, we evaluate the performance of marginalized kernels in classification experi-
ments using bacterial gyrB amino acid sequences. gyrB [54] - gyrase subunit B - is a DNA
topoisomerase (type II) which plays essential roles in fundamental mechanisms of living organ-
isms such as DNA replication, transcription, recombination and repair etc. One more important
feature of gyrB is its capability of being an evolutionary and taxonomic marker alternating pop-
ular 16S rRNA. Our dataset consists of 84 gyrB amino acid sequences from five genera in Acti-
nobacteria which are Corynebacterium, Mycobacterium, Gordonia, Nocardia and Rhodococ-
cus, respectively [55]. For brevity these genera will be called genus 1 to 5, respectively. The
number of sequences in each genus is listed as 9, 32, 15, 14 and 14. The sequences are, by their
nature, quite similar in terms of sequence similarity. Pairwise identity for each sequence is at
least 62% and 99% at most. For computing distance matrix based on the sequence similarity,
one can use the BLAST scores [2]. However, since such scores cannot directly be converted
into positive semi-definite kernels, kernel methods cannot be applied to them in principle.

In order to investigate how well the kernels reflect underlying genera, we performed two
kinds of experiments – clustering and supervised classification. The following kernels are com-
pared:

� CK1: 1st order count kernel (Eqn. 3.5)

� CK2: 2nd order count kernel (Eqn. 3.7)

� FK: Fisher kernel (Eqn. 3.24)

� MCK1: 1st order marginalized count kernel (Eqn. 3.14)

� MCK2: 2nd order marginalized count kernel (Eqn. 3.17)

As the first experiment, K-Means clustering is performed in feature spaces corresponding
to kernels (see [71] for details). The number of clusters are determined as five (i.e. the true
number). In FK and MCKs, we used complete-connection HMMs with 3,5 and 7 states. Note
that FK is normalized by the sequence lengths. In training HMMs, all 84 sequences are used.
One can also train HMMs in a class-wise manner [102]. However, we did not do so because the
number of sequences is not large enough. For evaluating clusters, we used the adjusted Rand
index (ARI) [108]. The advantage of this index is that you can compare two partitions whose
number of clusters are different. The ARI becomes 1 if the partitions are completely correct.
Also, the expectation of the ARI is 0 when partitions are randomly determined.

The kernel matrices by FK and MCKs are shown in Fig. 3.4. Additionally, the ideal kernel
is shown for reference, where ������ is 1 for any two sequences in the same genus, and -1

48

Table 3.1: Mean error rates (%) of supervised classification between two bacterial genera (#�$
shows the standard deviation). The best result in each task is written in bold face.

Genera CK1 CK2 FK MCK1 MCK2
3-4 24.5 [9.67] 9.10 [7.87] 10.4 [9.15] 12.8 [9.85] 8.48 [7.76]
3-5 12.7 [8.93] 6.43 [7.76] 10.9 [10.1] 10.4 [8.17] 5.71 [7.72]
4-5 25.6 [13.0] 13.5 [15.5] 23.1 [14.3] 20.0 [14.6] 11.6 [14.6]

otherwise. Here, the number of HMM states is three in all cases. For fair visualization, each
kernel matrix is normalized in the same manner: First, the kernel matrix is “centralized” as

 � &� � �� � �� � �� ���

where �� is the 	 � 	 matrices whose elements are all �+	. Here 	 denotes the number of
sequences, i.e. 	 � !� in this experiment. Then, � is normalized by the Frobenious norm as
 �+� ��� . As seen in the figure, MCK2 is the best to recover the underlying structure. This
result is quantitatively shown by ARI in Fig. 3.4, where CK1 and CK2 correspond to the MCKs
with only one HMM state. Notably FK was worse than MCK1, which shows that the joint
kernel of the FK (3.24) is not appropriate for this task.

In order to see how genera are separated by introducing the second order information and
hidden variables, we performed the following supervised classification experiments as well.
First, we pick up two genera out of three genera (3,4,5). Genera 1 and 2 were not used because
they can be separated easily by all kernels. The sequences of two genera are randomly divided
into 25% training and 75% testing samples. Kernels are compared due to the test error by the
kernel Fisher discriminant analysis (KFDA) [84], which compares favorably with the SVM in
many benchmarks. Note that the regularization parameter 2 of KFDA [84] is determined such
that the test error is minimized 8. The test errors of five kernels are shown in Table 3.4. The
second order kernels (i.e. CK2 and MCK2) were significantly better than the first order kernels.
This result coincides with the common understanding that higher order information of protein
sequences is essential for classification and structure prediction (e.g. [4]). Comparing CK2 and
MCK2, MCK2 always performed better, which indicates that incorporating hidden variables
(i.e. context information) is meaningful at least in this task.

3.5 Summary

In this chapter, we proposed a novel way to design kernels for biological sequences that is the
marginalized kernels, which utilizes parameters of stochastic models in order to extract context
information of the target biological sequences. Started with a very simple kernel called count
kernel, step-by-step derivation of the marginalized count kernel (MCK) is shown including
the case when we use HMMs for stochastic models. In addition, the Fisher kernel (FK) was
described as a special case of marginalized kernels, This gives a new viewpoint to the theory of
FK. We showed that MCKs performed well in protein classification experiments, where MCKs
yielded better performances than the FK.

�For regularization parameter �, 10 equally spaced points on the log scale are taken from ��� ��� ����. Among
these candidates, the optimal one is chosen.

49

−1

−0.5

0

0.5

1
Ideal

−0.02

0

0.02

0.04

FK

−0.02

0

0.02

0.04

MCK1

−0.02

0

0.02

0.04

MCK2

Figure 3.3: (Upper left) Ideal kernel matrix to illustrate the true clusters. (Upper right) Kernel
matrix of the Fisher kernel. (Lower left) Kernel matrix of the first-order marginalized count
kernel. (Lower right) Kernel matrix of the second-order marginalized count kernel.

50

1 3 5 7
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of HMM States

A
R

I

FK
MCK1
MCK2

Figure 3.4: Evaluation of kernels in clustering in terms of the adjusted Rand index (ARI).
The �-axis corresponds to the number of states in HMM, from which the kernels are derived.
The Fisher kernel (FK), the marginalized count kernels of first-order (MCK1) and second-order
(MCK2) are compared. Note that the count kernels of first-order (CK1) and second-order (CK2)
correspond to MCK1 and MCK2 at one HMM state, respectively.

51

Chapter 4

Marginalized Kernels for RNA Sequence
Data Analysis

4.1 Introduction

Due to the recent success of the support vector machines (SVMs) in many practical problems,
emerging kernel methods are appealing in bioinformatics. For instance, SVMs are well known
for their performance superiority in many real-world problems such as text-categorization, pat-
tern recognition and, especially now, biological sequence data analysis. Examples for biological
sequence data analysis are protein family clustering [53], promoter classification[77], protein
homology detection[47], translation initiation site prediction[110] and splice site recognition[94].

However, to our knowledge, kernel methods have not been applied to RNA sequence data
analysis. The primary reason is that it is hard to define a kernel function to reflect the RNA
secondary structure. For defining the similarity (or kernel) between two RNAs, simple sequence
comparison (e.g BLAST) is never enough because the sequences can form stems, hairpins,
bulges etc (see 4.2 for details of RNA secondary structure). In addition, string kernels [104]
including the spectrum kernel [63] do not define RNA similarities because they do not take into
account the secondary structure.

We propose a new method for designing a kernel for RNAs. First we will consider a case
in which the secondary structures of two RNAs are known and represented using context-free
grammar (CFG) where a state (or a non-terminal) is associated with one or two base(s) in an
RNA sequence. A feature vector is constructed by counting the base-state combinations and
the kernel is defined as the dot product between two vectors. We call this the “count kernel
for RNAs”. This concept can be generalized to take into account the consecutive two base-
state combinations into. We call this kernel the “2nd order count kernel for RNAs”. However,
it is often the case that the RNA secondary structure is not known, but estimated with some
probabilistic model such as stochastic context-free grammar (SCFG). In such cases, we use
the expectation of the count kernel with respect to the secondary structure. We call this the
“marginalized count kernel for RNAs”. Similarly, a second-order version can be obtained. Note
that these kernels are generalized versions of the kernels proposed for HMMs by Tsuda et al
[103]. We performed computational experiments using human tRNA sequence data, which are
a visualization of sequence similarities using kernel PCA [89] and a supervised classification
using SVMs. For the latter, we compared the performance of the classifications with MCKs and
with SCFG likelihood.

Rest of this chapter is organized as follows. Firstly, brief description of RNA secondary

52

structure is given in Sec. 4.2. Then in Sec. 4.3, we deal with a formal grammar that represents
secondary structure. Some essential parts of SCFG is described in Sec. 4.4. Sec. 4.5 presents
details of kernel PCA that is one of the powerful feature extraction methods. Sec. 4.6 describes
details of designing our novel kernel for RNA sequences. Sec. 4.7 presents several performance
tests for our kernels. We summarize this chapter in Sec. 4.8.

4.2 RNA Secondary Structure

RNA secondary structure is composed primarily of double-stranded RNA regions formed by
folding the single-stranded molecule back on itself. To produce such double-stranded regions,
a run of bases downstream in the RNA sequence must be complementary to another upstream
run so that Watson-Crick base pairing between the complementary nucleotides G/C and A/U
(analogous to the G/C and A/T base pairs in DNA) can occur. In addition, however, G/U
wobble pairs may be produced in these double-stranded regions. As in DNA, the G/C base pairs
contribute the greatest energetic stability to the molecule, with A/U base pairs contributing less
stability than G/C, and G/U wobble base pairs contributing the least. From the RNA structures
that have been solved, these base pairs and a number of additional ones (see [20, 19]) have
been identified. RNA structure predictions comprise base-paired and non-base-paired regions
in various types of loop and junction arrangements, as shown in Fig. 4.2.

4.3 Grammar of RNA

Fig. 4.2 (left) shows a simple RNA sequence which has a hairpin-like structure (middle). The
example secondary structure can be represented with a set of state transitions associated with
symbols:

�	��� ��	��(� ��	3���� ��	3���� ��	3���� ��	���� ��	(��� ��	&4�
where � represents the state corresponds to a base pair. � and � correspond to the states
which emit single base to right side and left side, respectively. � and 4 are special states not
associated to any symbols but represent start and end of transition, respectively. The set of
generative rules is interpreted as: �� emits “a” to right and makes transition to ��, then ��
emits “g” to left and “c” to right simultaneously then move to ��, and so on. The CFG matrix
shown in Fig. 4.2(right) gives another way to represent state-symbol associations as well as state
transitions, where transitions start at upper right corner of the ����� matrix (size is determined
by the target sequence length), � comes first cell at ��� ��� which corresponds to “a” in 10th
position of the sequence, then � comes in a cell at ���)� which is associated to the 1st “g” and
9th “c.” Another � fills ��� !� which corresponds to the 2nd “g” and 8th “c.” One more � is
in �	� � and corresponds to 3rd “g” and 7th “c”. Then three �s fill in ��� ��, ��� ��, ��� �� and
correspond to 4th “c”, 5th “a”, 6th “u” respectively.

We generalize the above generative rules by defining six types of states as follows (5
represents any of the states except �):

� S: start � 	5
a special state which means the beginning of the secondary structure.

� B: bifurcation � 	55
makes transition to two states.

53

A. Single-stranded RNA B. Double-stranded RNA helix of
stacked base pairs

C. Stem and loop or hairpin loop D. Bulge loop

E. Interior loop F. Junctions or multi-loops

Figure 4.1: Single-stranded RNA molecules fold back on themselves and produce double-
stranded helices where complementary sequences are present. A particular base may either not
be paired, as in A, or paired with another bases as in B. The double-stranded regions will most
likely form where a series of bases in the sequence can pair with a complementary set elsewhere
in the sequence. The stacking energy of the base pairs provides increased energetic stability.
Combinations of double-stranded and single-stranded regions produce the types of structures
shown in C-F, with the single-stranded regions destabilizing neighboring double-stranded re-
gions. The loop of the stem and loop in C must generally be at least four bases long to avoid
steric hindrance with base-pairing in the stem part of the structure. The stem and loop reverses
the chemical direction of the RNA molecule. Interior loops, as in D, form when the bases in a
double-stranded region cannot form base pairs, and many be symmetric with a different number
of base pairs on each side of the loop, as shown in E, or symmetric with same number on each
side. Junctions, as in F, may include two or more double-stranded regions converging to form a
closed structure. The RNA backbone is red, and both unpaired and paired bases are blue. The
types of loop structures can be represented mathematically, thereby aiding in the prediction of
secondary structure [87, 111].

54

c

g

u

a

c

g

u
a

g

a

c

g
a

c

g c

g

5’ 3’

gggcauccca

RNA sequence Secondary structure

CFG matrix
P

P

P

L

L

R

c

c

c

L

(a) (b)

(((...))).

(c)

Figure 4.2: An example of an RNA sequence and a representation of the secondary structure
using the CFG matrix. (a) a tiny RNA sequence and its secondary structure where base pairs are
represented with parentheses (b) a hairpin-like structure of the RNA (c) the secondary structure
represented in the CFG matrix, where RNA sequence is aligned in the diagonal cells, and states
are assigned to each cell so that each state-symbol association becomes obvious (please see text
for details). The shaded arrows show one or two symbols correspond to a certain state.

� P: pair-wise � 	 (5�
emits two symbols (to left and � to right. (� �
�6�6��������

� L: left �	 (5
emits single symbol (to left. (�
������ 6�

� R: right �	5(
emits single symbol (to right.

� E: end 4 	 2
a special state which means the end of the secondary structure.

We do not consider transitions � 	 4 and � 	 44 because these transitions does not make
sense. Generalized grammar for RNA secondary structure is defined with a following set of
generative rules:

� 	 5 (4.1)

� 	 55

� 	 (5�

� 	 (5

� 	 5(

5 � ��� �����4

55

Table 4.1: Values of ��
��� which represent if the state 7 emits a symbol to left or right. “1”

indicates the occurrence of emission while “0” indicates no emission.
- P L R

��
 1 1 0

��
! 1 0 1

4.4 SCFG

SCFG * is defined with several sets of parameters denoted as * �
	�+� $� '�: 	 is a set of
states, + is a set of symbols, $ is a set of transition probabilities and ' is a set of emission proba-
bilities. We denote a transition probability from state 7 to 8 as $� �8 � (7� 8 �). Some states
emit two symbols respectively to left-hand side and right-hand side simultaneously which we
call the pair-wise emission. We use � to represent one of such states. � corresponds to a base
pair in an RNA sequence. Some other states emit one symbol to left-hand side. Such states are
represented as �. � is used to represent states that emit a symbol to right-hand side. So emission
probability at state � is written as '" �(� �� ((� � � +), where (for left-hand and � for right-hand
side. Otherwise '� �(� for 7 �
����. � and � correspond to bases that are not involved in
base pairs. SCFG allows to define transition and emission probabilities to the generative rules
Eqn. 4.1. There are several standard algorithms for SCFG. Inside-outside algorithm [62] pro-
vides two important parameters i.e. inside and outside parameters. Inside parameter, we denote
it as �# ��� 9� represents a probability that all probable successive transitions from a state 5
occur within a sub-sequence #�� 9$, �� � 9�. Outside parameter, we denote it as 0# ��� 9� rep-
resents a probability that all probable preceding transitions to a state 5 occurred outside of a
sub-sequence #�� 9$. By using these parameters, we can compute an important probability that a
state 7 is associated to � th and 9 th bases of a sequence �:

��5 ��� 9� � 7 ���*� �
�

����*�
�� ��� 9�0� ��� 9�� (4.2)

Please remember the CFG matrix in which state-symbol associations are deterministically rep-
resented. The concept of using SCFG is to represent the state-symbol association stochasticly
by using the probability ��5 ��� 9� � 7 ���*�. Another important probability is a probability
that a state 7 is associated to � th and 9 th bases in a sequence � and the consecutive state5 is
associated to ����

 the and 9 ���
! the bases:

��5 ��� 9� � 7�5 �����
 � 9���

!� � 8 ���*� �
�

������0� ��� 9�$� �8 ��$ ����
�
 � 9���

!��

(4.3)
where �� � �� � depends on type of 7 (see Table. 4.4).

SCFG parameters are trained with an expectation-maximization learning method using the
standard inside-outside algorithm. Maximizing the likelihood of each sequence leads to max-
imizing the expectation to use the state � because the pair-wise emission is more economic
than are the single emission states such as � and � to annotate the sequence. Therefore, the
expectation-maximization learning corresponds to the Nussinov [72] algorithm which estimates
RNA secondary structure in a way to maximize the occurrence of base-pairs. However, the same
learning algorithm behaves like the Zuker algorithm [112] with appropriate parameter settings
in regard to the stacking energies (see Fig. 4.2).

56

Major drawback of SCFG comes from its computational complexity. Its memory com-
plexity is :���;� where � is length of the target RNA sequence and ; is number of states.
Besides, its time complexity is :���;��.

4.5 Kernel PCA

Principal component analysis (PCA) is one of the most popular techniques for feature extrac-
tion. When using PCA for feature extraction, it amounts to a linear projection of the data onto
the principal subspace. The standard formulation of PCA is the eigendecomposition of the co-
variance matrix of the data. Here we illustrate that PCA can also be carried out on the kernel
matrix as shown in [89].

Let
��� be a data set with examples of dimension � which is mapped into feature
space
� �%����� by non-linear projection % & �� 	 � . We suppose the mapped data to
be centered:

�
�%��

�� � �. 1 The matrix � � #%�����%����� � � � �%����$ represents the
data in a compact way. Standard PCA is based on finding the eigenvalues and orthonormal
eigenvectors of the (sample) covariance matrix in the feature space where the covariance matrix
can be written as:

 �
�

��

�� (4.4)

We are interested in the dot product matrix of size � :

� �
�

�

�
� � (4.5)

where � is the kernel matrix since

 �� �
�

�%���� � %���� � �

 ��������

where & �� � �� 	 � is the kernel function. Kernel PCA is based on the fact that there
is a one-to-one correspondence between the non-zero eigenvectors �� of
 and the non-zero
eigenvectors � of � and that they have the same eigenvalues ��� ��� � � � � �% (of course, � �

������:

�
� ��

�+
�
�� (4.6)

� ��

�
�
�+
�
��� (4.7)

where the scaling by
�
�� normalizes the eigenvectors. Thus, the principal eigenvectors of

the covariance matrix of the mapped data lie in the span of the %-images of the training data.
Proof :
Let � be an eigenvector of the covariance matrix
 in � with eigenvalue �: �

�
��

�
� � ��.

Then:
�

�

�
����

�� ��
��

�

��

�
�� � ���

��

so � is also an eigenvalue of the kernel matrix �
�
�

�
� with corresponding eigenvector ��

�

provided ��
� �� �� which follows from:

� �� � � �� �� �� � ��
�
� �� �� � �

�
� �� �� �

�In general, this is not the case. However, all calculations can be reformulated to include centered data without
having to calculate explicitly the mean in � [89].

57

So we only have to take the non-zero eigenvectors into account. By symmetry (in � and
�

�), we can also conclude that each non-zero eigenvector of the kernel matrix �
�
�

�
� �

� corresponds to a non-zero eigenvector � of the covariance matrix with eigenvalue �.
The one-to-one correspondence as stated in Eqn. 4.6 and 4.7 follows after a straightforward
normalization of the eigenvectors. Given normalized eigenvectors for the kernel matrix, one
can normalize the eigenvectors for the covariance matrix:

���
��� � �
�
� �

�
�

�
� � �� � ��

and the other way round. �
A direct consequence of this one-to-one correspondence is that one can perform kernel PCA

feature extraction entirely in terms of kernel functions. It requires determining the orthonormal
eigenvectors � of � and its eigenvalues ��, and projecting a point %��� onto the principal
eigenvectors �� in feature space as defined by Eqn. 4.7 (leaving out the normalization):

%��� � �� �
�

��
���

&��
%��� � %�����
�
�

�
��
���

�
� ������

�
� (4.8)

Kernel PCA corresponds exactly to linear PCA in the high-dimensional feature space �
and, therefore, has all the properties of PCA in � . Because of the non-linearity of the map
%, the features are extracted in data space in a non-linear way: the contour lines of constant
projections onto a principal eigenvector are non-linear in data space [89].

4.6 Kernel Design for RNA Sequences

4.6.1 Count Kernels for RNAs

We design the count kernel for RNAs which secondary structures are known. Computation of
count kernels for RNAs follows quite similar way as shown in the previous section. We use
the symbol-emitting three states i.e. P, L and R as “labels.” With an RNA sequence shown in
figure 4.2, the occurrences of the base-state combinations count; �(� ����� �3�� � ��	� ��� ���
�� �(� ��� �� �&� ��� �� while the other combinations count zero. These numbers build up a 12
(� ��) dimensional vector (for the dimension, 4 bases for each of � and �, and 4 canonical
base pairs for �). 5 refers to CFG matrix and5 ��� 9� represents a label at 9-th column of �-th
row. The 1st order count feature vectors are defined as:

��" ��� �
�

	

��
���

��
�����

Æ #5 ��� 9� � �� �� � (� �� � �$ (4.9)

� ��� �
�

	

��
���

��
���

Æ #5 ��� 9� � �� �� � ($ (4.10)

�!��� �
�

	

��
���

��
���

Æ #5 ��� 9� � �� �� � ($ (4.11)

58

CFG matrix

P

P

L

Rg

g

a

g

c

c

Figure 4.3: The counting scheme of the 2nd order count
feature vector from a CFG matrix. An exemplar sate-path
is shown as�, � , � and �. Notice that each state is asso-
ciated to one or two bases with shaded arrows. The rect-
angles surrounding every pair of states indicate how con-
secutive two states are counted. It reads #��� (�� ��� 3��$,
#��� 3��� ��� �3�$, #��� 3��� ��� 3�$, and so on. There are
144 possible combinations to be counted. Thus 2nd order
count feature vector has 144 dimensions.

�
�

is a normalization factor in regard to length of the sequence. The 1st order count kernel is
defined as:

 ��� ��� �
�

� ��"� �!�

�� ��� �
��� (4.12)

�� ��� �
�� �

��
�
7 � � &

�
��� �

�
" ����

�
" ��

��
� �
�6�6���������6� 6��

7 � ��� &
�

����
���&� �

� ����

� ��

��

We design the 2nd order count kernel by taking account of two consecutive base-state pairs.
Fig. 4.6.1 shows the counting scheme using CFG matrix. Counting two consecutive base-state
pairs for an example RNA sequence looks like this: #��� (�� ��� 3��$ � �� #��� 3��� ��� 3��$ �
�� #��� 3��� ��� ��$ � �� #��� ��� ��� (�$ � �� #��� (�� ��� &�$ � �� Then these numbers build up a
144 (� � ��) dimensional vector accounting three states and four kinds of symbols. We denote
these vectors as follows:

����"" ��� �
�

	

������
��

���

��
��������

	

����"" ��� 9� (4.13)

����"" ��� 9� � Æ
�
5 ��� 9� � ��5 ����"

� � 9 ��"
� � � �� �� � (� �� � �� �����

�
� ��

�����
	
� �

�

���" ��� �
�

	

������

��
���

��
��������

	

���" ��� 9� (4.14)

���" ��� 9� � Æ
�
5 ��� 9� � ��5 ����"

� � 9 ��"
� � � �� �� � (� �� � �� �����

�
� �
�

���"!��� �
�

	

������

��
���

��
��������

	

���"!��� 9� (4.15)

���"!��� 9� � Æ
�
5 ��� 9� � ��5 ����"

� � 9 ��"
� � � �� �� � (� �� � �� �����

	
� �

�
59

��� " ��� �
�

	

�����

��
���

��
�������

	

��� " ��� 9� (4.16)

��� " ��� 9� � Æ
�
5 ��� 9� � ��5 ����

� � 9 ��
� � � �� �� � (� ����

�
� �� ����

	
� �

�

�� ��� �
�

	

�����

��

���

��
�������

	

�� ��� 9� (4.17)

�� ��� 9� � Æ
�
5 ��� 9� � ��5 ����

� � 9 ��
� � � �� �� � (� ����

�
� �
�

�� !��� �
�

	

�����

��

���

��
�������

	

�� !��� 9� (4.18)

�� !��� 9� � Æ
�
5 ��� 9� � ��5 ����

� � 9 ��
� � � �� �� � (� ����

	
� �

�

����!" ��� �
�

	

������
��

���

��
��������

	

����!" ��� 9� (4.19)

����!" ��� 9� � Æ
�
5 ��� 9� � ��5 ����!

� � 9 ��!
� � � �� �� � �� �����

�
� �� �����

	
� �

�

���! ��� �
�

	

������
��

���

��
��������

	

���! ��� 9� (4.20)

���! ��� 9� � Æ
�
5 ��� 9� � ��5 ����!

� � 9 ��!
� � � �� �� � �� �����

�
� �
�

���!!��� �
�

	

������

��
���

��
��������

	

���!!��� 9� (4.21)

���!!��� 9� � Æ
�
5 ��� 9� � ��5 ����!

� � 9 ��!
� � � �� �� � �� �����

	
� �

�
�

where ��
� and ��

� are binary flags indicating whether 7 emits a symbol to left (��
�) and right

(��
�) See table 4.4 for actual values. We define the 2nd order count kernels as:

 ��� ��� �
�
� $ ��

�� $ ��� �
��� (4.22)

� �
��� ��� ��� ��� ��� ������������

�� $ ��� �
�� �

��������������
�������������

7 8 � �� &
�

�����	� �
���
"" �������"" ����

7 8 � �� &
�

����	� �
��
" ����

��
" ��

��
7 8 � �� &

�
����	� �

��
"!����

��
"!��

��
7 8 � �� &

�
����	� �

��
 " ����

��
 " ��

��
7 8 � �� &

�
���	� �

�
 ����

�
 ��

��
7 8 � �� &

�
���	� �

�
 !����

�
 !��

��
7 8 � �� &

�
�����	� �

���
!" ����

���
!" ��

��
7 8 � �� &

�
����	� �

��
! ����

��
! ��

��
7 8 � �� &

�
����	� �

��
!!����

��
!!��

���

(4.23)

60

4.6.2 Marginalized Count Kernels for RNAs

We design the marginalized count kernels for RNAs which secondary structures are unknown.
In this case, each cell of the CFG matrix contains a probability ��5 ��� 9� � 7 ��� instead of
states. Since we do not know the secondary structure, Æ#5 ��� 9� � 7 $ used for Eqn. 4.9 through
4.11 need to be replaced with the probability. The probability is computed as follows using the
inside (�) and outside (0) parameters of SCFG:

��5 ��� 9� � 7 ��� � �

�������� ��� 9�0� ��� 9��

which is one of commonly computed parameters for SCFG learning with inside-outside algo-
rithm. Using the probability, we define the 1st order marginalized count feature vectors for
RNAs as follows:

3�" ��� �
�

	

��
���

��
���

��5 ��� 9� � � ���Æ #�� � (� �� � �$

3 ��� �
�

	

��
���

��
���

��5 ��� 9� � ����Æ #�� � ($

3!��� �
�

	

��
���

��
���

��5 ��� 9� � ����Æ #�� � ($

Hence the 1st order marginalized count kernel is defined as:

 ������ �
�

� ��"� �!�

�� ����
��� (4.24)

�� ����
�� �

��
�
7 � � &

�
��� 3

�
" ���3�" ����

� �
�6�6���������6� 6��
7 � ��� &

�
����
���&� 3

� ���3

� ��

��
(4.25)

For the 2nd order count kernel, we need to represent Æ#5 ��� 9� � 7�5 �����
� � 9���

� � �
8 $ used for Eqn. 4.13 through 4.21 in a probabilistic manner i.e. ��5 ��� 9� � 7�5 �����

� � 9�
��
� � � 8 ���. Let us refer to the probability as <� $ ��� 9�. The probability is computed using

the common SCFG parameters as follows:

<� $ ��� 9� �
�

������0� ��� 9�$� �8 ��$ ����
�
 � 9 ���

!�� (4.26)

Then we define the 2nd order marginalized count kernel as follows:

3���"" ��� �
�

	

������

��
���

��
��������

	

����"" ��� 9� (4.27)

����"" ��� 9� � <"" ��� 9�Æ
�
�� � (� �� � �� �����

�

� �� �����
	
� �

�

3��" ��� �
�

	

������

��
���

��
��������

	

���" ��� 9� (4.28)

���" ��� 9� � <" ��� 9�Æ
�
�� � (� �� � �� �����

�
� �
�

61

3��"!��� �
�

	

������

��
���

��
��������

	

���"!��� 9� (4.29)

���"!��� 9� � <"!��� 9�Æ
�
�� � (� �� � �� �����

	
� �

�

3�� " ��� �
�

	

�����

��
���

��
�������

	

��� " ��� 9� (4.30)

��� " ��� 9� � < " ��� 9�Æ
�
�� � (� ����

�

� �� ����

	
� �

�

3� ��� �
�

	

�����

��

���

��
�������

	

�� ��� 9� (4.31)

�� ��� 9� � < Æ
�
�� � (� ����

�
� �
�

3� !��� �
�

	

�����

��

���

��
�������

	

�� !��� 9� (4.32)

�� !��� 9� � < !��� 9�Æ
�
�� � (� ����

	
� �

�

3���!" ��� �
�

	

������

��
���

��
��������

	

����!" ��� 9� (4.33)

����!" ��� 9� � <!" ��� 9�Æ
�
�� � �� �����

�
� �� �����

	
� �

�

3��! ��� �
�

	

������

��
���

��
��������

	

���! ��� 9� (4.34)

���! ��� 9� � <! ��� 9�Æ
�
�� � �� �����

�

� �
�

3��!!��� �
�

	

������
��

���

��
��������

	

���!!��� 9� (4.35)

���!!��� 9� � <!!��� 9�Æ
�
�� � �� �����

	
� �

�
�

62

Then the 2nd order marginalized count kernel is defined as follows:

 ������ �
�
� $ ��

�� $ ����
��� (4.36)

� �
��� ��� ��� ��� ��� ������������

�� $ ����
�� �

��������������
�������������

7 8 � �� &
�

�����	� 3
���
"" ���3���"" ����

7 8 � �� &
�

����	� 3
��
" ���3

��
" ��

��
7 8 � �� &

�
����	� 3

��
"!���3

��
"!��

��
7 8 � �� &

�
����	� 3

��
 " ���3

��
 " ��

��
7 8 � �� &

�
���	� 3

�
 ���3

�
 ��

��
7 8 � �� &

�
���	� 3

�
 !���3

�
 !��

��
7 8 � �� &

�
�����	� 3

���
!" ���3

���
!" ��

��
7 8 � �� &

�
����	� 3

��
! ���3

��
! ��

��
7 8 � �� &

�
����	� 3

��
!!���3

��
!!��

���

(4.37)

4.7 Computational Experiments

4.7.1 Clustering Human tRNA Sequence Data

We performed kernel PCA using the marginalized count kernels in order to visualize similarities
among human tRNA sequences.

tRNAs We use 3 class 74 Human tRNAs: 25 Asn-GTT, 26 Ala-AGC, and 24 Cys-GCA, re-
trieved from GtRDB [65] (http://rna.wustl.edu/GtRDB/). These amino-acid/codon
combinations are chosen because they are the top three of the most popular combinations in
Human tRNAs. The sequence data are processed not to include any identical sequences. Thus
these 75 sequences are all unique.

Method We use SCFG for RNAs presented in the previous section. SCFG is trained using
the 75 tRNA sequence data with uniform initial parameters. Based on the trained SCFG, we
compute 1st and 2nd order MCKs. Using the MCKs, kernel PCA is performed.

Result Fig. 4.4 shows results of kernel PCA based on 1st order MCK (upper) and 2nd order
MCK (bottom). It is obvious that, for 1st order MCK, the black boxes (Asn-GTT) and white
boxes (Ala-AGC) are separated effectively while plus symbols (Cys-GCA) are entirely sub-
merged in the white boxes. The bottom figure shows very preferable result which almost all
points are clearly and correctly clustered into three aggregations.

4.7.2 Clustering snoRNA Sequence Data

We performed kernel PCA for yeast snoRNAs using MCK in order to examine if our snoRNA
grammar works for feature extraction of snoRNAs.

snoRNAs We use 2 class 66 Yeast snoRNAs: 20 H/ACAs, 46 BOX-C/Ds (see Fig. 4.5) re-
trieved from Yeast snoRNA Database [86].

63

-0.3 -0.2 -0.1 0 0.1 0.2 -0.5

0

0.5

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

Y

KernelPCA(3D) for Human tRNAs(3−class)

X

Z

(a)

-0.4
-0.2

0
0.2

0.4
0.6 -0.4

-0.2

0

0.2

0.4

0.6

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Y

KernelPCA (3D) for Human tRNAs (3−class)

X

Z

(b)

Figure 4.4: Results of kernel PCA for 74 Human tRNA sequence data. The upper figure shows
a result based on 1st-order MCK. The bottom represents 2nd-order MCK result where three
clusters are almost clearly separated.

64

Method We use fairly generic grammar for snoRNAs shown as a graph in Fig. 4.6 based on
secondary structures illustrated in Fig. 4.5, which is devised for this purpose. By using this
grammar, SCFG is trained using the 66 snoRNA sequence data with uniform initial parameters.
Based on the trained SCFG, we compute 2nd order MCKs. Then kernel PCA is performed.

Result Fig. 4.7 shows results of kernel PCA, where two classes are mostly separated.

4.7.3 Supervised classification

Method In supervised classification based on SCFG likelihood, an SCFG is trained with the
training sequences per sequence class. In the classification of a test sequence, the likelihoods of
all SCFGs are computed and the sequence is assigned to the class with the largest likelihood.

On the other hand, when SVMs are used for the classification, the MCKs (1st and 2nd order)
are first computed as in the kernel PCA case (i.e. SCFG is trained using 74 sequences). Then
SVMs are trained due to the ”one-against-others” scheme: each SVM is trained with the training
sequences of a class as positive samples and those of the other classes as negative samples. In
classification of a test sequence, the outputs of all SVMs are computed and the sequence is
assigned to the class with the largest output.

For the cross-validation, we divided 74 sequences into training/testing data as follows: 10
sequences per class, thus 30 sequences, are randomly chosen for testing; the rest are used for
training. In both the likelihood and SVM experiments, the training/testing stage is iterated 250
times.

Results In Fig. 4.8, 4.9 and 4.10, the averaged ROC curves for each of the three classes are
shown. Note that ROC curves are plots of the fraction of false-positives (FFP) '%

���'%
versus the

fraction of true-positives (FTP) �%

�%�'�
. The 2nd order MCK yielded the best results. Although

the curves tend to fluctuate due to small number of test data, overall performance differences
are obvious. The 2nd order MCK exibited stable performance which constantly scores over 0.8
FTP at zero false positives (FFP=0). The performance of the 1st order MCK is not as strong.
This result corresponds with the observations we made on the kernel PCA. In fact, the 1st order
MCK tends to perform worse than the raw likelihood classification at the point of zero false
positives; and in the case of Cys-GCA against others, it performs worse than the raw likelihood
classification.

4.8 Summary

We propose a new method for designing a kernel for RNAs. First we will consider a case
in which the secondary structure of two RNAs is known and represented using context-free
grammar (CFG) where a state (or a non-terminal) is associated with one or two base(s) in an
RNA sequence. A feature vector is constructed by counting the base-state combinations and
the kernel is defined as the dot product between two vectors. We call this the “count kernel
for RNAs”. This concept can be generalized to take into account the consecutive two base-
state combinations into. We call this kernel the “2nd order count kernel for RNAs”. However,
it is often the case that the RNA secondary structure is not known, but estimated with some
probabilistic model such as stochastic context free grammar (SCFG). In such cases, we use
the expectation of the count kernel with respect to the secondary structure. We call this the

65

rRNA
precursor

box-Dbox-C

box-D’ box-C’

box-H

rRNA
precursor

Figure 4.5: Illustrations of secondary structures of snoRNAs: BOX-C/D (top) and H/ACA
(bottom).

66

S

SL SR

B

E

R

L

P

R

L

P

E

R

L

P

R

L

P

Figure 4.6: A graphical representation of a grammar for snoRNAs, which consists of two
hairpin-like structures and intends to capture both of BOX-C/D (single hairpin) and H/ACA
(dual hairpin) types by allowing immediate termination (a transition to end state) from bifurca-
tion top (SL/SR).

67

−0.5
0

0.5
1

−1

−0.5

0

0.5
−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

X

Kernel PCA (3D) for Yeast snoRNAs

Y

Z

Figure 4.7: Results of kernel PCA for Yeast snoRNAs of two classes: box-C/D (red) and box-
H/ACA (green). Two classes are mostly separated.

“marginalized count kernel for RNAs”. Similarly, a second-order version can be obtained. Note
that these kernels are generalized versions of the kernels proposed for HMMs by Tsuda et al
[103]. We performed computational experiments using human tRNA sequence data, which are
a visualization of sequence similarities using kernel PCA and a supervised classification using
SVMs. For the latter, we compared the performance of the classifications with and without
MCKs.

68

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

F
T

P

FFP

ROC (Ala-AGC against others)

MCK1
MCK2

Likelihood

Figure 4.8: ROC curves from the supervised classifications are shown. Each curves shows the
result of “one class against others” for Ala-AGC tRNAs.

69

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

F
T

P

FFP

ROC (Asn-GTT against others)

MCK1
MCK2

Likelihood

Figure 4.9: ROC curves from the supervised classifications are shown. Each curves shows the
result of “one class against others” for Asn-GTT tRNAs.

70

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

F
T

P

FFP

ROC (Cys-GCA against others)

MCK1
MCK2

Likelihood

Figure 4.10: ROC curves from the supervised classifications are shown. Each curves shows the
result of “one class against others” Cys-GCA tRNAs.

71

Chapter 5

Conclusion

Let us summarize all the topics discussed in this thesis. The objective of this research is to
develop novel methods to extract features of biological sequence data in general. We began
our research with investigating a discriminative property known as dicodon usage, the best dis-
criminator to distinguish protein coding regions and non-coding regions. Aim of the investiga-
tion is to clarify relation between dicodon usage and other biological properties by comparing
performances of discrimination among dicodon usage discriminator and several dicodon ap-
proximators devised according to some biological properties. The investigation was carried out
fairly comprehensively by using seventeen microbial and several eukaryotic genomic sequence
data. Although some approximators sometimes scored as good as dicodon usage does, no ap-
proximators could replace dicodon based discriminator. Therefore the dicodon usage cannot
be interpreted with the approximators we devised. This experimental results indicate that the
dicodon usage has some particular aspects yet to be known in terms of biology. We decided to
broaden our view angle because although dicodon usage is still the best player in the field of
practical gene finding, its use is limited to provide statistical criteria for discriminating protein
coding and non-coding regions. Therefore we started to find a method to extract features of
biological sequence data from a fundamental point of view.

We proposed a novel method to extract features of biological sequence data that is a gen-
eral framework to design similarity measures. This framework allows to define two intrinsic
aspects, i.e. feature representation and similarity measure definition, to quantify a similarity be-
tween two biological sequences in terms of their biological features such as secondary/tertiary
structures of proteins or exon–intron boundaries of DNAs. Feature representation is provided
by using latent variable models such as hidden Markov models (HMMs), and similarity mea-
sure is defined by using a kernel which is a generic framework for similarity measures. In order
to evaluate validity of our method, we performed computational experiments to classify gyrB
protein sequence data. The experiments show that our method can be a powerful approach for
practical biological sequence data analysis. This framework provides a method for deriving
varieties of kernels by utilizing latent variable models. And we showed that the framework em-
brace Fisher kernels as its subset. Thus it provides a mathematical basement for Fisher kernels
and other derivatives such as marginalized count kernels (MCKs). One of the major advantages
of using kernel is that it allows exploiting kernel methods such as support vector machines,
kernel principal component analysis, kernel k-means plus varieties of kernel methods for bio-
logical sequence analysis. Since kernel methods are showing better performances in a variety
of practical pattern recognition problems than traditional methods such as neural networks and
HMMs (Actual examples are too many to be listed. Please consult with appropriate references

72

such as [88] or website at http://kernel-machines.org/), utilizing kernel methods
for biological sequence data analysis makes significant sense.

We developed a novel method to define similarities between RNA sequence data by utilizing
stochastic context free grammar (SCFG) that is capable of describing secondary structures of
RNAs. We demonstrated performance of our method by doing clustering experiments of human
transfer RNAs (tRNA) with kernel PCA. The experiments show promising results. We apply our
method to more practical problem that is to extract features of small nucleolar RNAs (snoRNA).
snoRNAs are small RNAs that play an important role in a splicing reaction of ribosomal RNA
precursors. The major difficulty of feature extraction from snoRNAs is that their common
secondary structures are not known well. However, the experiments show that our method
successfully captured features of snoRNAs. This study showed that effectiveness of our kernel
design framework by showing an actual realization of kernels utilizing SCFG, another latent
variable model. Additionally, it is worth noting that the 2nd order MCK possibly exploits
the stacking energy which is indispensable for the secondary structure. Although a detailed
modeling of RNAs requires massive implementation of SCFG states [81], the 2nd order MCK
facilitates feature extraction considering the stacking energy even with a simple SCFG that
does not have the energy information. This is because, in terms of the marginalized kernel, the
design of a kernel and a model are separated [103]. Besides, the introduction of MCKs sheds a
new light on RNA sequence data analysis. Without the kernel, the performance of a stochastic
model such as SCFG relies on a simple discriminator called likelihood, which is essentially a
weighted average of all parameters. In fact, the limitation of the likelihood is the major issue
when it comes to a practical analysis against large scale data, for instance, the bold challenge
issued by Rivas and Eddy [82]. Therefore, allowing further exploitation of the parameters using
MCK makes sense.

The major contributions of this thesis in the field of computational biology are proposition
of marginalized kernels and derivation of several practical kernels, which introduced novel and
extensible methods for biological sequence analysis.

73

Bibliography

[1] L. Adleman. Molecular computation of solutions to combinatorial problems. Science,
266:1021–1024, 11, 1994.

[2] S. Altschul, W. Gish, E. Myers, and D. Lipman. Basic local alignment search tool. J.
Mol. Biol., 215:403–410, 1990.

[3] S. Andersson and et al. The genome sequence of rickettsia prowazekii and the origin of
mitochondria. Nature, 396(6707):133–40, 1998.

[4] K. Asai, S. Hayamizu, and K. Handa. Prediction of protein secondary structure by the
hidden markov model. CABIOS (currently Bioinformatics), 9(2):141–146, 1993.

[5] K. Asai, K. Itou, Y. Ueno, and T. Yada. Recognition of human genes by stochastic
parsing. In Pacific Symposium on Biocomputing, pages 228–239, 1998.

[6] K. Asai, Y. Ueno, K. Itou, and T. Yada. Automatic gene recognition without using
training data. In Genome Informatics, volume 8, pages 15–24, 1997.

[7] S. Audic and J. Claverie. Self-identification of protein-coding regions in microbial
genomes. Proc Natl Acad Sci USA, 95(17):10026–31, 1998.

[8] L. Baum. An equality and associated maximization technique in statistical estimation for
probabilistic functions of markov processes. Inequalities, 3:1–8, 1972.

[9] L. Baum, T. Petrie, G. Soules, and N. Weiss. A maximization technique occuring in the
statistical analysis of probabilistic functions of markov chains. Annals of Mathematical
Statistics, 41(1):164–71, 1970.

[10] Y. Bengio, Y. LeCun, and D. Henderson. Globally trained handwritten word recognizer
using spatial representation, convolutional neural networks and hidden markov models.
In J. Cowan, G. Tesauro, and J. Alspector, editors, Advances in Neural Information Pro-
cessing Systems, volume 5, pages 937–944, 1994.

[11] D. Benson, I. Karsch-Mizrachi, D. Lipman, J. Ostell, and D. Wheeler. Genbank. Nucleic
Acids Res, 27(1):12–7, 1999.

[12] V. Blanz, B. Schölkopf, H. Bülthoff, C. Burges, V. Vapnik, and T. Vetter. Comparison
of view-based object recognition algorithms using realistic 3D models. In C. von der
Malsburg, W. von Seelen, J. C. Vorbrüggen, and B. Sendhoff, editors, Artificial Neural
Networks — ICANN’96, pages 251–256, Berlin, 1996. Springer Lecture Notes in Com-
puter Science, Vol. 1112.

74

[13] F. Blattner and et al. The complete genome sequence of escherichia coli k-12. Science,
277(5331):1453–74, 1997.

[14] L. Bottou, C. Cortes, J. S. Denker, H. Drucker, I. Guyon, L. D. Jackel, Y. LeCun, U. A.
Müller, E. Säckinger, P. Simard, and V. Vapnik. Comparison of classifier methods: a
case study in handwritten digit recognition. In Proceedings of the 12th International
Conference on Pattern Recognition and Neural Networks, Jerusalem, pages 77–87. IEEE
Computer Society Press, 1994.

[15] M. Brown, W. Grundy, D. Lin, N. Cristianini, C. Sugnet, M. Ares, and D. Haussler.
Support vector machine classification of microarray gene expression data. Technical
report, University of California, Santa Cruz, 1999.

[16] M. Brown, R. Hughey, A. Krogh, I. Mian, K. Sjolander, and H. Haussler. Using dirichlet
mixture priors to derive hidden markov models for protein families. In Proc Int Conf
Intell Syst Mol Biol, volume 1, pages 47–55, 1993.

[17] C. Bult and et al. Complete genome sequence of the methanogenic archaeon,
methanococcus jannaschii. Science, 273(5278):1058–73, 1996.

[18] C. Burge. Identification of Genes in Human Genomic DNA (Doctoral Thesis). Stanford
University, March 1997.

[19] M. Burkhard, D. Turner, and I. T. Jr. Appendix 2: Schematic diagrams of secondary and
tertiary structure elements. Cold Spring Harbor Laboratory Press, 1999.

[20] M. Burkhard, D. Turner, and I. T. Jr. The interactions that shape RNA secondary struc-
ture. Cold Spring Harbor Laboratory Press, 1999.

[21] M. Burset and R. Guigo. Evaluation of gene structure prediction programs. Genomics,
34:353–67, 1996.

[22] G. Churchill. Stochastic models for heterogeneous dna sequences. Bull. Math. Biol.,
51:79–94, 1989.

[23] S. Cole and et al. Deciphering the biology of mycobacterium tuberculosis from the
complete genome sequence. Nature, 393(6685):537–44, 1998.

[24] J. Collad-Vides. A syntactic representation of units of genetic information–a syntax of
units of genetic information. J Theor Biol, 148(3):401–29, Feb. 1991.

[25] J. Collado-Vides. Towards a unified grammatical model of sigma 70 and sigma 54 bac-
terial promoters. Biochimie, 78(5):351–63, 1996.

[26] N. Cristianini and J. Taylor. An Introduction to Support Vector Machines. Cambridge
University Press, 2000.

[27] G. Deckert and et al. The complete genome of the hyperthermophilic bacterium aquifex
aeolicus. Nature, 392(6674):353–8, 1998.

[28] L. Delcher, D. Harmon, S. Kasif, O. White, and S. Salzberg. Improved microbial gene
identification with glimmer. Nucleic Acids Research, 27(23):4636–4641, 1999.

75

[29] S. Dong and D. Searls. Gene structure prediction by linguistic methods. Genomics,
23:540–551, 1994.

[30] S. Dumais. Using SVMs for text categorization. IEEE Intelligent Systems, 13(4), 1998.
In: M.A. Hearst, B. Schölkopf, S. Dumais, E. Osuna, and J. Platt: Trends and Controver-
sies — Support Vector Machines.

[31] R. Durbin, S. Eddy, A. Krogh, and G. Mitchison. Biological Sequence Analysis. Cam-
bridge University Press, 1998.

[32] T. C. elegans Sequencing Consortium. Genome sequence of the nematode c. elegans: a
platform for investigating biology. Science, 282(5396):2012–8, 1998.

[33] J. Fickett. Recognition of protein coding regions in dna sequences. Nucleic Acid Re-
search, 10:5503–5518, 1982.

[34] J. Fickett. The gene identification problem: An overview for developers. Computers
Chem., 20(1):103–118, 1996.

[35] J. Fickett and C. Tung. Assessment of protein coding measures. Neucleic Acid Research,
20(24):6441–50, 1992.

[36] R. Fleischmann and et al. Whole-genome random sequencing and assembly of
haemophilus influenzae rd. Science, 269(5223):496–512, 1995.

[37] C. Fraser and et al. The minimal gene complement of mycoplasma genitalium. Science,
270(5235):397–403, 1995.

[38] C. Fraser and et al. Genomic sequence of a lyme disease spirochaete, borrelia burgdorferi.
Nature, 390(6660):580–6, 1997.

[39] C. Fraser and et al. Complete genome sequence of treponema pallidum, the syphilis
spirochete. Science, 281(5375):375–88, 1998.

[40] D. Frishman and P. Argos. Seventy-five percent accuracy in protein secondary structure
prediction. Proteins, 27:329–335, 1997.

[41] O. Gotoh. Homology-based gene structure prediction: simplified matching algorithm
using a translated colon (tron) and improved accuracy by allowing for long gaps. Bioin-
formatics, 16(3):190–202, 2000.

[42] W. Grundy, T. Bailey, C. Elkan, and M. Baker. Meta-meme: Motif-based hidden markov
models of protein families. Comput. Appl. Biosci., 13:387–406, 1997.

[43] Y. Guermeur, C. Geourjon, P. Gallinari, and G. Deleage. Improved performance in pro-
tein secondary structure prediction by inhomogeneous score combination. Bioinformat-
ics, 15:413–421, 1999.

[44] T. Head. Formal language theory and dna: An analysis of the generative capacity of
specific recombinant behaviors. Bulletin of Mathematical Biology, 49(6):737–759, 1987.

[45] R. Himmelreich and et al. Complete sequence analysis of the genome of the bacterium
mycoplasma pneumoniae. Nucleic Acids Res, 24(22):4420–49, 1996.

76

[46] S. Hussini, L. Kari, and S. Konstantinidis. Coding properties of DNA languages. In DNA
Computing, 7th international Workshop on DNA-Based Computers, DNA 2001, Tampa,
U.S.A., 10-13 June 2001, pages 107–118, 2001.

[47] T. Jaakkola, M. Diekhans, and D. Haussler. A discriminative framework for detecting
remote protein homologies. Journal of Computational Biology, 7(1-2):95–114, 2000.

[48] S. Ji. The linguistics of dna: words, sentences, grammar, phonetics, and semantics. Ann
N Y Acad Sci, 18(870):411–7, May 1999.

[49] T. Joachims. Text categorization with support vector machines: Learning with many
relevant features. In Proceedings of the European Conference on Machine Learning,
pages 137–142. Springer, 1998.

[50] G. F. Jr. The viterbi algorithm. Proc. of the IEEE, 61(3):268–78, 1973.

[51] W. Kabsch and C. Sander. Dictionary of protein secondary structure: pattern recognition
of hydrogen-bonded and geometrical features. Biopolymers, 22(12):2577–2637, 1983.

[52] T. Kaneko and et al. Sequence analysis of the genome of the unicellular cyanobacterium
synechocystis sp. strain pcc6803. ii. sequence determination of the entire genome and
assignment of potential proteincoding regions. DNA Res, 3(3):109–36, 1996.

[53] R. Karchin, K. Karplus, and D. Haussler. Classifying G-protein coupled receptors with
support vector machines. Bioinformatics, 18:147–159, 2002.

[54] H. Kasai, A. Bairoch, K. Watanabe, K. Isono, S. Harayama, E. Gasteiger, and S. Ya-
mammoto. Construction of the gyrb database for the identification and classification of
bacteria. In Genome Informatics 1998, pages 13–21. Universal Academic Press, 1998.

[55] H. Kasai, T. Ezaki, and S. Harayama. Differentiation of phylogenetically related slowly
growing mycrobacteria by their gyrB sequences. J. Clin. Microbiol., 38:301–308, 2000.

[56] Y. Kawarabayasi and et al. Complete sequence and gene organization of the genome of a
hyper-thermophilic archaebacterium, pyrococcus horikoshii ot3. DNA Res., 5(2):55–76,
1998.

[57] W. Kent. Blat - the blast-like alignment tool. Genome Res., 12:656–664, 2002.

[58] C. Kim, K. Asai, and A. Konagaya. A generic criterion for gene recognitions in genomic
sequences. In Genome Informatics, volume 10, pages 13–22, 1999.

[59] H. Klenk and et al. The complete genome sequence of the hyperthermophilic, sulphate-
reducing archaeon archaeoglobus fulgidus. Nature, 390(6658):364–70, 1997.

[60] A. Krogh, I. Mian, and D. Haussler. A hidden markov model that finds genes in e. coli
dna. Nucleic Acids Res, 22(22):4768–78, 1994.

[61] F. Kunst and et al. The complete genome sequence of the gram-positive bacterium bacil-
lus subtilis. Nature, 390(6657):249–56, 1997.

[62] K. Lari and S. Young. The estimation of stochastic context-free grammars using the
inside-outside algorithm. Computer Speech and Language, 4:35–56, 1990.

77

[63] C. Leslie, E. Eskin, and W. Noble. The spectrum kernel: a string kernel for svm protein
classification. In Proceedings fo the Pacific Symposium on Biocomputing 2002, pages
564–575, 2002.

[64] S. Leung, C. Mellish, and D. Robertson. Basic gene grammars and dna-chartparser for
language processing of escherichia coli promoter dna sequences. Bioinformatics, 3:226–
36, Mar. 2001.

[65] T. Lowe and S. Eddy. trnascan-se: A program for improved detection of transfer rna
genes in genomic sequence. Nucleic Acids Research, 25:955–964, 1997.

[66] A. Lukashin and M. Borodovsky. Genemark.hmm: new solutions for gene finding. Nu-
cleic Acids Research, 26:1107–1115, 1998.

[67] N. Matic, I. Guyon, J. Denker, and V. Vapnik. Writer adaptation for on-line handwritten
character recognition. In Second International Conference on Pattern Recognition and
Document Analysis, pages 187–191. IEEE Computer Society Press, 1993.

[68] J. Mercer. Functions of positive and negative type and their connection with the theory
of integral equations. Philosophical Transactions of the Royal Society, A 209:415–46,
1909.

[69] S. Miyazaki, H. Sugawara, T. Gojobori, and Y. Tateno. Dna data bank of japan (ddbj) in
xml. Nucleic Acids Research, 30(1):13–16, 2003.

[70] S. Mukherjee, P. Tamayo, J. Mesirov, D. Slonim, A. Verri, and T. Poggio. Support vector
machine classification of microarray data. Technical report, CBCL, AI Memo 1676,
1999.

[71] K.-R. Müller, S. Mika, G. Rätsch, K. Tsuda, and B. Schölkopf. An introduction to
kernel-based learning algorithms. IEEE Trans. Neural Networks, 12(2):181–201, 2001.

[72] R. Nussinov, G. Pieczenk, J. Griggs, and D. Kleitman. Algorithms for loop matchings.
SIAM journal of Applied Mathematics, 35:68–82, 1978.

[73] C. O’Donovan, M. Martin, A. Gattiker, E. Gasteiger, A. Bairoch, and R. Apweiler. High-
quality protein knowledge resource: Swiss-prot and trembl. Briefings in Bioinformatics,
3(3):275–284, 2002.

[74] S. Osawa. Evolution of the Genetic Code. Oxford University Press, 1995.

[75] E. Osuna, R. Freund, and F. Girosi. Training support vector machines: An application to
face detection. In In Proceedings of CVPR’97, 1997.

[76] C. Papageorgiou, T. Evgeniou, and T. Poggio. A trainable pedestrian detection system.
In IEEE Conference on Intelligent Vehicles, pages 241–246, 1998.

[77] P. Pavlidis, T. Furey, M. Liberto, D. Haussler, and W. Grundy. Promoter region-based
classification of genes. In Proc. PSB 2001, pages 151–163, 2001.

[78] W. Pearson. Rapid and sensitive sequence comparison with fastp and fasta. Methods in
Enzymology, 183:63–98, 1990.

78

[79] M. Pontil and A. Verri. Support vector machines for 3-d object recognition. IEEE Trans.
PAMI, 20:637–646, 1998.

[80] L. Rabiner and B. Juang. An introduction to hidden markov models. IEEE ASSP Maga-
zine, pages 4–16, 1986.

[81] E. Rivas and S. Eddy. A dynamic programming algorithm for rna structure prediction
including pseudoknots. Journal of Molecular Biology, 283:1168–1171, 1999.

[82] E. Rivas and S. Eddy. Secondary structure alone is generally not statistically significant
for the detection of noncoding rnas. Bioinformatics, 16:573–585, 2000.

[83] D. Roobaert and M. V. Hulle. View-based 3d object recognition with support vector
machines. In IEEE Neural Networks for Signal Processing Workshop, 1999.

[84] V. Roth and V. Steinhage. Nonlinear discriminant analysis using kernel functions. In
S. Solla, T. Leen, and K.-R. Müller, editors, Advances in Neural Information Processing
Systems 12, pages 568–574. MIT Press, 2000.

[85] A. Salamov and V. Solovyev. Protein secondary structure prediction using local alignm-
ments. Journal of Molecular Biology, 268:31–36, 1997.

[86] D. Samarsky and M. Fournier. A comprehensive database for the small nucleolar rnas
from saccharomyces cerevisiae. Nucleic Acids Res., 27:161–164, 1999.

[87] D. Sankoff, J. Kruskal, S. Mainville, and R. Cedergren. Fast algorithms to determine
RNA secondary structures containing multiple loops. Addison-Wesley, 1983.

[88] B. Schölkopf and A. Smola. Learning with Kernels: Support Vector Machines, Regular-
ization, Optimization, and Beyond. The MIT Press, 2002.

[89] B. Schölkopf, A. Smola, and K. Müller. Nonlinear component analysis as a kernel eigen-
value problem. Neural Computation, 10:1299–1319, 1998.

[90] D. Searls. The linguistics of dna. American Scientist, 80:579–591, 1992.

[91] D. Searls. String variable grammar: A logic grammar formalism for the biological lan-
guage of DNA. Journal of Logic Programming, 24(1 2):73–102, 1995.

[92] J. Shepherd. Method to determine the reading frame of a protein from the
purine/pyrimidine genome sequence statistics, identification, and applications to genome
project. Proc. Natl. Acad. Sci. USA, 78:1596–1600, 1981.

[93] D. Smith and et al. Complete genome sequence of methanobacterium thermoautotroph-
icum deltah: functional analysis and comparative genomics. J. Bacteriol, 179(22):7135–
55, 1997.

[94] S. Sonnenburg, G. Rätsch, A. Jagota, and K. Müller. New methods for splice site recog-
nition. In Proc. of the International Conference on Artificial Neural Networks, pages
329–336, 2002.

[95] E. Sonnhammer, S. Eddy, and R. Durbin. Pfam: A comprehensive database of protein
domain families based on seed alignments. Proteins, 28:405–420, 1997.

79

[96] R. Staden and A. McLachlan. Codon preference and its use in identifying protein regions
in long dna sequences. Nucleic Acid Research, 12:505–519, 1984.

[97] R. Stephens and et al. Genome sequence of an obligate intracellular pathogen of humans:
Chlamydia trachomatis. Science, 282(5389):754–9, 1998.

[98] G. Stormo, T. Schneider, L. Gold, and A. Ehrenfeucht. Use of the ‘perceptron’ algorithm
to distinguish translational initiation sites in e.coli. Nucleic Acids Research, 10:2997–
3011, 1982.

[99] N. Sueoka. A statistical analysis of deoxyribonucleic acid distribution in density gradient
centrifugation. Proceedings of the National Academy of Sciences, 45(10):1480–1490,
1959.

[100] H. Tanaka, M. Ishikawa, K. Asai, and A. Konagaya. Hidden markov models and iterative
aligners: study of their equivalence and possibilities. In Proc Int Conf Intell Syst Mol
Biol, volume 1, pages 395–401, 1993.

[101] J. Tomb and et al. The complete genome sequence of the gastric pathogen helicobacter
pylori. Nature, 388(6642):539–47, 1997.

[102] K. Tsuda, M. Kawanabe, G. Rätsch, S. Sonnenburg, and K.-R. Müller. A new discrimi-
native kernel from probabilistic models. In T. Dietterich, S. Becker, and Z. Ghahramani,
editors, Advances in Neural Information Processing Systems 14. MIT Press, 2002. to
appear.

[103] K. Tsuda, T. Kin, and K. Asai. Marginalized kernels for biological sequences. Bioinfor-
matics, 18:268S–275S, 2002.

[104] J. Vert. Support vector machine prediction of signal peptide cleavage site using a new
class of kernels for strings. In Proceedings fo the Pacific Symposium on Biocomputing
2002, pages 649–660, 2002.

[105] M. Waterman. Introduction to Computational Biology: Maps, sequences and genomes.
Chapman & Hall/CRC, 1995.

[106] T. Yada and M. Hirosawa. Gene recognition in cyanobacterium genomic sequence data
using the hidden markov model. DNA Research, 3(6):355–61, 1996.

[107] T. Yada, M. Ishikawa, H. Tanaka, and K. Asai. Signal pattern extraction from dna se-
quences using hidden markov model and genetic algorithm. IPSJ Trans., 37(6):1117–29,
1996.

[108] K. Yeung and W. Ruzzo. Principal component analysis for clustering gene expression
data. Bioinformatics, 17(9):763–774, 2001.

[109] S. Young and et al. HTK Book (for HTK version 2.2). Entropic Inc., 1999.
ftp://ftp.entropic.com/pub/htk/HTKBook a4.ps.gz.

[110] A. Zien, G. Rätsch, S. Mika, B. Schölkopf, T. Lengauer, and K. Müller. Engineering
support vector machine kernels that recognize translation initiation sites. Bioinformatics,
16:799–807, 2000.

80

[111] M. Zuker and D. Sankoff. Rna secondary structures and their prediction. Bull. Math.
Biol., 46:591–621, 1984.

[112] M. Zuker and P. Stiegler. Optimal computer folding of large rna sequences using ther-
modynamics and auxiliary information. Nucleic Acids Research, 9:133–148, 1981.

81

Publications

[1] T. Kin, A. Konagaya and K. Asai: “A Generic Criterion for Gene Recognition in Genomic
Sequences,” Proc. of Genome Informatics Workshop 1999, pp.13-22.

[2] T. Kin, K. Tsuda and K .Asai: “Marginalized Kernels for RNA Sequence Data Analysis,”
Proc. of Genome Informatics Workshop 2002, pp.112-122. GIW2002 Best Paper Award
Winner

[3] K. Tsuda, T. Kin and K .Asai: “Marginalized Kernels for Biological Sequences,” Bioin-
formatics, 18(Suppl. 1):S268–S275, 2002.

[4] T. Kin, T. Tsuda and K. Asai: “Computation and an application of marginalized kernels
for biological sequence data,” CBRC Technical Report, AIST02-J00001-1, Oct. 1. 2002.

82

Appendix A

Microbial Genomes

Table. A shows a list of complete genomes used for this research.

Table A.1: 17 microbial and 6 eukaryotic genomic sequence data.

Species Acc. No Length (nt)
Archaeoglobus fulgidus AE000782 2,178,400
Aquifex aeolicus AE000657 1,551,335
Borrelia burgdorferi AE000783 910,724
Bacillus subtilis AL009126 4,214,814
Chlamydia trachomatis AE001273 1,042,519
Escherichia coli U00096 4,639,221
Haemophilus influenzae L42023 1,830,138
Helicobacter pylori AE000511 1,667,867
Mycoplasma genitalium L43967 580,074
Methanococcus jannaschii L77117 1,664,970
Mycoplasma pneumoniae U00089 816,394
Methanobacterium thermoautotrophicum AE000666 1,751,377
Mycobacterium tuberculosis AL123456 4,411,529
Pyrococcus horikoshii Pyro h 1,738,505
Rickettsia prowazekii AJ235269 1,111,523
Synechocystis PCC6803 AB001339 3,57,3470
Treponema pallidum AE000520 1,138,011
Caenorhabditis elegans chromosome I chr I 16,183,833
Caenorhabditis elegans chromosome II chr II 17,004,925
Caenorhabditis elegans chromosome III chr III 12,114,540
Caenorhabditis elegans chromosome I chr IV 15,887,371
Caenorhabditis elegans chromosome V chr V 21,280,512
Caenorhabditis elegans chromosome X chr X 17,624,844

83

Appendix B

Softwares

All computations introduced here are realized as a couple of computer programs. One of them
is a standard HMM program with capabilities of computing 1st/2nd order MCKs, and the other
is a SCFG program specific to RNA secondary structures. These softwares will be available at
http://www.cbrc.jp/˜taishin/.

B.1 HMM software

The HMM program is based on UMDHMM version 1.0.2: a straightforward implementation of
[80] by Kanungo (http://www.cfar.umd.edu/˜kanungo/). We added our function-
alities and extended the program in some extent in order to compute marginalized count kernels.
The program is a single binary executable: khmm which is capable of:

� Reading FASTA sequence file

� Model evaluation (forward-backward algorithm)

� Expectation-maximization learning (Baum-Welch algorithm)

� Kernel computations: 1st/2nd-order marginalized count kernel and Fisher kernel

Usage khmm accepts several command line options:

khmm [OPTIONS] -h <HMM file> <sequence file>

<HMM file> gives HMM parameters which defines a transition matrix and emission matrices
for all states.
<sequence file> provides one or more sequence data in FASTA file format.

Options

- n skips learning

- 1 <file> computes and outputs 1st-order marginalized count kernel matrix to <file>.

- 2 <file> computes and outputs 2nd-order marginalized count kernel matrix to <file>.

- f <file> computes and outputs Fisher kernel matrix to <file>.

84

- s DNA|RNA|AMINOACID specifies symbol set. Omitting this option means that a
custom symbol set is given. Hence -c <charsetfile> becomes mandatory.

- c <charsetfile> uses <charsetfile> as a custom symbol set. -s cancels
this option.

- o <file> outputs trained HMM parameters to <file>.

- h <HMM file> reads HMM parameters from <HMM file>.

- t <int> iterates learning up to <int> times.

- d <double> iterates learning while it keeps more than <double> times improve-
ment.

B.2 SCFG software

The SCFG program scfg was built from scratch but we referred to algorithms for generic
SCFG and Covariance Model [31]. sokos is capable of:

- Reading FASTA sequence file

- Model evaluation (inside-outside algorithm)

- Expectation-maximization learning

- RNA secondary structure prediction (CYK algorithm)

- Kernel computations: 1st/2nd-order marginalized count kernel

Usage

sokos [OPTIONS] <sequence file> <scfg file>

<sequence file> provides one or more sequence data in FASTA file format.
<scfg file> defines SCFG parameters i.e. a transition matrix and emission matrices.

Options

- c skips learning.

- o <file> outputs trained SCFG parameters to <file>.

- p <file> outputs likelihood of each sequence to <file>.

- t predicts secondary structure.

- d <float> repeats learning until it keeps more than <float> times improvement.

- T <int> repeat learning up to <int> times.

- f <file> compute and output 1st-order feature vectors of each sequence to <file>.

85

- k <file> compute and output 1st-order marginalized kernel matrix to <file>.

- F <file> compute and output 2nd-order feature vectors of each sequence to <file>.

- K <file> compute and output 2nd-order marginalized kernel matrix to <file>.

- m <int> use <int>threads (default 1).

86

