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Abstract

Similarity measure design remains at the core of many important data mining meth-

ods. Distance-based methods such as clustering, classification and nearest neighbor

searching use distance functions as a key subroutine in their implementation. Clearly,

the quality of the resulting distance function significantly affects the success of the

corresponding methods in finding results.

Designing similarity measures for complex data is a challenge because of their par-

ticular properties: poorness, heterogeneity, and complexity. These properties make

measuring similarities between values or integrating similarity scores on attributes into

similarities between objects become difficult tasks. Similarity measures for complex

data often require particular designs that are suitable for these properties. This dis-

sertation focuses on similarity measures for three data types: categorical data, hetero-

geneous data, and graph data.

For categorical data, we investigate characteristics and properties of measures bor-

rowed from binary vector measures to see their advantages and disadvantages. We

propose an association-based dissimilarity measure that bases on relations between at-

tributes to measure the dissimilarity between categorical values. The main idea is to

estimate the dissimilarity between two values from dissimilarities of probability dis-

tributions of attributes conditioned on these two values. Intuitively, the greater the

dissimilarities of the probability distributions, the greater the dissimilarity between

these two values. This measure does not only overcome poorness in values of binary

vector-based measures but also boosts accuracy of the classification nearest neighbor

in experiments for a large number of real-life databases.

For heterogeneous data, we report existing similarity measures and point out their

advantages and disadvantages. We propose an ordered probability-based similarity

measure that is based on order relations and probability distributions. The key idea

is to estimate the similarity between two attribute values by the probability of picking

up a value pair that is less similar than or as similar as. As similarity scores between

attribute values are probabilities, they are then integrated into similarities between

objects by methods for integrating probabilities. The main advantage of this measure is

that it uses up all particular properties of data types meanwhile still keeps homogeneity

of similarity scores on different data types. This measure avoids determining common

factors/operators for all data types that is the main drawback of the existing measures.
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For graph data, we report my survey on similarity measures and point out their ad-

vantages and disadvantages. We propose a nonoverlap connected subgraph-based mea-

sure that estimates the similarity between two graphs based on three factors: nodes,

edges and connectivity of their common subgraphs. The main idea is that the larger

the connected common subgraphs of two graphs, the greater the similarity between

these two graphs. Using of these factors makes this similarity measure be suitable

to 2D chemical structure data. Experiments with clustering and classifications dis-

close advantages of this measure in practices. The experiments also reveal interesting

relations between compound structures and other chemical properties.

In short, we report similarity measures for complex data and point out their dis-

advantages and advantages in use. We propose three measures that are particularly

designed for categorical data, heterogeneous data, and graph data. The merits of these

measures are proven by both theories and experiments.

Key words: Similarity measures, complex data, categorical data, heterogeneous

data, graph data, binary vectors, condition probability, order relations, graphs, com-

mon subgraphs, chemical structures.
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Abstract in Japanese 
 
 
類似度指標の設計は，重要なデータマイニング・アプリケーションの多くに

おいて依然として中核をなす課題である．クラスタリング，分類法，最近隣

探索などの多くの手法でもその実装における中心的な下部ルーチンとして距

離関数を用いることから，距離関数から導出される結果の品質が対応するア

プリケーションの探索の成否に大きく影響することは明らかである． 
 
複合・複雑データに対する類似度指標を設計することは，こうしたデータの

情報量の低さ，非均質性，そして複雑性といった特殊な性質のために，野心

的な試みとならざるをえない．値以外のデータ型に関してその類似度を測定

すること，あるいは複数の属性における類似度をまとめてオブジェクト間の

類似度として統合することは困難な課題であり，複雑データに対する類似度

指標を設計する際には，この特質に対応することが要求される．本論文では，

種々の複雑データのうち，カテゴリデータ，タイプ混交データ，グラフデー

タの３タイプのデータについて，それぞれを対象とする類似度指標を研究範

囲とする． 
 
カテゴリデータに関しては，二進ベクトル指標を取り入れた類似度指標につ

いてその特性を調査し，その長所および短所を明らかにした上で，属性間の

関係に基いてカテゴリ値の間の差異度を測定する相関ベース差異度指標を新

たに提案する．この指標の要点は，任意の属性における二値間の差異度を，

他の属性の条件付確率分布の差異度の総計として推定することにある．直感

的に確率分布の差が大きければ，比較対象の二つの値の差異度も大きいと見

做せる．多数の実世界データベースに対して実施した最近隣分類の実験にお

いて，この指標が二進ベクトル指標で表現できる情報量の少なさを克服する

だけでなく，精度をも向上させることを示した． 
 
タイプ混交データに関しては，先行する各種類似度指標についてその長所お

よび短所を指摘しつつ，順序関係および確率分布に則った順序確率ベースの

類似度指標を提案する．この指標の要点は，各属性における二つの値の類似

性の程度を，順序関係においてより近いその他の値のペアの確率によって推

定することである．属性値間の類似性の得点を確率として表すことから，確

率を統合する様々な手法を適用することで，二つのオブジェクトの類似度を

個々の属性における確率を統合したものとして得ることができる．この指標

の主な利点は個々のデータ型の特性を利用しつつも，データ型によらず類似

度の構成上の等質性を保持できることにある．また，全データ型に共通する

共通要素／操作の決定は既存手法の短所であったが，これが不要であること

もこの指標の長所である． 
 
グラフデータに関しても，既存指標を調査し，その長所・短所を報告する．

グラフデータに大して新たに提案する指標は，互いに素となる連結部分グラ

フに基づくものである．この指標は２つのグラフ間の類似度を，その共通部

分グラフの節，辺，連結の程度という 3 つの因子に基づいて推定するもので



iv 

あり，その要点は，二つのグラフ間で互いに素となる連結部分グラフが大き

ければ，グラフ同士の類似度も高いと見做すことにある．グラフの節・辺・

連結の程度という因子を用いるため，この類似度指標は二次元データとして

表現される化学的構造データに適したものとなっている．クラスタリングお

よび分類器による実験は，この指標の実用上の利点を実証するとともに，ま

た化合物の構造とその化学的な特性との間の興味深い関係を明らかにするこ

とにも成功している． 
 
以上，本論文では，複雑なデータに関する既存の類似度指標について，それ

らの指標を使用する際の長所・短所を報告した．また，複雑なデータの中で

も特にカテゴリデータ，タイプ混交データ，グラフデータのそれぞれに特化

して設計した新たな類似度指標を提案し，これらの指標が理論的に優位性を

備えるだけでなく，実験においても優れていることを実証した． 
 
キーワード：類似度指標，複雑データ，カテゴリデータ，タイプ混交データ

（不均質データ），グラフデータ，二進ベクトル，条件付確率，順序関係，

グラフ，共通部分グラフ，化学構造 



Acknowledgments

This work would not have been possible without the support and encouragement of

many people. I want to express my gratitude to all of them, even if I cannot mention

everyone here.

It was my good fortune to have Professor Tu Bao Ho as my supervisor while at

Japan Advanced Institute of Science and Technology (JAIST). He taught me how to

be a fruitful researcher, write good papers and, above all, have a good attitude. His

thorough scientific approach and unending quest for excellence have been inspirational

in the years of my thesis research. I only wish I had listened to his advice more often.

I would like to express my sincere thanks to Professor Yoshiteru Nakamori of Japan

Advanced Institute of Science and Technology (JAIST) his guidance and support for my

minor research. I am grateful to my former supervisors, Dr. Luong Chi Mai of Vietnam

Institute of Information Technology for her advice and encouragement throughout my

studies. I would like to thank Professor Judith Steeh at Japan Advanced Institute

of Science and Technology (JAIST) and Phan Thi Thu Hang for kindly helping to

comment my papers and dissertation.

I sincerely thank all my friends and colleagues who always supported me in times

of need. I greatly appreciate to my lab-mates for their contributions in making a

wonderful and supportive academic environment. I deeply thank Vietnamese group in

Jaist for giving me the warm family environment during the years.

But the life would be also difficult without financial support. I am deeply indebted

to the Japanese Ministry of Education, Culture, Sports, Science and Technology for

granting me a scholarship, which made possible for my study in Japan. Thanks also go

to CREST (Core Research for Evolutional Science and Technology) of JAIST (Japan

Science and Technology Corporation), the Foundation for C&C Promotion for provid-

ing me with their travel grants which supported me to attend and present my work at

some international conferences.

JAIST offered me the greatest learning environment I have ever had - the computing

environment, the brilliant faculty, the hard-working students, and the chance to meet

famous researchers all over the world. Among the friendly administrators, I owe a

great deal to the International Student Section for the kind and constant assistance

they provided. Without them, I would certainly have run into much trouble.

v



Finally, I have saved the best for the last. I wish to express my endless love and

gratitude to my family, Mom, Dad, my elder brother, Cau and his wife, Hanh, their

children, little lovely niece and nephew, Thuy and Son, and my younger funny brother

Vinh, for always being there when I needed them and supporting me through all my

years of school. I am especially grateful to my parents for everything they taught me

and for all the sacrifices they made in my upbringing.

vi



Contents

Abstract i

Abstract in Japanese iii

Acknowledgments v

1 Introduction 1

1.1 What are similarity measures? . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Models of similarity measures . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Common concepts . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.2 Metrics as similarity measures . . . . . . . . . . . . . . . . . . . 3

1.3 Roles of similarity measures . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.1 Searching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.2 Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.3 Classification/Prediction . . . . . . . . . . . . . . . . . . . . . . 8

1.3.4 Identification, Categorization and Recognition . . . . . . . . . . 9

1.4 Similarity measures for complex data . . . . . . . . . . . . . . . . . . . 10

1.4.1 Categorical data . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4.2 Heterogeneous data . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4.3 Graph data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.5 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.6 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Similarity measures for categorical data 15

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.1 Categorical data . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.2 Similarity measures for categorical data . . . . . . . . . . . . . . 16

2.2 Binary-based similarity measures . . . . . . . . . . . . . . . . . . . . . 19

2.2.1 Frameworks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

vii



2.2.2 Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Association probability-based dissimilarity . . . . . . . . . . . . . . . . 25

2.3.1 Similarity measure . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3.2 Algorithm for computing similarities between data objects . . . 27

2.3.3 Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4 Evaluations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4.1 Real-life data sets . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4.2 The first experiment: Evaluation of variance . . . . . . . . . . . 31

2.4.3 The second experiment: Dependency analysis . . . . . . . . . . 31

2.4.4 The third experiment: Analyzing with NN . . . . . . . . . . . . 33

2.4.5 The last experiment: Analyzing time consumption . . . . . . . . 38

2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3 Similarity measures for heterogeneous data 40

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.1.1 Heterogeneous data . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.1.2 Similarity for heterogeneous data . . . . . . . . . . . . . . . . . 42

3.2 Gowda and Diday methods . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2.1 Similarity measure for a single attribute . . . . . . . . . . . . . 43

3.2.2 Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3 Minkowski metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3.1 Joint and Meet operators . . . . . . . . . . . . . . . . . . . . . 46

3.3.2 Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.4 Ordered probability-based similarity measure . . . . . . . . . . . . . . . 50

3.4.1 Ordered probability-based similarity measure . . . . . . . . . . . 50

3.4.2 Order relations for real data . . . . . . . . . . . . . . . . . . . . 51

3.4.3 Probability approximation . . . . . . . . . . . . . . . . . . . . . 52

3.4.4 Integration methods . . . . . . . . . . . . . . . . . . . . . . . . 52

3.4.5 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.4.6 Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.5 Applications to real data . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.5.1 Data set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.5.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.5.3 Clustering results . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.5.4 Remarks from experiment results . . . . . . . . . . . . . . . . . 59

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

viii



4 Similarity measures for graph data 63

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.1.1 Similarity measures for graph data . . . . . . . . . . . . . . . . 64

4.1.2 Basic notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2 The φ distance similarity measure . . . . . . . . . . . . . . . . . . . . . 66

4.3 Similarity Based on the Maximal Common Subgraph . . . . . . . . . . 68

4.4 The Edit Distance for Graphs . . . . . . . . . . . . . . . . . . . . . . . 70

4.5 Nonoverlap connected subgraph-based measure . . . . . . . . . . . . . . 73

4.5.1 Similarity measure . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.5.2 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.5.3 Approximation algorithm . . . . . . . . . . . . . . . . . . . . . 77

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5 Applications of graph similarity measures for 2D chemical structures 79

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.2 2D Chemical structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.3 Similarity measures for 2D chemical structures . . . . . . . . . . . . . . 83

5.4 Experiments with classification . . . . . . . . . . . . . . . . . . . . . . 84

5.4.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.4.2 Databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.4.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . 85

5.5 Experiments with clustering . . . . . . . . . . . . . . . . . . . . . . . . 86

5.5.1 Clustering methods and Database . . . . . . . . . . . . . . . . . 86

5.5.2 Clustering results for the whole database . . . . . . . . . . . . . 86

5.5.3 Analysis on clustering results of pathway oriented databases . . 89

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6 Conclusion 95

6.1 Summary and review . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.1.1 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.1.2 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.1.3 Reviews . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.2 Further study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.2.1 Categorical data . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.2.2 Heterogenous data . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.2.3 Graph data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

ix



List of Figures

2.1 The graphs of Tθ with a when m = 20 . . . . . . . . . . . . . . . . . . 22

2.2 The graphs of Sθ with a when m = 20 and M = 100 . . . . . . . . . . . 22

2.3 The graphs of Q0 with a when m = 20 and M = 100 . . . . . . . . . . 23

2.4 The graphs of ω,Q, S∗∗, and Michael’s similarity measure with a when

m = 20 and M = 100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5 Running time versus data sizes . . . . . . . . . . . . . . . . . . . . . . 36

2.6 Running time versus numbers of attribute values . . . . . . . . . . . . . 38

3.1 Illustration of the Cartesian joint in the Euclidean plane . . . . . . . . 47

3.2 Illustration of the Cartesian meet in the Euclidean plane . . . . . . . . 47

4.1 Molecular structure: Moxalactam Latamoxef . . . . . . . . . . . . . . . 64

4.2 Protein Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.3 An image and the extracted graph. . . . . . . . . . . . . . . . . . . . . 65

4.4 Simple edit distance between two graphs. The distance is calculated

with unit cost for all edit operations. . . . . . . . . . . . . . . . . . . . 72

5.1 (R)-AMAA, (R)-2-Amino-2-(3-hydroxy-5-methyl-4-isoxazolyl)acetic acid 80

5.2 the graph representation of (R)-AMAA, (R)-2-Amino-2-(3-hydroxy-5-

methyl-4-isoxazolyl)acetic acid . . . . . . . . . . . . . . . . . . . . . . . 81

5.3 Mol format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.4 Structures of three compounds of cluster 1 . . . . . . . . . . . . . . . . 88

5.5 The common structure of compounds of Cluster 1: C22O17N6P3S, CoA 89

5.6 The common structure of compounds of Cluster 2: rna . . . . . . . . . 90

5.7 The common structure of compounds of Cluster 3: C19, one . . . . . . 90

5.8 The common structure of compounds of Cluster 4: C9H12P2, dp-, ose . 91

5.9 The common structure of compounds of Cluster 5: C6O, Benz . . . . . 91

5.10 Example of compound/enzyme clusters in pathway oriented . . . . . . 94

6.1 K-Opt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

x



6.2 Algorithm for determining the maximum complete subgraph of graph G

(K-Opt) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.3 Connect procedure (K-Opt) . . . . . . . . . . . . . . . . . . . . . . . . 114

6.4 Try procedure (K-Opt) . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

xi



List of Tables

2.1 The data types and its possible operators . . . . . . . . . . . . . . . . . 17

2.2 Some well-known similarity measures for binary vectors . . . . . . . . . 18

2.3 Some well-known similarity measures for Categorical data . . . . . . . . 19

2.4 The correlation between attributes Color and Shape . . . . . . . . . . . 26

2.5 The conditional probability of Attribute Color with respect to Attribute

Shape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.6 binary-based dissimilarity scores . . . . . . . . . . . . . . . . . . . . . . 32

2.7 Association-based dissimilarity scores . . . . . . . . . . . . . . . . . . . 32

2.8 Database information and attribute independence . . . . . . . . . . . . 34

2.9 Experiment results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1 Personal information . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2 City information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3 A data set obtained from an user internet survey includes 10 data ob-

jects, comprising 3 different attributes e.g. age (continuous data), con-

necting speed (ordinal data) and time on internet (interval data) . . . . 55

3.4 Clustering strategies obtainable from the general recurrence relation of

Jambu (1978) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.5 Characteristics of three discovered clusters . . . . . . . . . . . . . . . . 61

4.1 Cost-based similarity coefficients . . . . . . . . . . . . . . . . . . . . . . 69

5.1 The accuracy of NN with our similarity measure and with Tanimoto

coefficient measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.2 Common formula, names, etc. of the five largest clusters . . . . . . . . 87

5.3 Compound clusters with their main enzyme requirements in related re-

actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.4 Possible operon-like structure from KEGG Pathway map00860 . . . . . 93

xii



Chapter 1

Introduction

This dissertation is a report on a study of similarity measures for complex data. This

study focused on similarity measures for categorical data, heterogenous data and graph

data.

First, definitions of similarity measures and models of similarity measures are pre-

sented. Next, we elucidate roles of similarity measures in real life and computer sci-

ences. In addition, challenges and motivations of similarity measures of complex data

(categorical, heterogenous and graph data) are addressed. Finally, my contributions

and outlines of this dissertation are summarized.

1.1 What are similarity measures?

Deriving from the Latin word “similis” meaning like or resembling, the word “similar”

is often used intuitively to compare or relate objects regarding certain common aspects.

These aspects are often unspecified or given based on a loose term. Descriptions of sim-

ilar and similarity are found in dictionaries. For example, from Cambridge Advanced

Learner’s Dictionary [1]:

Similar: looking or being almost, but not exactly, the same.

or in Oxford English Dictionary [2]:

Similar: of the same kind in appearance, character, quantity, without

being identical.

Another description of the term similar is given in American Heritage Dictionary of

the English Language [3]

Similar: related in appearance or nature; alike though not identical.
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These loose descriptions raise two interesting points. First, similarity among things,

people, concepts, etc. is based on equality of certain aspects or their abstraction.

Second, identical objects cannot be similar.

Here, something is related to another by being similar, that is similarity is explicitly

considered as a probably binary relation. In one hand, two non-identical objects are

similar if some unspecified condition on common aspects is fulfilled. On the other hand,

similarity between objects is considered as a measure of their likeness. For example,

a simple similarity measure is the number of features two objects have in common,

thus the greater this value is, the more similar the two objects are. Another example

is the similarity between two shapes that exists if a limited set of transformations,

e.g., dilation, rotation, expansion, reflection, etc. can be applied to transform one

object to the other. These transformations are referred to the similarity between two

shapes [4]. In these cases, not only the fact that objects are similar is of interest, but

also the quantifiable degree of similarity. Both points of view are useful, and similarity

measures are a common way to specify the conditions of a similarity relation.

In the following section, we provide mathematical foundations of popular similarity

measures like the distance in metric spaces.

1.2 Models of similarity measures

1.2.1 Common concepts

Let A1, . . . , Am be m attributes and D be a database, D ⊆ A1 × . . . × Am. Denote

x = (x1, . . . , xm) and y = (y1, . . . , ym) two objects of D where xi and yi are two values

of attribute Ai. A similarity measure is defined as follows:

Definition 1 A similarity measure is a nonnegative function sim : D × D 7→ R

expressing the similarity between two objects x and y ∈ D.

This definition clearly includes the dissimilarity or distance between two objects,

because an interpretation of the result of the function is not yet specified. Typical

interpretations of similarity measures are

Definition 2 (Similarity measure) A normalized similarity measure sim : D ×
D 7→ [0, 1] where sim(x,y) = 0 if the objects are least similar and sim(x,y) = 1

if the objects are most similar or identical.

Definition 3 (Distance or dissimilarity measure) A distance or dissimilarity mea-

sure dist : D ×D 7→ [0,∞] or dist : D ×D 7→ [0, maxDistance] where dist(x,y) = 0
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if the objects are most similar and dist(x,y) = maxDistance if the objects are most

dissimilar.

The two concepts of similarity measures and dissimilarity measure are antithetical

and can be easily transformed. For example,

sim(x,y) = 1 − dis(x,y)

maxDistance

or

sim(x,y) =
1

1 + dist(x,y)

when maximum distance is unknown.

Having defined similarity measures, similarity relations can be easily determined.

Definition 4 (Similarity relation) A similarity relation on D with respect to a sim-

ilarity measure ”sim” or a dissimilarity measure ”dist” and a threshold θ is defined as

SimRel(x, y) ≡ sim(x, y) ≥ θ

or

SimRel(x, y) ≡ dist(x, y) ≤ θ

Order relations on data object pairs can be defined from similarity measures as:

Definition 5 (Order relation) The induction order relation of a similarity measure

s, denoted �s, is defined in the following way:

(x,y) �s (x′,y′) ≡ s(x,y) ≤ s(x′,y′)

Definition 6 (Equivalent order relation) Two similarity measures s1 and s2 are

order equivalent if �s1
=�s2

.

1.2.2 Metrics as similarity measures

The most common usage of similarity measures refers to distances in metric space [5]

defined as follows

Definition 7 (Metric space) A metric space is a set S with a global distance function

(the metric g) which for every two points x, y ∈ S, gives the distance between them as

a nonnegative real number g(x, y) ∈ R+. A metric space must also satisfy

1. ∀x, y ∈ S : g(x, y) = 0 ⇔ x = y(Constancy of Self-similarity)
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2. ∀x, y ∈ S : g(x, y) = g(y, x) (Symmetry)

3. ∀x, y, z ∈ S : g(x, z) ≤ g(x, y) + g(y, x)(Triangular Inequality)

Definition 8 (Similarity Metric) A similarity metric is a similarity measure that

satisfies all axioms for a metric.

A typical example for a metric space is the n-dimensional Euclidean space Rn

consisting of all points (x1, . . . , xn) ∈ Rn, and the Euclidean metric or distance. As the

points in the Euclidean space are represented by n-dimensional vectors, the Euclidean

space is also referred to as the vector space or the n-dimensional space. A generalized

form of metrics for the Euclidean Space is the Minkowski distance. The Manhattan

or City-block distance like the Euclidean Distance is a specialization of the Minkowski

distance. There are other distance measures for Euclidean Spaces, some of them satisfy

the condition for metrics, e.g., the Chebyshev distance. These metrics for any two

points (x1, . . . , xn) and (y1, . . . , yn) are defined as the following functions

• Minkowski distance

distp(x, y) =

[

n
∑

i=1

(|xi − yi|)p

]1/p

describes a general class of distance measures of various orders p ∈ N+, also

called Lp distance.

• Euclidean distance

dist2(x, y) =

√

√

√

√

n
∑

i=1

(xi − yi)2

is Minkowski distance with p = 2 or L2

• Manhattan distance

dist1(x, y) =

n
∑

i=1

|xi − yi|

is Minkowski distance with p = 1 or L1

• Chebyshev distance

dist∞(x, y) =
n

max
i=1

{|xi − yi|}

is maximum distance in any dimension, and the upper bound for Minkowski

distances of growing order p.
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In computer science, the research on similarity for continuous data is mostly based

on Minkowski space, especially, Euclidean spaces. Such spaces of a fixed dimension-

ality n can be indexed efficiently using well-known techniques like R-trees and deriv-

atives [6, 7], Grid Files [8], z-ordering [9], etc., based on the neighborhood preserving

nature of these structures. However, the usability of these approaches is limited by

the number of dimensions n. This effect is known as the Curse of dimensionality.

For instance, mapping objects to a Euclidean space is addressed for complex data

objects such as multimedia data through terms of Feature extraction [10, 11], where

certainly measurable aspects of objects are used to derive the vector representation

direct from one object. A concurrent approach is based on the previously mentioned

Multidimensional scaling, which itself is computationally expensive and not suitable

for large datasets. Therefore, Faloutsos et al. in [12] described FastMap, also deriving

an Euclidean representation of objects for which a distance function or matrix is given,

but applying some reasonable simplifications. In [13], Jin et al. used this approach for

approximate string matching.

There are several advantages of similarity metrics resulting from the metric axioms,

especially when the metrics are used for data processing. Considering the definition

of similarity relations described before, the constancy of self-similarity and the sym-

metry direct translate to a reflexive and symmetric similarity relation. Current data

processing is often based on equivalence relations, which are reflexive, symmetric, and

transitive. All the optimizations resulting from the former two properties can be ap-

plied, if a similarity operation is based on a similarity metric.

1.3 Roles of similarity measures

The importance of similarity in our daily life is often underestimated, but it is clearly

pointed out in cognitive sciences, comprising psychological and philosophical aspects.

The main inspiration for similarity in computer science is researches in psychology.

Moreover, there are parallels of the way information which has to be processed based

on similarity by computers and humans.

To achieve the capabilities humans have in processing information from the real

world and to bridge communication gaps between men and computer, similarity will

have to play a key role. The most important application of similarity is taking place

in the human brain every millisecond when incoming sensual information is processed.

In 1890 William James stated the following [14]:

This sense of sameness is the very keel and backbone of our thinking
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As Robert Goldstone pointed out in [15] intellectual and cognitive processes have to

be based on similarity, because we can only store and perceive varying or incomplete

representations of aspects of the world. Of course humans are able to recognize a

person they have met before, but for every new meeting this other person and the new

perception of her or him have changed more or less. So the human brain has to be able

to map the perceived to the stored representation [16]. Besides the identification, where

two representations refer to the same object in the real-world, similarity is also applied

in other intellectual processes like association, classification, generalization, etc., where

representations refer to an abstract relationship or concept based on context-specific

commonalities.

In computer science, distance function design remains at the core of many im-

portant data mining applications. Many applications such as clustering, classification

and nearest neighbor searching use distance functions as a key subroutine in their

implementation. Clearly, the quality of the resulting distance function significantly

affects the success of the corresponding application in finding results. For many data

mining applications, the choice of the distance function is not predefined, but is heuris-

tically chosen. The following subsection shows how important similarity measures in

searching, clustering, classification/prediction, and identification, categorization and

recognition.

1.3.1 Searching

A basic task in similarity search is to find all objects which are within a certain similar-

ity distance from a query object. Examples can be found in DBSCAN [17], similarity

searching in time serial or sequence data data [18, 19, 20, 21, 22], searching in image

data [23, 24], nearest neighbor searching [25], disk location [26, 27], tree and graph [28],

bioinformatics [29] and similarity search in high dimensions [30].

Definition 9 (similarity range query) For a query object q ∈ O, and a query range

ǫ ∈ R+, the result of a similarity range query is defined as

simǫ(q) = {o ∈ DB|dsim(q, o) ≤ ǫ}

According to Definition 9, distance dsim is the main factor to assign objects to query

result simǫ(q). Obviously, different measures lead to different query results.

Another important task in similarity search applications is to find the database

object which is most similar to a query object. An example for this query type is to

find the most similar protein with known function in a database, given a query protein
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with unknown function. This query is called nearest-neighbor query and can be defined

informally as the task to find the database object with the smallest similarity distance

to the query object. The k-nearest-neighbor query is an extension of the nearest-

neighbor query in case a result set with more than one element is desired. An example

of such a case is the functional classification of proteins. To improve classification

accuracy for nearest-neighbor classification, a protein is not assigned to the functional

class of the most similar protein in the database but to the class of the majority of the

k most similar proteins.

An important similarity query type is the similarity ranking query which is needed

in cases where the exact number of desired results is not known in advance. The idea

of this query type is to retrieve iteratively the next closest objects of a query object

from the database, starting at the nearest neighbor. This query appears, for example

when the user interactively explores the database and retrieves the nearest neighbors

of a query object one after another.

In short, searching is strongly based on used similarity measures and the more

relevant similarity measures result in the more relevant searching results.

1.3.2 Clustering

Data modeling puts clustering in a historical perspective rooted in mathematics, statis-

tics, and numerical analysis. From a machine learning perspective clusters correspond

to hidden pattern. The search for clusters is unsupervised learning, and the resulting

system represents a data concept. Therefore, clustering is unsupervised learning of a

hidden data concept. Data mining deals with large databases that impose on cluster-

ing analysis additional severe computational requirements. These challenges led to the

emergence of powerful broadly applicable data mining clustering methods (see surveys

in [31, 32]).

There are many definition of clustering and here is the definition of Han and Kam-

ber [33].

Definition 10 (Clustering) The processing of grouping a set of physical or abstract

objects into classes of similar objects is called clustering. A cluster is a collection of

data objects that are similar to one another within the same cluster and are dissimilar

to the objects in other clusters.

It can be induced from Definition 10 that the main objective of clustering is to group

similar objects into clusters. Normally, the similarity relations are usually determined

based on similarity measures (see Definition 4).
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In practice, there are two main approaches for clustering. Methods of the first

approach are to optimize target functions that are based on similarity between ob-

jects. For example, partitioning methods such as K-means [34] and K-medoid [35]

minimize the target function defined as total distances from objects to cluster rep-

resentatives. Methods of the second approach use similarity measures as a guide for

clustering processes. For example, hierarchical methods of the family introduced by

Jambu [36] that includes most hierarchical methods using similarity between objects

to estimate similarity between subclusters. Based on that, the closest subclusters are

consecutively merged to build a hierarchical clustering tree. For example, similarity

between two subclusters are considered as similarity between the closest object pair in

the single linkage clustering [37]. In the average linkage clustering [38, 39], similarity

between subgraphs are defined as the average similarity of object pairs. In the com-

plete linkage clustering [40], similarity between subgraphs are estimated as the total

similarity of object pairs.

In [41], Fu et al. examined effectiveness of different similarity measures on clustering

results. The found results show that different similarity measures outperform one

another in different cluster quality. In short, clustering results of a database mainly

base on similarity measures used to cluster the database.

1.3.3 Classification/Prediction

It is natural and reasonable to predict properties/classes of unknown objects by con-

sidering the properties/classes of their closest known objects. For example, to predict

biological activities of unknown molecules, we should consider the biological activities

of the closest molecules to the unknown molecules [42, 43].

Instance-based classification/prediction methods have emerged as a promising ap-

proach to machine learning. Research reports show excellent results on many real-world

induction tasks [44, 45, 46, 47, 48, 49]. The basic approach involves storing known cases

and their associated properties/classes in the memory. Then when given unknown in-

stances, finding the known cases that are nearest to the unknown instances and using

them to predict properties/class of the unknown instances. Many applications of this

classification/prediction methods have been introduced, i.e. a weighted nearest neigh-

bor algorithm for learning with symbolic features [50], an adaptive nearest neighbor

search for parts acquisition ePortal [51], discretization in lazy learning algorithms [52],

efficient search for approximate nearest neighbor in high dimensional spaces [53], com-

puting optimal attribute weight settings for nearest neighbor algorithms [54] and locally

weighted learning [55].
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Obviously, the results of classification/prediction methods rely on how we choose

the closest known objects of an unknown object. The choice is often based on sim-

ilarity measures to decide which the closest ones of unknown objects are. In short,

similarity measures affect classification/prediction methods through choosing the clos-

est objects of unknown objects. This makes similarity measures become key factors in

the classification/prediction methods.

1.3.4 Identification, Categorization and Recognition

Identification

One of the classic models for predicting identification performance is the similarity

choice model (SCM) proposed by Shepard [56] and Luce [57], whose formal properties

have been further investigated by researchers such as Smith [58, 59], Townsend [60],

Townsend and Landon [61] and Nosofsky [62, 63]. According to the model, the proba-

bility that object x is identified as object y is given by

P (Ry|Sx) =
bysim(x,y)
∑

bysim(x,y)

where by(0 ≤ by ≤ 1) is often interpreted as the bias for making response y.

Categorization

A classical issue in cognitive psychology is whether the principals of object generaliza-

tion and similarity that underlie identification performance also underlie categorization

performance. Indeed, perhaps the most straightforward view of categorization, formal-

ized in what are known today as exemplar models [64, 65, 66, 67], is that classification

of an object is determined by how similar it is to the individual members of alternative

categories.

The evidence favoring Category J given presentation of object i is found by sum-

ming the (weighted) similarity of object x to all exemplars of Category J , and then

multiplying by the response bias for Category J . This evidence is then divided by the

sum of evidences for all categories to predict the conditional probability with which

object x is classified in Category J :

P (RJ |Sx) =
bJ
∑

y∈Cj
My sim(x,y)

∑

K bK
∑

y′∈CK
My′ sim(x,y′)

where bJ and My denote the Category J response bias and the strength with which

object y is stored in the memory.
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Recognition

The models incorporating deterministic multidimensional scaling has also been used to

model old-new recognition memory performance [68, 69, 70]. Following investigations of

Gillund and Shiffrin [71], and Hintzman [65], the central assumption is that recognition

judgments are based on the overall summed similarity of an item to all exemplars stored

in memory. This summed similarity gives a measure of overall ”familiarity,” with higher

familiarity values lead to higher recognition probabilities. Specifically, the familiarity

for object x, Fx, is given by

Fx =
∑

K

∑

y∈CK

Mksim(x,y)

Clearly, similarity measure, sim(x,y), play an important role in the identification,

categorization and recognition tasks. They are the main factors to decide the identi-

fication probability of object x and object y, the conditional probability with which

object x is classified in Category J , and the familiarity for object x.

1.4 Similarity measures for complex data

Similarity measures/distances for standard data have long been studied (i.e. Euclidean

distance, Manhattan distance, Lm distance, Jaccard similarity measure [72], Dice sim-

ilarity measure [73] (see Table 2.3)). However, the similarity measure problem is still

opened for complex data such as categorical data, heterogenous data and graph data.

Due to their special properties and characteristics, i.e. poor structures, heterogeneity

or complex structure, similarity measures for these data have particular requirements

that lead to difficulty in estimating similarity of objects described by these data. The

following subsections show the difficulties which are also my motivation to choose this

research.

1.4.1 Categorical data

Categorical data is one of the most popular data in real-life. We encounter and work

with this data frequently in daily life (i.e. colors of a car (Red, Blue, Green), shapes of

an object (circle, triangle, square)). Categorical data is comprehensible to humans as

the meaning of categorical values is clearly defined to humans. For example, it is clear

to humans that what Red, Blue or Green is, or what circle, triangle or square is.

Due to the poor structure of categorical data, estimating similarity between cate-

gorical values becomes difficult, i.e. how to estimate the similarity between Green and
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Red or that between Green and Blue. In fact, direct relations between categorical val-

ues are only identical or nonidentical. Thus, the similarity (dissimilarity) between two

categorical values is considered as 1 (0) when they are identical and 0 (1) otherwise.

However, similarities/dissimilarities of categorical value pairs are often different. For

example, it is obvious that the similarity between Green and Blue is different from that

between Green and Red. Thus, the problem of estimating properly similarity between

categorical values and objects described by categorical attributes is a challenging task.

1.4.2 Heterogeneous data

With the explosion in volume of databases, the complexity of data objects are now

growing up. An object in today databases is often described by many aspects/attributes.

For example, the information of one person may be names, age, sex, blood type, photo,

educations, employed history, etc. Obviously, this information belongs to different data

types, i.e. names (text), age (continuous), and sex (categorical). The data is named

heterogenous data.

The difference between similarity measures for homogeneous data and that for het-

erogeneous data is that each similarity measure for homogeneous data is required to

be suitable for only one data type while each similarity measure for heterogenous data

is required to be proper for all data types. Obviously, similarity measures for homoge-

neous data are obviously inapplicable to heterogeneous data as each of them is designed

to be suitable for a particular data type. In addition, since measures for homogeneous

data have different meaning, they cannot be properly integrated into into similarity

measures for heterogeneous data. For example, similarity (dissimilarity) measures for

continuous data is suitable for continuous properties, e.g. Euclidean distance, and sim-

ilarity (dissimilarity) measures for categorical data is suitable for discrete properties of

categorical data, e.g. Jaccard, Dice and Rao. However, similarity measures for data

objects described by both categorical and continuous data required to be suitable for

both continuous and discrete properties. Thus the measures/distances for continuous

data or categorical data are inapplicable to databases described by both continuous

and categorical data. Besides, it is meaningless when we add the measures/distances

into a new similarity measure for the databases described by both continuous and cat-

egorical data. The requirement of being suitable for all data types makes the building

or designing similarity measures for heterogeneous data become a challenging task.
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1.4.3 Graph data

In recent years, there has been an increased interest in developing data mining algo-

rithms that operate on graphs. Such graphs arise naturally in many different applica-

tion domains including network intrusion, semantic web, behavioral modeling etc.

Due to the complexity of graph data, similarity measures or distances for standard

data (i.e. continuous, categorical) are inapplicable to graph data. Besides, the strat-

egy of similarity measures for standard data that are based on similarities between

attribute value pairs cannot be applied to graph data as there is no information about

corresponding parts between two graphs. For example, for a node u of one graph,

there is no information to tell exactly which nodes of other graphs are its correspond-

ing nodes. In case we want to apply the similarity measure strategy for standard data

to graph data, the complexity of graph structures causes difficulty in determining the

corresponding/common parts of two graphs. In short, the strategy to estimate the

similarity for graph data is different from that for standard data. This makes it a

challenging task to design similarity measures of graph data.

1.5 Contribution

Being motivated by challenges of similarity measures for complex data, we conduct

this dissertation on similarity measures for complex data and obtain some results. The

major contributions presented in this dissertation are summarized as follows:

• Reviewing resemblance similarity measures of binary vectors when applying to

categorical data. Introducing important properties and characteristics of the

similarity measures when applying to categorical data.

• Development of a new dissimilarity measure for categorical data that bases on

association relations among attributes [74, 75]. The main idea is to estimate the

dissimilarity between two categorical values based on the dissimilarity between

their association relations of other categorical values. This measure enriches the

dissimilarity between two categorical values in comparing to other resemblance

similarity methods where the similarity/dissimilarity between two categorical val-

ues is poorly considered as 0 or 1.

• Development of a similarity measure framework for heterogenous data [76]. The

proposed framework uses order relations and probability distributions of value

pairs to estimate the similarity between two values. Similarity scores of attribute
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value pairs are then integrated by statistical methods into similarity between

objects. This framework overcomes the main difficulty of similarity measures

for heterogeneous data that algebra-based approaches encounter: to determine

proper operators/factors for all data types.

• Development of a similarity measure for graph data that bases on nonoverlap

connected subgraphs [77]. The main idea is to take the nodes, edges and con-

nectivity of subgraphs into account when estimating the similarity between two

graphs. It makes this similarity measure more suitable than other measures when

applying to chemical structure data.

• Discovering surprised results about the similarity between clusters of chemical

structures and clusters of enzymes in pathways [77].

1.6 Outline

The rest of this dissertation is organized as follows:

• In Chapter 2, we show investigations of resemblance similarity measures for bi-

nary vectors with their properties when applying to categorical data. Then we

introduce an association-based similarity measure, its characteristics and an al-

gorithm for the use of this measure. At the end of this chapter, we present

experiments with classifications for many datasets that prove the merit of these

similarity measures.

• In Chapter 3, we mention similarity measures for heterogenous data including

Gowda and Diday methods, Minkowski generated metric methods. we show ad-

vantage and disadvantage of the similarity measures in discussion parts. After

that we introduce the order probability-based method and its particular proper-

ties when applied to real data. Lastly, we present experiments with clustering

that were carried out to show the merit of the order probability-based similarity

measure.

• In Chapter 4, we report on existing similarity measures for graph data including

the φ distance similarity measure, the measure of Papadopoulos and Manolopou-

los, similarity based on the maximal common subgraph, and the edit distance

for graphs. We shortly summarize advantage and disadvantage of each similar-

ity measure in the discussion parts. Then we introduce nonoverlap connected
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subgraph-based measure and its characteristics and properties. Besides, we also

present a heuristic algorithm for this measures.

• In Chapter 5, we present experiments when applying similarity measures for

graph data to chemical structure data. we shortly report on similarity measures

for 2D chemical structures. Then we present experiments that were carried out on

classification and clustering methods to see the merit of the similarity measures.

Surprised experiment results of these experiments found are presented in this

chapter.

• In Chapter 6, the last chapter, the contributions and achievements of this disser-

tation are summarized. Dissertation conclusions, suggestions, and opportunities

for further search are also presented.

This chapter is finished; prepare for the next chapter.
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Chapter 2

Similarity measures for categorical

data

Categorical data is one of the most popular data. Its advantage is comprehensibility

to human. However, its structure poorness leads to difficulty in measuring the simi-

larity between categorical objects. In this chapter, we investigate common similarity

measures for categorical data including binary vector-based similarity measures and

introduce an association-based similarity. Experiments on real-life data were carried

to show the merit and the properties of these similarity measures.

2.1 Introduction

2.1.1 Categorical data

A categorical variable is one for which the measurement scale consists of a set of

categories. For instance, political philosophy may be measured as liberal, moderate,

or conservative; smoking status might be measured using categories never smoked,

former smoker, or current smoker; and recovery from an operation might be rated as

completely recovered, nearly recovered, only somewhat recovered or not at all recovered.

Categorical data occurs frequently in the behavioral sciences, public health, ecology,

education, and marketing. It even occurs in highly quantitative fields such as engineer-

ing sciences or industrial quality control. Such applications often involve subjective

evaluation of some characteristics - how soft the touch of a certain fabric is, how good

a particular food product tastes, or how easy a worker finds a certain task to be.

Categorical variables whose levels do not have a natural ordering are called nominal.

Examples of nominal variables are religious affiliation (categories Catholic, Jewish,
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Protestant, others), means of transportation (automobile, bus, subway, bicycle, others),

choice of residence (house, apartment, condominium, others), race, gender, and mar-

ital status.

Many categorical variables do have ordered levels and are called ordinal. Examples

of ordinal variables are size of automobile (subcompact, compact, mid − size, large),

social class (upper, middle, lower), attitude toward legalization of abortion (strongly

disapprove, disapprove, approve, strongly approve), appraisal of company’s inventory

level (too low, about right, too high), and diagnosis of whether a patient has multiple

sclerosis (certain, probable, unlikely, definitely not). Ordinal variables clearly order

the categories, but absolute distances between categories are unknown. While we

can conclude that a person categorized as moderate is more liberal than a person

categorized as conservative, we cannot give a numerical value for how much more

liberal that person is.

Variables are classified as continuous or discrete, according to the number of values

they can attain. Actual measurement of all variables occurs in a discrete manner, due

to limitations of measuring instruments.

The position of ordinal variables on the quantitative/qualitative classification is

fuzzy. They are often treated as qualitative, being analyzed using methods for nom-

inal variables. But in many respects, ordinal variables more closely resemble interval

variables than nominal variables. They possess important quantitative features: each

level has a greater or smaller magnitude of the characteristic than another level; and,

though not often possibly measured, there is usually an underlying continuous variable

present. The racial prejudice classification (none, low, high) is a crude measurement of

an inherently continuous characteristic.

2.1.2 Similarity measures for categorical data

Measuring (dis)similarity of categorical data is a challenging problem because the cate-

gorical data does not have any structures. There are only two operators for categorical

data: identical and nonidentical operators (see Table 2.1). Thus, there is no way to

estimate the difference between categorical values like continuous values. We can only

see if they are identical or not identical. For example, we cannot distinguish the dif-

ference between Green and Blue and that between Green and Red. However, Green

is somehow more similar to Blue than to Red.

The most common similarity measures for categorical data are binary vector-based

methods [78, 79, 80, 81, 82, 83, 72, 84, 85]. These methods transform each data object

into a binary vector where each bit indicates the presence or absence of a possible
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Table 2.1: The data types and its possible operators

Attribute Numerical Symbolic

No structure

=,6=
Places, color Nominal (cat-

egorical)

Ordinal

structure,

≥,=, 6=

Age, Temper-

ature, Taste

Rank, Resem-

blance

Ordinal

Ring

structure

+,−,≥,=, 6=

Income,

length, height

Measurable

attribute value. Then the similarity between two objects is estimated by the similarity

between two corresponding binary vectors. These methods are simple, but they have

two main drawbacks: (1) the transformation of data objects into binary vectors where

the similarity between two categorical values are made into 0 or 1, may leave out

many subtleties of the data; (2) they do not take into account the correlations between

attributes that typically exist in real-life data and are potentially concerned with the

difference among attribute values.

In addition to the binary vector-based methods, similarity measure methods for

mixed numerical data [86, 87, 88, 89, 90, 91, 92] can also be applied to categorical data.

In [91], Goodall proposed a statistical approach, in which uncommon attribute values

make greater contributions to the overall similarity between two objects than common

attribute values. The overall similarity is estimated by combining similarities between

values pairs by using Lancasters method [93]. Setting aside the statistical approach,

algebraic methods have been also proposed [86, 87, 88, 89, 90, 92]. In [86, 87, 88], the

similarity between two values of an attribute is based on three factors: (1) the relative

position of two values, position; (2) the relative sizes of two values without referring to

common parts, span; (3) the common parts between two values, content. Similarly, the

sizes of the union (the joint operation ⊗) and the intersection (the meet operation ⊕) of

two attribute values are also taken into account [89, 90, 92]. Subsequently, similarities

of all attributes are integrated into the similarity between objects by using Minkowski

distance.

In principle, the methods mentioned above can be considered direct methods be-

cause the dissimilarity between two attribute values is synthesized directly from the

values. In [74], Le and Ho presented an indirect method to measure the dissimilarity

for categorical data. It is called indirect in the sense that the dissimilarity between
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Table 2.2: Some well-known similarity measures for binary vectors

Measure Definition Range

Russel and Rao a
M

[1,0]

Kendall, Sokal-Michener a+d
M

[0,1] S

Rogers and Tanimoto a+d
M+b+c

[1,0] S

Hamman a+d−b−c
M

[-1,1] T

Sokal and Sneath, un−1
3 S b+c

a+d
[0,∞] S

Jaccard a
a+b+c

[1,0] T

Kulczynski, T−1 1
2

(

a
a+b

+ a
a+c

)

[1,0]

Dice, Czekanowski a
a+ 1

2
(b+c)

[1,0] T

Sokal and Sneath, un4
a

a+2(b+c)
[1,0] T

Q0
bc
ad

[0,∞]

Yule, ω
√

ad−
√

bc√
ad+

√
bc

[-1, 1]

Yule, Q ad−bc
ad+bc

[-1, 1]

-bc- 4bc
M2 [0,1]

Driver& Kroeber, Ochiai a√
(a+b)(a+c)

[0,1]

Sokan& Sneath, un5
ad√

(a+b)(a+c)(b+d)(d+c)
[0,1]

Pearson, φ ad−bc√
(a+b)(a+c)(b+d)(d+c)

[-1,1]

Baroni-Urbani, Buser, S∗∗ a+
√

ad
a+b+c+

√
ad

[0,1]

Braun-Blanquet a
max{a+b,a+c} [0,1]

Simpson a
min{a+b,a+c

} [0,1]

Michael 4(ad−bc)
(a+d)2+(b+c)2

[-1,1]

two values of an attribute is indirectly estimated by using relations between other at-

tributes given these two values. This method is composed of two iterative steps. First,

the dissimilarity between two values of an attribute is estimated as the sum of the

dissimilarities between conditional probability distributions of other attributes given

these two values. Then, the dissimilarity between two data objects is determined as

the sum of dissimilarities of their attribute value pairs.
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Table 2.3: Some well-known similarity measures for Categorical data

Measure Definition

Russel and Rao a
M

Kendall, Sokal-Michener M−2m+2a
M

Rogers and Tanimoto M−2m+2a
M+2m−2a

Hamman M−4m+4a
M

Sokal and Sneath, un−1
3

2m−2a
M−2m+2a

Jaccard a
2m−a

Kulczynski, T−1; Dice , Czekanowski;

Driver& Kroeber; Ochiai; Braun-

Blanquet; Simpson

a
m

Sokal and Sneath, un4
a

4m−3a

Q0
(m−a)2

a(M−2m+a)

Yule, ω

√
a(M−2m+a)−(m−a)√
a(M−2m+a)+(m−a)

Yule, Q a(M−2m+a)−(m−a)2

a(M−2m+a)+(m−a)2

-bc- 4(m−a)
M2

Sokan& Sneath, un5
a(M−2m+a)

m(M−m)

Pearson, φ a(M−2m+a)−(m−a)2

m(M−m)

Baroni-Urbani, Buser, S∗∗ a+
√

a(M−2m+a)

2m−a+
√

a(M−2m+a)

Michael 4(a(M−2m+a)−(m−a)2 )
(M−2m+2a)2+(m−a)2

2.2 Binary-based similarity measures

2.2.1 Frameworks

A common way to measure dissimilarities between categorical data objects is to trans-

form them into binary vectors. Dissimilarities between data objects are then considered

as dissimilarities between corresponding binary vectors.

Let VA be the set of all possible attribute values:

VA =

m
⋃

i=1

Ui

where Ui is the domain of attribute Ai. Let M be the size of VA, M = |VA|. Clearly,

M =
∑m

i=1 |Ui|
Assuming that the values of VA are ordered from 1 to M . Each data objects x is

now presented by a binary vector with the length M where xi is 1 if x contains the ith

value of VA and 0 otherwise.
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(Dis)similarity measures between binary vectors have been studied for a long time,

[85, 79, 84] (see Table 2.2). The principal ideas of these measures are based on the

numbers of common and uncommon values. In other words, the similarity between two

values are considered 1 if they are identical and 0 otherwise.

Let X be the complementary of X and and XY =
∑M

i=1 xiyi. Denote

• a = XY - the number of values which X and Y share.

• b = XY - the number of values which X has and Y lacks.

• c = XY - the number of values which X lacks and Y has.

• d = XY - the number of values both which X and Y lack.

Obviously, M = a+ b+ c+ d.

In [81], Gower and Legendre introduced two families of similarities:

Tθ =
a

a + θ(b+ c)

and

Sθ =
a + d

a + d+ θ(b+ c)

where θ > 0 to avoid negative values. Many similarity measures belong to these two

families (see Table 2.2).

2.2.2 Characteristics

Obviously, a + b = m, a + c = m and a + b + c + d = M . Thus, b = c = m − a

and d = M − 2m+ a. The similarity measures for binary vectors in Table 2.2 can be

rewritten for categorical data as in Table 2.3.

Theorem 1 Tθ is an increasing function with a.

Proof:

Clearly, a+ b = m, a+ c = m. Therefore, b = c = m− a. So, Tθ is rewritten as

Tθ =
a

a+ 2θ(m− a)

We have

T ′
θ(a) =

a + 2θ(m− a) − a(1 − 2θ)

[a+ 2θ(m− a)]2

= 2θm > 0.
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Thus, Tθ is an increasing function with a. �

Tθ starts at the value 0 when a = 0 and increases to 1 when a = m. When θ is

chosen too small (e.g. 0.01) Tθ increases sharply at first and then slows down. We have

T.5 = a
m

, a linear function with a. For θ < .5, the graph lines lie above the linear line

of θ = .5. For θ > .5 the graph lines lie under the linear line of θ = .5. Figure 2.1

presents the graphs of Tθ when m = 20. We can see that the increasing of Tθ depends

strongly on θ.

Theorem 2 Sθ is an increasing function with a.

Proof:

Clearly, a + b = m, a + c = m, and a + b + c + d = M . Thus, b = c = m − a, and

d = M + a− 2m. Sθ is rewritten as

Tθ =
2a +M − 2m

2a+M − 2m+ 2θ(m− a)

We have

T ′
θ(a) =

2(2a+M − 2m+ 2θ(m− a)) − (2a+M − 2m)(2 − 2θ)

[2a+M − 2m+ 2θ(m− a)]2

=
2θM

[2a +M − 2m+ 2θ(m− a)]2
> 0

Consequently, Sθ is an increasing function with a. �

Sθ starts at the value M−2m
M−2m+2θm

when a = 0 and steadily increases to 1 when

a = m. Figure 2.2 presents the graphs of Sθ when m = 20 and M = 100.

Theorem 3 Similarity measure Q0 is a decreasing function with a when 2m ≤M .

Proof:

We have

Q0 =
(m− a)2

a(M − 2m+ a)

⇒ Q′
0(a) =

(a−m)(aM −m(2m−M)

(a2(a− 2m+M)2

So, Q′
0(a) ≤ 0 when m(2m−M)

M
≤ a ≤ m. Thus, Q0 is a decreasing function with a on

[0..m] when 2m ≤M . �

Figure 2.3 shows the graph of Q0 when m = 20 and M = 100.

21



0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 2 4 6 8 10 12 14 16 18 20

a

T

01.

25.

05.

75.

.001

25.1

05.1

Figure 2.1: The graphs of Tθ with a when m = 20
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Theorem 4 Similarity measure Yule(1912), ω, is an increasing function with a when

2m < M

Proof:

We have

ω(a) =

√

a(M − 2m+ a) − (m− a)
√

a(M − 2m+ a) + (m− a)

Therefore,

ω′(a) =
aM −m(2m−M)

(
√

a(a− 2m+M) − a+m)2
√

a(a− 2m+ n)

Since 2m ≤M , S ′(a) ≥ 0, ω(a) is a decreasing function with a.

Theorem 5 Similarity measure Yule(1927), Q, is an increasing function with a when

2m ≤M

Proof:

We have

Q(a) =
a(M − 2m+ a) − (m− a)2

a(M − 2m+ a) + (m− a)2

⇒ Q′(a) = −2(a2n− 2am2 +m2(2m− n))

(2a2 + a(n− 4m) +m2)2

Q′(a) > 0 when m∗(2m−M)
M

≤ a ≤ m. It is obviously true when 2m ≤ M . Thus, Q(a) is

an increasing function with a when 2m < M . �

Theorem 6 The similarity measure of Baroni-Urbani, Buser (1976), S∗∗ is an in-

creasing function with a when 2m ≤ M .
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Proof

We have

S∗∗(a) =
a +

√

a(M − 2m+ a)

2m− a +
√

a(M − 2m+ a)

⇒ S∗∗′(a) =
2m
√

a(a− 2m+M) + aM −m(2m−M)

(
√

a(a− 2m+ n) − a+ 2m)2
√

a(a− 2m+ n)

Since 2m ≤M , S∗∗′(a) > 0. Thus, S∗∗(a) is an increasing function with a when 2m ≤
M . �

Theorem 7 The similarity measure of Michael is an increasing function with a when

2m ≤M .

Proof We have

S =
4(a(M − 2m+ a) − (m− a)2)

a(M − 2m+ a) + (m− a)2

⇒ S ′(a) = −8(a2M − 2am2 +m2(2m−M))

(2a2 + a(M − 4m) +m2)2

So, S ′(a) ≥ 0 when m(2m−M)
M

≤ a ≤ m. S(a) is an increasing function on [0..a] when

2m ≤M . �
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Figure 2.4 presents graphs of ω,Q, S∗∗, and Michael’s similarity measure with a

when m = 20 and M = 100.

Discussion

The advantages of binary-based similarity measures are their simplicity and compre-

hensibility. Each measure has a clear and simple strategy (i.e., the measure of Russel

and Rao is the ratio between values both vectors have and the length of vectors).

Different strategies and bias lead to different measures that are suitable for different

situations.

However, the measures have a limitation in the range of values (i.e., the only m

similarity level). That results in present ability of relations between objects of large

databases. For example, the relations between million objects (1 billion relations) can

only be categorized into 50 levels if each object is presented by 50 categorical attributes.

Besides, transferring categorical data into binary vectors may lose the relations between

attribute values that can be taken into account measuring similarity between objects.

2.3 Association probability-based dissimilarity

In [74], Le and Ho presented an indirect method to measure the dissimilarity for cate-

gorical data. It is called indirect in the sense that the dissimilarity between two values

of an attribute is indirectly estimated by using relations between other attributes under

the condition of giving these two values.

2.3.1 Similarity measure

Let p(Aj = vj|Ai = vi) be the conditional probability of Aj = vj given Ai = vi. More

generally, let cpd(Aj|Ai = vi) be the conditional probability distribution of attribute

Aj given that attribute Ai holds value vi.

The first, and perhaps the most important step, is to estimate the dissimilarity

between two values of an attribute.

To motivate the method, consider a data set D with n objects described by two

attributes: Color = {R,G,B} and Shape = {�,♦,△}. Assuming that n is large

enough that conditional probabilities p(Aj = vj|Ai = vi) and conditional probabil-

ity distributions cpd(Aj|Ai = vi) can be approximately estimated from data set D

as shown in Table 2.5. Now in considering the relation between the two attributes

Shape and Color, an important observation is that conditional probability distribution

25



Table 2.4: The correlation between attributes Color and Shape

� ♦ △
G 50 40 10

B 40 35 25

R 10 30 60

Table 2.5: The conditional probability of Attribute Color with respect to Attribute

Shape

� ♦ △
G .50 .40 .10

B .40 .35 .25

R .10 .30 .60

cpd(Shape|Color = Green) is closer to cpd(Shape|Color = Blue) than cpd(Shape|Color =

Red). It means that the association of attribute Shape with value Green is closer to

that with value Blue than that with value Red. On the other hand, the nature of

observable dissimilarities also indicates that the dissimilarity between Green and Blue

is somehow smaller than the dissimilarity between Green and Red. These observations

suggest that the dissimilarity between two values of attribute Color can be inferred

from the conditional probability distributions with respect to attribute Shape.

The dissimilarity between two values vi and v′i of attribute Ai given that the data

set D is composed of m different attributes is defined as following.

Definition 11 The dissimilarity between two values vi and v′i of attribute Ai, denoted

by φAi
(vi, v

′
i), is the sum of dissimilarities between conditional probability distributions

of other attributes given that attribute Ai holds values vi and v′i:

φAi
(vi, v

′
i) =

∑

j,j 6=i

ψ(cpd(Aj|Ai = vi), cpd(Aj|Ai = v′i)) (2.1)

where ψ(., .) is a dissimilarity function for two probability distributions.

Definition 11 means that the dissimilarity between two values vi and v′i of attribute

Ai is directly proportional to dissimilarities between their respective conditional prob-

ability distributions with respect to other attributes. Thus, the great (small) dissim-

ilarity between these conditional probability distributions leads to the great (small)

dissimilarity between vi and v′i. In other words, when two values leads to the similar

(dissimilar) distributions of other attributes, the dissimilarity between two values is

low (high).
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Up to now, several dissimilarity measures between probability distributions have

been proposed [94, 95, 96, 97]. In [74], they used the most popular one, the Kullback-

Leiber divergence method [96, 97] (KL)

KL(P, P ′) =
∑

x

(

p(x) lg
p(x)

p′(x)
+ p′(x) lg

p′(x)

p(x)

)

(2.2)

where lg is a logarithm having base 2.

To illustrate the method, the dissimilarities of value pairs (G,B), (B,R), and (R,G)

as given in Table 2.5 are computed as follows:

φColor(G,B) = .5 lg
.5

.4
+ .4 lg

.4

.5
+ .4 lg

.4

.35
+ .35 lg

.35

.4
+ .1 lg

.1

.25
+ .25 lg

.25

.1
= .24

φColor(B,R) = .4 lg
.4

.1
+ .1 lg

.1

.4
+ .35 lg

.35

.3
+ .3 lg

.3

.35
+ .25 lg

.25

.6
+ .6 lg

.6

.25
= .1.05

φColor(R,G) = .1 lg
.1

.5
+ .5 lg

.5

.1
+ .3 lg

.3

.4
+ .4 lg

.4

.3
+ .6 lg

.6

.1
+ .1 lg

.1

.6
= 2.26

The dissimilarity of (G,B) is much smaller than that of (G,R) as cpd(Shape|Color =

G) is closer to cpd(Shape|Color = B) than cpd(Shape|Color = R) (see Table 2.5).

Having defined the dissimilarity between values of an attribute, dissimilarities of

different attributes are combined to the dissimilarity between two data objects.

Definition 12 The dissimilarity between two data objects x and y, denoted by φ(x,y),

is the sum of dissimilarities of their attribute value pairs:

φ(x,y) =
m
∑

i=1

φAi
(xi, yi) (2.3)

Definition 12 means that the smaller the dissimilarities of attribute value pairs of

x and y are, the smaller the dissimilarity between them.

2.3.2 Algorithm for computing similarities between data ob-

jects

In [74], Le and Ho presented a three-step algorithm to measure the dissimilarities of

all pairs of data objects of a data set D (see Algorithm 1).

At the first step, all conditional probabilities p(Aj = vj |Ai = vi) are estimated from

data set D. Then the dissimilarities of the value pairs are computed based on their

conditional probabilities p(Aj = vj |Ai = vi). The dissimilarities of data object pairs

are determined using Equation 2.3 lastly.

Let us now turn our attention to this complexity of the algorithm, given that data

set D consists of n objects which are composed of m attributes. At the first step,
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Algorithm 1 Algorithm for computing similarities between data objects

1: Estimate all conditional probabilities p(Aj = vj |Ai = vi).

2: For any pair of values vi and v′i of attribute Ai, compute

φAi
(vi, v

′
i) =

∑

vj∈dom(Aj ),j 6=i

(

p(vj |vi) lg
p(vj |vi)

p(vj |v′i)
+ p(vj|v′i) lg

p(vj|v′i)
p(vj|vi)

)

3: For any data object pairs (x y), compute

φ(x,y) =
∑

i=1

φAi
(xi, yi)

estimating all conditional probabilities p(Aj = vj |Ai = vi) is done in O(nm2) time.

Then it takes O(m3
v) time to compute the dissimilarities of all pairs of attribute values

where mv is the number of attribute values. Finally, all dissimilarities between data

objects are determined in O(n2m) time. Overall, the complexity of the algorithm is

O(nm2) +O(m3
v) +O(n2m) = O(n2m) as m and mv are typically smaller than n.

2.3.3 Characteristics

Propostion 1 For any data object pair (x,y), it holds true that:

1. φ(x,y) ≥ 0

2. φ(x,y) = φ(y,x)

3. φ(x,x) = 0

Proof

1. φ(x,y) ≥ 0: Since KL dissimilarity between two probability distributions is

non-negative, the dissimilarity of two values xi and yi is non-negative

φAi
(xi, yi) =

m
∑

j=1,i6=j

KL(cpd(Aj |Ai = xi), cpd(Aj|Ai = yi)) ≥ 0.

This implies that

φ(x,y) =

m
∑

i=1

φAi
(xi, yi) ≥ 0. �
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2. φ(x,y) = φ(y,x): Since KL dissimilarity between two probability distributions

is symmetric, the dissimilarity between two values xi and yi is also symmetric

φAi
(xi, yi) =

m
∑

j=1

KL(cpd(Aj|Ai = xi), cpd(Aj|Ai = yi))

=
m
∑

j=1

KL(cpd(Aj|Ai = yi), cpd(Aj|Ai = xi)) = φAi
(yi, xi)

It means that

φ(x,y) =

m
∑

i=1

φAi
(xi, yi) =

m
∑

i=1

φAi
(yi, xi) = φ(y,x). �

3. φ(x,x) = 0: Since KL dissimilarity between two identical probability distrib-

utions is equal to 0, the dissimilarity between two identical values is equal to

0.

φAi
(xi, xi) =

m
∑

j=1

KL(cpd(Aj|Ai = xi), cpd(Aj|Ai = xi)) = 0

It means that

φ(x,x) =
m
∑

i=1

φAi
(xi, xi) = 0. �

Propostion 2 The dissimilarity between two values vi and v′i of attribute Ai is zero

if and only if the conditional probability distributions of other attributes, given that

attribute Ai holds values vi and v′i, are identical.

φv(vi, v
′
i) = 0 ⇔ cpd(Aj|Ai = vi) ≡ cpd(Aj|Ai = v′i) for j = 1 . . .m, j 6= i

Proof:

Since KL dissimilarity between two probability distributions is non-negative, and equal

to 0 if and only if the distributions are identical, the dissimilarity between two values

vi and v′i is equal to 0 if and only if the conditional probability distributions of other

attributes when Ai holds values vi and v′i are identical. It implies that

⇒ φAi
(vi, v

′
i) =

m
∑

j=1,j 6=i

KL(cpd(Aj |Ai = vi), cpd(Aj|Ai = v′i)) = 0

which is equivalent to

cpd(Aj|Ai = vi) ≡ cpd(Aj|Ai = v′i) for j = 1 . . .m, j 6= i. �
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Propostion 3 If all attribute pairs are independent, dissimilarities between data ob-

jects are all equal to zero.

Proof:

Since Ai and Aj are independent for all i and j,

P (Aj = vj |Ai = vi) = P (Aj = vj) = p(Aj = vj|Ai = v′i), ∀vi, vj , v
′
i.

It means that cpd(Aj|Ai = vi) and cpd(Aj|Ai = v′i) is identical. It leads to

KL(cpd(Aj |Ai = xi), cpd(Aj|Ai = yi)) = 0, ∀xi, yi

and therefore

φAi
(xi, yi) =

∑

j

KL(cpd(Aj |Ai = xi), cpd(Aj|Ai = yi)) = 0

That is equivalent to

φ(x,y) =

m
∑

i=1

φAi
(xi, yi) = 0, ∀x,y. �

Discussion

The advantage of using association relations between attribute values to estimate the

similarity between values is to enrich the relations between categorical values. Different

from 0 or 1 as binary-based measures, the similarity score between two values is a real

number. When attributes are not independent, the dissimilarity between association

values presents better for the relation between categorical values than the dissimilarity

based on the identity or nonidentity as used in binary-based measures.

However, the disadvantage of this measure is that it is applicable only to data sets

whose attributes depend on each other. This limits the applications of this measure to

real-life databases.

2.4 Evaluations

This section presents experiments to show the merit of the association-based dissim-

ilarity measure when applied to real data. To this end, four experiments are carried

out: The first one is to show the variance in values of the association-based dissim-

ilarity measure in comparing with binary-based dissimilarity measures. The second
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experiment analyzes the dependency between attributes of real data sets to investi-

gate its impact to the association-based measure. The third experiment compares the

association-based measure with the most popular similarity measures, similarity mea-

sures presented in Table 2.2, and Goodall [91], by combining them with the popular

distance-based data mining method, nearest neighbor classifier (NN)[44]. The last one

analyzes time consumption when applied to large databases

2.4.1 Real-life data sets

30 diverse data sets from UCI [98], for which numerical attributes are automatically

discretized using the data mining system CBA [99], are used in these experiments. The

large number of data sets helps to avoid bias of data selections. Details of these data

sets can be found in Table 2.8.

2.4.2 The first experiment: Evaluation of variance

Tables 2.6 and 2.7 present the dissimilarity between objects described by two at-

tributes color and shape of the association-based dissimilarity measure and the binary-

based dissimilarity measures. It is clear that the dissimilarity between objects of the

association-based dissimilarity measure varies and is different from object pairs to ob-

ject pairs. For example, the dissimilarity between (R,�) and (R,♦) is .15 while the

dissimilarity between (R,�) and (G,�) is .9. However, there are only 3 dissimilarity

levels of the binary-based similarity measures: 0, 1, and 2. For example, the dissimi-

larity between (R,�) and (R,♦) is the same as the dissimilarity between (R,�) and

(G,�), 1.

2.4.3 The second experiment: Dependency analysis

Methodology

For each data set D, the dependency between attributes is estimated by a dependency

factor ρ(D) which is the proportion of the number of dependent attribute pairs and

the total number of attribute pairs

ρ(D) =
|{(Ai, Aj) : Ai and Aj are dependent}|

m(m− 1)

where ρ(D) is directly proportional to the dependency between attributes of D. Thus,

ρ(D) is 100% when all attribute pairs are dependent and 0% when they are all inde-

pendent.
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Table 2.6: binary-based dissimilarity scores

G G G B B B R R R

� ♦ △ � ♦ △ � ♦ △
G � 0 1 1 1 2 2 1 2 2

G ♦ 1 0 1 2 1 2 2 1 2

G △ 1 1 0 2 2 1 2 2 1

B � 1 2 2 0 1 1 1 2 2

B ♦ 2 1 2 1 0 1 2 1 2

B △ 2 2 1 1 1 0 2 2 1

R � 1 2 2 1 2 2 0 1 1

R ♦ 2 1 2 2 1 2 1 0 1

R △ 2 2 1 2 2 1 1 1 0

Table 2.7: Association-based dissimilarity scores

G G G B B B R R R

� ♦ △ � ♦ △ � ♦ △
G � 0 0.35 2.38 0.24 0.59 2.62 2.26 2.61 4.65

G ♦ 0.35 0 0.93 0.59 0.24 1.17 2.61 2.26 3.19

G △ 2.38 0.93 0 2.62 1.17 0.24 4.65 3.19 2.26

B � 0.24 0.59 2.62 0 0.35 2.38 1.05 1.4 3.44

B ♦ 0.59 0.24 1.17 0.35 0 0.93 1.4 1.05 1.98

B △ 2.62 1.17 0.24 2.38 0.93 0 3.44 1.98 1.05

R � 2.26 2.61 4.65 1.05 1.4 3.44 0 0.35 2.38

R ♦ 2.61 2.26 3.19 1.4 1.05 1.98 0.35 0 0.93

R △ 4.65 3.19 2.26 3.44 1.98 1.05 2.38 0.93 0
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To estimate the dependency of two attributes, we used the χ2 test with a 95%

significance level.

Experiment results and conclusions

Experiment results are presented in Table 2.8, including:

• Data set information: name of the data set (name), number of objects (n), num-

ber of attributes (m), number of attribute values (mv).

• Dependency factors ρ(D).

As can be seen from Table 2.8, for most of all data sets, attributes are strongly

dependent on each other. In particular, there are 14 data sets whose dependency

factors are greater than 90%, and only one data set whose dependency factor is less

than 50%. This proves the experimental applicability of the association measure to

real data.

2.4.4 The third experiment: Analyzing with NN

In [84], Batagel and Bren showed that most of the similarity measures presented in

Table 2.2 are order equivalent. It means that the closest objects of an object are

identical with respect to any of the measures. It implies that NN produces the same

accuracy when using any of these similarity measures.

Nearest neighbor classification

The nearest neighbor algorithm [44] is a supervised learning algorithm that simply

retains the entire training set during learning. During execution, the new input vector

is compared to each instance in the training set. The class of the instance that is most

similar to the new vector (using some distance function) is used as the predicted output

class. The nearest neighbor algorithm has several strengths when compared to many

other learning models:

• It learns very quickly (O(n) for a training set of n instances).

• It is guaranteed to learn a consistent training set (i.e., one in which there are

no instances with the same input vector and different outputs) and will not get

stuck in local minima.

• It is intuitive and easy to understand, which facilitates implementation and mod-

ification.
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Table 2.8: Database information and attribute independence

Name Size No. Atts No.Vals Ind.

n m M ρ(.)

1 allbpCleand 2800 30 70 77

2 anneal 898 39 100 58

3 breast 699 11 31 80

4 bridges 106 13 199 100

5 cleve 303 14 31 71

6 crx 690 16 60 98

7 diabetes 768 9 17 57

8 flare 1066 13 42 80

9 german 1000 21 63 59

10 glass 214 10 22 61

11 heart 270 14 22 54

12 hepatitis 155 20 51 81

13 hypo 3163 26 61 92

14 iris 151 5 12 100

15 krvskp 3196 37 73 93

16 lymphography 148 19 59 92

17 monks 432 7 17 0

18 mushroom 8124 23 117 91

19 pima 768 9 17 57

20 post-operative 90 9 24 82

21 primary-tumor 339 18 42 92

22 promoters 106 58 228 86

23 sick 2800 30 66 78

24 splice 3190 61 296 100

25 ttt 958 10 27 94

26 vehicle 846 19 71 99

27 vote 435 17 48 100

28 waveform 5000 22 106 82

29 wine 178 14 37 97

30 zoo 101 18 136 92
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• It provides good generalization accuracy on many applications. For example,

see [100].

The nearest neighbor paper states that any distance function can be used to deter-

mine how close one instance is to another. The author also mentioned the kNN rule,

in which the majority class of the k closest neighbors is used for classification. This

reduces susceptibility to noise in some cases but may also result in lower accuracy in

others. Experiments in this dissertation use NN with value k = 1.

Since kNN uses dissimilarity measures to decide the closest instances of one in-

stance, the dissimilarity measures strongly effect on the quality of kNN . Thus the

higher accuracy of kNN somehow means the more proper similarity measures. That

is why we choose kNN to validate similarity measures.

Validation method

In a 10-by-10 cross-validation study, the ordering of examples in a data set is random-

ized 10 times and a separate 10-way study is conducted for each of the ten random

orderings. Such 10-by-10 study generates 100 training and 100 test sets and each of

these should be passed to the different learners being studied.

Let (µ0, δ0) and (µ1, δ1) be the average accuracies and deviations of 100 trials for

two different similarity measures. To test whether µ1 is greater than µ0, we use the

hypothesis:

H0 : µ0 = µ1 vs. H1 : µ0 < µ1

Since each 10-trial 10-fold cross-validation result contains 100 trials, the difference

between µ0 and µ1 follows the normal distribution

z =
µ1 − µ0
√

δ2
0

100
+

δ2
1

100

The significance probability for H1 (Pvalue) is Norm(Z < z) where Norm(.) is the

standard normal distribution.

Experimental results and discussion

Experiment results are presented in Table 2.9, including:

• Names of the data sets.

• Average accuracy µ1 of NN with the association measure (φ(., .)).
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Figure 2.5: Running time versus data sizes

• Average accuracy (µ0) of NN with any of the binary-based measures significant

probability (Pvalue) that indicates the difference between the accuracy of NN with

our method and the accuracy of NN with any of the binary-based measures .

• Average accuracy (µ0) of NN with Goodall significant probability (Pvalue) that

indicates the difference between the accuracy of NN with our method and the

accuracy of NN with Goodall.

It can be seen from Table 2.9 that in 27 and 24 out of 30 cases, the combination of

NN and the proposed method achieves a higher accuracy than the combination of NN

and any of the binary-based measures as well as Goodall. In addition, NN with our

method is significantly more accurate than NN with any of the binary-based measures,

and Goodall in 27 and 21 out of 30 cases, respectively (P-values are greater than 95%).

Moreover, Table 2.9 shows that for data sets with high dependency between at-

tributes (e.g. data sets ttt, spice), NN with the proposed measure are much more

accurate than NN with Jaccard and Goodall (e.g. ttt : 97% versus 69% and 90%,

splice: 85% versus 66% and 47%). However, for some data sets with low dependency

factors (e.g. monks, german), the combination of NN and association-bases measure is

slightly worse than the combination of NN and Jaccard (e.g. monks :50% versus 56%

and 36% , german: 68% versus 69% and 70%).
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Table 2.9: Experiment results

Name Association

measures

binary-based

measures

Goodall

Ave. Dev. Ave. Dev. P-value Ave. Dev. P-value

1 allbpCleand 96 0.0095 97 0.0145 20 97 0.0118 2

2 anneal 99 0.0140 98 0.0158 100 96 0.0252 100

3 breast 96 0.0207 93 0.0249 100 96 0.0197 96

4 bridges 71 0.1437 61 0.1623 100 60 0.1395 100

5 cleve 79 0.0761 77 0.0734 99 77 0.0675 99

6 crx 83 0.0381 77 0.0462 100 78 0.0483 100

7 diabetes 67 0.0545 65 0.0548 100 66 0.0524 94

8 flare 70 0.0398 65 0.0427 100 67 0.0469 100

9 german 68 0.0442 69 0.0414 4 70 0.0488 0

10 glass 64 0.1216 60 0.1015 98 61 0.1061 96

11 heart 76 0.0720 74 0.0907 97 76 0.0719 26

12 hepatitis 85 0.0778 80 0.097 100 81 0.1001 99

13 hypo 99 0.0064 98 0.0100 100 98 0.0066 100

14 iris 92 0.0637 88 0.0754 100 91 0.0626 67

15 krvskp 88 0.0178 80 0.0226 100 87 0.0189 100

16 lymphography 85 0.0826 76 0.1125 100 76 0.1108 100

17 monks 50 0.0775 56 0.0810 0 36 0.0740 100

18 mushroom 96 0.0097 92 0.0112 100 95 0.0091 91

19 pima 74 0.0464 71 0.0492 100 73 0.0467 96

20 post-operative 61 0.1637 52 0.1508 100 55 0.1664 100

21 primary-tumor 33 0.0735 31 0.0721 98 33 0.078 50

22 promoters 82 0.1451 73 0.1378 100 54 0.1608 100

23 sick 97 0.0117 95 0.0138 100 96 0.0098 100

24 splice 85 0.0229 66 0.0273 100 47 0.0255 100

25 ttt 97 0.0257 69 0.0476 100 90 0.0380 100

26 vehicle 66 0.0471 63 0.0532 100 66 0.0447 64

27 vote 94 0.0352 90 0.0410 100 95 0.0313 1

28 waveform 77 0.0179 70 0.0205 100 65 0.0209 100

29 wine 99 0.0230 92 0.0616 100 91 0.0791 100

30 zoo 98 0.0541 88 0.1015 100 92 0.0825 100
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Figure 2.6: Running time versus numbers of attribute values

2.4.5 The last experiment: Analyzing time consumption

The target of the last experiment is to analyze the time consumption of the association-

based measure with respect to data size and number of attributes. In the first test, the

association-based measure is applied to different data sets generated from 30 attributes

each contains 10 values whose sizes range from 5.000 to 100.000. The running time is

reported in Figure 2.5. The second test analyzes the running time with respect to the

number of attribute values. The association-based measure is applied to 50.000-object

data sets whose number of attribute values range from 50 to 500. The running time is

reported in Figure 2.6.

It can be seen from Figures 2.5 and 2.6 that the running time is small. It takes less

than 1 minute when applying to databases of 100.000 data objects with 300 attribute

values or less than 2 minutes when applying to databases of 50.000 data objects with

500 attribute values. Besides, for each database we compute the dissimilarity between

attribute values one time only. After that the dissimilarity between two objects costs

O(m) as other measures. It means that we need a small time (1 or 2 minutes) to

prepare the dissimilarity between attribute values for each database.

2.5 Conclusions

In this chapter we discussed about dissimilarity and similarity measures for categorical

data. The binary-based similarity measures have advantage in simplicity and clearness.

These measures are mainly based on the number of common and uncommon values.

However, they are limited in variation since there are only m discriminating levels
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where m is the number of attribute values. In fact, the similarity scores are m discrete

numbers. The reason is that the responding binary vectors of categorical objects are

constrained by the number of value 1 which is alwaysm. Besides, since the binary-based

similarity measures increase with the number of attributes in which objects have the

same values, many techniques or methods such as searching, ranking and classifications

using these measures produce the same results.

The association-based dissimilarity measure estimates the similarity between two

values based on the relations between attributes. Since the relations between attributes

vary, the dissimilarity between two objects is presented by a real number. This over-

comes the variation limitation of binary-based measures. However, this similarity mea-

sure is limited to databases whose attributes are dependent.

The experiments show that the association-based dissimilarity measure improves

the accuracy of NN when applying to real-life databases in comparing with binary-

based measures when attributes of databases are not independent.
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Chapter 3

Similarity measures for

heterogeneous data

One real-life object can be reflected in many aspects that can be measured by many data

types. That leads to the popularity of heterogeneous data. Measuring the similarity of

heterogeneous data is a challenging task due to its heterogeneity. This chapter presents

similarity measures/distances based on algebra frameworks and order-probability. Ex-

periments with clustering for real-life data demonstrate how useful the measures.

3.1 Introduction

3.1.1 Heterogeneous data

Many real-life data sets are described by different data types such as continuous, nom-

inal, categorical, text, or image. For example, databases of personal information may

include name (text), sex (categorical: male, female), age (nominal: [0..200]), height

(continuous:[0..300cm]), etc. (see Table 3.1). Databases of city information contain

the name of cities (text), area (continuous), population (continuous), etc. (see Ta-

ble 3.2). It is natural to map real objects by many aspects to virtual objects that

are stored in databases. Obviously, those aspects are not attributed to a certain data

type but to various types. For example, the name of person is text data, the sex is

categorical data and the height should be continuous data.

Definition 13 Heterogeneous data is the data where each object is described by more

than one data types.

The following data types are often used in real-life databases
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Table 3.1: Personal information
Attribute Data type Range

Name text

Sex Categorical Male, female

Age Nominal [0..200]

Height: continuous [1..300]

Blood type categorical A, B, AB, O

Nation categorical Japanese, Vietnamese, etc.

Language transaction {Japanese, Vietnamese, English, etc.}
Picture image

Table 3.2: City information

Attribute Data type Range

Name text

Area Continuous

Population Continuous

Capital Categorical Yes, No

Crime level Nominal Low, moderate, normal, high

Map image

• Continuous data: data whose attribute values are continuous (i.e. the height and

the blood pressure for a person).

• Discrete data: data whose attribute values are discrete values (i.e. the number

of cities in a country, the number of students in a class, the number of children

of a family).

• Ordinal type: data whose attribute values are ordinal values. It may be ones aca-

demic background {junior high school, high school, college or university, graduate

school} or military ranks.

• Categorical type: data whose attribute values are not ordinal values (i.e. the

distinction of sex male, female, blood types A,B,AB,O, eye color (black, blue,

green, brown)). The main difference between ordinal type and categorical type is

that there is an order relation between ordinal values while none for categorical

values.

• Structures: data whose attribute values are structured values. For instance,

graphs of city roads and 2D structures of chemical are structured data.
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• Text: data whose attribute values are textual documents (i.e. articles, books and

newspapers).

3.1.2 Similarity for heterogeneous data

There are many qualified similarity measures for homogenous data such as Euclidean

or Minkowski distances for continuous data, Jaccard, Dice and Rao for categorical

and binary data, or edit distance for sequence data. Each of these measures has its

own meaning and particular properties that match the corresponding data types. For

example, the dissimilarity between two continuous values is often considered as their

absolute difference due to the continuous property of continuous data. Edit distance

between two sequences are the minimum number of changes such that one becomes

exactly to the other. Since each of the measures is based on particular properties

of the corresponding data type, it is only suitable to this data type and cannot be

applied to others. For instance, edit distances cannot be applied to continuous data

as well as Euclidean distance cannot be applied to string data. Thus neither of them

can be applied to databases that are described by both continuous and sequence data.

Besides, since the similarity measures for different data types are different in meaning,

it is unreasonable to integrate the similarity measures into a similarity measure for

heterogeneous data. For example, it is meaningless when adding the absolute difference

of continuous data and edited distance of sequence data into a similarity measure for

data objects described by both continuous and sequence data.

Similarity measures for heterogenous data need to overcome differences between

data types and to use up particular properties of data types. In this point of view, two

main tasks of determining similarity measures for heterogeneous data are:

1. To determine the same essential (dis)similarity measures for different homoge-

neous data types. The (dis)similarity measures may be defined differently in

each data type but should have the same meaning. Besides, the measures should

be suitable for particular properties of data types.

2. To integrate properly similarity scores between attribute values into the similarity

between objects. Since the measures defined in the former step may have special

properties, the integration should be suitable for these properties.

Based on the framework, a few similarity measuring methods for heterogeneous data

have been proposed. Generalized Minkowski metric-based methods [86, 87] consider

the dissimilarity between two values of an attribute as a combination of three factors:
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possition, span and content. Subsequently, the dissimilarity between two data objects

is assigned by adding linearly dissimilarities of their attribute value pairs. Besides,

generalized Minkowski metric approach, there is another approach which bases on

two Cartesian operators meet (⊗) and joint (⊕) to measure the dissimilarity of one

value pair [92, 89, 90]. Dissimilarities of attribute value pairs are integrated using

Minkowski distance into similarities between data objects. Unlike the above algebra-

based approaches, in [76] Le and Ho addressed the similarity measuring problem for

heterogeneous data by a probability-based approach. They defined the similarity of

one value pair as the probability of picking up randomly a value pair that is less similar

than or equally similar in terms of order relations defined appropriately for data types.

Similarities of attribute value pairs of two objects are then integrated using a statistical

method to assign the similarity between them.

3.2 Gowda and Diday methods

Let x and y be two objects are written in the Cartesian product of m attributes

A1, . . . Am as:

x = x1 × . . .× xm

y = y1 × . . .× ym

where xi and yi are values of attribute Ai.

3.2.1 Similarity measure for a single attribute

For the kth attribute, the similarity between xk and yk, denoted S(xk, yk), is defined

using following three components:

1. Sp(xi, yi) due to position p

2. Ss(xi, yi) due to span s

3. Sc(xi, yi) due to content c.

The similarity components due to position arises only when the attribute type is

quantitative. It indicates the relative positions of xi and yi on the real axis. The simi-

larity component due to span indicates the relative sizes of the attribute values without

referring to common parts between them. The similarity component due to content is

a measure of the common parts between two attribute values. These components are

defined so that their values are normalized between 0 and 1. Obviously, the similarity
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scores for any attribute values have the same meaning by applying the same measure

scheme to all data types.

The following are the descriptions of position, span, and content components for

different data types.

• Quantitative interval

Let

– al be the lower limit of interval xi

– au be the upper limit of interval xi

– bl be the lower limit of interval yi

– bu be the upper limit of interval yi

– inters be the length of intersection between xi and yi

– ls = |max(au, bu) −min(al, bl)| is span length of xi and yi,

The three similarity components are defined as follows

– Similarity component due to position is

Sp(xi, yi) = 1 − al − bl

|Ai|

where |Ai| denotes the length of the maximum interval of attribute Ai) (max

(au − al)).

– Similarity component due to span is

Ss(xi, yi) =
la + lb

2ls

where la = au − al and lb = bu − bl

– Similarity component due to content is

Sc(xi, yi) =
inters

ls

• Quantitative ratio/Absolute type

Quantitative ratio and absolute type of features are special cases of interval type

having the following properties:

al = au, bl = bu, la = lb = inters = 0.
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• Qualitative type

For qualitative type of features, the similarity component due to position is ab-

sent. The two components that contribute to similarity are span and content.

Let la and lb be the lengths of xi and yi or number of elements in xi and yi. inters

is the number of elements common to xi and yi, ls be span length of xi and yi

combined, la + lb − inters. The components due to span and content are defined

as

– Ss(xi, yi) =
la + lb

2ls

– Sp(xi, yi) =
inters

2ls
.

3.2.2 Integration

Similarity between two objects x and y is defined as the total similarity between their

attribute value pairs.

S(x,y) =
m
∑

i=1

S(xi, yi) (3.1)

=

m
∑

i=1

Sp(xi, yi) + Ss(xi, yi) + Sp(xi, yi) (3.2)

Discussion

This method uses three basic aspects to estimate the similarity between data objects:

position, span, and content. The similarity scores that have the same meaning as

the similarity between two values of any data types are estimated by the same three

factors. Thus they can be easily integrated. The best advantage of this measure is its

comprehension as is easy to explain the similarity score between objects.

The problem, however, lies in the determination of the three factors possition,

span and content. It is easy to see that these three factors are not always suitable

for all data types. For example, position cannot be applied to noncontinuous data. It

means that the similarity between two values of different data types may be estimated

differently. In addition, different data types require different definitions for these three

factors. Thus, even using the same name with the same strategy, similarity scores

between values of different data types may have different meaning. This leads to

unreasonableness when integrating the similarity scores of attribute value pairs into

the similarity score between objects.
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3.3 Minkowski metrics

3.3.1 Joint and Meet operators

Denote U (d) the domain of attribute spaces

U (d) = |A1| × . . . |Am|

Let x = x1 × . . .× xm and y = y1 × . . .× ym be two objects. The joint operator is

defined as following:

Definition 14 (Cartesian joint operator) The Cartesian joint, denoted x ⊕ y, is

defined by a cartesian product set

x ⊕ y = (x1 ⊕ y1) × . . .× (xm ⊕ ym)

where xi ⊕ yi is the Cartesian joint of xi and yi.

The joint operator between two values xi and yi is defined based on the attribute

type of Ai. Following are joint operators for common data types:

• if Ai is quantitative or ordinal qualitative, xi ⊕ yi becomes a closed interval

xi ⊕ yi = [min(xil, yil),max(xiu, yiu)]

where xil and yil are the lower bound of xi and yi, and xiu and yiu are the upper

bound of xi and yi.

• if Ai is a nominal qualitative attribute, xi ⊕ yi becomes the union of xi and yi:

xi ⊕ yi = xi ∪ yi

• if xi is a tree structure, let N(xi) denote the nearest parent node common to all

terminal values in xi. Then, if N(xi) = N(yi), let

xi ⊕ yi = xi ∪ yi

and if N(xi) 6= N(yi), let

xi ⊕ yi = {all terminal values branched from node N(xi ∪ yi)}
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Figure 3.1: Illustration of the Cartesian joint in the Euclidean plane
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Figure 3.2: Illustration of the Cartesian meet in the Euclidean plane
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Definition 15 (Cartesian meet operator) The Cartesian meet of a pair of objects

x = x1 × . . . × xm and y = y1 × . . . × ym, denoted x ⊗ y is defined by a Cartesian

product set:

x ⊗ y = (x1 ⊗ y1) × . . .× (xm ⊗ ym)

where xi ⊗ yi is the Cartesian meet of the ith attribute and defined by the intersection

of xi and yi:

xi ⊗ yi = xi ∩ yi

Definition 16 The distance between xi and yi is defined as

φ(xi, yi) = |xi ⊕ yi| − |xi ⊗ yi| + γ(2|xi ⊕ yi| − |xi| − |yi|)

where 0 ≤ γ ≤ 0.5 and |xi| denotes the length of the interval xi if Ai is continu-

ous quantitative, and is the number of possible values included in xi if Ai is discrete

quantitative, qualitative, and structural.

Theorem 8 For any objects x,y, and z of U (d), φ(., .) satisfies the following axioms

for metrics:

• φ(xi, yi) ≥ 0 and φ(xi, yi) = 0 iff xi = yi

• φ(xi, yi) = φ(yi, xi)

• φ(xi, zi) ≤ φ(xi, yi) + φ(yi, zi)

The proof is given in [92].

3.3.2 Integration

There are two problems pointed out by Anderberg [101]

1. Different measure units lead to different similarity score values. For example, the

value φ(xi, yi) is much different when attribute Ai is expressed in feet from that

when Ai is expressed in inch. Likely, φ(xj, yj) is different when Aj is expressed

in pounds and in ounces. Thus, effect of use of different units to calculate the

distance between an attribute value pair must be taken into account.

2. The units for the different attribute values are combined to achieve a single

measure of distance which implies a composite of the unit. Thus it is possible to

interpret the sum of feet and ounces. In other words, it does not make sense to

combine distance measured by different units.
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To solve these problems, the attribute variables should be equalized to remove the

artifact of measurement units and anchor each attribute variable to some common

numerical property as follows:

ψ(xi, yi) =
φ(xi, yi)

|Ai|

Then for each attribute, the function ψ(., .) becomes a dimensionless quantity and

0 ≤ ψ(xi, yi) ≤ 1

Since there may be knowledge about relative importance of attributes beforehand,

weight factors for attributes should be considered.

Definition 17 The distance between two objects x and y are defined following Minkowski

distance of order p(≥ 1) as

dp(x,y) =

[

m
∑

i=1

ciψ(xi, yi)
p

]1/p

where ci is the weight factor of attribute Ai such that

ci ≥ 0 and
m
∑

i=1

ci = 1

By using the well-known Minkowski inequality and Theorem 8, we can prove the

following proposition.

Propostion 4 The distance between with order p(≥ 1) satisfies all axioms for a metric.

The proof is given in [92].

Discussion

The Minkowski metrics produce a framework for measuring the dissimilarity between

heterogeneous data based on joint and meet operators. Dissimilarity measures of this

frameworks satisfy axioms for metrics.

The disadvantage of this frameworks lies in determining proper joint and meet

operators for different data types, the first task of building a similarity measures for

heterogenous data. Determining the proper joint and meet operators for all data

types is hard, somehow impossible. For example, it is very difficult to properly define

joint and meet operators for graph data or sequence data. Besides, the joint (the

intersection operator) is not always properly applicable to all data types, i.e. joint
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operator is not suitable for continuous data. This leads to the fact that this framework

is only suitable for databases containing data types that are all suitable for the meet

and joint operators. That limits applications of this framework for real-life databases,

especially for heterogeneous data.

3.4 Ordered probability-based similarity measure

Unlike the above algebra-based approaches, in [76] Le and Ho addressed the similarity

measuring problem for heterogeneous data in probability-based approach.

For each attribute Ai, denote �i an order relation on A2
i where (x′i, y

′
i) �i (xi, yi)

implies that value pair (x′i, y
′
i) is less similar than or as similar as value pair (xi, yi).

For example, when Ai is continuous, �i on A2
i can be defined as

(xi, yi) �i (x′i, y
′
i) ⇔ |xi − yi| ≥ |x′i − y′i| (3.3)

3.4.1 Ordered probability-based similarity measure

The first task of measuring similarity for heterogeneous data is to determine similarity

measures for value pairs of each attribute. In [76], Le and Ho defined the ordered

probability-based similarity for value pair (xi, yi) of attribute Ai as follows:

Definition 18 (Order similarity measures) The ordered probability-based similar-

ity between two values xi and yi of attribute Ai with respect to order relation �i, denoted

by S�i
(xi, yi), is the probability of picking randomly a value pair of Ai that is less similar

than or as similar as (xi, yi)

S�i
(xi, yi) =

∑

(x′

i,y
′

i)�i(xi,yi)

p(x′i, y
′
i)

where p(x′i, y
′
i) is the probability of picking value pair (x′i, y

′
i) of Ai.

Definition 18 implies that the similarity of one value pair depends on both the

number of value pairs that are less similar than or as similar and probabilities of

picking them. Intuitively, the more number the of pairs that less similar than or as

similar as one value pair, the more similarity the value pair is.

For example, consider the attribute age in Table 3.3 and the order relation defined

in Equation 3.3. The set T of value pairs that are less similar than or as similar as

(26, 55) is: {(23, 55), (55, 23), (25, 55), (55, 25), . . . , (57, 26))}. The similarity between
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26 and 55 is then estimated as:

Sage(26, 55) = p(23, 55) + p(55, 23) + p(25, 55) + p(55, 25) + . . .+ p(57, 26)

=
1 × 1

102
+

1 × 1

102
+

1 × 1

102
+

1 × 1

102
+ . . .+

1 × 1

102

= 0.18

As it can be induced from Definition 18, similarities of value pairs do not depend

on data types. They are based only on order relations and probability distributions of

value pairs. Hence, similarities of value pairs have the same meaning regardless of their

data types. It means that the measure satisfies the requirement of the first task where

similarity measures for different data types have the same essential meaning. Besides

the measure is defined based on order relations of data types that are particularly

suitable for data types. In other words, the measure is applicable to all data types and

also employs particular properties of data types.

3.4.2 Order relations for real data

In the following parts, we summarize order relations of some common data types, e.g.

continuous data, interval data, ordinal data, categorical data, and item set data.

It is not difficult to define order relations on A2
i . The order relations are often

induced from similarity measures on A2
i . For example, if there is a similarity measure

Si on Ai, the order relation on A2
i can be induced as

(xi, yi) � (x′i, y
′
i) ⇔ Si(xi, yi) ≤ Si(x

′
i, y

′
i)

• Continuous data: A value pair is less similar or as similar as another value pair

if and only if the absolute difference of the first pair is greater than or equal to

that of the second pair.

(x′, y′) � (x, y) ⇔ |x′ − y′| ≥ |x− y|

• Interval data: A value pair is less similar than or as similar as another value

pair if and only if the proportion between the intersection interval and the union

interval of the first pair is smaller than or equal to that of the second pair.

(x′, y′) � (x, y) ⇔ |x′ ∩ y′|
|x′ ∪ y′| ≤

|x ∩ y|
|x ∪ y|

• Ordinal data: A value pair is less similar than or as similar as to another value

pair if and only if the interval between two values of the first pair contains that

of the second pair:

(x′, y′) � (x, y) ⇔ [x′..y′] ⊇ [x..y]
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• Categorical data: A value pair is less similar than or as similar as another

value pair if and only if either they are identical or values of the first pair are not

identical meanwhile those of the second pair are:

(x′, y′) � (x, y) ⇔
{

x′ = x, y′ = y

x′ 6= y′, x = y

• Item set data: Following the idea of Leischner [102], the order relation for item

set value pairs that come from item set M is defined as follows:

(X, Y ), (X ′, Y ′) ∈M2 : (X ′, Y ′) � (X, Y ) ⇔























X ′ ∩ Y ′ ⊆ X ∩ Y
X

′ ∩ Y ′ ⊆ X ∩ Y
X ′ ∩ Y ′ ⊇ X ∩ Y
X

′ ∩ Y ′ ⊇ X ∩ Y

Obviously, these order relations are transitive.

3.4.3 Probability approximation

Assuming that values of each attribute are independent, the probability of picking up

a value pair (xi, yi) of Ai is approximately estimated as:

p(xi, yi) =
δ(xi)δ(yi)

n2

where δ(xi) and δ(yi) are the numbers of objects that have attribute value xi, yi

respectively, and n is the number of data objects.

3.4.4 Integration methods

The similarity between two data objects consisting of m attributes is measured by

a combination of m similarities of their attribute value pairs. Taking advantage of

measuring similarities of attribute value pairs in terms of probability, integrating sim-

ilarities of m attribute value pairs becomes the problem of integrating m probabilities.

Denote S(x,y) = f(S1, . . . , Sm) the similarity between two data objects x and y

where Si is the similarity between values xi and yi of attribute Ai, and f(.) is a function

for integrating m probabilities S1, . . . , Sm.

Many measures for integrating probabilities have been proposed [103, 104, 105].

The most popular method is due to Fisher’s transformation [103], which uses the test

statistic

TF = −2
m
∑

i=1

lnSi
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and compares this to the χ2 distribution with 2m degrees of freedom.

In [104], Stouffer et al. defined

Ts =

m
∑

i=1

Φ−1(1 − Si)√
m

where Φ−1 is the inverse normal cumulative distribution function. The value Ts is

compared to the standard normal distribution.

Another P-value method was proposed by Mudholkar and Geore [105]

TM = −c
m
∑

i=1

log
Si

1 − Si

where

c =

√

3(5m+ 4)

mπ2(5m+ 2)

The combination value of S1, . . . , Sm is referenced to the t distribution with 5m + 4

degrees of freedom.

In practice, probability integrating functions are often non-decreasing functions. It

implies that the greater similarity scores between attribute value pairs S1, . . . , Sm, the

greater similarity between x and y, S(x,y).

Clearly these probability integrating functions are non-decreasing functions.

3.4.5 Example

To illustrate how the similarity between two data objects is measured, consider the

simple data set given in Table 3.3 that was obtained from a user internet survey. This

data set contains 10 data objects comprising 3 different attributes, e.g. age (con-

tinuous data), connecting speed (ordinal data), and time on internet (interval data).

Consider the first data object ({26, 128k, [6..10]} and the second one {55, 56k, [7..15]},
the similarity between them is measured as follows:

Sage(26, 55) = p(23, 55) + p(55, 23) + p(25, 55) + p(55, 25) + . . .+ p(57, 26)

=
1 × 1

102
+

1 × 1

102
+

1 × 1

102
+

1 × 1

102
+ . . .+

1 × 1

102

= 0.18
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Sspeed(128k, 56k) = p(14k, 128k) + p(128k, 14k) + p(28k, 128k)

+p(128k, 28k) + . . .+ p(56k,> 128k) + p(> 128k, 56k)

=
2 × 1

102
+

2 × 2

102
+

2 × 1

102
+

2 × 2

102
+ . . .+

2 × 1

102
+

2 × 2

102

= 0.42

Stime([6..10], [7..15]) = p([5..10], [20..30]) + p([20..30], [5..10]) + p([5..10], [12..20])

+p([12..20], [5..10]) + . . .+ p([3..7], [5..12])

=
1 × 1

102
+

1 × 1

102
+

1 × 1

102
+

1 × 1

102
+ . . .+

1 × 1

102

= 0.76

Now using Fisher’s transformation test statistic [103] to integrate Sage, Sspeed and

Stime :

TF = −2(lnSage + lnSspeed + lnStime)

= −2(ln(0.18) + ln(0.42) + ln(0.76))

= 5.71

The value of the χ2 distribution with 6 degrees of freedom at point 5.71 is 0.456.

Thus, the similarity between the first and the second objects, S({26, 128k, [6..10]}, {55, 56k, [7..15]}),
is 0.456.

3.4.6 Characteristics

In this section, we investigate the characteristics and properties of the order-probability

based similarity measure method. For convenience, let us recall an important required

property of similarity measures that was proposed by Geist et al. [102].

Definition 19 Similarity measure ρ : Γ2 → R+ is called an order-preserving similarity

measure with respect to order relation � if and only if it holds true for:

∀(x,y), (x′,y′) ∈ Γ2, (x′,y′) � (x,y) ⇒ ρ(x′,y′) ≤ ρ(x,y)

Since order-preserving measures play important roles in practice, most common

similarity measures (e.g. Euclidean, Hamming, Russel and Rao, Jaccard and Needham)

possess this property with respect to reasonable order relations.

54



Table 3.3: A data set obtained from an user internet survey includes 10 data objects,

comprising 3 different attributes e.g. age (continuous data), connecting speed (ordinal

data) and time on internet (interval data)

No. Age (year) Connecting Speed

(k)

Time on Inter-

net (hour)

1 26 128 [6..10]

2 55 56 [7..15]

3 23 14 [5..10]

4 25 36 [20..30]

5 56 > 128 [12..20]

6 45 56 [15..18]

7 34 28 [3..4]

8 57 28 [3..7]

9 48 14 [8..12]

10 34 > 128 [5..10]

Theorem 9 Similarity measure S�i
: A2

i → R+ is an order-preserving similarity mea-

sure with respect to order relation �i if order relation �i is transitive.

Proof:

Denote Λ(xi, yi) the set of pairs which are smaller than or equal to (xi, yi)

Λ(xi, yi) = {(x′i, y′i) : (x′i, y
′
i) �i (xi, yi)}

Since �i is a transitive relation, for any two value pairs (xi1 , yi1) and (xi2 , yi2),

when (xi1 , yi1) �i (xi2 , yi2) we have ∀(xi, yi) ∈ Λ(xi1 , yi1) : (xi, yi) � (xi1 , yi1) implies

(xi, yi) �i (xi2 , yi2). This means (xi, yi) ∈ Λ(xi2 , yi2), and thus

Λ(xi1 , yi1) ⊆ Λ(xi2 , yi2) (3.4)

On other hand, we have

S�i
(xi, yi) =

∑

(x′

i,y
′

i)�i(xi,yi)

p(x′i, y
′
i) =

∑

(x′

i,y
′

i)∈Λ(xi,yi)

p(x′i, y
′
i) (3.5)

From (3.4) and (3.5),

S�i
(xi1 , yi1) =

∑

(xi,yi)∈Λ(xi1
,yi1

)

p(xi, yi) ≤
∑

(xi,yi)∈Λ(xi2
,yi2

)

p(xi, yi) = S�i
(xi1 , yi1)

Thus, S�i
(., .) is an order-preserving measure. �
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In practice, order relation �i are often transitive. Thus, the ordered probability-

based similarity measures for attributes are also order-preserving similarity measures.

Denote A = A1 × . . . × Am the product space of m attributes A1, . . . , Am. The

product of order relation �1, . . . ,�m is defined as follows:

Definition 20 The product of order relations �1, . . . ,�m, denoted by
∏m

i=1 �i, is an

order relation � on A
2, for which one data object pair is said to be less similar than or

as similar as another data object pair with respect to
∏m

i=1 �i if and only if attribute

value pairs of the first data object pair are less similar than or as similar as those of

the second data object pair

∀(x,y), (x′,y′) ∈ A
2 : (x′,y′) � (x,y) ⇔ (x′i, y

′
i) �i (xi, yi), i = 1, . . . , m

Propostion 5 The product of order relations �1, . . . ,�m is transitive when order re-

lations �1, . . . ,�m are transitive.

Proof:

Denote �=
∏m

i �i. For any triple data object pairs (x1,y1), (x2,y2), and (x3,y3). if

(x1,y1) � (x2,y2), and (x2,y2) � (x3,y3), we have

(x1,y1) � (x2,y2) ⇔ (xi1 , yi1) �i (xi2 , yi2) ∀i = 1 . . .m

(x2,y2) � (x3,y3) ⇔ (xi2 , yi2) �i (xi3 , yi3) ∀i = 1 . . .m

Since �i is transitive for i = 1 . . .m, (xi1 , yi1) �i (xi2 , yi2) and (xi2 , yi2) �i (xi3 , yi3)

implies (xi1 , yi1) �i (xi3 , yi3). Hence (x1,y1) � (x3,y3).

Thus,
∏m

i �i is transitive. �

Theorem 10 Similarity measure S : A
2 → R+ is an order-preserving similarity mea-

sure with respect to
∏m

i=1 �i when order relations �1, . . . ,�m are transitive and prob-

ability integrating function f is non-decreasing.

Proof:

Denote �=
∏m

i �i and let (x′,y′) and (x2,y2) be two data object pairs. We have

(x′,y′) � (x,y) ⇔ (x′i, y
′
i) � (xi, yi) ∀i = 1, . . . , m;

Since �i is transitive for i = 1, . . . , m, following Theorem 9,

S ′
i = S�i

(x′i, y
′
i) ≤ S�i

(xi, yi) = Si ∀i = 1, . . . , m
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Since f is a non-decreasing function,

S(x′,y′) = f(S ′
1, . . . , S

′
m) ≤ f(S1, . . . , Sm) = S(x,y)

Since (x′,y′) � (x,y) ⇒ S(x′,y′) ≤ S(x,y), S(., .) is an order-preserving similarity

measure with respect to
∏m

i �i. �

Theorem 10 says that if attribute value pairs of an object pair are less similar

than or equal to those of another object pair, the similarity of the first object pair

is smaller than or equal to the similarity of the second object pair under conditions

that order-relations �1, . . . ,�m are transitive and probability integrating function f is

non-decreasing.

Discussion

The main advantage of this framework is the ability to avoid using common operators

for all data types that algebra-based approaches use. Using order relations overcomes

natural differences between data types and helps to treat homogeneously different data

types. Moreover, it allows to take particular properties of data types to form the

order relations, or in other words, to indirectly estimate the similarity between objects.

Besides, a similarity measure of this framework contains the most important properties

of similarity measures.

However, the disadvantage of the framework is running time. Since to estimate the

similarity between two values may cost O(n2), it limits applications of this framework to

large databases. However, for each data type there may be an algorithm for estimating

the similarity between two values with reasonable times. For example, we can estimate

the similarity between two values of continuous attribute in O(n). Reducing running

time to estimate the similarity between values is an opening problem and should be

paid much attention.

3.5 Applications to real data

In the following parts, we analyze real data sets using ordered probability-based simi-

larity measure in conjunction with clustering methods.

3.5.1 Data set

The Cultural Issues in Web Design data set was obtained from the GVU’s 8th WWW

User Survey (http://www.cc.gatech.edu/gvu/user surveys/survey-1997-10/). The data
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set is a collection of users’s opinions on influences of languages, colors, culture, etc. on

web designs. The data set includes 1097 respondents, which are described by 3 item

set attributes, 10 categorical attributes, and 41 ordinal attributes.

3.5.2 Methodology

Similarity measure method

We apply the ordered probability-based similarity measure to measure similarities be-

tween respondents of the Cultural Issues in Web Design data set. The Fisher’s trans-

formation is chosen to integrate similarities of attribute value pairs.

Clustering methods

Most of clustering methods belong to either the partitioning approach or hierarchi-

cal approach. Most of partitioning methods such as K-means [34] and Kmedoid [35]

requires three conditions:

1. continuation of data for convergence problems.

2. A method for detecting representatives for clusters.

3. The triangle inequality property to guarantee qualities of clustering results.

Since these conditions are rarely satisfied when applying for heterogenous data, parti-

tioning methods are not suitable in this case.

Hierarchical clustering methods are summarized in tree diagrams. Initially, there

are N clusters, each contains a single object. The number of clusters reduces by one at

each step of algorithm, by amalgamating two most similar pair of existing clusters into a

new one. The different ways of defining the dissimilarity between two clusters of objects

lead to different clustering strategies. If two clusters Ci and Cj are amalgamated, a

general relation for evaluating the dissimilarity between Ci∪Cj with some other cluster

Ck, is

d(Ci ∪ Cj , Ck) = αid(Ci, Ck) + αjd(Cj, Ck) + βd(Ci, Cj) +

γ|d(Ci, Ck) − d(Cj, Ck)| + δih(Ci) + δjh(Cj) + ǫh(Ck)

where h(Ci) denotes the height in the dendrogram of Ci. The formula without terms

δi, δj, and ǫ was proposed by Lance and Williams [106, 107] and the complete formula

was proposed by Jambu [36]. The recursion is started by defining d(Ci, Cj) = d(oi, oj)

for singleton cluster Ci = {oi} and Cj = {oj}. When clusters Ci and Cj are chosen for
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amalgamation, the height in the dendrogram of their union Ci∪Cj , h(Ci∪Cj), is given

by d(Ci, Cj). Different choices of the parameters {α, β, γ, δ} define different clustering

strategies. The most common ones are summarized in Table 3.4.

In the experiment, the hierarchical clustering with the mean similarity criteria was

chosen. Each step, two clusters with the maximum average similarity between data

objects are chosen to be merged. The loop continues until the required number of

clusters is reached.

3.5.3 Clustering results

The Cultural Issues in Web Design data set was clustered into 10 clusters. However,

characteristics of only three clusters were presented due to space limitation (see Ta-

ble 3.5). A characteristic of a cluster is presented as an attribute value that majority of

respondents of the cluster answered. For example, value can’t write of attribute Unfa-

miliar site is considered as a characteristic of the first cluster because 92% respondents

of this cluster answered the value.

3.5.4 Remarks from experiment results

As it can be seen from Table 3.5, the clusters have many characteristics, e.g. the first

and second clusters have 13 characteristics. Moreover, the clusters’ characteristics differ

from cluster to cluster. In particular, when visiting an unfamiliar site, the problem

of 92% respondents of the first cluster is cannot write, while 81% respondents of the

second cluster is cannot translate, and 84% respondents of the third cluster is cannot

read. Moreover, answers of respondents in the same clusters are somehow similar. For

example, all respondents of the first cluster can neither read Rabic and Hebrew nor

speak Bengari and Hebrew. In short, almost all respondents in the same cluster have

the same answers but they are different from answers of respondents form different

clusters. The analysis of characteristics from these clusters shows that our similarity

measuring method in combination with the agglomeration hierarchical average linkage

clustering method discovers valuable clusters of real data sets.

3.6 Conclusions

In this chapter, we discussed similarity measures and dissimilarity measures for het-

erogeneous data. The introduced measures follow the same frameworks including:

determining the same essential similarity measures for different data types and inte-
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Table 3.4: Clustering strategies obtainable from the general recurrence relation of

Jambu (1978)

Name (reference) δi β γ δ ǫ

1 Single link [37]
1

2
0

−1

2
0 0

2 Complete link [40]
1

2
0

1

2
0 0

3 Group average link [38, 39]
ni

ni + nj
0 0

4 Weight average link [108, 39]
1

2
0 0 0 0

5 Mean dissimilarity [109]
Cni+nk

2

C
n+

2

C
ni+nj

2

C
n+

2

0
−Cni

2

C
n+

2

−Cnk

2

C
n+

2

6 Sum of squares [109]
ni + nk

n+

ni + nj

n++
0

−ni

n+

−nk

n+

7 Incremental sum square [110, 111]
ni + nk

n+

−nk

n+
0 0 0

8 Centroid [38, 112]
ni

ni + nj

−ninj

(ni + nj)2
0 0 0

9 Median [106, 112]
1

2
−1

4
0 0 0

10 Flexible [106]
1

2
(1 − β) β 0 0 0

ni denotes the number of objects in the cluster Ci; n+ ≡ ni + nj + nk
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Table 3.5: Characteristics of three discovered clusters
Cluster 1

No. Att. Names Value Pa Value Pa Value Pa Value Pa

1 Unfamiliar sites Can’t write 92 Other 8

2 Read Arabic None 100

3 Read Hebrew None 100

4 Speak Bengali None 100

5 Speak Hebrew None 100

6 Primary same as Native Yes 98 No 2

7 Important problem Can’t write 92 None 2 Other 6

8 American images None 79 Other 21

9 Native Language English 79 Chinese 4 German 4 Other 12

10 Read German None 71 Basic phrases 19 Native 8 Other 2

11 Software Yes both 73 Yes get 25 No 2

12 Speak English Native 69 Conver. 17 None 14

13 Provide native sites Agree strongly 69 Agree somewhat 23 Disag. somewhat 4 Other 4

Cluster 2

No. Att. Names Value Pa Value Pa Value Pa Value Pa

1 Unfamiliar sites Can’t translate 81 Other 19

2 Read Chinese None 100

3 Read Hindi None 100

4 Read Japanese None 100

5 Speak Hindi None 100

6 Due to culture No 93 Yes-both 8

7 Sites in non-fluent Few 89 None 9 Most 2

8 Non-English sites Few 89 None 8 Half 4

9 Translations Yes-useful 87 Other 13

10 Read German None 83 Basic phrases 9 Literate 8

11 Native Language English 81 Spanish 8 Arabic 2 Other 9

12 Speak German None 81 Basic phrases 11 Conver. 8

13 Designed culture Yes 70 No 28 Don’t know 2

Cluster 3

No. Att. Names Value Pa Value Pa Value Pa Value Pa

1 Unfamiliar sites Can’t read 84 Other 16

2 Read Arabic None 100

3 Read Chinese None 100

4 Read Hindi None 100

5 Speak Arabic None 100

6 Speak Bengali None 100

7 Speak Hindi None 100

8 Read Italian None 93 Basic phrases 4 Native 2 Other 2

9 Speak Italian None 93 Basic phrases 7

10 Speak Spanish None 84 Basic phrases 14 Conver. 2

11 Read Spanish None 82 Basic phrases 18

12 Sites designed for culture Yes 68 No 29 Dontknow 4

13 Sites in non-fluent Few 77 All 11 None 7 Other 5

14 Software Yes get 77 Yesboth 18 No 5

15 Non-English sites Few 68 None 21 Half 9 Other 2

grating properly similarity scores of attribute value pairs into similarity scores between

objects.

The algebra-based approach uses the same common factors such as position of values

or common parts to estimate the similarity between values. However, this ideas faces

with problems of determining factors/operators that are suitable for all data types.

The framework to estimate the similarity between two values by ordered probability

overcomes the problem algebra-based methods face since it bases on order relations that

are particularly built for data types. However, time consumption is the main drawback

of this framework. Since the algebra methods require O(m) to estimate the similarity

between two objects, this framework requires at least O(nm). This limits applicability
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of this framework to large databases.

All of the measures mentioned in this chapter are designed for data sets whose data

objects have the same number of attribute values. However, in real databases, the

number of attributes of data objects may be different from objects to objects. Thus,

there is a need of an investigation on how to adapt these measures to databases whose

objects may have different numbers of attributes.
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Chapter 4

Similarity measures for graph data

Recently, there has been an increased interest in graph data such as intrusion semantic

web, behavioral modeling, or image processing. Due to its complex structures, to mea-

sure similarity for graph data is a challenging task. This chapter shortly summarizes

popular similarity measures including the φ distance similarity measure, the measure of

papadopoulos and manolopoulos, similarity based on the maximal common subgraph,

the edit distance for graphs, and introduces a nonoverlap connected subgraph-based

measure.

4.1 Introduction

In recent years, there has been an increased interest in developing data mining algo-

rithms that operate on graphs. Such graphs arise naturally in a number of different

application domains including network intrusion semantic web [113], behavioral model-

ing [114, 115] VLSI reverse engineering [116], link analysis [117, 118, 119] and chemical

compound classification [120, 121, 122, 123, 124, 125], image processing [23, 10, 24].

Moreover, they can be used to effectively model the structural and relational charac-

teristics of a variety of datasets arising in other areas such as physical sciences (e.g.,

chemistry, fluid dynamics, astronomy, structural mechanics, and ecosystem modeling),

life sciences (e.g. genomics, proteomics, pharmacogenomics, and health informatics),

and home-land defense (e.g. information assurance, network intrusion, infrastructure

protection, and terrorist-threat prediction/identification). Examples of such data ob-

jects are molecules, images or audio data. Those data objects have a complex internal

structure, e.g. atoms in a molecule (see Figure 4.1), protein structures (see Figure 4.2)

or objects in an image (see Figure 4.3).

A graph object is defined by a labelled graph as
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Figure 4.1: Molecular structure: Moxalactam Latamoxef

Figure 4.2: Protein Structure

Definition 21 (Labelled graph) A labelled graph is a 4-tuple G =< V,E, α, β >

where

• V is the the finite sets of vertices.

• E ⊆ V × V is the set of edges.

• α : V → LV is a function assigning labels to the vertices.

• β : E → LE is a function assigning labels to the edges.

4.1.1 Similarity measures for graph data

There exist several similarity measures for graphs. They differ in the types of graphs

for which they are defined and whether they take attribute information into account

or not. But most of the measures have one thing in common, which is that they are

based on some sort of edit operations. The basic idea of all those measures is to define
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Figure 4.3: An image and the extracted graph.

the similarity of graphs based on the effort needed to make the graphs identical. This

effort is measured in number of primitive operations which are needed to make the

graphs identical. The following sections presents the similarity measures for graphs

from the literature and discuss, how different approaches define the identity of graphs

and effort to achieve it.

4.1.2 Basic notation

Definition 22 (order and degree) Given a graph G =< V,E, α, β >.

• The number of vertices of G, denoted as |V |, is called the order (size) of G.

• The number of edges incident to a vertex v is called the degree of v, denoted by

degree(v).

• An edge e = (u, v) is called incident to the vertices u and v. Two vertices are

said to be adjacent if there exists an edge that is incident to both of them.

Definition 23 A path from vertex u to vertex v in a graph is an alternating sequence

< u = u0, u1, . . . , uk = v > where ui and ui+1 are adjacent. A graph G is said to be

connected, if G contains a path between each pair of vertices u and v.

Definition 24 Let G =< V,E, α, β > and G′ =< V ′, E ′, α′, β ′ > be graphs. G′ is a

subgraph of G if and only if

• V ′ ⊆ V

• α′(v) = α(v) for all v ∈ V ′
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• E ′ = E ∩ (V ′ × V ′)

• β ′(e) = β(e) for all e ∈ E ′

From Definition 24 it follows that given a graph G =< V,E, α, β >, any subset

V ′ ⊆ V of its vertices uniquely defines a subgraph. This subgraph is called the subgraph

induced by V ′.

Definition 25 Let G =< V,E, α, β > and G′ =< V ′, E ′, α′, β ′ > be graphs. A graph

isomorphism between G and G′ is a bijective map f : V 7→ V ′ such that

• α(v) = α′(f(v)) for all v ∈ V

• For any edge e = (u, v) ∈ E, there exists an edge e′ = (f(u), f(v)) ∈ E ′ such

that β(e) = β(e′), and for any edge e′ = (u′, v′) ∈ E ′, there exists an edge

e = (f−1(u), f−1(v)) ∈ E such that β(e′) = β(e).

G is called a isomorphism graph of G′, denoted G′ ∼= G.

If f : V 7→ V ′ is a graph isomorphism between G and G′, and G′ is a subgraph of

another graph G′′, G′ ⊆ G′′, then f is called a subgraph isomorphism from G to G′′.

G′ is called the responding subgraph of G in G′′.

Definition 26 Ḡ =< V̄ , Ē > is called a subgraph of G =< V,E > if and only if

V̄ ⊆ V and Ē = V̄ × V̄ ∩E

Definition 27 Let G1 =< V1, E1, α1, β1 > and G2 =< V2, E2, α2, β2 > be graphs. A

common subgraph of G1 and G2, denoted cs(G1, G2), is a graph G = (V,E) such that

there exist subgraph isomorphisms from G to G1 and from G to G2.

There are several figures used to describe graphs, e.g. chromatic number or girth.

The most important for the discussions in the following chapters are the order and size

of a graph and the degree of a vertex.

4.2 The φ distance similarity measure

In [126] Chartrand et al. proposed a similarity measure for graphs. This measure is

based on mappings between the vertex sets of the graphs, which are compared, and is

defined for connected graphs of the same order. Before defining this similarity measure,

the φ-distance is introduced.
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Definition 28 (φ-distance) Given two connected graphs G1(V1, E1) and G2(V2, E2)

of the same order n and a one-to-one mapping φ : V1 7→ V2. The φ distance between

G1 and G2 is defined as

distφ(G1, G2) =
∑

|lp(u, v) − lp(φ(u), φ(v))|

where lp(u, v) is the length of the shortest path between u and v in G1 and G2.

The φ-distance similarity measure is defined as follows:

Definition 29 (φ-distance similarity measure) The φ-distance similarity measure

between two connected graphs G1 and G2 of the same order is defined as:

dφ(G1, G2) = min{distφ(G1, G2) : φ : V1 7→ V2 is a one to one mapping}

In [126], Chartrand et al. proved that the φ-distance similarity measure is a metric.

Besides, for any two connected graphs G1 and G2 of the same order, the following

holds:

|td(G1) − td(G2)| ≤ dφ(G1, G2)

where

td(G) =
∑

lp(u, v)

If G1 is a connected subgraph with n− 1 edges (spanning tree) of G2, it can even

be shown that

dφ(G1, G2) = td(G1) − td(G2)

Theorem 11 When G1 and G2 are two graphs with the same order, to determine

dφ(G1, G2) is NP-hard.

Proof

We prove that dφ(G1, G2) = 0 when and only when G1 and G2 are isomorphic.

• dφ(G1, G2) = 0 → G1, G2 are isomorphic.

Since dφ(G1, G2) = 0, lp(u, v) = lp(φ(u), φ(v))∀u, v. Thus, there is an edge

between u and v if and only if there is an edge between φ(u) and φ(v). That

means G1 and G2 are isomorphic.

• If G1 and G2 are isomorphic, then dφ(G1, G2) = 0

Let φ : V1 7→ V2 be the isomorphic map. It is obvious that if lp(u, v) = 1 then

lp(φ(u), φ(v)) = 1. Assuming lp(u, v) = lp(φ(u), φ(v)) when lp(u, v) ≤ k ∀u, v.
We prove that lp(u, v) = lp(φ(u), φ(v)) when lp(u, v) = k + 1.
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Since lp(u, v) = k+1, there exists u′ such that lp(u, u
′) = 1 and lp(u

′, v) = k. It is

clear that lp(φ(u), φ(u′)) = 1 and lp(φ(u′), φ(v)) = k. Thus, lp(φ(u), φ(v)) = k+1.

Due to lp(u, v) = lp(φ(u), φ(v)), dφ(G1, G2) = 0.

Since the problem of determining whether G1 and G2 are isomorphic is an NP-hard,

to determine dφ(G1, G2) is an NP-hard. �

Discussion

The φ-distance similarity measure is defined only for connected graphs of the same or-

der and does not take attribute information into account. The integration of attribute

information would be possible by using a distance function which takes attribute infor-

mation into account instead of the lengths of paths between the pairs of vertices. The

choice of this distance function would have to be done carefully in order to preserve

the metric property of the φ-distance similarity measure. Nevertheless, the limitation

to connected graphs of the same order remains, which limits the applicability of the

φ-distance similarity measure to special cases where the requirements are fulfilled.

Additionally, the measure has no parameter and, therefore, is not adaptive to ap-

plication requirements and user needs. Just like integrating attribute information,

adaptability could be achieved by introducing another distance function for vertex

pairs. Again, the choice of this function would have to be done with special care to

preserve the metric properties.

Finally, the time complexity of the measure remains an open issue. However, since

there is no algorithm with polynomial time complexity known, which calculates the

φ-distance similarity measure, a moderate time complexity of this measure cannot be

approved.

4.3 Similarity Based on the Maximal Common Sub-

graph

Based on the maximum common subgraphs, many similarity measures have been pro-

posed [127, 128] (see Table 4.1). These measures consider the similarity between two

graphs with the intuition that the larger their common parts in comparing with the size

of two graphs, the more similar these two graphs. In fact, these measures are defined

after coefficients similarity measure for binary vectors introduced in Chapter 2.

In [130], Bunke and Shearer introduced a distances for graph structures named

maximal common subgraph similarity distance.
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Table 4.1: Cost-based similarity coefficients

Reference d(G1, G2) Range

Wallis et al.[127]
|G12|

|G1| + |G2|
0 to 1

Asymmetric [128]
|G12|

min(|G1| + |G2|)
0 to 1

Sokal and Sneath [128]
|G12|

2|G1| + 2|G2| − 3|G12|
0 to 1

Kulczyski [128]
|G12|(|G1| + |G2|)

2|G1||G2|
0 to 1

McCpmmaughey [128]
|G12|(|G1| + |G2|)

|G1||G2|
− 1 -1 to 1

Tanimoto [129]
|G12|

|G1| + |G2| − |G12|
0 to 1

|G12| is the size of the MCS or MCES between two graphs

of sizes of |G1| and of |G2|.
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Definition 30 (maximal common subgraph similarity distance) The maximal

common subgraph distance between two non-empty graphs G1 and G2 is defined as

dmcs(G1, G2) =
1 − |mcs(G1, G2)|
max{|G1|, |G2|}

They proved that this distance is metric.

Optimal algorithms to find a maximum common subgraph of two graphs often

based on max clique detection [131] or backtracking [132] (see [133] for more detail).

Since these algorithms require exhausted search, it is unsuitable to apply to real-life

data. Thus, approximated algorithms for finding clique are often used [134, 135, 136].

Figure 6.1 presents k-opt algorithms introduced by Kengo et al. [135].

Discussion

Different from the similarity measure of Papadopoulos and Manolopoulos and the φ-

distance similarity measure, the maximal common subgraph similarity distance is de-

fined for graph data and is not restricted to certain graph types.

In [130], it is stated that a design goal for the development of the measure is to avoid

the need for a cost function within the similarity measure. As a reason for this, the

complexity of choosing the best cost function for edit distance based similarity measure

is mentioned. But because of the lack of a cost function, the maximal common subgraph

similarity distance is not adaptive to specific applications and user needs. This fact

greatly limits the usability of the measure for many applications.

An explanation for the similarity distance could be provided by presenting the

maximal common subgraph determined during the calculation. But obviously, this is

no longer an important requirement, since the measure has no parameters which are

adaptive.

While the measure fulfills the metric properties, it can only be calculated with

exponential time complexity. Therefore, it does not meet the requirement of moderate

computational complexity.

4.4 The Edit Distance for Graphs

The edit distance for graphs is an extension of the well known edit distance for

strings [137, 138] to graphs. Sanfeliu and Fu first introduced the edit distance for

attributed graphs in [139]. The edit distance between two graphs is the minimum

number of edit operations which are necessary to transform the graphs into each other.

Edit operations may be the deletion or insertion of vertices or edges or the change of
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vertex or edge attributes. There exist many variants of the edit distance for graphs

which differ in the edit operations that are allowed or whether attributes are considered

or not.

The edit distance for graph is the most common similarity measure for graphs

for several reasons. First, it is a very intuitive measure, with which users can easily

understand how the distance between two objects comes about. As a consequence,

the users can set parameters systematically if the results of a similarity search are

satisfying. This allows us to apply the edit distance in broad range applications and

strengthens the trust of users in the results. Furthermore, the calculation of the edit

distance also produces a mapping between the vertices of the two compared graphs,

which can be visualized for users. This supports users in the often explorative similarity

search process and again, in adapting necessary parameters. Another property of the

edit distance which also increases its adaptability for different applications and users is

the fact that variants of the edit distance are available. Those variants are on different

weights for the edit operations, a restriction of the allowed edit operations, or on a

combination of those two techniques.

Edit distance has been used successfully in many application domains such as face

recognition [140] or object recognition [141].

Definition 31 (Edit operation, edit sequence) Let G = (V,E, α, β) be an attributed

graph. An edit operation is the insertion, the deletion or the change of a label (rela-

belling) of a vertex or edge in G. The insertion of a vertex or edge x is denoted by

(λ→ x), the deletion of x is denoted by (x→ λ) and the relabelling of x to y is denoted

by (x → y). An edit sequence S is a sequence of edit operations, S =< e1, . . . , em >

which can be applied to G. The result of the application of an edit sequence S to a

graph G, S(G), is an edited graph G′.

Definition 32 (Edit cost function) Each edit operation e is assigned a non-negative

cost c(e). The cost of a sequence of edit operations S =< e1, . . . , em > is defined as the

sum of the cost of each edit operation in S.

c(S) =
m
∑

i=1

c(ei)

Definition 33 (Edit distance) The edit distance between two attributed graphs G1

and G2, dedit(G1, G2), is the minimum cost of all edit sequences S that make G1 and

G2 isomorphic:

dedit(G1, G2) = min{c(S)|S(G1) ∼= G2}
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Figure 4.4: Simple edit distance between two graphs. The distance is calculated with

unit cost for all edit operations.

The simplest and most common variant of the edit distance is the weighted edit

distance. It differs from the simple edit distance in the cost function for edit operations.

While for the simple edit distance, each edit operation is assigned the same cost,

in the weighted case, the cost for insertion, deletion and relabeling operations can

differ. It is even possible that the cost for an edit operation depends on the individual

objects involved in the edit operation. The cost for a relabeling, for example, may be

proportional to how much the values of the labels are changed.

The similarity measure for graphs from Papadopoulos and Manolopoulos [142], as

already described in Section ??, also represents a special form of edit distance. But in

contrast to the measures presented in the previous sections, they do not define an insert

or delete operation for edges, but introduce a vertex update operation. Consequently,

the deletion of a single edge takes two edit operations which are the update operations

for the two incident vertices. Consequently, graphs with different size are considered

less similar with Papadopoulos and Manolopoulos measure than with the normal edit

distance. Additionally, the measure is only defined for non-attributed graphs. While

this problem could be solved by introducing an appropriate relabeling operation, the

resulting measure would be incompatible with the efficient search methods presented

in [142].
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Time Complexity of the Edit Distance

In [143], Zhang et al. showed that computing the edit distance between unordered trees

is an NP-hard which means that it has no polynomial approximation scheme unless

P = NP. Consequently, techniques that reduce the complexity of the query processing

become indispensable when using the edit distance.

Discussion

The edit distance for attributed graphs meets almost all of the requirements of a

similarity measure. With the suitable edit cost, we can have a metric distance. Since

these measures are comprehensible for human, they are widely used, especially in case

there is a need of explanations about the similarity scores between graphs. Besides,

users can interfere into similarity measures by using weighed edit operators.

The first weak point of the edit distance is that since this distance needs predefined

weights of edit operators, it requires users to have advance knowledge of data. It is

difficult for users, especially when facing with large or unknown databases. The second

one is the complexity. As other similarity measures do, the time complexity of the edit

distance and its variants is extremely high. This limits applicability of these measures

to large databases.

4.5 Nonoverlap connected subgraph-based measure

In [77], Le et al. presented an idea of using connectivity and closeness of common

subgraphs to estimate the similarity between two graphs.

4.5.1 Similarity measure

Definition 34 Two subgraphs G′ and G′′ of G are called nonoverlaped if their induced

vertex sets are nonoverlapped.

Denote Γ = {Gi : i = 1..m} a set of common nonoverlap subgraphs of G and G′.

Given subgraph Gi, its closeness with respect to G is estimated as a combination of

the common edges and vertices in both Gi and G. To this end, each vertex v ∈ Vi is

weighted as the ratio between the number of edges starting from v in Ei and that E,

τ(v,Gi, G):

τ(v,Gi, G) =
|{(v, v′) ∈ Ei}|
|{(v, v′) ∈ E}| (4.1)
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It is easy to see the more common edges between Gi and G with respect to the

vertex v, the greater the weight τ(v,Gi, G). In fact, since the number of edges from v

in Gi is always less than or equal to that in G, the greater number of edges from v in Gi

means the closer structure at node v in Gi with respect to G. Thus, τ(v,Gi, G) presents

how similar the structure at node v in Gi in comparing with that of the responding

node in G. The maximum value of τ(.) reaches when these structures are identical.

Then, the closeness ρ(Gi, G) of Gi in G is estimated as all weights of vertices v ∈ Vi

ρ(Gi, G) =
∑

v∈Vi

τ(v,Gi, G) (4.2)

Following is an important theorem that ensures the less separated subgraph means

the higher closeness.

Theorem 12 For any set of nonoverlap subgraphs of a subgraph G′, Γ = {Gi =<

Vi, Ei, αi, βi >: i = 1.. . . .}, it holds true that

∑

Gi

ρ(Gi, G) ≤ ρ(G′, G)

The equality occurs when and only when Γ = {G′}

Proof:

• ∑Gi
ρ(Gi, G) ≤ ρ(Gi, G) Since Gis are subgraphs of G′, τ(v,Gi, G) ≤ τ(v,G′, G)

when v ∈ Vj .

Since Vis are not overlapped,

∑

Gi

∑

v∈Vi

τ(v,Gi, G)) ≤
∑

Gi

∑

v∈Vi

τ(v,G′, G)) ≤
∑

v∈V ′

τ(v,G′, G)

⇒
∑

Gi

ρ(Gi, G) ≤ ρ(G′, G).

• ∑Gi
ρ(Gi, G) = ρ(Gi, G) ⇔ Γ = {G′}

– ” ⇒ ” Since

∑

Gi

∑

vi∈Vi

τ(vi, Gi, G) ≤
∑

Gi

∑

vi∈Vi

τ(vi, G
′, G) ≤

∑

v′∈V ′

τ(v′, G′, G),

⋃

Vj

= Vi, and τ(vj , Gj , G) = τ(vj , Gi, G) ∀vj ∈ Vi.

Thus Gj ≡ Gi or Γ = {Gi}
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– ” ⇐ ” is obvious. �

Corollary 1 For any subgraphs Gi and Gj. If Gj is a subgraph of Gi, then ρ(Gj , G) ≤
ρ(Gi, G)

Equation 4.1 and Corollary 1 say the larger the common parts and more similar to

the compound structures, the higher similarity score.

Further, the closeness δ(Gi, G,G
′) of the common subgraph Gi with respect to two

graphs G and G′ is estimated as follows

δ(Gi, G,G
′) = ρ(Gi, G) × ρ(Gi, G

′) (4.3)

Here, the closeness δ(Gi, G,G
′) is considered as an estimator of the similarity be-

tween two graphs G and G′ when they share common subgraph Gi.

Finally, the similarity between two graphs G and G′ is defined as the closeness of

all Gi ∈ Γ. However, since the size of graph are different, it is normalized this sum by

the size of G and G′

δ(Γ, G,G′) =

∑

Gi∈Γ(ρ(Gi, G) × ρ(Gi, G
′))

|V | × |V ′| (4.4)

Theorem 13 Let Γ = {G1, . . . , Gk} and Γ′ = {G′
1, . . . , G

′
k′} be two sets of nonover-

lapped connected common subgraphs of G and G′. If Gi ∈ Γ for i = 1 . . . k is a subgraph

of G′
j ∈ Γ′, then δ(Γ) ≤ δ(Γ′).

Proof:

According to 12, it is clear that for Gik(k 1..) in Γ being subgraphs of G′
j in Γ′,

∑

k

ρ(Gik , G) ≤ ρ(G′
j , G),

∑

k

ρ(Gik , G
′) ≤ ρ(G′

j , G
′)

On the other hand, we have

∑

k

ρ(Gik , G)ρ(Gik , G
′) ≤

∑

k

ρ(Gik , G)
∑

k

ρ(Gik , G
′) ≤ ρ(G′

j , G)ρ(G′
j, G

′)

Consequently,

δ(Γ) =

∑

Gi
(ρ(Gi, G) ρ(Gi, G

′))

ρ(G,G) ρ(G′, G′)
≤
∑

G′

j
(ρ(G′

j, G) ρ(G′
j, G

′))

ρ(G,G) ρ(G′, G′)
= δ(Γ′). �

It can be induced from Theorem 13 that the larger subgraphs Gis are, the greater

is the weight of Γ.
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Definition 35 (Maximum set of nonoverlap common connected subgraphs)

The maximum nonoverlap common connected subgraphs set between two graphs G and

G′, stand for Γ∗, is defined as

Γ∗ = arg max
Γ

{δ(Γ, G,G′)}

Finally, the similarity between two graph G and G′ is defined as:

Definition 36 The similarity between two graphs G and G′ is defined as the weight of

the maximum nonoverlap common connected subgraphs:

ψ(G,G′) = δ(Γ∗, G,G′) (4.5)

4.5.2 Properties

Propostion 6 For any pair of graphs (G,G′), the following properties hold true:

1. 0 ≤ ψ(G,G′) ≤ 1

2. ψ(G,G′) = ψ(G′, G)

3. ψ(G,G′) = 1 if and only if G and G′ are isomorphic graphs.

4. ψ(G,G′) = 0 if and only if G and G′ have no common connected subgraphs of

the size larger than 1.

Proof:

1. From the definition in Equation 4.1, ρ(Gi, G) ≤ |Vi|.

Thus, for any common subgraph set Γ of (G,G′),

δ(Γ) ≤
∑

i(|Vi|)2

|V | |V ′|
Meanwhile, since Gis are disjoint common subgraphs of (G,G′),

∑

i

|Vi| ≤ min(|V |, |V ′|).

Hence,
∑

i

|Vi|2 ≤
(

∑

i

|Vi|
)2

≤ min(|V |, |V ′|)2 ≤ |V ||V ′| (4.6)

This leads to ψ(G,G′) ≤ 1.

The left part of Property 1 can be obviously seen.

76



2. It is apparent that δ(Γ) is the same no matter (G,G′) or (G′, G). Thus, Property

2 is true.

3. ψ(G,G′) = 1 ⇔ the equality in inequality (4.6) happens. This is equivalent to

|V | = |V ′|, |Γ| = 1, and ρ(G1, G) = ρ(G1, G
′) = |V1||V |, which means G and G′

are isomorphic.

4. ψ(G,G′) = 0 is equivalent to ρ(Gi, G) = 0 and ρ(Gi, G
′) = 0 ∀Gi ∈ Γ. That

means |Vi| = 1 for all Gi, or G and G′ have no connected common subgraphs of

the size larger than 1. �

Theorem 14 Finding ψ(G,G′) is an NP-hard problem.

Proof:

Due to Proposition 2 ψ(G,G′) = 1 if and only ifG andG′ is isomorphic. So detecting

ψ(G,G′) implies detecting G and G′ are isomorphic or not. Since the isomorphic

problem is an NP-hard problem, detecting ψ(G,G′) is an NP-hard problem. �

We can learn from Theorem 14 that determining exact similarity between two

graphs requires a huge amount of time. It is impossible when applying to large data-

bases or databases of large graphs. Thus, there is a need of heuristic algorithms to

approximate the similarity between graphs in reasonable running time.

4.5.3 Approximation algorithm

Proposition 1, Theorem 12 and 13 show the larger connected common subgraph, the

greater its weight is. This leads to a naturally approximated method which sequen-

tially finds out the largest commonly connected subgraph (see Algorithm 2). Although

finding out the largest commonly connected subgraph is also an NP-hard problem, it

can be solved efficiently by applying the backtracking algorithm.

Discussion

This similarity measure has no parameter and, therefore, does not need any priory

knowledge of users. However, users can interfere in weighing the closeness scores to

make the measure suitable for their purposes. Similar to similarity measures based on

the maximal common subgraph, this measure is not restricted to certain graph types.

An explanation for the similarity dissimilarity could be provided by presenting

nonoverlap common connected subgraphs determined during calculating. In addition,
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Algorithm 2 Algorithm for determining the similarity between two graphs

1: Γ = ∅
2: repeat

3: cG = the largest connected common of (G,G′)

4: Γ = Γ + cG

5: G = G− cG,G′ = G′ − cG

6: until cG = ∅
7: return δ(Γ)

the calculation is intuitive and comprehensive to human. Moreover, it is no longer an

important requirement as the measure has no parameters which need to be adapted.

The time complexity of this measure remains an open issue. Since there is no

algorithm with polynomial time complexity known, which calculates the measure, a

moderate time complexity of this measure cannot be approved. However, the proposed

approximation algorithm can help to estimate reasonably this similarity measure.

4.6 Conclusion

This chapter mentioned similarity measures for graph data. The structure complexity

leads to difficulty in estimating the similarity for graph data. Strategies of similarity

measures for standard data cannot be applied to this kind of data.

The main common points of similarity measures for graph data are that they based

on common parts (corresponding parts) to estimate their similarity measures. Thus,

the first problem of each measure is to determining their common parts. The φ()

distance and the measure of Papadopoulos and Manolopoulos are to find a map between

two graphs and determine the similarity score based on this map. Similarity measure

based on the maximum common subgraph, edit distance, and the nonoverlap connected

subgraph-based measure search the particular common parts between two graphs to

form their similarity score.

The main limitations of the similarity measures are their complexity. The problem

of detecting common parts (corresponding parts) of the similarity measures are often

an NP-Hard. This leads to huge and unrealistic time consumption estimating exactly

the similarity between two graph objects when applying to large graph objects or large

databases. However, each of the measure has heuristic algorithms for approximating

the similarity in reasonable times.
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Chapter 5

Applications of graph similarity

measures for 2D chemical

structures

This chapter reports experiments when applying similarity measures for graph data to

2D chemical structure data. The first experiments are to compare similarity measures

based on the maximal common subgraph and the nonoverlap connected subgraph-

based measure in classification nearest neighbor. The other experiments are to apply

clustering with the nonoverlap connected subgraph-based measure to real-life data-

bases. These experiments help to discover interesting relations between structures and

chemical properties and that between clusters of structures and clusters of enzymes in

pathways.

5.1 Introduction

Measuring the similarity between chemical compounds (molecules) is one of the primary

tasks in chemistry and biology. Many applications from different areas such as classifi-

cation, clustering, database searching, protein-ligand docking, reaction site modeling,

and biological prediction are mainly based on similarity measures to product results.

For the purpose of drug discovery, structures are considered similar if they carry similar

biological activity. Thus, the structure representation has to consider those properties

of a chemical structure that are deemed to be responsible for the biological activ-

ity under investigation. The similar property principle states that structurally-similar

molecules exhibit similar properties. Searching is also an area where similarity measure

play an important roles. For example, finding similar or relevant compounds to a given
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Figure 5.1: (R)-AMAA, (R)-2-Amino-2-(3-hydroxy-5-methyl-4-isoxazolyl)acetic acid

compounds needs similarity measures to determine how similar between compounds in

databases and given compounds. The more proper the similarity measure, the more

relevant output we obtain. The use of similarity searching in chemical databases is

given in [144].

The similarity between compounds is often measured by comparing their 2D struc-

tures where a compound is presented by a graph in which vertices and edges present

compound’s atoms and bonds. The main reasons for using 2D structures are its ade-

quacy for most real-life purposes [122, 123] and easy detection. Besides, 2D visualiza-

tion is comprehensive for human.

5.2 2D Chemical structure

The 2D presentation of a chemical compound is a graph G =< V,E, α, β > where

• The node set V is the set of atoms

• The edge set E is the set of links

• Map α maps atom names to node labels

• Map β maps link types to edge labels.

For example, Figure 5.1 and 5.2 show compound “(R)-AMAA (R)-2-Amino-2- (3-

hydroxy-5-methyl-4-isoxazolyl) acetic acid” and its graph structure.

Two popular formats to present chemical structures are SMILES and CTfile for-

mats.
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methyl-4-isoxazolyl)acetic acid

• SMILES [145], (Simplified Molecular Input Line Entry System) is a linear string

representation language for chemical molecules. The SMILES language is com-

monly used in computational chemistry and is supported by most major software

tools in the field, like the commercial Daylight toolkit or the Open-Source Open-

Babel library. The SMILES notations of chemical compounds are comprised of

atoms, bonds, parenthesis, and numbers:

– Atoms: Atoms are represented using their atomic symbols, i.e. C for car-

bon, N for nitrogen, or S for sulfur. For aromatic atoms, lower case letters

are used, and upper case letters otherwise. Atoms with two letter symbols,

like chlorine (Cl) or bromine (Br), are always written with the first letter in

upper case and the second letter can be written either with upper or lower

case. With a rare few exceptions, hydrogen atoms are not included in the

string representation of a molecule.

– Bonds: Four basic bond types are used in the SMILES language: single,

double, triple, and aromatic bonds, represented by the symbols: “-”, “=”,

“#”, and “:” respectively. Single and aromatic bonds are usually omitted

from SMILES strings. Not belonging to the four basic bonds are ionic bonds,

or disconnections, represented by a ’.’.

– Branches: Branches are specified by enclosing brackets, “(” and “)”, and in-

dicate side-structures. A branch can, and often does, contain other branches.
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Figure 5.3: Mol format

– Cycles: Cyclic structures are represented by breaking one bond in each

ring. The atoms adjacent to the bond obtain the same number. For ex-

ample, “cccccc” denotes a (linear) sequence of six aromatic carbons and

“c1ccccc1” denotes a ring of six carbons. Here, we refer to the numbers in-

dicating the cyclic structures of a compound as cyclic link numbers. These

cyclic link numbers are not unique within the a SMILES representation of

a molecule. For instance, “c1ccccc1Oc2ccccc2” or “c1ccccc1Oc1ccccc1” are

valid notations for the same molecule.

For example, the smile presentation of compound (R)-AMAA, (R)-2-Amino-2-

(3-hydroxy-5-methyl-4-isoxazolyl) acetic acid (Figure 5.1):

O[CH]([CH]1O)C(O[CH]1COP(OP(OC([CH](O)[CH]2O)O

[CH]([C](O)=O)[CH]2O)(O)=O)(O)=O)N(C=CC3=O)C(N3)=O

• CTfile [146] presents directly a chemical structure by fixed atoms in space and

list connections between items. Different from SMILES format, CTfile stores a

compound by a list of coordinates of atoms and connection between atoms. The

key piece describing a chemical structure is the connection table (Ctab) block

indicated all information of the structure. Figure 5.3 shows an example of Mol

structure.
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5.3 Similarity measures for 2D chemical structures

Methods for measuring the similarity between chemical compounds based on 2D struc-

tures have been proposed [147, 122, 123, 148, 149, 150, 125, 151, 152, 153]. The main

approaches of the measures are the fingerprint-based comparison and the graph-based

comparison. The first approach considers a molecule as a bit-string where each bit

shows the presence or absence of either an atom or an important predefined molecular

substructure (called the key descriptor or finger) [147]. The similarity between two

molecules is then determined by comparing their corresponding bit-strings [122, 123].

In addition, the combination of numerical vector methods and fingerprint-based meth-

ods has been used [78, 80, 81, 154]. The main complication of the approach is difficulty

in deciding the key descriptors [148, 149].

The graph-based approach measures the similarity between two compounds by com-

paring their 2D structures. Basically, similarity measures for graphs can be applied to

chemical structures. However, similarity measures in use are often estimated by either

the maximum common subgraphs (MCS) [150, 125, 151] or the maximum common

edge subgraphs (MCES) [152, 153]. Estimating the similarity between two graphs by

the number of vertices (or edges) in the MCS (or MCES) shows two problems. Natu-

rally, atoms of a chemical compound are connected directly by a bond or indirectly by

a chemical path, in which any two adjacent atoms on the path are directly connected.

In other words, the structure graph of a chemical compound is often connected. An

interpretation of this nature is that a smaller set of connected atoms with their chemi-

cal bonds is usually much more meaningful than a lager set of separated atoms. Thus

the size (number of nodes or edges) of MCS or MCES is not a good representative for

the similarity between two chemical compounds. In addition, both atoms and chemical

bonds play equally importance roles in chemical compounds so to exclude one could

not be good solutions.

Some modification of using MCS have been proposed [125, 151]. The main idea is

that the same atom species in chemical compounds must be discriminated by different

labels because they show different physicochemical properties according to their spatial

and chemical circumstances. In fact, 68 atom types were predefined. Then the matched

score between two atoms was defined based on the match between two structures related

to two atoms.

Since the graph-based similarity measures are designed for generate graphs, there

is a gap between the measures and nature sense of chemical compounds. To fill the

gap, Le et al. proposed a new view for the similarity between chemical compounds

based on their common parts [77]. The idea is to measure the similarity between two
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compounds based on the closeness of the common part’s structures in comparing with

compound structures under conditions that these common parts must be connected

and nonoverlapped. These conditions guarantee chemical nature senses of the common

parts. In fact, the closeness factor is estimated so that the larger the common parts

and the more similar they are to the compound structures, the higher closeness score.

5.4 Experiments with classification

5.4.1 Methodology

To show the merit of similarity measures when applying to classification methods,

the nearest neighbor method was chosen as its accuracy strongly relies on similarity

measures and presents how good the measures are. The tests were carried out to

compare the nonoverlap connected subgraph-based measure and the measures based

on the maximum common subgraphs given in Table 4.1. It is easy to see that NN

produces the same accuracy results when using any of the measures given in Table 4.1

[79].

Since finding the maximum common subgraph of two graphs is an NP-Hard prob-

lem, the approximated algorithm proposed by Kengo et al. in [135] was chosen (See

Figure 6.1).

5.4.2 Databases

Eight databases are selected from three sources to guarantee the diversity of data.

That helps to avoid bias in selecting databases.

• The first two data sets F188 and F42 are the mutagenicity databases [155, 156].

The databases contain structures information as well as chemical properties of

compounds.

• 5 data sets from U.S Environmental Protection Agency [157] including:

– DBPCAN: Water Disinfection By-Products Database with Carcinogenicity

Estimates Carcinogenicity estimates (high, moderate, low concern) by EPA.

– EPAFHM: EPA Fathead Minnow Aquatic Toxicity Database

– NCTRER: FDA’s National Center for Toxicological Research - Estrogen

Receptor Binding Database

– CPDBRM: Carcinogenic Potency Database Rat and Mouse
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Table 5.1: The accuracy of NN with our similarity measure and with Tanimoto coeffi-

cient measure
Accuracy (%) Running time (s)

No Name Size Nonover. conn.

subgraph-based

Max. Com.

Subgraph

Alg. 2 K-opt

1 F42 42 88.10 80.95 108 93

2 F188 188 84.04 77.13 2909 3486

3 CPDBRM 1189 52.73 52.65 1624 56668

4 CPDBHA 79 60.76 60.76 1 83

5 DBPCAN 209 62.20 56.94 3 180

6 EPAFHM 614 57.33 51.63 61 3852

7 NCTRER 230 85.22 70.43 313 4999

8 Ligand 377 65.78 61.42 2914 23295

– CPDBHA: Carcinogenic Potency Database Hamster

• The last data, Ligand, is obtained from the KEGG database [158].

5.4.3 Results and discussion

Table 5.1 shows the results of NN with the nonoverlap connected subgraph-based mea-

sure and with the measures based on the maximum common subgraphs. It can be seen

that NN with the nonoverlap connected subgraph-based measure is clearly more accu-

rate than NN with the measures that are based on the maximum common subgraph

(i.e., NCTRER: 85.22% in compare with 70.43%) for 5 data sets. For two data sets

CPDBRM and CPDBHA, all of these measures produce the same accuracy. The exper-

iment says that the nonoverlap connected subgraph-based measure can boost clearly

the accuracy of NN in comparison with similarity measure based on the maximum

common subgraph for some real-file data.

The running time for estimating the similarity between compounds of the nonover-

lap connected subgraph-based measure is much less than that of K-opt for MCS (Ta-

ble 5.1). For instance, the nonoverlap connected subgraph-based measure needs 1624

seconds for database CPDBRM meanwhile K-opt does 56668 seconds. That is because

the number of connected combinations is much smaller than the number of arbitrary

combinations.
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5.5 Experiments with clustering

This section presents results when applying a clustering method with the nonoverlap

connected subgraph-based measure to more than eleven thousands compounds ob-

tained from the KEGG database [158]. The first experiments are to analyze relations

between clusters of compounds of the whole database with other chemical information

such as pathways, enzymes, etc. The second experiments are to analyze relations be-

tween pathway modules identified by clusters of similar structure compounds and that

identified by genomic contexts, namely, operon structures of enzyme genes.

5.5.1 Clustering methods and Database

Clustering methods can be divided into two main approaches: partitioning and hi-

erarchical. Since partitioning methods [34, 35] are not suitable for noncontinuous

data, a hierarchical-based clustering method is chosen to cluster compounds. Among

hierarchical-based clustering methods, the method with the average complete linkage

condition [38] was selected as it can detect variant clusters (See Subsection 3.5.2 for

more detail).

The KEGG database contains 11,149 compounds, reactions of compounds, enzymes,

pathways, etc. (see [158] for more detail).

5.5.2 Clustering results for the whole database

With the threshold similarity degree of 0.5, 2629 clusters were found and 1261 of them

were removed as they contain a single compound.

It was induced from clustering results that compounds in the same clusters are

strongly alike in structures. Figure 5.4 shows three sample structures of cluster 1: the

structures of Cinnamoyl-CoA, Malonyl-CoA Malonyl coenzyme A and Feruloyl-CoA

trans-Feruloyl-CoA. In the five largest clusters, the common structure of each (see

Figures 5.5, 5.6, 5.7, 5.8, and 5.9) is little different from their original compounds. Also,

compounds in the same cluster share common names. This explains why compounds

in the same cluster share common properties. As an example, compounds in Cluster

1 have the common name CoA (Coenzyme A). Thus the possess the properties of

Coenzyme A such as being required to metabolize fat, carbohydrate and protein and

convert them into energy at the cellular level, or being the initiation of the body’s

energy cycle. This helps to reason why this cluster strongly associates with carbon

hydrate, lipid and amino acid metabolism pathways.

86



Table 5.2: Common formula, names, etc. of the five largest clusters

No. Size Com. formula common

name

description

of member

KEGG pathways map numbers

C L AA BX second AtR P&NP

1 188 C22O17N6P3S CoA Coenzyme

A

640,

650

62, 71,

120

280 632

2 115 rna Ribonucleotid 251, 252,

260, 450

970

3 98 C19O one cyclopenta[a]

phenan-

threne

140,

150

4 82 C9O12P2 dp-, ose pyran,

diphos-

phate,

methyl

cyclopenta

51, 500,

520,

530

521 522

5 61 C6O benz containing

benzene

ring

380 362, 632,

623

622

C: Carbon hydrate Metabolism; L: Lipid Metabolism; AA: Amino Acid Metabolism; BX: Biodegra-

dation of Xenobiotics; Second: Biosynthesis of Secondary Metabolites; AtR: Genetic Information

Processing (Translation);P&NP: Biosynthesis of Polyketides and Nonribosomal Peptides
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Figure 5.4: Structures of three compounds of cluster 1

With a deeper analysis of the relation between compound clusters and pathways,

compound clusters were found to be associated with specific pathways in the KEGG

database. For example, Cluster 1 has 28 compounds taking part in Fatty acid biosynthe-

sis (path 2)(map00062), Cluster 2 has 40 compounds joining Aminoacyl-tRNA biosyn-

thesis(map00970). In addition, it can be seen from Table 5.2 that each cluster asso-

ciates with certain classes of pathways. For instance, compounds in Cluster 3 strongly

associate with Lipid Metabolism(map00140, map00150), or compounds in Cluster 2

are assigned mainly to Amino Acid Metabolism and Aminoacyl-tRNA biosynthesis of

genetic information processing.

Moreover, compounds in the same clusters share the same groups of enzymes

working on specific radicals in compounds, accordingly catalyzing the reactions they
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join. For example, compounds in cluster 2 use enzymes of EC 6.1.1 (Ligases Forming

Aminoacyl-tRNA and Related Compounds) which mainly catalyze reactions that rna

compounds take part in. Other introduced groups of enzymes also works on radicals

that each cluster’s common structure carries (Table 5.3).

In short, compounds in the same clusters not only share common structures and

names but also strongly associate with specific pathways, mainly metabolic pathways,

and share common groups of enzymes catalyzing their reactions.

5.5.3 Analysis on clustering results of pathway oriented data-

bases

Clustering analysis of the whole database shows a tendency of similar structures to be

assigned to specific pathways. Thus, the clustering of compounds along the pathway

maps provided by KEGG is an important step to learn more about the metabolic

pathways and predict possible operon structures [151].

This part analyzes the result of clustering compounds and the correlation between

compound clusters and enzyme clusters within metabolic pathways. Due to space limit,

the analysis result on one pathway (pathway map00860) was given as an example. The

analysis of other pathways can be downloaded at www.jaist.ac.jp/q̃uang/chemical/PathwayAnalysis/

Clustering of compounds

The result of clustering similar compounds on the pathway maps shows there is a clear

tendency of similar structure compounds to take up adjacent positions in reaction steps
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Figure 5.7: The common structure of compounds of Cluster 3: C19, one

of the maps. As a result, the pathway maps are divided into several parts depends on

the chemical compounds achieved in each cluster. For example, the clustering com-

pounds on the pathway map00860 (Porphyrin and chlorophyll metabolism-Fig. 5.10)

identifies 5 noticeable compound clusters as areas enclosed by thinner line, named C1

to C5.

Correlation of enzyme clusters and compound clusters

To find out about the relation between chemical information and genomic information,

it is necessary to discover the correlation of compound clusters and enzyme clusters on

the metabolic pathways. The enzyme clusters are derived from the ortholog table [159,
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160] which contain the information about orthologous sets of enzyme genes. Analysis

of the correlation between compound clusters and enzyme clusters helps to predict

possible operon-like structures in selected genomes [151].

The most surprising discovery was achieved when examining the pathway oriented

clustering is that clusters of compounds and enzymes often overlap mostly each other

on the pathway maps. For instance, in Figure 5.10, the area of C3 overlaps most

of that of E1. The intersection of compound clusters and enzyme clusters helps to

point out the operon-like structures, e.g. in the intersection of enzyme clusters with

C4, the possible operon-like structure(such as in Pseudomonas aeruginosa) consists of

E2.5.1.17, E6.3.5.10 E6.3.1.10, E2.7.1.156, E2.7.7.62, E2.7.8.26, and another operon-

like structure (such as in Mycobacterium tuberculosis H37Rv) consisting of E2.1.1.130,

E1.14.13.83, E2.1.1.131 (CbiG), E2.1.1.133 is found within C3. Other possible operon-

like structures are shown in Table 5.4.

In brief, the clustering of compounds on pathway maps reveals the tendency of

similar compounds to take up adjacent steps of reactions on the pathways. Besides,

it shows that a set of enzyme genes encoded in an operon often corresponds to a set

of enzymes catalyzing successive reaction steps (where compounds in the clusters are

nodes) in a specific metabolic pathway. This encourages the new way of discovering
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Table 5.3: Compound clusters with their main enzyme requirements in related reactions

Cluster ID EC number Fre. Functions

Cluster 1 EC 1.1 31 Acting on the CH-OH group of donors

EC 1.2 35 Acting on the aldehyde or oxo group of donors

EC 1.3 68 Acting on the CH-CH group of donors

EC 2.3 210 Acyltransferases

Cluster 2 EC 6.1.1 23 Ligases Forming Aminoacyl-tRNA and Related

Compounds

Cluster 3 EC 1.1 21 Acting on the CH-OH group of donors

EC 1.14 18 Acting on paired donors, with incorporation or

reduction of molecular oxygen

Cluster 4 EC 1.1 18 Acting on the CH-OH group of donors

EC 2.4 203 Glycosyltransferases

Cluster 5 EC 1.14 27 Acting on paired donors, with incorporation or

reduction of molecular oxygen

knowledge on genome by analyzing structural similarity of chemical compounds.

5.6 Conclusion

In this chapter we presented applications of similarity measures when applying to clus-

tering and classification. Experiments with classification and clustering for real-life

databases show the merit of similarity measures. Experiment results show that the

nonoverlap connected subgraph-based measure clearly boosts the accuracy of NN in

comparing with the similarity measures that are based on the maximum common sub-

graph. Moreover, clustering for more than eleven thousand compounds in database

KEGG/LIGAND discovered (revealed) compound clusters with similar structures that

share the same common names, take part in the same pathways with the same re-

quirement of enzymes in reactions. Analysis on clustering results of pathway oriented

databases showed that clusters of compounds and clusters of enzymes on the same

pathway have a tight relation. This encourages the new way of discovering knowledge

on genome by analyzing structural similarity of chemical compounds.
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Table 5.4: Possible operon-like structure from KEGG Pathway map00860

Cluster area Possible operon

Cluster 1 E4.1.1.37, E1.3.3.3

Cluster 2 E6.6.1.1, E2.1.1.11

Cluster 2 E1.3.1.33

Cluster 3 E2.1.1.130, E1.14.13.83, E2.1.1.131 (CbiG), E2.1.1.133,

E2.1.1.152, E1.3.1.54, E2.1.1.132 (CbiD), E5.4.1.2,

E6.3.5.9, E6.3.1.-, E6.6.1.2

Cluster 3 E1.3.1.-, E4.99.1.-

Cluster 4 E2.5.1.17, E6.3.5.10, E6.3.1.10, E2.7.1.156, E2.7.7.62,

E2.7.8.26

Cluster 5 E3.1.3.73, E2.4.2.21
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Figure 5.10: Example of compound/enzyme clusters in pathway oriented
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Chapter 6

Conclusion

As an aid to the reader, this final chapter restates the research problem and reviews

the major methods used in this study. The major part of this chapter summarizes the

results and discusses their implications.

6.1 Summary and review

6.1.1 Problems

The importance of similarity in our daily life is often underestimated, but it is clearly

pointed out in cognitive sciences, including psychological and philosophical aspects.

Not only that the main inspiration for similarity in computer science is the research

done in psychology, but there are also parallels of the way information has to be

processed based on similarity by computers and humans. In computer science, dis-

tance function design remains at the core of many important data mining applications.

Most applications such as clustering, classification and nearest neighbor searching use

distance functions as a key subroutine in their implementation. Clearly, the quality

of the resulting distance function significantly affects the success of the corresponding

application in finding results.

Even thought Similarity measures/distances for standard data have been studied for

longtime, the similarity measure problem is still opened for categorical data, heteroge-

nous data and graph data. Due to special properties and characteristics of complex

data such as poor structures, heterogeneity or complex structure, similarity measures

for these data have special requirements that lead to difficulty in estimating similarity

of objects of these data. In this dissertation, we reported and introduced similarity

measures for these data.
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6.1.2 Summary

In chapter 2, we summarized employed similarity measures for binary vectors for cat-

egorical data. Properties and characteristics were investigated to see their advantages

and disadvantages. A new similarity measure that based on relations between at-

tributes was introduced. Experiments with the nearest neighbor classification that

show the merit of the similarity measures were described.

In chapter 3, we reported similarity measure for heterogenous data including Gowda

and Diday methods and Minkowski generated metrics, and introduced a framework,

ordered probability-based similarity measure, that is based on probability distributions

and order relations. Applications with clustering applying to real-life datasets that

showed the merits of the ordered probability-based similarity measure were presented.

In chapter 4, we showed similarity measures for graph data including the φ distance,

the Measure of Papadopoulos and Manolopoulos, similarity based on the maximal

common subgraph, and the edit distance. A new similarity measures, the nonoverlap

connected subgraph-based measure, that based on nodes, edges, and connectivity of

subgraphs were introduced.

In chapter 5, we reported experiments when applying similarity measures of graph

data to 2D chemical structures. Comparisons of the results when applying similar-

ity measures based on the maximal common subgraph and that when applying the

nonoverlap connected subgraph-based measure with the nearest neighbor classifica-

tion were presented. Then, experiments with clustering for the Ligand database were

carried out.

6.1.3 Reviews

Categorical data

Employed similarity measures for binary vectors are fast to computer, simple and

comprehensive for humans. However, the simple similarity between two values, 0 or

1 when depending on the fact if they are are identical or not, makes these similarity

measures become poor in variance. The association-based measure that estimates

similarity between values based on similarity between their associated values makes

similarity between two values more various. Experiments when applying this measure

and similarity measures for binary vectors to the nearest neighbor classification show

that this measure has some advantages in boosting accuracy. However, this measure

cannot be applied to databases whose attributes are absolutely independent.
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Heterogenous data

The similarity measures of Gowda and Diday, and that of the framework Minkowski

metric use the same strategy that estimate similarity between values of different data

types based on common factors/aspects. Thus, they face with the problems of deter-

mining factors/aspects that are suitable for all data types. Ordered probability-based

similarity measure avoids the problems by estimating similarity between values based

on order relations and probability distributions. However, this measure is faced with

time consumption problems as the complex of estimating similarity between values is

O(N2) where N denotes is a database size.

Graph data

Each of the similarity measure presented in Chapter 4 estimates the similarity be-

tween these two graphs based on particular aspect of two graphs. The aspects are

often the common parts or related to common parts of two graphs. The proposed

similarity measure, Nonoverlap connected subgraph-based measure, is somehow suit-

able for areas when nodes, edges, and connectivity are all-important, i.e. chemical

areas. Experiments with the nearest neighbor classification show that this measure

has advantage in boosting accuracy in comparing with similarity measures based on

the maximal common subgraph. Besides, experiments when applying this measure to

clustering also discovered surprised relations between structures and enzymes.

6.2 Further study

Many problems have been revealed after this dissertation.

6.2.1 Categorical data

Three questions of similarity measures for categorical data are still opened:

• Since the association-based measure is limited to databases whose attribute are

dependent on each others, there is a need of expanding or adapting this measure

to databases whose attributes are absolutely independent.

• There should be evaluations when applying the similarity measures for different

problems such as clustering and searching.

• The idea of using association between attributes to estimate the similarity can

be also applied to mixed or heterogenous data as it can overcome the difference
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between data types. However, how to apply this measure to different data types

is still an opening question.

6.2.2 Heterogenous data

The main problem of algebra-based approaches is to determining factors/aspects that

are suitable for all data types. Some views of these factors and aspects have been

introduced but there are still limitations when applying to real-life databases. Thus,

• There should be evaluations of these views when using with clustering, classifi-

cation, searching, etc. to see their advantages and disadvantages.

• There should be more investigations to discover more suitable factors/aspects.

For the ordered probability-based similarity measure, the problem lies in time con-

sumption to estimate the similarity between values. Algorithms for effectively estimat-

ing similarity between values of different data types are essentially required. Besides,

there should be investigations to see the affects of order relations in this measure.

6.2.3 Graph data

Complexity problem

Complexity is the main problem for most similarity measures of graph data. Most of

the similarity measure meets an NP-Hard problem when estimating the similarity score

between graphs. Hence, to apply the similarity measures to large databases, it requires

approximated algorithms for the NP-Hard problems. Investigations and studies of the

approximated algorithms are therefore necessary. Surveys for existing algorithms with

their advantages and disadvantages are essentially important to users.

Applications to other fields

Experiments show the advantage of the nonoverlap connected subgraph-based measure

in classification and clustering for chemical structure data. However, there is a need of

applying it to other areas such as image processing and protein structures to see how

useful this measure is in the real-life. More over, it would be useful if there is a survey

that reports advantages and disadvantages of similarity measures when applying to

different fields. This survey will help users save their time to choose right measures for

their particular purposes.
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for finite alphabet markov sources. IEEE Transactions on Information theory,

47(4):1553–1561, 2001.

[96] S. Kullback. Information theory and statistics. John Wiley and Sons, New York,

1959.

[97] S. Kullback and R.A. Leibler. On information and sufficiency. Annals of Mathe-

matical Statistics, 22:79–86, 1951.

[98] C.L. Blake and C.J. Merz. (uci) repository of machine learning databases, 1998.

106



[99] B. Liu, W. Hsu, and Y. Ma. Integrating classification and association rule mining.

In Knowledge Discovery and Data Mining, pages 80–86, 1998.

[100] T.C. Fogarty. First nearest neighbor classification on frey and slates letter recog-

nition problem. Machine Learning, 9(4):387–388, 1992.

[101] Anderberg M.R. Clustering analysis for applications. NewYork: Academic, 1973.

[102] S. Geist, K. Lengnink, and R. Wille. An order-theoretic foundation for simi-

larity measures. In Diday E. and Lechevallier Y., editors, Ordinal and symbolic

data analysis, studies in classification, data analysis, and knowledge organization,

volume 8, pages 225–237, Berlin, Heidelberg, 1996. Springer.

[103] R.A Fisher. Statistical methods for research workers. Oliver and Boyd, 11th

edition, 1950.

[104] S.A Stouffer, E.A Suchman, L.C Devinney, and R.M Williams. Adjustment

during army life. The American Solder, 1, 1949.

[105] G.s Mudholkar and E.O George. The logit method for combining probabilities.

In J.Rustagi, editor, Symposium on Optimizing methods in statistics, pages 345–

366. Academic press, NewYork, 1979.

[106] G.N. Lance and W.T. Williams. A generalised sorting strategy for computer

classifications. Nature, pages 212–128, 1966.

[107] G.N. Lance and W.T. Williams. A general theory of classificatory sorting stragies

i hierarchical systems. Computer journal, 9:373–380, 1967.

[108] L.L McQuitty. Similarity analysis by reciprocal pairs for discrete and continuous

data. Education and Psychological measurements, 26:825–831, 1966.

[109] J. Podani. New combinatorial clustering methods. Vegetatio, 81:61–77, 1989.

[110] J.D.J. Ward. Hierarchical grouping to optimize an objective function. Journal

of the american statistical association, 58:236–244, 1963.

[111] D. Wishard. An algorithm for hierarchical classifications. Biometrics, 25:165–170,

1969.

[112] J.C. Gower. A comparison of some methods of cluster analysis. Biometrics,

23:623–638, 1967.

107



[113] B. Berendt, A. Hotho, and G. Stumme. Towards semantic web mining. In

International Semantic Web Conference, pages 264–278, 2002.

[114] Tom Blank. Behavioral modeling for system design (panel). In DAC, page 196,

1988.

[115] W. Eberle, G. Vandersteen, S. Wambacq, P.and Donnay, G.G. E. Gielen, and

Hugo De Man. Behavioral modeling and simulation of a mixed analog/digital

automatic gain control loop in a 5 ghz wlan receiver. In DATE, pages 10642–

10649, 2003.

[116] N.G. Bourbakis, A. Mogzadeh, S. J. Mertoguno, and C. Koutsougeras. A

knowledge-based expert system for automatic visual vlsi reverse-engineering: Vlsi

layout version. IEEE Transactions on Systems, Man, and Cybernetics, Part A,

32(3):428–436, 2002.

[117] J.M. Kleinberg, R. Kumar, P. Raghavan, S. Rajagopalan, and A. Tomkins. The

web as a graph: Measurements, models, and methods. In COCOON, pages 1–17,

1999.

[118] A.O. Mendelzon. Review - authoritative sources in a hyperlinked environment.

ACM SIGMOD Digital Review, 1, 2000.

[119] C.R. Palmer, P.B. Gibbons, and C. Faloutsos. Anf: a fast and scalable tool for

data mining in massive graphs. In KDD, pages 81–90, 2002.

[120] S. Kramer, Luc De Raedt, and Helma C. Molecular feature mining in hiv data.

In KDD, pages 136–143, 2001.

[121] M. Deshpande, M. Kuramochi, and G. Karypis. Frequent sub-structure-based

approaches for classifying chemical compounds. In ICDM, pages 35–42, 2003.

[122] R.D. Brown and Y.C. Martin. Use of structure - activity data to compare

structure-based clustering methods and descriptors for use in compound selec-

tion. Journal of the American Chemical Society, 36:572–584, 1996.

[123] R.D. Brown and Y.C. Martin. The information content of 2d and 3d structural

descriptors relevant to ligand-receptor binding. Journal of the American Chemical

Society, 37:1–9, 1997.

[124] G.M. Downs and P. Willett. Similarity searching in databases of chemical struc-

tures. Reviews in Computational Chemistry, 7:1–66, 1995.

108



[125] M. Hattori, Y. Okuno, S. Goto, and M. Kanehisa. heuristics for chemical com-

pound matching. In G. Michael, K. Minoru, M. Satoru, and T. Toshihisa, editors,

Genome Informatics, pages 144–153, 2003.

[126] G. Chartrand, G. Kubicki, and M. Schultz. Graph similarity and distance in

graphs. Aequationes Mathematicae, 55(1-2):129–145, 1998.

[127] W.D. Wallis, P. Shoubridge, M. Kraetz, and D. Ray. Graph distances using graph

union. Pattern Recognition Letters, 22(6/7):701–704, 2001.

[128] D. Ellis, J. Furner-Hines, and P. Willett. On the measurement of inter-linker

consistency and retrieval effectiveness in hypertext databases. In SIGIR ’94:

Proceedings of the 17th annual international ACM SIGIR conference on Re-

search and development in information retrieval, pages 51–60. Springer-Verlag

New York, Inc., 1994.

[129] Y. Takahashi, S. Maeda, and S. Sasaki. Automated recognition of common geo-

metrical patterns among a variety of three-dimensional molecular structures. An-

alytica Chimica Acta, 200:363–377, 1987.

[130] H. Bunke and K. Shearer. A graph distance metric based on the maximal common

subgraph. Pattern Recognition Letters, 19(3):255–259, 1998.

[131] G. Levi. A note on the derivation of maximal common subgraphs of two directed

or undirected graphs. Calcolo, 9:341–354, 1972.

[132] J.M. James. Backtrack search algorithms and the maximal common subgraph

problem. Software-Practice and Experience, 12(1):23–34, 1982.

[133] R.U. Julian. An algorithm for subgraph isomorphism. J.ACM, 23(1):31–42, 1976.

[134] E. Marchiori. Genetic, iterated and multistart local search for the maximum

clique problem. In Applications of Evolutionary Computing, volume LNCS 2279,

pages 112–121. Springer, 2002.

[135] K. Kengo, H. Akihiro, and N. Hiroyuki. Solving the maximum clique problem

by k-opt local search. In The 5th Metaheuristics International Conference (MIC-

2003), Kyoto, Japan, 2003.

[136] R. Battiti and M. Protasi. Reactive local search for the maximum clique problem.

Algorithica, 29(4):610–637, 2001.

109



[137] V. Levenshtein. Binary codes capable of correcting deletions, insertions and

reversals. Soviet Physics-Doklady, 10:707–710, 1966.

[138] R.A. Wagner and J.M Fisher. The string to string correction problem. Journal

of the ACM, 21(1):168–173, 1974.

[139] A. Sanfeliu and K.S. Fu. A distance measure between attributed relational graphs

for pattern recognition. IEEE Transactions on Systems, Man and Cybernetics,,

13(3):353–362, 1983.

[140] L. Wiskott, J.M Fellous, N. Kruger, and Malsburg C. von der. Face recognition

by elastic bunch graph matching. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 19(7):775–559, 1997.

[141] E. Kubicka, G. Kubicki, and I. Vakalis. Using graph distance in object recogni-

tion. In Proc. ACM Computer Science Conference, pages 43–38, 1990.

[142] A. Papadopoulos and Y. Papadopoulos. Structurebased similarity search with

graph histograms. In Proc. DEXA/IWOSS Int. Workshop on Similarity Search,

pages 174–178. IEEE Computer Society Press, 1999.

[143] K. Zhang and T. Jiang. Some max snp-hard results concerning unordered labeled

trees. Information Processing Letters, 49:249–254, 1994.

[144] P. Willet. Chemical similarity searching. Journal of Chemical Information Com-

puter Science, 38:983–996, 1998.

[145] D. Weininger. Smiles, a chemical language and information system 1. intro-

duction and encoding rules. Journal of Chemical Information and Computer

Sciences, 28:31–36, 1988.

[146] A. Dalby, J.G. Nourse, W.D. Hounshell, A.K. Gushurst, D.L. Grier, Leland B.A.,

and Laufer J. Description of several chemical structure file formats used by

computer programs developed at molecular design limited. Journal of Chemical

Information and Modelling, 32:244–255, 1992.

[147] D. Weiniger. Introduct of encoding rules. Journal of the American Chemical

Society, 28:31–36, 1988.
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Appendix

K-Opt Algorithm

Procedure K-Opt

In: Subgraph sG =< sV >

Out : Subgraph building from sG

Begin

AddNodes = {1..n} \ sV , RemoveNode = sV

Next = Connect(sV, AddNodes)

Out = sV

while (RemoveNode 6= ∅ or Next 6= ∅) do

if (Next 6= ∅) then

v∗ = arg maxv∈Next{degree(v,Next)}
sV = sV + {v∗}
AddNode = AddNode \ {v∗}
Next = Connect(sV, AddNodes)

if (|Out| < |sV |) then

Out = sV

end if

else

v∗ = arg maxv∈RemoveNode{|Connect(sV \ {v}, AddNodes|)}
sV = sV \ {v∗}
Next = Connect(sV, AddNodes)

RemoveNode = RemoveNode \ {v∗}
end if

end while

return Out

End

Figure 6.1: K-Opt
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Procedure MaximumCompleteSubgraph

In: G =< V,E >

Out : Max Complete subgraph

Begin

CurrentSubgraph = ∅
stop = false;

while (!stop) do

NewSubGraph = k − opt(CurrentSubgraph)

if (|NewSubGraph| > |CurrentSubGraph|) then

CurrentSubgraph = NewSubgraph;

else

stop = true

end if

end while

return CurrentSubgraph

End

Figure 6.2: Algorithm for determining the maximum complete subgraph of graph G

(K-Opt)

Procedure Connect

In: sub set sV of V

Out : Set of nodes in Addnodes, connected to all nodes in sV .

Begin

Out = ∅
for v ∈ AddNodes do

if (e(v, v′) : ∀v′ ∈ sV ) then

Out = Out ∪ {v}
end if

end for

End

Figure 6.3: Connect procedure (K-Opt)
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Procedure Try

In: sV

Begin

for (v, v′) : v ∈ G and v′ ∈ G′ do

if (v, v′ is isomorphic with respect to sV ) then

sV = sV + {(v, v′)}
if (|sV | > |maxsV |) then

maxsV = sV ;

end if

Try(sV )

sV = sV \ {(v, v′)}
end if

end for

End

Figure 6.4: Try procedure (K-Opt)
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