
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title Static Program Analysis for Software Validation

Author(s) Li, Xin

Citation

Issue Date 2008-03-04

Type Conference Paper

Text version publisher

URL http://hdl.handle.net/10119/8232

Rights

Description

JAIST 21世紀COEシンポジウム2008「検証進化可能電子

社会」= JAIST 21st Century COE Symposium 2008

Verifiable and Evolvable e-Society, 開催：2008年

3月3日～4日, 開催場所：北陸先端科学技術大学院大学

, GRP研究員発表会　セッションB-1発表資料

Static Program Analysis for Software Validation

Li Xin

Japan Advanced Institute of Science and Technology
li-xin@jaist.ac.jp

1 Objectives

The increasing complexity of software nowadays makes their validation more
challenging, especially for safety-critical e-commerce applications. For example,
the economic cost of security vulnerability on web applications alone is cur-
rently estimated to be $180 billion [5]. At present, practiced methods for soft-
ware validation are mostly based on simulation and testing. The fundamental
problem for these methods is that they cannot cover all possible scenarios of
system runs. Thus, they are incapable of exposing subtle defects. A promising
alternative to software validation is formal methods of mathematics, of which
popular approaches are theorem proving, model checking, etc. Theorem proving
is a deductive approach, and the use of it usually demands expertise and enough
experience. In contrast, model checking, the so-called “push-button technique”,
is a fully automatic algorithmic technique for verification on temporal safety
of reactive and concurrent systems. In particular, if model checking once fails,
counterexamples are provided as evidences for the failure and clues for fixing
the problem. The purpose of this research is to present static program analysis
based on model checking techniques for software validation.

2 Approaches

Our approach is motivated by the insight [6] that program analysis can be re-
garded as model checking of abstract interpretation. Following this methodology,
program analysis naturally enjoys soundness guarantee from abstract interpreta-
tion and “push-button” facilities from model checking. Popular model checkers,
such as spin, nusmv/smv, are model checkers on finite state space. Recently,
practical model checking algorithms on pushdown systems [2] are proposed,
which enables the design of context-sensitive program analysis. More specifi-
cally, procedure calls and recursions can be modeled as pushdown systems in
the analysis without placing a restriction on the calling depth. The static anal-
ysis thus produces results for which procedure calls and returns are guaranteed
to correctly match one another, called valid paths. Model checking on pushdown
systems enables us to perform a real interprocedural program analysis.

In recent years, Java has emerged as the popular language for building large-
scale web applications, because of not only Java’s nice built-in security model but
also the proposal of J2EE(Java 2 Enterprise Edition) tailored for implementing

e-commerce applications. Our work in general is an interprocedural extension of
bandera-like approach. As shown in Figure 1, our analysis framework provides

– The design and prototype implementation of static program analysis with
model checkers as the analysis engine; and

– The support of automatic extraction for conservative and infinite models to
be analyzed, i.e., model checked, from Java source codes.

Fig. 1. Our Methodology

Points-to analysis detects the set of heap objects possibly referred to by refer-
ences at run-time. In Java, call graph generation and points-to analysis are mutu-
ally dependent. Since they are the starting point of most other program analysis
on Java applications. We firstly proposed context-sensitive, field-sensitive, and
flow-insensitive points-to analysis algorithms which are implemented as a tool
in our analysis framework.

3 Progress

Provided with a ready-made points-to analysis, we propose a precise context-
sensitive, field-sensitive and flow-insensitive relevancy analysis(equivalently, ir-
relevancy analysis). Our relevancy analysis is to compute the set of program
variables of concerned type that are relevant to the set of designated variables,
e.g., typically program inputs. The analysis is leveraged from an interprocedural
irrelevant code elimination [3] based on weighted pushdown model checking. The
idea is, if the change of a value does not affect the value of an output, we regard
it as irrelevant and relevant otherwise. By relevancy, we mean there could exist
dataflow from designated variables to some program variables. Our relevancy
analysis can be applied to target many application scenarios. For instance, it
could be utilized to pin-point the program parts where symbolic inputs can flow
into in symbolic execution [1]. The results would guide the program instrumen-
tation and thus improve the performance of symbolic execution. It could be also
utilized to find security vulnerabilities in Java applications [4].

The analysis infrastructure is shown in Figure 2, which consists of five mod-
ules necessary to our context-sensitive relevancy analysis. The (0)th module is
for the underlying points-to analysis that relevancy analysis is based on. The
choice of points-to analysis is independent of relevancy analysis, but is sensitive
to the analysis precision. Since points-to analysis is mutually dependent to call
graph generation for Java programs, the interprocedural control flow graph is
meanwhile prepared in this phase. In the analysis, we take Jimple [7] as the tar-
get language, which is a three-address intermediate representation of Java and
syntactically much simpler.

The relevancy analysis consists of two phases. The first phase (1) models the
program as an interprocedural dependence graph. A dependence graph is built
with a sound approximation on Java programs, which is later encoded as the
underlying pushdown system for modeling checking. Various choices of model-
ing on Java programs are presented tradingoff the precision and efficiency. The
second phase (2) performs relevancy analysis on concerned program variables by
calling model checkers against the dependence graph. Pushdown and weighted
pushdown model checkers are explored as the back-end model checking engines.
Currently the relevancy analysis is implemented based on the Weighted PDS
library (3), which calls a weight package (4) that is designed and prepared in
advance. The modules in the model checking engine is implemented in C, and
other modules of the analysis is implemented in Java.

Fig. 2. The Analysis Infrastructure.

4 Future Work

Our future work will be:

– Evaluate our (ir)relevancy analysis with applying it to various application
scenarios in practice, e.g., to help improve the efficiency of symbolic execution
and to find security vulnerabilities in Java applications.

– Trading off precision and efficiency, a demanded-driven or a compositional
way of points-to analysis will be explored to make our points-to analyzer
scalable on large-scale applications.

– Our analysis framework arises industrial interests. More collaboration will
be further carried out later on.

References

1. S. Anand, A. Orso, and M. J. Harrold. Type-dependence analysis and program
transformation for symbolic execution. In TACAS, pages 117–133, 2007.

2. A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown au-
tomata: Application to model-checking. In CONCUR ’97: Proceedings of the 8th In-
ternational Conference on Concurrency Theory, pages 135–150, London, UK, 1997.
Springer-Verlag.

3. X. Li and M. Ogawa. Interprocedural program analysis for java based on weighted
pushdown model checking. In The 5th International Workshop on Automated Ver-
ification of Infinite-State Systems. AVIS, April 2006.

4. V. B. Livshits and M. S. Lam. Finding security vulnerabilities in java applications
with static analysis. In SSYM’05: Proceedings of the 14th conference on USENIX
Security Symposium, pages 18–18, Berkeley, CA, USA, 2005. USENIX Association.

5. D. Rice. Geekonomics: The Real Cost of Insecure Software. Addison Wesley, New
York, 2007.

6. D. A. Schmidt. Data flow analysis is model checking of abstract interpretations. In
POPL98: Proceedings of the 25th ACM SIGPLAN-SIGACT symposium on Princi-
ples of programming languages, pages 38–48, New York, NY, USA, 1998. ACM.

7. R. Vallée-Rai, P. Co, E. Gagnon, L. J. Hendren, P. Lam, and V. Sundaresan. Soot
- a java bytecode optimization framework. In CASCON, page 13, 1999.

A System Development

Develop the Jaist Static Analysis Framework on Java for points-to analysis and
(ir)relevancy analysis.

