
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
Termination Verification and Complexity Analysis

of Term Rewrite Systems

Author(s) Hirokawa, Nao

Citation

Issue Date 2008-03-04

Type Conference Paper

Text version publisher

URL http://hdl.handle.net/10119/8233

Rights

Description

JAIST 21世紀COEシンポジウム2008「検証進化可能電子

社会」= JAIST 21st Century COE Symposium 2008

Verifiable and Evolvable e-Society, 開催：2008年

3月3日～4日, 開催場所：北陸先端科学技術大学院大学

, GRP研究員発表会　セッションB-1発表資料



Termination Verification and Complexity

Analysis of Term Rewrite Systems

Nao Hirokawa

February 18, 2008

1 Aim

Verifying termination property and estimating runtime complexity (the longest
derivation length) are central issues in program analysis. Among several com-
putational models used for the analysis, term rewriting is a simple and powerful
computational model. Generally speaking, termination and complexity meth-
ods in term rewriting are much more sophisticated than their counterparts used
in other program analysis. The current status in term rewriting is as follows:

• Termination. Recently, many powerful automatic methods, including
the dependency pair method (Arts and Giesl, TCS 2000), have been in-
troduced, and the verifiable class by automatic termination tools has been
rapidly enlarged. However, still further investigations are needed for han-
dling rewrite systems that are obtained by a transformation from practical
programs.

• Complexity. In contrast complexity analysis has been manually done for
each individual system (not only in rewriting). Although there are several
important analytical methods, it is fair to say that research toward its
automation is sorely lacking.

The aim of my research is to refine automatic methods for verifying termi-
nation property, and to establish an automated complexity analysis for term
rewrite systems.

2 Approaches

Termination verification and complexity analysis are closely related. Needless
to say, complexity analysis presupposes termination property of systems. Of-
ten techniques for complexity analysis are obtained by analyzing termination
methods. With this observation we investigate two independent issues:

• New Transformations. Functional programs (like Scheme and Haskell)
are very similar to term rewrite systems, but there are several notorious
differences: Programs are content-sensitive (e.g., if), allow higher-order
functions, and functions are curried or varyadic. These differences are
known as main obstacles for existing termination techniques. In order to

1



Figure 1: A screen shot of the fully automatic mode of TTT.

address this problem we develop new transformations from programs (or
term rewrite systems) to term rewrite systems that are easier for existing
termination methods. Especially, we try to design complexity preserving

transformations to enable complexity analysis.

• New Orderings. Usually, after several transformations, one tries to
find a well-founded order compatible with the resulting rewrite system,
because the compatibility implies termination of the original rewrite sys-
tem. Moreover, by careful analysis one may induce an upperbound of the
complexity from the compatibility. That is why developing powerful well-
founded orders is of particular interest in this research. Especially, we try
to design orders so that their compatibilities induce low complexities.

For the research for termination verification I collaborate with Prof. Aart Mid-
deldorp at University of Innsbruck, and collaborate with Dr. Georg Moser at
University of Innsbruck for complexity analysis.

3 Progress in 2007

Our progress is summarized in the next two papers: the first was published in
this year, and the second is submitted to a publication forum.

1. Tyrolean Termination Tool: Techniques and Features ([1]). The
paper reports the Tyrolean Termination Tool (TTT) [2], which is a powerful
tool for automatically proving termination of rewrite systems (Figure 1).
It incorporates several new refinements of the dependency pair method
(including the subterm criterion and usable rules) that are easy to im-
plement, increase the power of the method, result in simpler termination
proofs, and make the method more efficient. TTT employs polynomial

interpretations with negative coefficients, like x − 1 for a unary function

2



Figure 2: Our techiniques that have been adopted in other termination tools.

AProVE CiME Jambox Muterm TPA TTT2

subterm criterion X × X X X X

usable rules X × X X X X

negative polynomials X × × × × X

symbol or x−y for a binary function symbol, which are useful for extending
the class of rewrite systems that can be proved terminating automatically.

These contributions have already influenced further research in the area
of termination verification (e.g., Aoto and Yamada, RTA 2006; Giesl et

al, JAR 2006; Lucas, IC 2006). Moreover, they has been adapted in many
termination tools (Figure 1).

2. Towards an Automatic Runtime Complexity Analysis of Scheme
Programs by Rewriting.1 In the paper we study the runtime complex-
ity of (a subset of) Scheme programs by a translation into rewrite systems.
By designing the translation to be complexity preserving, the complexity
of the initial Scheme program can be estimated by analyzing the com-
plexity of the resulting rewrite system. In order to assess viability of our
approach we have implemented a fast and powerful complexity analyzer.

4 Future Work

I am planing to investigate three techniques and to develop one system:

• Orderings based on conditional polynomial interpretations. Or-
derings induced by polynomial interpretations are very useful for termina-
tion verification. We refine the orderings by allowing conditional expres-
sions in polynomial interpretations. We anticipate that the new orderings
are also useful to show low runtime complexity.

• Uncurrying. We investigate a transformation from untyped applicative
term rewrite systems to functional term rewrite systems that preserves
termination, innermost termination, and complexity.

• Dependency pairs for complexity analysis. The dependency pair
method is the most powerful method for proving termination. We inves-
tigate to adopt this method for complexity analysis.

• Complexity analyzer. We have been developing a new complexity an-
alyzer to assess the viability of our techniques.

1A preliminary version is available at http://cl-informatik.uibk.ac.at/∼georg/

publications/.

3



5 Publications in 2007

5.1 Journal Paper

[1] Nao Hirokawa and Aart Middeldorp. Tyrolean Termination Tool: Tech-

niques and Features. Information and Computation 205(4), pp. 474-511,
2007.

5.2 System Development

[2] TTT, a termination tool. Available at http://colo6-c703.uibk.ac.at/
ttt/.

4


