JAIST Repository
https://dspace.jaist.ac.jp/

A Verification Framewor k

f or Aut omo

Title Syst ems

Author(s) KATO, Nori o
Citation

Issue Date 2009-03-12
Type Presentation

Text version

publ i sher

19/ 8282

URL http://hdl . handle.net/ 101
Rights
6th VERITE : JAI ST/ TRUST-
_ on VERIfication Technol og
Description

1200130, gooodJAl sT 00000
obo2000002

Al ST/ CVS |
y Doogogo, O
HRERERNEN

AIST

JAPAN
ADVANCED INSTITUTE OF
SCIENCE AND TECHNOLOGY

Japan Advanced Institute of Science and Technology

Vos

A Verification Framework for
Automotive Embedded Systems

Center for Verification and Semantics,
National Institute of Advanced Industrial
Science and Technology (AIST/CVS)

Norio KATO

ITTREN FE e X T e e A FL T 6th VERITE (March 12, 2009)

1

AIST Vaos

Background

e Automotive embedded systems employ
incremental/variant development.

= Bugs introduced at join time are pervasive.
o A framework that facilitates to detect such bugs is asked for.

» Requirements have to be managed consistently.
e Need to specify them to find out bugs.

e Requirements may change along development.
> Both old specs and new specs need to hold.

g

e We propose a framework of development that facilitates
both verification and spec management.

ITTREN FE e X T e e A FL T 6th VERITE (March 12, 2009) 2

AIST

Vos

Outline of the Talk

e Background

e Considerations

o Verification Flow

e Example

e Conclusions and Future Directions

ITTREN FE e X T e e A FL T 6th VERITE (March 12, 2009)

3

AIST Vaos

Proposed Framework

e We propose a framework of development that facilitates
both verification and spec management.
» designed for use in incremental/variant development

e Considerations
1. Use of Model Checking
e suitable for join-time (design) verification
2. Local Management of Specs
e to make specs explicit

3. Handling Model Preciseness
e to lower verification costs

ITTREN FE e X T e e A FL T 6th VERITE (March 12, 2009) 4

AIST

Vos

1. Use of Model Checking

e Advantages

= exhaustiveness
e suitable for verifying concurrency (e.g. deadlock)
e no test case provision is needed

= tool-supported model composition by interleaving
e Offers a method of join-time verification.

= crucial for variant development

= otherwise difficult to detect and specify bugs

e Also provides a certain amount of guarantee that
the specification holds for implementation.

= provided that the model is correct!

ITTREN FE e X T e e A FL T 6th VERITE (March 12, 2009)

AIST Vaos

2. Local Management of Specs

e Divide specification ¢ of the entire system into several
specs ¢ ; which are local to components C; respectively
= such that p1A...A®n— ¢ holds

1. Effectively manages what must be done
in implementing/modifying each part.
= (Maybe also reduces the total amount of verification time.)

global spec ¢
o1 ¢2 e ¢n
C1 C2 . Cn
-, S TS
, C source - < \
\(\ﬁ__ code ,:*) H/W N I,

ITTREN FE e X T e e A FL T 6th VERITE (March 12, 2009)

AIST Vaos

3. Handling Model Preciseness

g

simulation test possible gaps between
models and programs!

ensures that models and
programs have no "gaps"

ITTREN FE e X T e e A FL T 6th VERITE (March 12, 2009) 7

Vos

AIST

Proposed Verification Flow (1/3)

1. Determine a global spec to verify, say ¢.
2. (In design time) divide the system into concurrent composition of several

verification components C1 through Cn.
3. Divide the global spec ¢ into ¢ 1 through ¢ n which are local to C;'s.

global spec ¢ e.g. time,
M\omer

¢1 ¢2 e dn assn. ¢
verification components | €l C2 e Cn
Csource code | P1 i |/ Pn

(if any)

ITTREN FE e X T e e A FL T 6th VERITE (March 12, 2009)

8

AIST Vaos

Proposed Verification Flow (2/3)

4. Describe the design of each component C; as a model M; .

5. Model check specs ¢ 1 through ¢ n towards the composed model.
e Amounts to join-time verification.
e Inside details can be assumed and explicitly reserved for unit verification.

global spec ¢

o1 o2 on assn. ¢

" hypothesized
- 'i llelyinists i, bl '_'_'_'_I": A 4

@ model
IR ; checker

verification components

verification model -+

verify
composed
behaviors

C source code Pl H/W o Pnﬂumt verification
(if any) (reserved)

ITTREN FE e X T e e A FL T 6th VERITE (March 12, 2009) 9

Vo=
Proposed Verification Flow (3/3)

6. Verify that the model simulates the program.
e Redo this step every time after the implementation is changed.
e Among assumptions, those which are hard to verify (such as realtime constraints)
should go to system test.

global spec ¢

2 simulation
tester

assn. ¥

verification compone " hypothesized

B R '":""l'_"_"_'l'_"_Y'l'_"_"_'j'_"_"- \ 4
verification model - | constraints _} @® model
...:...:.?.'..'..'.T.'..'..'.?.'..'..'.T.'..'.I.: CheCker

0

simu

' Some solve verify
' by unit composed
C source code P1 » St behaviors
verification.

The other go to system test.

wirREN FE SR IS SR SR P 6th VERITE (March 12, 2009) 10

AIST Vaos

Verification Flow (summary)

e Within a single development scene:

= verification of design and implementation

@ Verify that the design enjoys the given spec.
» by model checking

@ Verify that the design corresponds to the implementation.
» by simulation testing

e These ensure that the implementation enjoys the given spec.

e Within a development cycle:

= verification of incremental/variant development

e Detect "gaps" which are common to get introduced between design
and implementation.

= by simulation testing

ITTREN FE e X T e e A FL T 6th VERITE (March 12, 2009) 11

AIST Vaos

Example Run of the Verification Flow

e Global spec = "the correct temperature is estimated”

e QObjectives: to see whether the following are achieved:
= clarification of the assumed functionality (or spec) of each part
= join-time verification by model checking the composed behaviors

every 4 ms
every 4 ms @ asynchronous
tasks in the scheduler
C1 C2 C3 C4 (the rest)
SWjep — ?< Start
ulse voltage app. —
P g PP SWeep tlmlng HEN f(AV/AA) >
0, sensor flag
A/D conversion»lz
sensor previous
values read | WD > values
O, sensor and driver driver module temperature
circuit (hardware) (software) estimation

ITTREN FE e X T e e A FL T 6th VERITE (March 12, 2009) 12

AIST Vaos

Detailed Explanation of the System

e The components of the system:

s C1: O, sensor and driver circuit (hardware)
e Updates the sensor values (voltage and current) every 4 ms.

e Right before the update, applies a pulse voltage if Sweep is set.
= Temperatures can be estimated from the sensor value changes.

= C2: driver module (software)
e Sets Sweep to true when Start is turned on.
e Writes the current sensor values to Buffer.

» C3: temperature estimation (software)
e Reads from Buffer to compute the temperature.

o C4: the rest
e Sets Start to true asynchronously.
e Assumption
» (C2 and C3 are sequentially scheduled every 4 ms.

wirREN FE SR IS SR SR P 6th VERITE (March 12, 2009) 13

AIST Vaos

Specification Dividing and its Effects

o Global spec ¢: "the correct temperature is estimated"
= ¢ 1: "apply a pulse voltage if Sweep is set"
» @ 2: "transfer to Buffer sensor values before/during a sweep"
- @ 3: "read the values to compute at appropriate timings"

¢ 4: no conditions

= assn. ¥ : certain time constraints (e.g. Start only if stable)

o Clarification of specs (esp. on variables) is enforced.
1) Which timing is appropriate?
e "the point which the sweep timing flag is turned off"
2) When the estimated temperature is ready to be read?
3) When and who cancels the Sweep flag?

m]

ITTREN FE e X T e e A FL T 6th VERITE (March 12, 2009) 14

AIST

Vos

Model Checking with SPIN

e Aimed at join-time verification
» Details inside a component are simply assumed.
e They are to be verified at unit level.
e e.g. "correct values are propagated and computed"
e The global spec ¢

» [O(temperatureDone — temperatureOKk)

e Counterexamples exist if Sweep may cancel too early:

C1 C2 C3 C1 C1 C2 C3
stable sweep store pulse pulse? —— compute

| Al A | Al A

» Adding the following assumption makes ¢ hold:
e "Cl1 and {C2,C3} run alternately"

= Alternatively, the design may be modified to delay cancels.

ITTREN FE e X T e e A FL T 6th VERITE (March 12, 2009)

15

AIST Vaos

Some Model Fragments (1/2)

e Some time constraints are described not as logical
formulas but as a process.

/* management of time constraints */ #define c2start c2_loop@c2_start
active proctype timer () { active proctype c2_loop() {
clReady = true; do :: cZ2Ready ->
!clReady —-> c2_start:
do :: true —> ce
clReady = true; c2Ready = false;
if :: true -> skip od
:: true —-> c2Ready = true; }
!c2Ready —> active proctype c4d4_loop () {
c3Ready = true; do :: true ->
!c3Ready —> if :: !start && startOk —>
£fi; start = true;
'clReady —>
startOk = bufferBef && prevBef; fi
od od
} }
ASSN="[]<>c2start && [] (sweep —-> (!c2start U sensorDur))"
SPEC="[] (temperatureDone -> temperatureOk)"

ITTREN FE e X T e e A FL T 6th VERITE (March 12, 2009) 16

AIST

e Sensor values are abstracted with respect to whether

Vos

Some Model Fragments (2/2)

they came to exist before/during a sweep.

active proctype c2_loop() { active proctype cl_loop() {
do :: cZ2Ready -> do :: clReady ->
c2_start: e
atomic { atomic {
buffervVTemp = sensorV; sensorV = adconv (analogV) ;
bufferATemp = SensorAh; sSensorA = adconv (analogA) ;
bufferBefTemp = sensorBef; sensorBef = !sweep;
bufferDurTemp = sensorDur; sensorDur = sweep;
} }
bufferBef = false; “e
bufferDur = false; clReady = false;
bufferv = bufferVTemp; od
bufferA = bufferATemp; }
bufferBef = bufferBefTemp;
bufferDur = bufferDurTemp;
c2Ready = false;
od
}
BITEEN EE SR filT fio 3 T FU P 6th VERITE (March 12, 2009) 17

AIST

Vos

Conclusions

e Our framework for development can facilitate both
verification and spec management.

= Amenable to incremental/variant development.

e because the system is modeled and managed as
concurrent composition

» Enforces clarification of specs.

e Because specs have been written explicitly, it is clear what
to do in implementing/modifying programs.

e (This comes from the use of formal methods.)

= Specs hold also for the implementation.
e once simulation checking tools are available

ITTREN FE e X T e e A FL T 6th VERITE (March 12, 2009)

18

AIST

Vos

Future Directions

e Investigate practical issues by experiments.
= what to do when the checker fails
» what to do when models/programs have changed
¥, offer the verification flow as a guideline

e Develop simulation checking tools.

» automated tools for a restricted class of programs

= semi-automated tools for more general programs
e possibly connected to interactive proof assistants

ITTREN FE e X T e e A FL T 6th VERITE (March 12, 2009)

19

