Title	Simulation Theorems in Multi-valued Modal µ - Calculus
Author(s)	Nishizawa, Koki; Kameyama, Yukiyoshi; Kinoshita, Yoshiki
Citation	
Issue Date	2007-03-06
Туре	Presentation
Text version	publisher
URL	http://hdl.handle.net/10119/8292
Rights	
Description	4th VERITE : JAIST/TRUST-AIST/CVS joint workshop on VERIfication TEchnologyでの発表資料,開催: 2007年3月6日~3月7日,開催場所:北陸先端科学技術大学院大学・知識講義棟2階中講義室

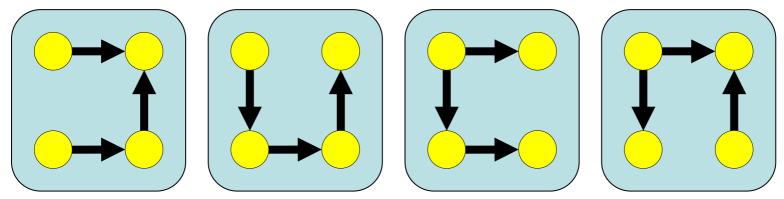
Simulation Theorems in Multi-valued Modal μ -Calculus

Koki Nishizawa (AIST/CVS)
Yukiyoshi Kameyama (Univ. of Tsukuba)
Yoshiki Kinoshita (AIST/CVS)

4th VERITE March 6, 2007

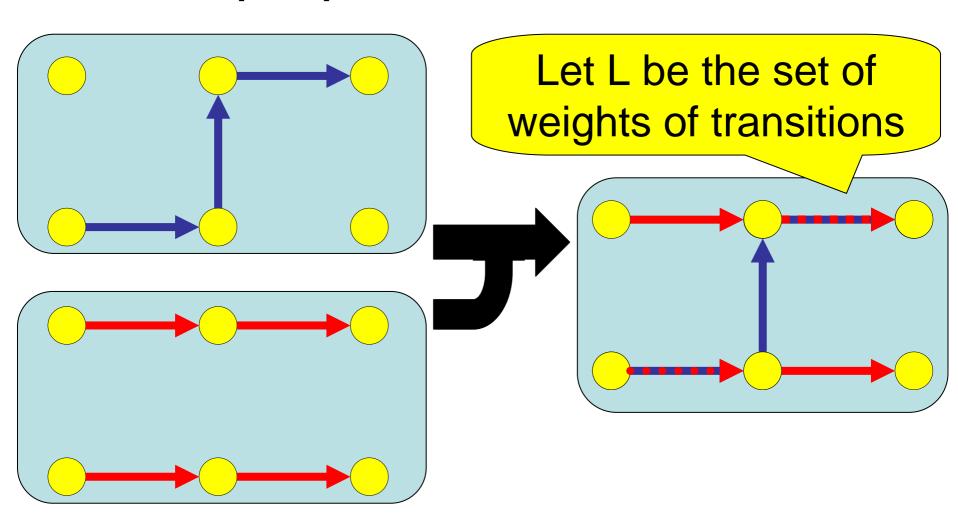
Motivation

- "Refinement of Models" in Model Checking
- Model Checking = Modeling + Checking
- Tatsumi and Kameyama tried to get minimal one among models checked successfully.
- They needed a number of model checking.



They wanted to perform a number of model checking all at once.

Superposition of Models



From 2={T,F} to general L

- Transition System, Kripke Model, Simulation
- State semantics of Modal μ -Calculus, Simulation Theorem
 - De Morgan algebra [Tatsumi-Kameyama 2006]
 - Complete Heyting algebra [This talk]
- Path semantics of Linear Modal μ -calculus, Simulation Theorem
 - Complete Heyting algebra + condition [This talk]

Why complete Heyting algebra?

- Sets and binary relations form a category.
- L must be a complete Heyting algebra for sets and binary L-valued relations to form a category [Johnstone 2002].

Complete Heyting algebra

is $(L, \leq, \vee, \wedge, \Rightarrow)$ satisfying the following.

- 1. (L, \leq) is a partially ordered set.
- 2. An arbitrary subset of L has the join (so, also the meet).
- 3. a∧b≦c ⇔ b≦a⇒c

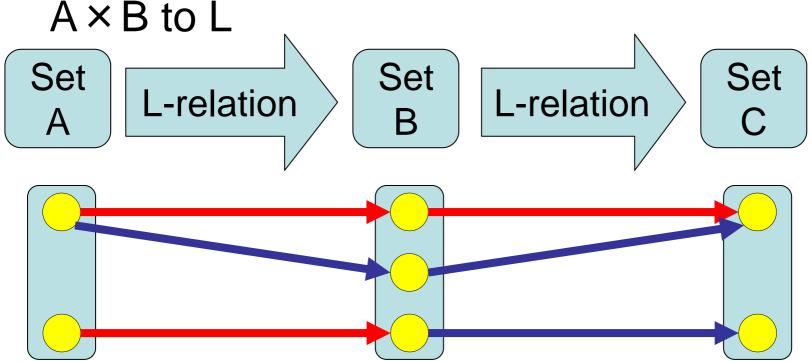
Example:

$$2, 2 \times 2, ..., 2^{n}, ...$$

The open sets of a topological space

Category of L-valued relations

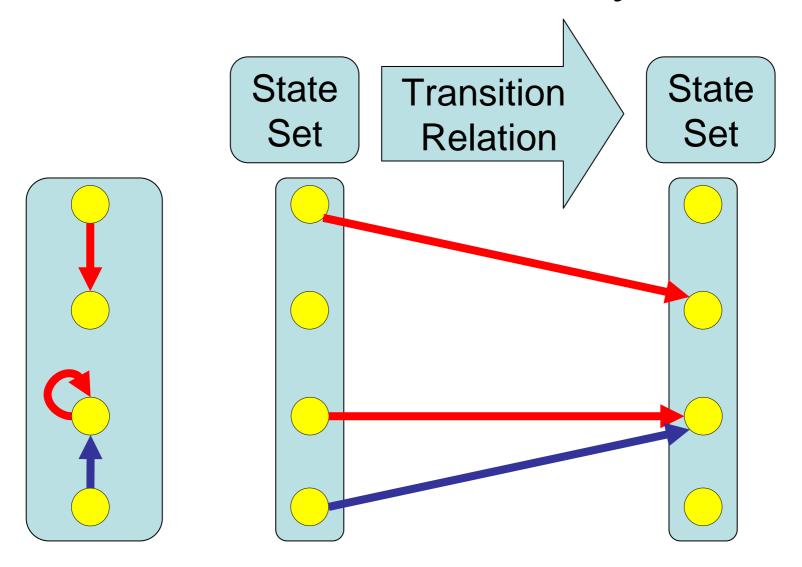
- Objects are sets
- Arrows from A to B are functions from



Composition: L=2 and L=2 × 2

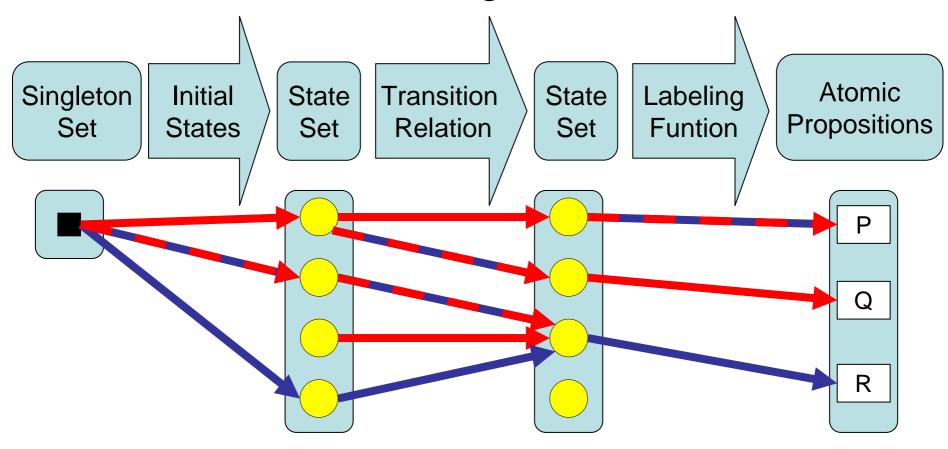


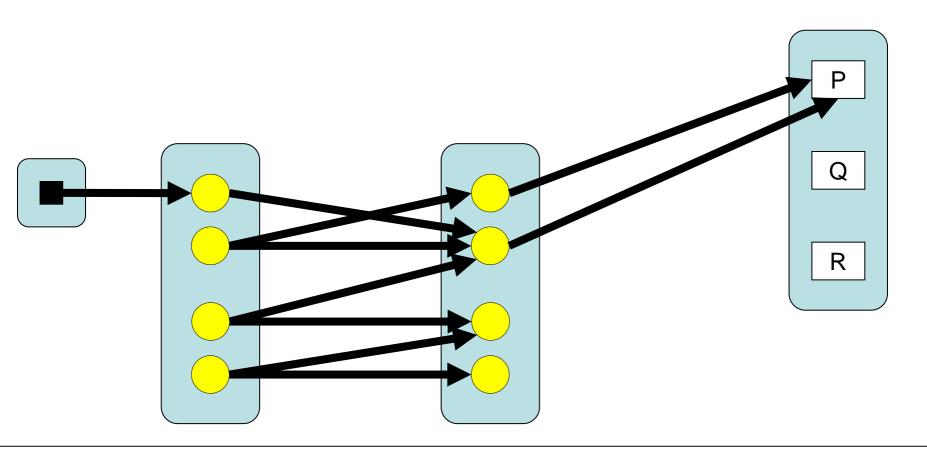
L-valued Transition System

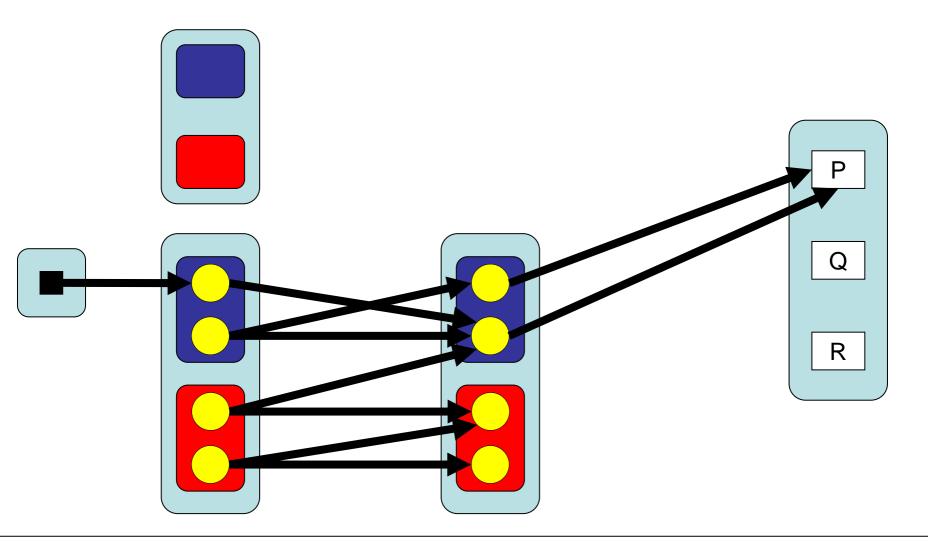


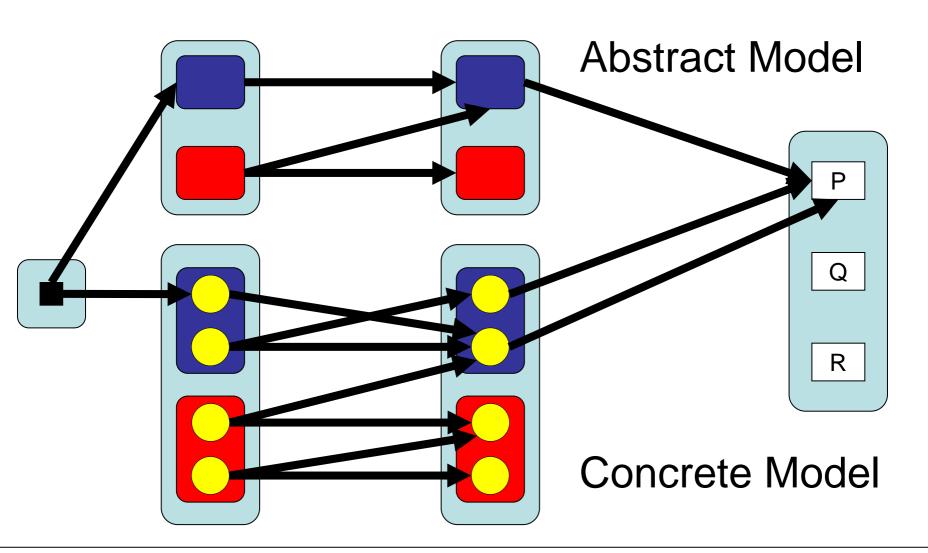
L-valued Kripke model

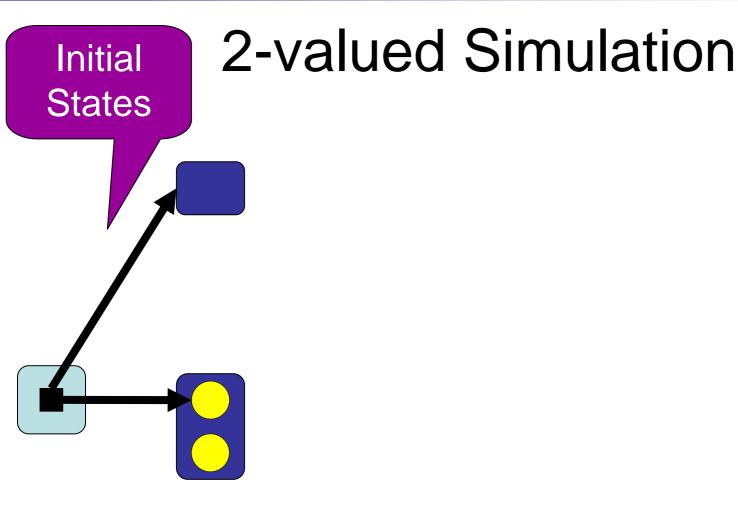
consists of the following L-relations.

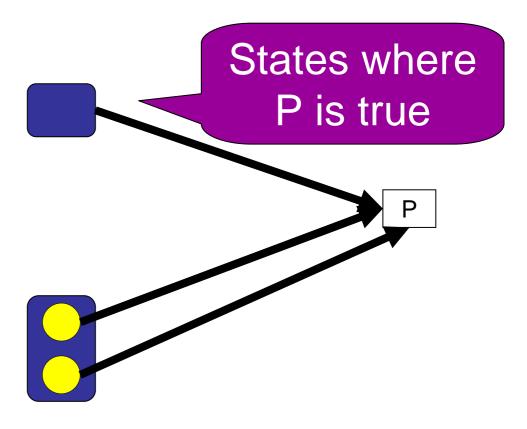




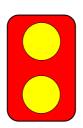




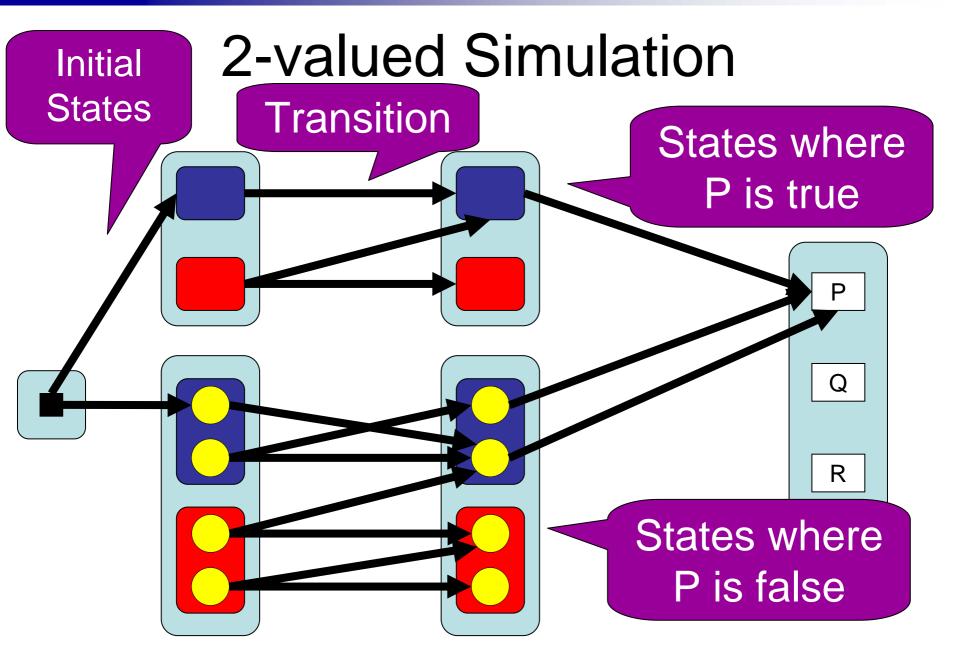


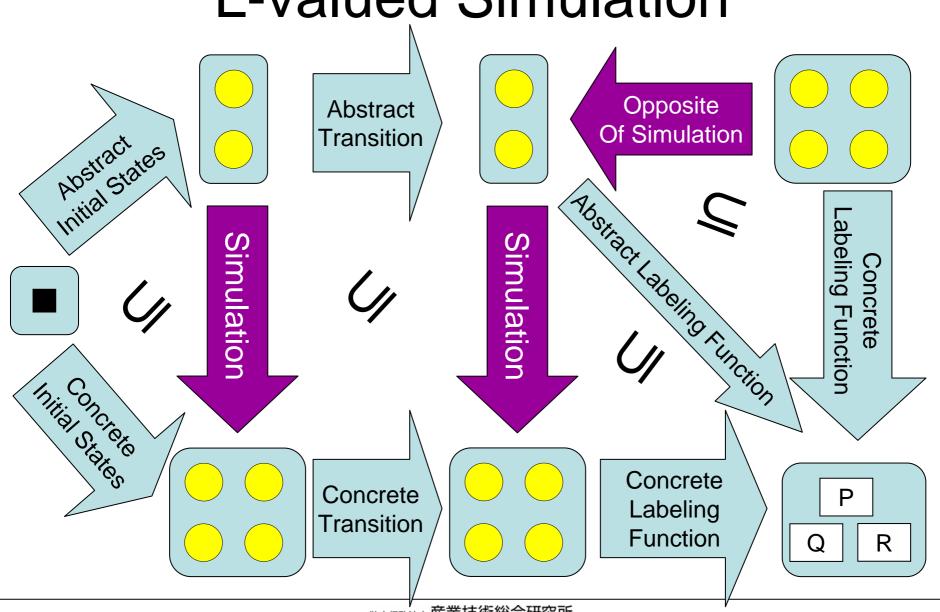


Р



States where P is false





L-valued State Semantics

Modal μ -Calculus

$$\psi ::= p \mid \bot \mid T \mid \psi \lor \psi \mid \psi \land \psi \mid \psi \Rightarrow \psi$$
$$\mid x \mid \mu x. \psi \mid \nu x. \psi \mid \diamondsuit \psi \mid \Box \psi$$

 $K,s,V \models \psi$ is an element of L

- Natural definition (no details in this talk)
- Intuitionistic version

$$K,s,V \models \psi \neq K,s,V \models (\psi \Rightarrow \bot) \Rightarrow \bot$$

Simulation Theorem

For any simulation, if the abstract model satisfies ψ , then the concrete model satisfies ψ .

- When ψ has no \square in the negative positions and no \diamondsuit in the positive positions
- Example: ν X.P \wedge \square X "P always globally holds".

This theorem holds in L-valued context.

L-valued Path Semantics

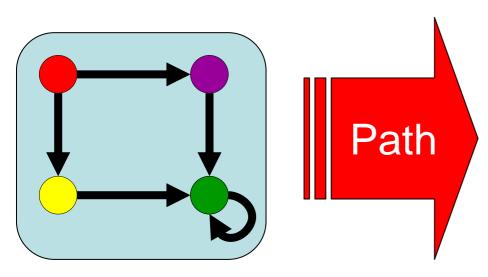
Linear Modal μ -Calculus (generalization of LTL)

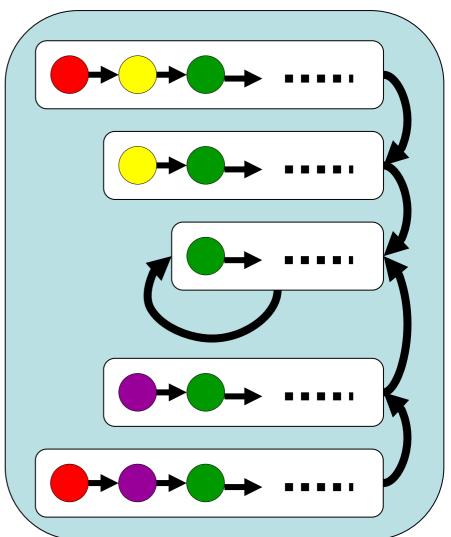
$$\psi ::= p \mid \bot \mid T \mid \psi \lor \psi \mid \psi \land \psi \mid \psi \Rightarrow \psi$$
$$\mid x \mid \mu x. \psi \mid \nu x. \psi \mid Next \psi$$

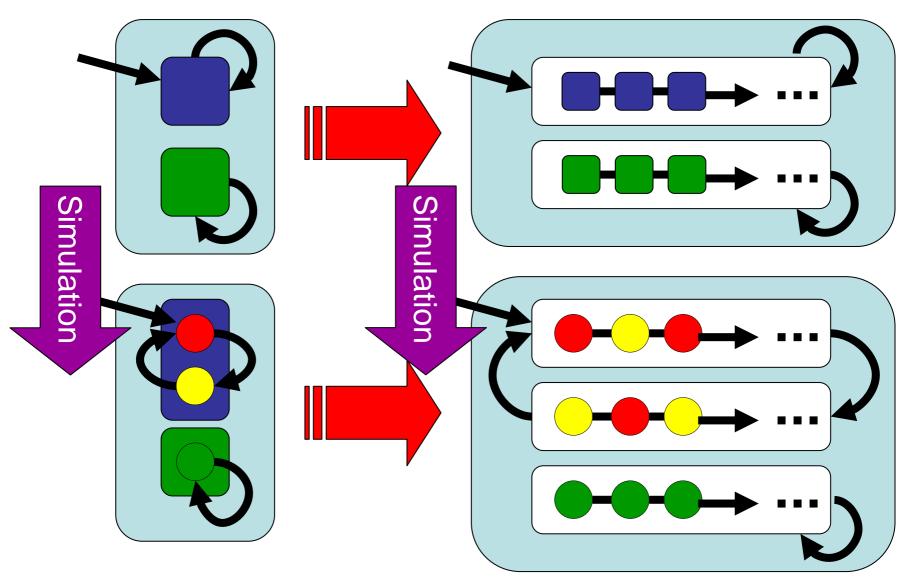
 $K, \pi, V \models \psi$ is defined for a path π .

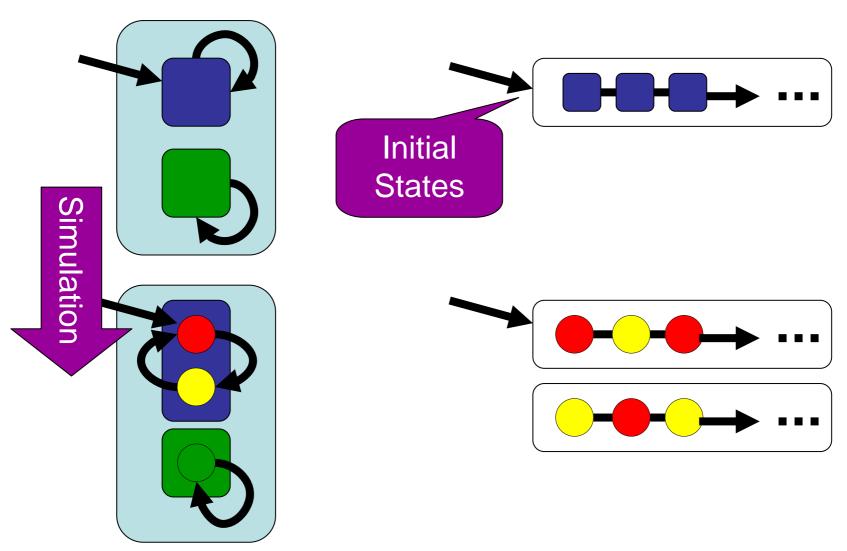
2-valued Path Semantics

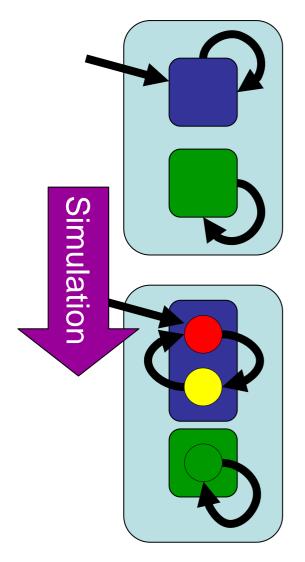
Path Semantics =
Path Construction
+ State Semantics

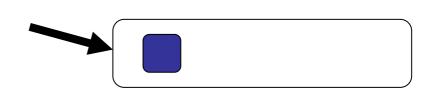


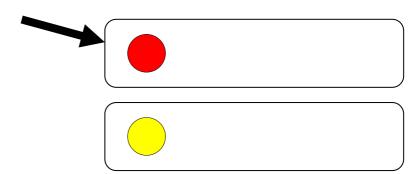


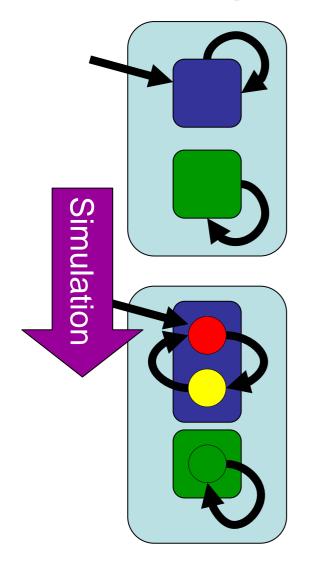


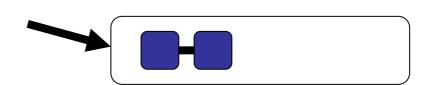


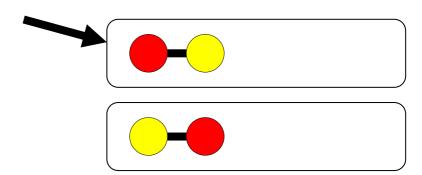


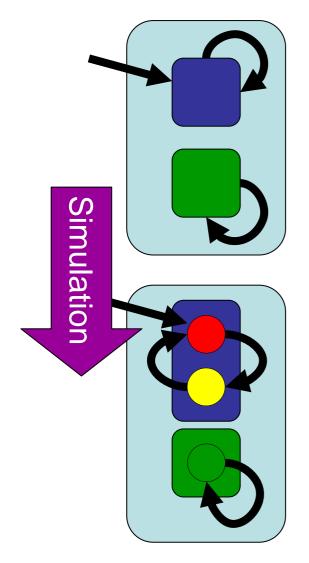


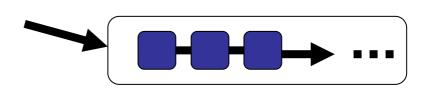


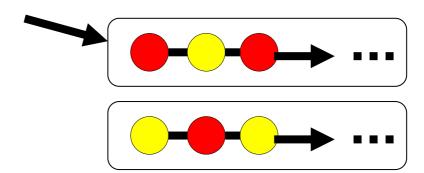




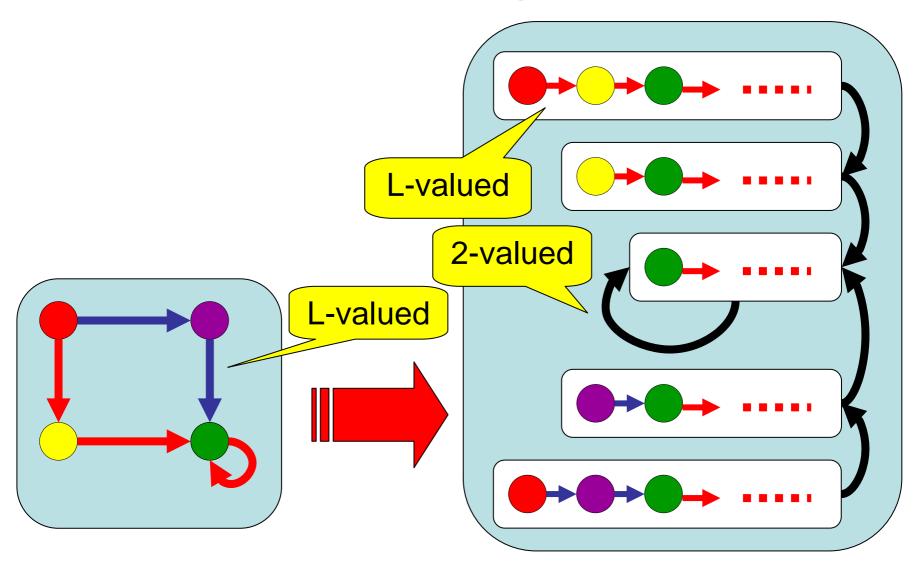




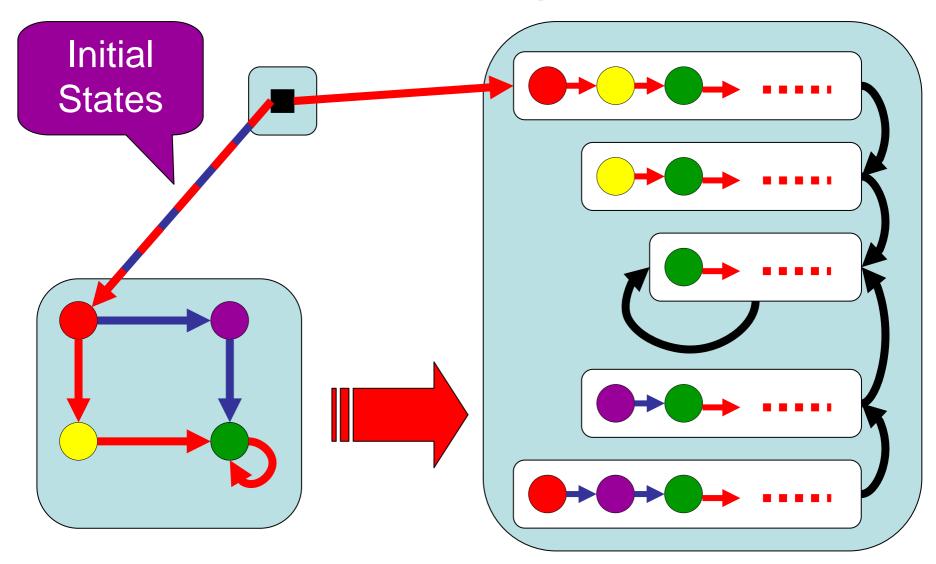




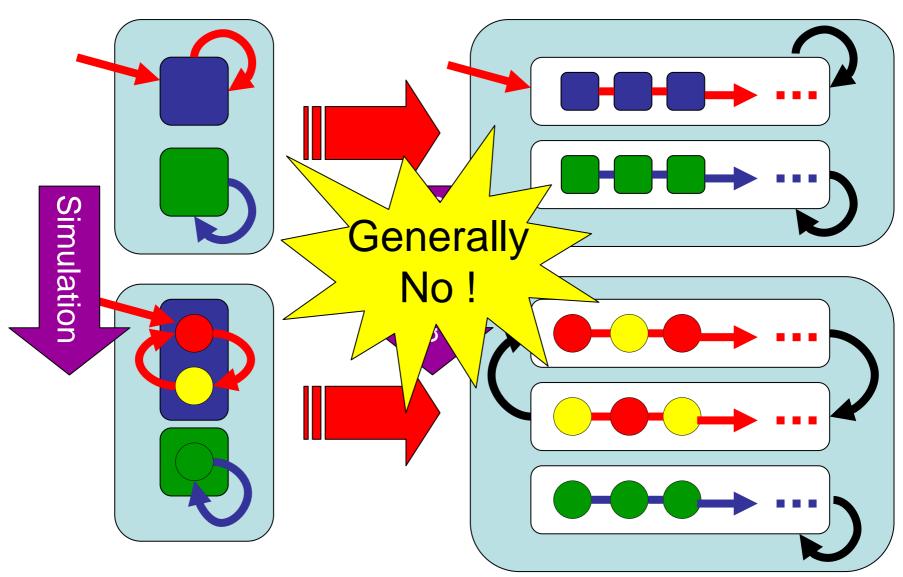
L-valued Path Semantics



L-valued Path Semantics



Is simulation lifted?



Is simulation lifted?

- No. We found a counterexample.
- We gave a sufficient condition:
 - A simulation is lifted if L is the open sets of a topological space and closed for countable intersections.
 - Examples: power sets, Nat $\cup \{\omega\}$
- Under the condition, the simulation theorem for path semantics holds.

Conclusion

- Complete Heyting algebra valued
 - Transition System, Kripke Model, Simulation
 - State Semantics for Modal μ -Calculus, Simulation Theorem
- Under our new condition
 - Path Semantics for Linear Modal μ -Calculus, Simulation Theorem

Future Work

 To relate this work to fuzzy relations or probabilistic relations