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Motivation

“Refinement of Models” in Model Checking
 Model Checking = Modeling + Checking

e Tatsumi and Kameyama tried to get minimal one among
models checked successfully.

 They needed a number of model checking.
a N N [ N [ O

- 2N 2N 2N /
They wanted to perform a number of model checking

all at once.
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Superposition of Models

T

Let L be the set of
weights of transitions
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From 2={T,F} to general L

e Transition System, Kripke Model, Simulation
e State semantics of Modal i -Calculus,
Simulation Theorem
— De Morgan algebra [Tatsumi-Kameyama 2006]
— Complete Heyting algebra [This talk]

 Path semantics of Linear Modal ¢ -calculus,
Simulation Theorem

— Complete Heyting algebra + condition [This talk]
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Why complete Heyting algebra ?

e Sets and binary relations form a category.

L must be a complete Heyting algebra for
sets and binary L-valued relations to form
a category [Johnstone 2002].
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Complete Heyting algebra

is (L,=,V,A,=) satisfying the following.
1. (L,=)is a partially ordered set.

2. An arbitrary subset of L has the join
(so, also the meet).

3. aAb=c © b=a=c

Example:
2, 2X2,..,2" ..
The open sets of a topological space
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Category of L-valued relations

* Objects are sets

e Arrows from A to B are functions from
AXBtoL

Set L relat Set L relat Set
A -relation B -relation C

HITITREN EE 43 I i 3 B SO AT



ros
Composition: L=2 and L=2 X 2
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L-valued Transition System
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L-valued Kripke model

consists of the following L-relations.

Singleton State | | Transition \ | State | | Labeling AtOFT_li.C
Set Set || Relation Set | | Funtion /|Propositions

Initial
States
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2-valued Simulation
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2-valued Simulation
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2-valued Simulation

Concrete Model
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Initial
States

2-valued Simulation
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2-valued Simulation
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2-valued Simulation

States where
P Is true

P
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2-valued Simulation

[ ] P

States where
P Is false
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e 2-valued Simulation

States
States where
P Is true

R
States where
P Is false
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| -valued Simulation
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L-valued State Semantics

Modal u -Calculus

V:=p|L|T|IYVY | UAY | Y=Y

IX| ux¥ | vxy | OY |

K,s,VE¥ is an element of L

Y

— Natural definition (no details in this talk)

— Intuitionistic version

KsVEY # KsVrE(Yy=>1L)=>1
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Simulation Theorem

For any simulation,
if the abstract model satisfies ¥,

then the concrete model satisfies .

—When ¥ has no O in the negative positions
and no <> in the positive positions

— Example: v X.PALX
“P always globally holds”.

This theorem holds Iin L-valued context.
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L-valued Path Semantics

Linear Modal ¢ -Calculus (generalization of LTL)
Yi=p|L|T|YVY | YVAY | Y=Y
| X| uX. ¥ | vX.¢¥ | Nexty

K, 7,V =y is defined for a path 7.
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2-valued Path Semantics

Path Semantics =

Path Construction [ @

+ State Semantics
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Simulation is lifted
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Simulation is lifted
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Simulation is lifted
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Simulation is lifted
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Simulation is lifted
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L-valued Path Semantics
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L-valued Path Semantics

Initial
States
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s simulation lifted ?

 No. We found a counterexample.

* We gave a sufficient condition:

— A simulation is lifted if L is the open sets of
a topological space and closed for
countable intersections.

— Examples: power sets, NatU{w}

« Under the condition, the simulation
theorem for path semantics holds.
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Conclusion

 Complete Heyting algebra valued
— Transition System, Kripke Model, Simulation

— State Semantics for Modal i -Calculus,
Simulation Theorem

e Under our new condition

— Path Semantics for Linear Modal i -Calculus,
Simulation Theorem
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Future Work

e To relate this work to fuzzy relations or
probabilistic relations
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