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What is type theory?

A Computer Science Perspective:

It is a precisely defined language to express important parts of
programming.

a programming language (to express programs)

a specification language (to express the task of the program)

a programming logic (to express correctness)
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A Programmer’s Perspective:

Type theory is a

simple functional language

with a rich type system (to express specifications)

and a formal programming logic.
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A Logic Perspective:

Type theory is a foundation for (constructive) mathematics.

Why is constructive mathematics relevant for programming?

computation is fundamental

function = computable function (= program)

Proposition = Task / Problem



Background Brouwer-Heyting-Kolmogorov Curry-Howard Proofs as Programs Martin-Löf Types project

Classical logic, truth tables

Conjunction

A B A& B

T T T
T F F
F T F
F F F

Disjunction

A B A∨B

T T T
T F T
F T T
F F F

Implication

A B A ⊃ B

T T T
T F F
F T T
F F T

The meaning of proposition is an
element in Bool. This assumes
that a proposition is either true or
false! The meaning of a
mathematical statement refers to
how things are in a mathematical
world.
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Example of a classical function

Goldbach’s conjecture

Every even number greater than 3 is the sum of two primes.

Nobody knows if this conjecture holds.

A classical function

g(n) =

{
1 if Goldbach’s conjecture is true,

0 otherwise

Is this function computable?
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(Classical) example of a classical proof

There exist irrational numbers a and b such that ab is rational.

We know that
√

2
√

2
is either rational or irrational.

In the first case we take a = b =
√

2.

In the second case we take a =
√

2
√

2
and b =

√
2.
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Brouwer

Brouwer rejected the idea that the meaning of a
mathematical proposition is its truth value.
Mathematical propositions do not exist
independently of us.
We cannot say that a proposition is true without
having a proof of it.
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Heyting

Heyting was a student of Brouwer.
He gave the following explanation of
the logical constants.
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Heyting’s explanation of the logical constants (1930)

A proof of: consists of:

A& B a proof of A and a proof of B
A∨B a proof of A or a proof of B
A ⊃ B a method which takes any proof of A to a proof of B
¬A a method which takes any proof of A to a proof of ab-

surdity
⊥ has no proof
∃x ∈ A.B an element a in A and a proof of B[x := a]
∀x ∈ A.B a method, which takes any element y in A to a proof of

B[x := y ]
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Heyting’s explanation of the logical constants (1930)

A proof of: consists of:

A& B a proof of A and a proof of B
A∨B a proof of A or a proof of B
A ⊃ B a method which takes any proof of A to a proof of B
¬A a method which takes any proof of A to a proof of ab-

surdity
⊥ has no proof
∃x ∈ A.B an element a in A and a proof of B[x := a]
∀x ∈ A.B a method, which takes any element y in A to a proof of

B[x := y ]



Background Brouwer-Heyting-Kolmogorov Curry-Howard Proofs as Programs Martin-Löf Types project
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Kolmogorov

Independently of
Heyting, Kolmogorov
interpreted propositions
as problems.
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Kolmogorov understood the logical constants as problems
(1932)

The problem: is solved if we can:

A& B solve A and solve B
A∨B solve A or solve B
A ⊃ B reduce the solution of B to the solution of

A
¬A show that there is no solution of A
⊥ has no solution
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Heyting’s and Kolmogorov’s explanation

A proof (solution) of: consists of:

A &B a proof (solution) of A and a proof (solution) of B
A∨B a proof (solution) of A or a proof (solution) of B
A ⊃ B a method which takes any proof (solution) of A to a proof

(solution) of B
¬A a method which takes any proof (solution) of A to a proof

(solution) of absurdity
⊥ has no proof (solution)
∃x ∈ A.B an element a in A and a proof (solution) of B[x := a]
∀x ∈ A.B a method, which takes any element y in A to a proof

(solution) of B[x := y ]

Question:

Is this correct? Could not a proof (solution) of A &B be obtained by induction, or
modus ponens, or some other elmination rule?
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Imprediativity in the definition of implication?

Dummett (and others) have pointed out that there is some kind of
impredicativity in the definition of implication:

Heyting’s and Kolmogorov’s explanation

A proof (solution) of: consists of:

A ⊃ B a method which takes any proof (solution)
of A to a proof (solution) of B

The method must take any proof of A, this is some kind of
quantification over all proofs, including proofs involving
implication.
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Direct and indirect proofs

When we say that we have a proof of a proposition, then we mean
that we have a method which when computed yields a direct proof
of it.
Compare this with mathematics and programming: When we say
that 2 + 4 and fst(< 452,−9 >) are natural numbers, then we
mean that they can be computed to a natural number.

Terminology:

computed not computed

object value expression
proof direct indirect
proof canonical non-canonical
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Examples of indirect proofs

And-elimination

A& B

A

If we have a proof of A& B, then we can compute it to a direct
proof. This always consists of a proof of A and a proof of B.
Hence we may always obtain a proof of A from a proof of A& B.

Mathematical induction

n ∈ N P(0) (∀n∈N)P(n) ⊃ P(succ(n))

P(n)
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Curry-Howard

To summarize Heyting’s and Kolmogorov’s explanations:

What does it mean to understand a proposition?

I understand a proposition when I understand what a direct proof
of it is.

This looks very similar to:

What does it mean to understand a set?

I understand a set when I understand what a canonical element of
it is.
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Propositions and sets

A proof (element) of: consists of:

A &B a proof (solution) of A and a proof (solution) of B
A× B an element in A and an element in B
A∨B a proof (solution) of A or a proof (solution) of B
A + B an element in A or an element in B
A ⊃ B a method which takes any proof (solution) of A to a proof

(solution) of B
A → B a method which takes any element in A to an element in

B
⊥ has no proof (solution)
∅ has no elements
∃x ∈ A.B an element a in A and a proof (solution) of B[x := a]
∀x ∈ A.B a method, which takes any element y in A to a proof

(solution) of B[x := y ]
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This similarity leads to the

Curry-Howard isomorphism

A& B = A× B

A∨B = A + B

A ⊃ B = A → B

⊥ = ∅
¬A = A → ∅
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Curry’s contribution

Curry noticed the formal similarity between the axioms of positive
implicational logic:

A ⊃ B ⊃ A
(A ⊃ B ⊃ C ) ⊃ (A ⊃ B) ⊃ A ⊃ C

and the type of the basic combinators:

K ∈ A → B → A
S ∈ (A → B → C ) → (A → B) → A → C

Modus ponens corresponds to the typing rule for application:

A ⊃ B A

A

f ∈ A → B a ∈ A

f a ∈ B
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Proofs as Programs in a functional programming
language

A direct consists of: As a type:
proof of:

A∨B a proof of A or data Or A B = Ori1 A | Ori2 B;
a proof of B

A& B a proof of A and data And A B = Andi A B;
a proof of B

A ⊃ B a method taking
a proof of A data Implies A B = Impi A → B;
to a proof of B

Falsity data Falsity = ;
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Constructors are introduction rules

A

A∨B Ori1 ∈ A → A∨B

B

A∨B Ori2 ∈ B → A∨B

A B

A& B Andi ∈ A → B → A& B

[A]
B

A ⊃ B Impli ∈ (A → B) → A ⊃ B
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Elimination rules can be defined

orel ∈ A∨B → (A → C ) → (B → C ) → C

orel (Ori1 a) f g = f a
A∨B

[A]
C

[B]
C

C
orel

orel (Ori2 b) f g = g b

andel ∈ A& B → (A → B → C ) → C
A& B

[A,B]
C

C
andel

andel (Andi a b) f = f a b

implel ∈ A ⊃ B → A → B
A ⊃ B A

B
implel

implel (Impli f ) a = f a

implel (Impli f ) a = f a
A ⊃ B A

B
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orel (Ori2 b) f g = g b

andel ∈ A& B → (A → B → C ) → C
A& B

[A,B]
C

C
andel

andel (Andi a b) f = f a b

implel ∈ A ⊃ B → A → B
A ⊃ B A

B
implel

implel (Impli f ) a = f a

implel (Impli f ) a = f a
A ⊃ B A

B



Background Brouwer-Heyting-Kolmogorov Curry-Howard Proofs as Programs Martin-Löf Types project
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Proof checking = Type checking

In this way we can prove propositional formulas in a typed
functional programming language. The problem of proving for
instance

(A& B) ⊃ (B & A)

is then the problem of finding a program in this type. The type
checker will check if the proof is correct. In this case, we can use
the following program:

p = Impli (\x ->
(andel x

(\ y -> \ z ->
Andi z y)))
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What about the quantifiers?

Propositions and sets

A proof (element) of: consists of:

∃x ∈A.B an element a in A and a proof (solution)
of B[x := a]

Σx ∈A.B an element a in A and an element in
B[x := a]

∀x ∈A.B a method, which takes any element x in
A to a proof (solution) of B[x := a]

Πx ∈A.B a method, which takes any element y in
A to an element in B[x := y ]
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Overview of Martin Löf´s type theory

Type theory is a small typed functional language with one
basic type and two type forming operation.

It is a framework for defining logics.

A logic is introduced by declarations of new constants.
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What types are there?

Set is a type

El(A) is a type, if A ∈ Set.

(x ∈A) → B is a type, if A is a type and B a family of types
for x ∈ A.
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What programs are there?

Programs are formed from variables and constants using
abstraction and application:

Application
c ∈ (x ∈A) → B a ∈ A

c a ∈ B[x := a]

Abstraction
b ∈ B [x ∈ A]

[x ]b ∈ (x ∈A) → B

constants are either primitive or defined
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Constants

There are two kinds of constants:

primitive: (not defined) have a type but no definiens (RHS):

identifier ∈ Type

defined: have a type and a definiens:

identifier = expr ∈ Type

There are two kinds of defined constants:

explicitly defined
implicitly defined
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Primitive constants

computes to themselves (i.e. are values).
constructors in functional languages.
introduction rules and formation rules in logic
postulates

Examples:

N ∈ Set

0 ∈ N

s ∈ N → N

& ∈ Set → Set → Set

&I ∈ (A∈Set) → (B∈Set) → A → B → A& B

Π ∈ (A∈Set) → (A → Set) → Set

λ ∈ (A∈Set) → (B ∈ A → Set) → ((x ∈A) → B(x)) →
Π(A,B)
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Explicitly defined constants

have a type and a definiens (RHS).
the definiens is a welltyped expression
abbreviation
derived rule in logic.
names for proofs and theorems in math.

Examples:

2 ∈ N

= succ(succ 0)

∀(A∈Set)(B∈A → Set) ∈ Set

= Π A B

+(x ∈N)(y ∈N) ∈ N

= natrec [x ]N x y [u, v ](succ v)

⊃ (A∈Set)(B∈Set) ∈ Set

= Π A [x ]B



Background Brouwer-Heyting-Kolmogorov Curry-Howard Proofs as Programs Martin-Löf Types project

Implicitly defined constants

The definiens (RHS) may contain pattern matching and may
contain occurrences of the constant itself. The correctness of the
definition must in general be decided outside the system

Recursively defined programs
Elimination rules (the step from the definiendum to the
definiens is the contraction rule).

Examples:

add(x ∈N)(y ∈N) ∈ N

add 0 y = y

add (succ u) y = succ (add u y)

&E(A∈Set)(B∈Set)(C ∈A→ B → Set)

(f ∈(x ∈A)→ (y ∈B)→ C(&I x y))

(z∈A & B)

∈ C(z)

&E A B C f (&I a b) = f a b
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Type theory in Europe

We had a couple of informal workshops on the Swedish west
coast in the ’80s.

The EU funded Types project started in 1989

The annual Types conference has around 100 participants.
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Sites

Main sites:

Tallinn

Göteborg

Edinburgh

Manchester

Nijmegen

London

Bialystok

Warsaw

Paris 7

Paris Sud

Munich
TUM

Munich
LMU

Udine

Torino

INRIA

Subsites:

Helsinki

Bergen

Stockholm

Sheffield

Nottingham

Birmingham

Kent

Swansea

Krakow

France Telecom

Inria Futurs

Bamberg

Dassault Aviation

Novi Sad

Padova

Savoie

Bologna

Grenoble

Toulouse

Minho
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Proof editor

A proof editor is a program which lets the user edit a proof of a
proposition.

The user enters a type (a problem)

The computer checks if it is a propositon

The user interactively builds an object (proof) of it.

The computer checks all the time that the object is of the given
type, i.e. that it proves the given problem.
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Important proof editors in the Types project:

Coq (Paris)

Lego (Edinburgh)

Isabelle (Cambridge, Munich)

Alf, Agda (Göteborg)

Epigram (Nottingham)
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Correctness of the proof editor

An interactive proof checker is a rather complicated program. It
contains a lot of complicated code to deal with the interaction
with the user. Do we have to trust the entire computer system?
An important idea is the idea of independent checking:

We should have a small type checker which checks a complete
proof. This type checker will be so small and simple that it is
“obviously” correct.

Then we can even use external tools to find proofs, if these tools
also produces proof objects in type theory.
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