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Constructive mathematics is a framework of study for com-

putability in mathematics.

Today we consider computability in generalized function theory,

via constructive mathematics.
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§1 Introduction

The space D(R) is an important example of a non-metrizable

locally convex space.

A distribution (or generalized function) is a sequentially contin-

uous linear functionals on D(R) (a sequentially continuous linear

function from D(R) into R).

We had not had the start of constructive theory of generalized

functions until the following problems, given by the 1960’s mono-

graph of Bishop, were solved:
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1. How constructively difficult is the completeness properties of
D(R) and its dual space D∗(R) (i.e. the space of distribu-
tions)?

2. Can we take the natural forms of the constructive comple-
tions of D(R) and D∗(R) respectively ?

These problems are solved by the following results:

(1a) D(R) is complete if and only if the principle BD-N is can be
proved [Ishihara and Y,’02].

(2)The constructive completion D̃(R) of D(R) is obtained by
generalizing every element (test functions) of D(R) [Y, ’05].

(1b) The dual space D̃∗(R) of D̃(R) is equal to the dual space
D∗(R) as sets, and the weak completeness of D∗(R) can be
proved [Y, ’03].
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weakly complete → D̃∗(R) = D∗(R) (*: dual spaces)

(1b)

↑ ↑

(∼: completion) D̃(R) 6= D(R)
(2) (1a)

Fig. The spaces D(R) and D̃(R) in

Bishop’s constructive mathematics.
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Here

1a D(R) is complete if and only if BD-N can be proved.

Notes:

A subset A of N is pseudobounded if

∀{an} ∈ AN∃N ∈ N[an < n] (n ≥ N).

A bounded subset of N is pseudobounded.

BD-N: every countable pseudobounded subset of N is bounded.

BD-N can be proved in

classical mathematics,

Brouwer’s intuitionistic mathematics and

constructive recursive mathematics of Markov’s school,

but not in Bishop’s constructive mathematics.
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2 The constructive completion D̃(R) is obtained by generaliz-

ing every element (test functions) of D(R)

Note:

• A test function is an infinitely differentiable function on R
with compact support.

• A element of D̃(R) is an infinitely differentiable function on

R with pseudobounded support.
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1b The weak completeness of the dual space D∗(R) holds.

This matter follows from the Banach-Steinhaus theorem for D(R):

for a sequence {uk} of distributions (sequentially continuous lin-

ear functionals on D(R)), if the sequence {uk(φ)} converges in

R for any φ in D(R), then the limit u exists and is a distribution.

The completeness of D(R) is not necessary for proving the weak

completeness of D∗(R), although many classical proofs require it.
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Now this version of Banach-Steinhaus theorem was proved by

showing the following properties.

• The Banach-Steinhaus theorem for the completion D̃(R).

• every distribution is uniquely extended to D̃(R).

In particular, the second implies that D̃∗(R) = D∗(R) as sets.

We then have a question:

is D̃∗(R) topologically equivalent to D∗(R)?

We discuss this problem in this talk.
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D̃∗(R)
?' D∗(R) (*: dual spaces)

↑ ↑

(∼: completion) D̃(R) 6= D(R)

Fig. The spaces D(R) and D̃(R) in

Bishop’s constructive mathematics.
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§2 Preliminary

(2a) The principle BD-N in constructive mathematics

BHK(Brouwer-Heyting-Kolmogorov)-interpretation

constructive math. classical math.

we can judge
P ∨ Q P or Q ¬P and ¬Q

by finite procedures imply a contradiction
we can construct c

∃xP (x) such that P (c) “¬P (x) for all x”
by finite procedures implies a contradiction

Under this interpretation, Principle of Excluded Middle (PEM)
for all proposition P , P ∨ ¬P

and its negation cannot be proved.

Bishop’s constructive mathematics is mathematics with BHK-
interpretation.
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The three frameworks of constructive mathematics:

• Brouwer’s intuitionistic mathematics

• Constructive recursive mathematics of Markov’s school

• Bishop’s Constructive mathematics



Constructive
Mathematics

WC-N

Bishop’s

FAN Theorem

CPF
CT

Mathematics
Intuitionistic

LPO  WLPO  LLPO

PEM

Classical Mathematics

BD-N WMP

Constructive
Recursive
Mathematics

MP

Fig.2.1 The sets of theorems in the four frameworks
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(2b) Locally convex spaces

Let X be a vector space over R.

A mapping p : X → R0+ is a seminorm on X

if it satisfies that for x, y ∈ X and λ ∈ R, (1) p(x+y) ≤ p(x)+p(y)

and (2) p(λx) = |λ|p(x).

A pair (X, {pi}) is locally convex space over R
if for all index i and x in X, whenever pi(x) = 0 then x = 0.
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{xn} converges to x in X
def⇔

∀k ∈ N∀i ∈ I∃N ∈ N
[
n ≥ N =⇒ pi(x − xn) < 2−k

]
.

Let u be a linear functional on X.

u is sequentially continuous on X
def⇔

for each sequence {xn} in X and x ∈ X

{xn} converges to x in X

=⇒ the sequence {u(xn)} converges to u(x) in R.

The dual space X∗ with weak topology of a locally convex

space (X, {pi}) is a locally convex space of sequentially continu-

ous linear functionals on X, with the seminorms {‖ · ‖x} defined

by ‖u‖x := |u(x)| (x ∈ X).
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§3 The space D(R) and its completion D̃(R)

The set suppf denotes the closure of the set {x ∈ R : |f(x)| > 0}
in Euclid space R.

Set suppNf := {0} ∪ {n ∈ N : ∃q ∈ Q[|q| ≥ n ∧ |f(q)| > 0]}.

Notes that for a continuous function f , suppf is bounded ⇐⇒
suppNf is bounded.
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Example 1 (The bump function).

φ(x) =

{
exp

(
− 1

1−x2

)
if |x| < 1

0 if |x| ≥ 1.

Then suppφ = [−1,1] and suppNφ = {0}.

-1 10

Fig.3.2 An example of a test function: the bump function
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f has compact support
def⇔ suppf is bounded.

f has pseudobounded support
def⇔ suppNf is pseudobounded.

A test function is an infinitely differentiable functions from R into

it itself with compact support.

D(R) denotes the locally convex space of test functions with the

seminorms

pα,β(φ) := sup
n

max
l≤β(n)

sup
|x|≥n

2α(n)
∣∣∣φ(l)(x)

∣∣∣ (φ ∈ D(R), α, β ∈ N → N).

D̃(R) denotes the locally convex space of infinitely differentiable

functions on R with pseudobounded support, taken with the

seminorms {pα,β}.
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§4 he dual spaces D∗(R) and D̃∗(R)

Theorem 2 (Y, ’03). Every distribution is uniquely extended to

D̃(R).

That is, D∗(R) = D̃∗(R) as sets.
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Theorem 3. A sequence {un} of distributions converges to 0 in

D∗(R) if and only if it does in D̃∗(R).

(Proof) We consider the part “only if”.

It is sufficient to show that if {un} → 0 in D∗(R), then {un} → 0

in D̃∗(R).

That is, we show that {un(φ)} → 0 for all φ ∈ D∗(R),

then {un} → 0 for all φ′ ∈ D̃∗(R).
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Let {un} be a given sequence of distributions, φ be in D̃(R), and

any k in N.

We can then construct some φ′ in D∗(R) such that for some N

in N, |un(φ′)| < 2−(k+1) → |un(φ)| < 2−k (n ≥ N).

0 N-N

φ

φ'

(q.e.d)
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We again note that

Given a sequence {un} of distributions and an element φ

in D̃(R), we can construct a test function φ′ such that

for some N in N,

‖un‖φ′ < 2−(k+1) → ‖un‖φ < 2−k (n ≥ N)

That is, D̃∗(R) is equal to D∗(R) w.r.t. convergence.
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D̃∗(R) ' D∗(R) (*: dual spaces)

↑ ↑

(∼: completion) D̃(R) 6= D(R)
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Open question:

Is D̃∗(R) equal to D∗(R) w.r.t. neighbourhoods?

Reference
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