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Constructive mathematics is a framework of study for com-
putability in mathematics.

Today we consider computability in generalized function theory,
via constructive mathematics.



31 Introduction

The space D(R) is an important example of a non-metrizable
locally convex space.

A distribution (or generalized function) is a sequentially contin-
uous linear functionals on D(R) (a sequentially continuous linear
function from D(R) into R).

We had not had the start of constructive theory of generalized
functions until the following problems, given by the 1960's mono-
graph of Bishop, were solved:



1. How constructively difficult is the completeness properties of
D(R) and its dual space D*(R) (i.e. the space of distribu-
tions)?

2. Can we take the natural forms of the constructive comple-
tions of D(R) and D*(R) respectively 7

These problems are solved by the following results:

(1a) D(R) is complete if and only if the principle BD-N is can be
proved [Ishihara and Y,’'02].

(2) The constructive completion D(R) of D(R) is obtained by
generalizing every element (test functions) of D(R) [Y, '05].

(1b) The dual space D*(R) of D(R) is equal to the dual space
D*(R) as sets, and the weak completeness of D*(R) can be
proved [Y, '03].



weakly complete — ﬁ*(R) — D*(R) (*: dual spaces)
(1b)

T T

(~: completion) ﬁ(R) # D(R)
(2)  (1a)

Fig. The spaces D(R) and D(R) in
Bishop’s constructive mathematics.



Here
la D(R) is complete if and only if BD-N can be proved.
Notes:

A subset A of N is pseudobounded if
V{an} € ANIN € N[an, < n] (n> N).

A bounded subset of N is pseudobounded.
BD-N: every countable pseudobounded subset of N is bounded.

BD-N can be proved in

classical mathematics,

Brouwer’s intuitionistic mathematics and

constructive recursive mathematics of Markov's school,
but not in Bishop's constructive mathematics.




2 The constructive completion D(R) is obtained by generaliz-
ing every element (test functions) of D(R)

Note:

e A test function is an infinitely differentiable function on R
with compact support.

e A element of D(R) is an infinitely differentiable function on
R with pseudobounded support.



1b  The weak completeness of the dual space D*(R) holds.

This matter follows from the Banach-Steinhaus theorem for D(R):
for a sequence {u;} of distributions (sequentially continuous lin-
ear functionals on D(R)), if the sequence {u;(¢$)} converges in
R for any ¢ in D(R), then the limit v exists and is a distribution.

The completeness of D(R) is not necessary for proving the weak
completeness of D*(R), although many classical proofs require it.




Now this version of Banach-Steinhaus theorem was proved by
showing the following properties.

e The Banach-Steinhaus theorem for the completion D(R).

e cvery distribution is uniquely extended to 15(IR{).

In particular, the second implies that D*(R) = D*(R) as sets.

We then have a question:
is D*(R) topologically equivalent to D*(R)?

We discuss this problem in this talk.



. ?
D*(R) ~ D*(R) (*: dual spaces)

) )
(~: completion) ﬁ(R) # D(R)

Fig. The spaces D(R) and D(R) in
Bishop’s constructive mathematics.
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32 Preliminary
(2a) The principle BD-N in constructive mathematics

BHK(Brouwer-Heyting-Kolmogorov)-interpretation

constructive math. classical math.
we can judge
PvVvQ P or @ —P and —Q

by finite procedures imply a contradiction
we can construct c
JxP(x) such that P(c) “—=P(x) for all ="

by finite procedures | implies a contradiction

Under this interpretation, Principle of Excluded Middle (PEM)
for all proposition P, PV —P
and its negation cannot be proved.

Bishop’'s constructive mathematics is mathematics with BHK-
interpretation.
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The three frameworks of constructive mathematics:

e Brouwer’s intuitionistic mathematics

e Constructive recursive mathematics of Markov’'s school

e Bishop’'s Constructive mathematics
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Fig.2.1 The sets of theorems in the four frameworks
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(2b) Locally convex spaces
Let X be a vector space over R.

A mapping p: X — R9T is a seminorm on X
if it satisfies that forz,y € X and A € R, (1) p(z+vy) < p(x)+p(y)
and (2) p(Az) = [Alp(x).

A pair (X,{p;}) is locally convex space over R
if for all index 7 and z in X, whenever p;(x) = 0 then x = 0.

15



. i
{xn} converges to z in X «

Vke NVie IANeN|n > N = pi(az—azn)<2_k].

Let v be a linear functional on X.
u Is sequentially continuous on X Cg
for each sequence {zn} in X and z € X
{xn} converges to z in X
—= the sequence {u(xn)} converges to u(x) in R.

The dual space X* with weak topology of a locally convex
space (X,{p;}) is a locally convex space of sequentially continu-
ous linear functionals on X, with the seminorms {|| - ||z} defined
by ||ullz := [u(z)| (z € X).
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63 The space D(R) and its completion D(R)

The set suppf denotes the closure of the set {x € R: |f(x)| > 0}
in Euclid space R.

Set suppyf :={0}U{n e N:3q€Qlq] >nA|f(q)] > 0]}.

Notes that for a continuous function f, suppf is bounded <—
suppyf is bounded.

17



Example 1 (The bump function).
1 :
o(x) = | &P <——1_x2> !f ] <1
0 it |x| > 1.
Then supp¢ = [—1,1] and suppyn¢ = {0}.

Fig.3.2 An example of a test function: the bump function
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f has compact support (@c suppf is bounded.

f has pseudobounded support g suppyf is pseudobounded.

A test function is an infinitely differentiable functions from R into
it itself with compact support.

D(R) denotes the locally convex space of test functions with the
seminorms

Pa,3(®) == sup max_sup 2 s (2)| (¢ € D(R), 0,8 €N — N).
’ n 1<B(n) |z|>n

ﬁ(R) denotes the locally convex space of infinitely differentiable
functions on R with pseudobounded support, taken with the
seminorms {p, g}-
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84 he dual spaces D*(R) and D*(R)

Theorem 2 (Y, '03). Every distribution is uniquely extended to
D(R).

That is, D*(R) = D*(R) as sets.
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Theorem 3. A sequence {uyn} of distributions converges to 0 in
D*(R) if and only if it does in D*(R).

(Proof) We consider the part “only if".
It is sufficient to show that if {un} — 0 in D*(R), then {unp} — 0
in D*(R).

That is, we show that {un(¢)} — O for all ¢ € D*(R),
then {u,} — O for all ¢’ € D*(R).
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Let {un} be a given sequence of distributions, ¢ be in D(R), and
any k in N.

We can then construct some ¢’ in D*(R) such that for some N
in N, Jun(¢)] < 2=* T — juy(¢)| <27F  (n > N).

Z
o
z =

(g.e.d)
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We again note that

Given a sequence {uy} of distributions and an element ¢
in D(R), we can construct a test function ¢’ such that
for some N in N,

lunlly <27 FFD o Jlunlly <27%  (n > N)

That is, D*(R) is equal to D*(R) w.r.t. convergence.

23



ﬁ*(R) ~ D*(R) (*: dual spaces)

T T

(~: completion) ﬁ(R) # D(R)
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Open question:

Is D*(R) equal to D*(R) w.r.t. neighbourhoods?

Reference

Satoru Yoshida,
A note on weak topology for the constructive completion of the

space D(R),
http://unit.aist.go.jp/cvs/tr-data/ps07-001.pdf
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