
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
On-the-fly Model Checking Security Protocols and

Its Implementation by Maude

Author(s) Li, Guoqiang; Ogawa, Mizuhito

Citation

Issue Date 2006-11-29

Type Presentation

Text version publisher

URL http://hdl.handle.net/10119/8307

Rights

Description

Theorem Proving and Provers Meeting(2nd TPP)での

発表資料, 開催：2006年11月29日～30日, 開催場所

：JAIST 情報科学研究科棟II・Collaboration Room 7

(5F)

On-the-fly Model Checking Security Protocols
and Its Implementation by Maude

Guoqiang Li, Mizuhito Ogawa

Japan Advanced Institute of Science and Technology

Nov. 29, 2006

Problems

• When model checking security protocols, it suffers from
infinite states. Such infinity comes from:

• Infinitely many sessions of protocols: each principal can
initiate or act as a responser infinitely many protocol
sessions.

• Infinitely many principals in the network: each principal may
communicate with infinitely many other principals.

• Infinitely many messages that intruders can generate: each
intruder can produce infinitely many messages based on
messages leaked in the network(Dolev-Yao).

Our approaches

• A typed process calculus that avoids recursive operations
is proposed, so that only finitely many sessions are
considered.

• A bound variable is introduced to represent a sender’s
intended destination, so that the unbounded number of
principals are finitely described.

• (νx : I)a1{M}k[A,x]

• Messages with the same effect in a protocol are unified to
a parametric message based on type information.

• a1(x).a2x

• Each possible run of a protocol is represented as a trace.

Model a network

• Principals exchange the messages
with the environment.

• A message that a receiver receives
may not be the same as what a
sender sends.

• Environment can produce, modify
messages during the
communication of principals
(represented as a deductive
system).

Environment

A

B

C

1

Syntax

M, N, L ::= n | x | (M, N) | {M}L | m[M1, . . . , Mn]

P, Q, R ::=
0 Nil
aM.P output
a(x).P input
[M = N] P match
(νx : A)P range
let (x , y) = M in P pair splitting
case M of {x}L in P decryption
P‖Q composition

An approximation on sending a message
(Usages of ranges and binders)

• Ranges and binders are used when a
principal initiates a protocol, or one can
not obtain his communicator’s name.

• (νx : I)a1{A, NA}+k[x] . . . z . . . a3{z}+k[x]

• (νx : I)a1{A, NA}+k[x] . . . yb, z . . . [yb =

x] . . . a3{z}+k[yb]

• An approximation is used that the principal
sends the same message randomly to
different principals.

NSPK protocol

A −→ B : {A, NA}+KB

B −→ A : {NA, NB}+KA

A −→ B : {NB}+KB

Fixed NSPK protocol

A −→ B : {A, NA}+KB

B −→ A : {B, NA, NB}+KA

A −→ B : {NB}+KB

Representation of Abadi-Gordon protocol
(An example of the binder)

A −→ S : A, {B, KAB}KAS

S −→ B : {A, KAB}KSB

A −→ B : A, {A, M}KAB

A ,(νx : I)a1(A, {x ,k[A, x]}k[A,S]).a2(A, {A, M}k[A,x]).0

B ,b1(x).case x of{x ′}k[B,S] in let (y , z) = x ′ in

b2(w).let (w ′, w ′′) = w in [w ′ = y] case w ′′ of {u}z in

let (u′, u′′) = u in [u′ = y] acc w .0

S ,s1(x).let (y , z) = x in case z of {u}k[y,S] in let (u′, u′′) = u in

s2{y , u′′}k[u′,S].0

SYS ,A‖S‖B

Representation of Woo-Lam protocol
(An example of the Decryption)

A −→ B : A
B −→ A : NB

A −→ B : {NB}KAS

B −→ S : B, {A, {NB}KAS}KBS

S −→ B : {A, NB}KBS

A ,a1 A.a2(xa).a3 {xa}k[A,S].0

B ,b1(xb). b2 NB.b3(yb).b4 (B, {xb, yb}k[B,S]).b5(zb).

case zb of {ub}k[B,S] in let(wb, tb) = ub in [wb = xb][ub = NB] acc yb.0

S ,s1(xs).let (x ′
s, x ′′

s) = xs in case x ′′
s of {ys}k[x′

s ,S] in let (zs, ws) = ys

in case ws of {us}k[zs,S] in s2 {zs, us}k[x′
s ,S].0

SYS ,A‖S‖B

Representing each possible run as a trace

A −→ S : A, {B, KAB}KAS

S −→ B : {A, KAB}KSB

A −→ B : A, {A, M}KAB

A −→ B : A
B −→ A : NB

A −→ B : {NB}KAS

B −→ S : B, {A, {NB}KAS}KBS

S −→ B : {A, NB}KBS

• a1(A, {B,k[A, B]}k[A,S])

• a1(A, {I,k[A, I]}k[A,S])

• a1(A, {B,k[A, B]}k[A,S]).
s1(A, {B,k[A, B]}k[A,S])

• a1(A, {B,k[A, B]}k[A,S]).
b1({A,k[A, B]}k[B,S]) ×

• a1A.b1(A).b2NB

• b1(A).b2NB.a1A.a2(NI)

• b1(A).b2NB.b3(NB).

b4(B, {A, NB}k[B,S]).b5(B, {A, NB}k[B,S])

Environment ability

• If two messages are leaked the environment:
(A, {B, M}k[A,S]), (k[A, S], {B, M}k[B,S])

• The environment can split and decrypt the message:
A, {B, M}k[A,S], k[A, S], {B, M}k[B,S], M . . .

• The environment can compose and encrypt the message:
{A}k[A,S], (A, M), {{B, M}k[B,S]}k[A,S] . . .

• The environment knows some common messages:
A,+k[A], . . .

• The environment can produce new messages:
I, NI , . . .

• The environment can produce infinite many messages!
(S B M)

Formal definition of traces

• Action α is a term of aM or a(M). An action is ground if the
attached message does not have any variables.

• eg: b1 x , a1(A, {B, KAB}KAS)

• Trace s is a string of ground actions such that for each s′,
s′′ and a(M), if s = s′.a(M).s”, then msg(s′) B M.

•
√

b1(A).b2NB.a1A.a2{I}k[I,S]

• × a1(A, {B,k[A, B]}k[A,S]).b1({A,k[A, B]}k[B,S])

• Configuration is a pair 〈s, P〉,in which s is a trace and P is
a closed process (All variables are bound).

Type

• A type system is proposed such that the type of each
variable, message and process can be inferred

• {B,k[A, B]}k[A,S] : 	(i ∗ k [i ∗ i])
• b1(x).let (y , z) = x in [z = A].0 : α ∗ i → unit
• x : α ∗ i ; y : α; z : i

• A principal will be stuck if it receives a message whose
type can not unify the type of the input variable

• b1({B,k[A, B]}k[A,S]).let (y , z) = {B,k[A, B]}k[A,S] in [z = A].0

• A variable (or a subexpression) with type variable as its
type can be unified to any type, so that it can be
substituted to any message

Reasons that cause the system to be infinite
Operational semantics

(INPUT) 〈s, a(x).P : τ1 → τ2〉 −→ 〈s.a(M), P{M/x}〉
s B M, Γ ` M : τ1

(OUTPUT) 〈s, aM.P〉 −→ 〈s.aM, P〉
(RANGE) 〈s, (νx : A)P〉 −→ 〈s, P{m/x}〉 m ∈ A

〈ε, a1M.a(x).0〉

〈a1M, a(x).0〉

〈a1M.a(M), 0〉 〈a1M.a((M, M)), 0〉 〈a1M.a({M}+k[I]), 0〉· · · · · ·

1

〈ε, (νx : I)a1{M}+k[x].0〉

〈a1{M}+k[B], 0〉 〈a1{M}+k[C], 0〉 〈a1{M}+k[I], 0〉· · · · · ·

1

Approach of parametric model

• Each sub-expression with a type variable as its type will be
marked with a parametric variable that will not be further
instantiated.

• Any message that instantiates the sub-expression will take
the same effect to the protocol.

〈ε, a1M.a(x).0〉

〈a1M, a(x).0〉

〈a1M.a(M), 0〉 〈a1M.a((M, M)), 0〉 〈a1M.a({M}+k[I]), 0〉· · · · · ·

1

〈ε, a1M.a(x̂).0〉

〈a1M, a(x̂).0〉

〈a1M.a(x̂), 0〉

1

Approach of parametric model (cont.)

• A binder will not be instantiated instantly, it will be
instantiated “when needed”(We will explain the “need”
later)

〈ε, (νx : I)a1{M}+k[x].0〉

〈a1{M}+k[B], 0〉 〈a1{M}+k[C], 0〉 〈a1{M}+k[I], 0〉· · · · · ·

1

〈ε, (νx : I)a1{M}+k[x̂i]
.0〉

〈a1{M}+k[x̂i]
, 0〉

1

(PINPUT) 〈ŝ, a(M̂).P̂〉 −→p 〈ŝ.a(M̂), P̂〉
(POUTPUT) 〈ŝ, aM̂.P̂〉 −→p 〈ŝ.aM̂, P̂〉
(PRANGLE) 〈ŝ, (νx̂ : A)P̂〉 −→p 〈ŝ, P̂〉

Parametric process and trace

• In a parametric system, parametric traces will be used to
represent each possible run of a protocol.

• Each trace in an original system has an abstraction trace in
its parametric system.

• A parametric trace may have infinitely many instantiated
traces in its original system (named concretizations).

• It may have no concretizations!
• a1(A, {B,k[A, B]}k[A,S]).b1({A, x̂}k[B,S])

Unchangeable messages
• An unchangeable message (UM) is an encrypted input

message such that its key is not leaked in the environment.
• A parametric variable in an unchangeable message cannot

be instantiated to arbitrary ground messages. So we must
explicitly instantiate it (by unification).

• If a unification is failed, the parametric trace has no
concretizations.

A −→ B : {A, M}k[A,B]

ε

a1{A, M}k[A,B]

a1{A, M}k[A,B].b1{A, M}k[A,B]

×

1

ε

a1{A, M}k[A,B]

a1{A, M}k[A,B].b1{A, x̂}k[A,B]

a1{A, M}k[A,B].b1{A, M}k[A,B]

b1{A, x̂}k[A,B]

×

1

Explicit trace

• An explicit trace is a parametric trace that each UM can be
deduced by its prefix parametric trace.

• An explicit trace can be obtained by gradually unifying
each UM with messages in its prefix parametric trace.

a1{A, B, M}k[A,S].s1{x̂, ŷ, ẑ}k[x̂,S].s2({x̂, ŷ, ẑ}
k[ŷ,Ŝ]).b1({A, B, ŵ}k[B,S])

a1{A, B, M}k[A,S].s1{A, B, ẑ}k[A,S].s2({A, B, ẑ}
k[B,Ŝ]

).b1({A, B, ẑ}k[B,S])

a1{A, B, M}k[A,S].s1{A, B, M}k[A,S].s2({A, B, M}
k[B,Ŝ]).b1({A, B, M}k[B,S])

1

• The number of explicit trace of one parametric trace is
finite. Each explicit trace represents a possible run of the
protocol.

Deducing to an explicit trace(Woo-Lam)
(More than one unifications)

b1(A).b2 NB.b3(ŷb).b4 (B, {A, ŷb}k[B,S]).s1(x̂s, {ŷs, {ẑs}k[ŷs,S]}k[x̂s,S]).

s2 {x̂s, ẑs}k[ŷs,S].b5({A, NB}k[B,S])
↪→

b1(A).b2 NB.b3(NB).b4 (B, {A, NB}k[B,S]).s1(x̂s, {ŷs, {ẑs}k[ŷs,S]}k[x̂s,S]).

s2 {x̂s, ẑs}k[ŷs,S].b5({A, NB}k[B,S]

b1(A).b2 NB.b3(ŷb).b4 (B, {A, ŷb}k[B,S]).s1(x̂s, {ŷs, {ẑs}k[ŷs,S]}k[x̂s,S]).

s2 {x̂s, ẑs}k[ŷs,S].b5({A, NB}k[B,S])
↪→

b1(A).b2 NB.b3(ŷb).b4 (B, {A, ŷb}k[B,S]).s1(A, {B, {NB}k[B,S]}k[A,S]).

s2 {A, NB}k[B,S].b5({A, NB}k[B,S])
↪→
×

Authentication properties

• Intuitively, principal A is
authenticated to B means if B
“thinks” he accepts a message
from A, then it really comes from
A.

• In the original model, it is defined
as: if acc occurs in a trace, then
a3 must occurs in the trace
before acc, and both of them are
attached with the same message.
(〈ε, Sys〉 |= a3x ←↩ accx)

• The definition is equivalent to the
same definition defined in explicit
traces.

A −→ B : A

B −→ A : NB

A −→ B : {NB}KAS

B −→ S : B, {A, {NB}KAS}KBS

S −→ B : {A, NB}KBS

A ,a1 A.a2(xa).a3 {xa}k[A,S].0

B ,b1(xb). b2 NB.b3(yb).b4 (B, {xb, yb}k[B,S]).

b5(zb).case zb of {ub}k[B,S] in

let(wb, tb) = ub in [wb = xb][ub = NB]

acc yb.0

On-the-fly model checking by Maude

• Two reasons to use Maude:
• A new parametric trace generation is decided on-the-fly by

trying to unify UM(it may fail)
• It is easily to transfer a specification property to a

reachability problem.
• The way of implementation by Maude

• Each elementary definition and function in the parametric
model is implemented to functional modules.

• A trace generating system is represented in a system
module.

• search command is used to find whether the negation of a
specification is reachable.

Trace generating system

• A state of the trace generating system is a 3-tuple:
〈tr , S, k〉, where

• tr is a parametric trace.
• S is a list of substitutions.
• k is a type of tr , where k ∈ {ot , et , pt}. ot represents an

original trace, et represents an explicit trace and pt
represents a pending trace.

〈ε, Nil, ot〉

〈a1{A, M}k[A,B], Nil, ot〉

A −→ B : {A, M}k[A,B]

〈a1{A, M}k[A,B], Nil, et〉 〈a1{A, M}k[A,B].b1{A, x̂}k[A,B], Nil, ot〉

〈a1{A, M}k[A,B].b1{A, x̂}k[A,B], {x̂ �→ M}, pt〉

〈a1{A, M}k[A,B].b1{A, M}k[A,B], Nil, et〉

〈b1{A, x̂}k[A,B], Nil, ot〉

〈b1{A, x̂}k[A,B], Nil, pt〉

〈ε, Nil, et〉

1

Transition rules of Woo-Lam protocol

• Initial state: 〈ε, {}, ot〉
• Parametric transition relation:

• 〈tr , S, ot〉 ↪→ 〈tr .a1A, S, ot〉 if a1 6∈ tr
• 〈tr , S, ot〉 ↪→ 〈tr .b1(x̂), S, ot〉 if b1 6∈ tr
• . . .

• Reduction relation:
• 〈tr , θ#S, pt〉 ↪→ 〈trθ, ES(trθ), pt〉

if not Exp(trθ)
• 〈tr , θ#S, pt〉 ↪→ 〈tr , S, pt〉

• Trace type transferred relation:
• 〈tr , S, ot〉 ↪→ 〈tr , ES(tr), pt〉 if not Exp(tr)
• 〈tr , S, ot〉 ↪→ 〈tr , {}, et〉 if Exp(tr)
• 〈tr , θ#S, pt〉 ↪→ 〈trθ, {}, et〉 if Exp(trθ)

A −→ B : A

B −→ A : NB

A −→ B : {NB}KAS

B −→ S : B, {A, {NB}KAS}KBS

S −→ B : {A, NB}KBS

Part source code of Woo-Lam protocol

Experimental results

protocols sessions lines states times(ms) flaws
NSPK protocol 1 20+330 46 130 detected
fixed NSPK protocol 1 20+330 164 637 secure
Woo-Lam protocol* 1 25+330 168 160 detected
Yahalom protocol 2 36+330 536 1,039 detected
Otway-Ree protocol 2 34+330 2,164 22,316 detected
Woo-lam protocol 2 42+330 105,423 476,507 detected

The tests were preformed on a Pentium 1.4 GHz, 1.5G Memory, Win XP.

A benchmark of analyzing security protocol (by horn logic)
protocols times(ms)
NSPK protocol 8
fixed NSPK protocol 5
Woo-Lam protocol* 6
Yahalom protocol 16
Otway-Ree protocol 14
Woo-lam protocol fails

Related work
(Benchmark)

• Based on Horn clauses and resolution, checking the properties
in infinite sessions of the protocol.

• att({m}k) ∧ att(k) → att(m)

• att(nb) → att({nb}kas) (Woo-Lam protocol)

• It sometimes does not terminate. (NSPK, Woo-Lam)

• A tag system makes system terminating. Security of a tagged
protocol does not imply security of its untagged version.

• Related references are:

• Bruno Blanchet. An Efficient Cryptographic Protocol Verifier Based on
Logic Programming. CSFW-14, 2001

• Bruno Blanchet and Andreas Podelski. Verification of Cryptographic
Protocols: Tagging Enforces Termination. Theoretical Computer
Science 333, 2005

Related work
(OFMC, Lazy intruder)

• David Basin, et al. proposed an On-the-fly
model checking methods (OFMC).

• They use a high-level language HLPSL to
represent a protocol, then translate
automatically to a low-level one, IF.

• An intruder’s messages are instantiated
when necessary (UM is similar).

• An intruder’s role is explicitly assigned,
thus flexible and efficient (we need to
check each role).

... ...
Messages
1. A -> B : A, NA
2. B -> S: B, {|A, NA, NB|}k(B,S)
3.
Session_instances
[A:a; B:b; S:s]
[A:i; B:b; S:s]
... ...

state(roleA,step0,sess1,a,b,s,k(a,s)).
state(roleB,step0,sess1,a,b,s,k(b,s)).
state(roleS,step0,sess1,a,b,s,k).
state(roleA,step0,sess2,a,b,s,k(a,s)).
state(roleS,step0,sess2,a,b,s,k).
i_knows(a).i_knows(b).i_knows(s).
i_knows(s).i_knows(i).i_knows(k(i,s)).

1

Related works
(Process calculus)

• Gavin Lowe firstly uses trace analysis on CSP. The intruder
is represented as a recursive process. states are restricted
by imposing upper-bounds.

• Abadi et al. use some bisimulation to define the security
properties. The main problem is that those equivalences
are usually undecidable for implementation.

• Sysimp ∼= Sysspec

• Their another approach is statical analysis by type system.
The attacker model is weaker than Dolev-Yao model,
assuming that the intruder is partially trusted.

Related work
(Type system vs. tag system)

• J. Heather et al. show that a tagging
system can prevent type flaw attacks.

• A tag is a few bits attached to each
message, with different bit patterns
allocated to different types

• (nonce, N) means N is intended to be a
nonce.

• The work infers that the depth of ground
messages can be bounded in the search
for an attack when the principals are
bounded.

A −→ B : A

B −→ A : NB

A −→ B : {NB}KAS

B −→ S : B, {A, {NB}KAS}KBS

S −→ B : {A, NB}KBS

I(A) −→ B : A

B −→ I(A) : NB

I(A) −→ B : NB

B −→ I(S) : B, {A, NB}KBS

I(S) −→ B : {A, NB}KBS

((agent, {agent, {nonce}sk}sk),

((agent, B), ({agent, {nonce}sk}sk, {(agent, A), {(nonce, NB)}KAS}KBS)))

Related work
(Binder vs. Principals Restriction)

• The research of H. Comon-Lundh et
al. is based on the Horn clauses,
which proved that it is sufficient to
only consider a bound number of
principals when verifying some
security properties.

• Given an attack using n agents, we
project every honest identity on one
single identity and every dishonest
identity on one dishonest identity.

• A → B : A, Na

(Yahalom protocol)

• Fresh(t , s), T (t) ⇒
T ([st(a, 0, 〈a, b, srv〉), s].t)
s: session, t : trace

• T(t),
In([st(a, 0, 〈a, b, srv〉), s], t),
NotPlayed(a, 1, s, t) ⇒
T ([〈a, n1(a, s)〉, s].
[st(a, 1, 〈a, b, srv〉), s].t)

• Solution: Keep a uninstantiated.

Future work

• Develop a parser that transfers an original system to its
counterpart Maude source code.

• Try to perform model checking on other security properties
such as non-repudiation, fairness, anonymity, etc.

• Extend the calculus to one that can define recursive
process so that we can model checking a protocol with
infinite sessions.

Thank you!

