Title	A sequent calculus for Limit Computable Mathematics
Author(s)	Berardi, Stefano; Yamagata, Yoriyuki
Citation	
Issue Date	2006-11-27
Туре	Presentation
Text version	publisher
URL	http://hdl.handle.net/10119/8310
Rights	
Description	3rd VERITE : JAIST/TRUST-AIST/CVS joint workshop on VERIfication Technologyでの発表資料,開催: 2006年11月27日~28日,開催場所:JAIST 知識科学研究科講義棟・中講義室

A sequent calculus for Limit Computable Mathematics

Stefano Berardi and Yoriyuki Yamagata

Background: LCM

Susumu Hayashi and N. Nakata (2001)

• Mathematics realized by Δ_2^0 -functions.

Background: LCM

Susumu Hayashi and N. Nakata (2001)

• Mathematics realized by Δ_2^0 -functions. c.f. Constructive Mathematics (realized by Δ_1^0 -functions)

Background: LCM

Susumu Hayashi and N. Nakata (2001)

- Mathematics realized by Δ_2^0 -functions. c.f. Constructive Mathematics (realized by Δ_1^0 -functions)
- Part of Hayashi's "Proof Animation Project"

LCM and classical logic

$$EM_1(P) \equiv \forall x (\exists y Pxy \lor \forall y \neg Pxy)$$

P: decidable, is valid in LCM,

LCM and classical logic

$$EM_1(P) \equiv \forall x (\exists y Pxy \lor \forall y \neg Pxy)$$

P: decidable, is valid in LCM, while

$$EM_2(Q) \equiv \forall x (\exists y \forall z Q x y z \lor \forall y \exists z \neg Q x y z)$$

Q: decidable, is **not** valid.

Strength of LCM

Akama, Berardi, Hayashi, Kohlenbach (2004)

• Known: Implies WKL_0 in higher order setting (with a weak form of Axiom Choice)

Strength of LCM

Akama, Berardi, Hayashi, Kohlenbach (2004)

- Known: Implies WKL_0 in higher order setting (with a weak form of Axiom Choice)
- Conjecture : Intuitionism + EM_1

Game semantics of LCM

1-bck. game: Simple extension of Lorenzen/Hintikka game

Theorem. (Berardi, Coquand, Hayashi 2005) A is valid in LCM \Leftrightarrow Prover (\mathcal{E}) is winning in 1-bck. game of A.

Our contribution

Give an infinitary logic PA_1 for LCM.

Our contribution

Give an infinitary logic $\mathbf{PA_1}$ for LCM. (Previously, LCM is defined by semantic means through realizers or games)

Our contribution

Give an infinitary logic $\mathbf{PA_1}$ for LCM. (Previously, LCM is defined by semantic means through realizers or games)

Isomorphism Theorem.

A proof π of formula A in PA_1

 \leftrightarrow 1:1,tree-iso.

a winning strategy of 1-bck. game of A.

Lorenzen/Hintikka game

2-person game between \mathcal{E} and \mathcal{A} . Conjunctions and false atomics are played by \mathcal{E} , otherwise positions are played by \mathcal{A} . Pnm below is true.

Lorenzen/Hintikka game

2-person game between \mathcal{E} and \mathcal{A} . Conjunctions and false atomics are played by \mathcal{E} , otherwise positions are played by \mathcal{A} . Pnm below is true.

Lorenzen/Hintikka game

2-person game between \mathcal{E} and \mathcal{A} . Conjunctions and false atomics are played by \mathcal{E} , otherwise positions are played by \mathcal{A} . Pnm below is true.

E looses here.

 P_1, P_2, \dots : Decidable predicates on natural numbers

 P_1, P_2, \dots : Decidable predicates on natural numbers

 x_1, x_2, \ldots : Variables over natural numbers

 P_1, P_2, \dots : Decidable predicates on natural numbers

 x_1, x_2, \ldots : Variables over natural numbers f_1, f_2, \ldots : Recursive functions from natural numbers to natural numbers

 P_1, P_2, \dots : Decidable predicates on natural numbers

 x_1, x_2, \ldots : Variables over natural numbers f_1, f_2, \ldots : Recursive functions from natural numbers to natural numbers

Formulas $F ::= Px \mid F \land F \mid F \lor F \mid \forall xF \mid \exists xF$

Sequents: Ordered list (not multiset) of formulas.

Sequents: Ordered list (not multiset) of formulas.

Sequents: Ordered list (not multiset) of formulas.

$$\vdash B_1, \ldots, B_n, C$$

Sequents: Ordered list (not multiset) of formulas.

$$\vdash B_1, \ldots, B_n, \underbrace{C}_{\text{current position}}$$

Sequents: Ordered list (not multiset) of formulas.

$$\vdash \underbrace{B_1, \ldots, B_n}_{\text{positions } \mathcal{E} \text{ can backtrack current position}} \mathcal{C}$$

Sequents: Ordered list (not multiset) of formulas.

A game position is identified to a sequent.

$$\vdash$$
 $B_1, \ldots, B_n,$ C positions \mathcal{E} can backtrack current position

This interpretation naturally leads to inference rules.

PA_1 : Axioms

$$\vdash B_1, \ldots, B_n, p$$

where p is a true atomic.

PA_1 : Axioms

$$\vdash B_1, \ldots, B_n, p$$

where p is a true atomic.

Since \mathcal{E} is going to win in this position, no more need of strategies.

PA_1 : Conjunctions

A moves at conjunctions

$$\frac{\vdash \Gamma, A_1 \vdash \Gamma, A_2}{\vdash \Gamma, A_1 \land A_2} \land$$

$$\frac{\vdash \Gamma, A(0) \quad \dots \quad \vdash \Gamma, A(n) \quad \dots}{\vdash \Gamma, \forall x A(x)} \forall$$

 \mathcal{E} prepares all possible moves of \mathcal{A} .

PA_1 : Disjunction

$$\frac{\vdash \Gamma, A_1 \lor A_2, A_i}{\vdash \Gamma, A_1 \lor A_2, \Delta} \lor$$

 \mathcal{E} retracts all moves in Δ and backtracks to $A_1 \vee A_2$, then chooses a node A_i .

PA_1 : Disjunction

$$\frac{\vdash \Gamma, \exists x A(x), A(n)}{\vdash \Gamma, \exists x A(x), \Delta} \exists$$

 \mathcal{E} retracts all moves in Δ and backtracks to $\exists x A(x)$, then chooses a node A(n).

$$\vdash \exists y Pny \lor \forall y \neg Pny$$

$$\frac{\vdash \exists y Pny \lor \forall y \neg Pny, \forall y \neg Pny}{\vdash \exists y Pny \lor \forall y \neg Pny} \lor$$

$$\frac{\dots \quad \vdash \exists y Pny \lor \forall y \neg Pny, \neg Pnm \quad \dots}{\vdash \exists y Pny \lor \forall y \neg Pny, \forall y \neg Pny \quad \lor} \quad \forall \\ \frac{\vdash \exists y Pny \lor \forall y \neg Pny}{\vdash \exists y Pny \lor \forall y \neg Pny} \quad \lor$$

$$\frac{ \frac{\vdash \exists y Pny \lor \forall y \neg Pny, \exists y Pny}{\vdash \exists y Pny \lor \forall y \neg Pny, \neg Pnm} \lor}{\frac{\vdash \exists y Pny \lor \forall y \neg Pny, \forall y \neg Pny}{\vdash \exists y Pny \lor \forall y \neg Pny} \lor} \cdot \forall$$

$$\frac{ \frac{\exists y Pny \lor \forall y \neg Pny, \exists y Pny, Pnm}{\exists \forall Pny \lor \forall y \neg Pny, \exists y Pny}}{\exists \exists \forall Pny \lor \forall y \neg Pny, \neg Pnm} \lor \dots \frac{\exists y Pny \lor \forall y \neg Pny, \neg Pnm}{\exists \forall Pny \lor \forall y \neg Pny, \forall y \neg Pny} \lor \dots \frac{\exists y Pny \lor \forall y \neg Pny, \forall y \neg Pny}{\vdash \exists y Pny \lor \forall y \neg Pny} \lor$$


```
 \frac{ \frac{ \vdash \exists y Pny \lor \forall y \neg Pny, \exists y Pny, Pnm}{ \vdash \exists y Pny \lor \forall y \neg Pny, \exists y Pny} }{ \vdash \exists y Pny \lor \forall y \neg Pny, \neg Pnm} \lor \frac{ \vdash \exists y Pny \lor \forall y \neg Pny, \neg Pnm'}{ \vdash \exists y Pny \lor \forall y \neg Pny, \forall y \neg Pny} } \lor \cdots 
 \frac{ \vdash \exists y Pny \lor \forall y \neg Pny, \forall y \neg Pny}{ \vdash \exists y Pny \lor \forall y \neg Pny} \lor }
```

Conclusion

- We introduce a proof system PA_1 , an ω -logic without Exchange
- We show proofs of formula A in PA_1 and winning strategies of 1-bck. games over A has a tree-isomorphism

Future work

- Interpretation of Cut-rule.
- Interpretation of implication and Modus ponens
- Relation to cut-elimination

The End