JAIST Repository

https://dspace.jaist.ac.jp/

Title	Visibly Stack Automata
Author(s)	Nguyen, Van Tang; Ogawa, Mizuhito
Citation	
Issue Date	2006-11-27
Туре	Presentation
Text version	publisher
URL	http://hdl.handle.net/10119/8312
Rights	
Description	3rd VERITE : JAIST/TRUST-AIST/CVS joint workshop on VERIfication TEchnologyでの発表資料,開催 :2006年11月27日~28日,開催場所:JAIST 知識科学 研究科講義棟・中講義室

Japan Advanced Institute of Science and Technology

Visibly Stack Automata

Nguyen Van Tang - Mizuhito Ogawa

School of Information Science Japan Advanced Institute of Science and Technology

Talk Outline

Automata-theoretic based verification

- Checking context-free specifications
- Obstacles

Visibly Pushdown Automata

- Visibly Pushdown Languages
- Determinization

Visibly Stack Automata

- Visibly Stack Languages
- Determinization

Automata-theoretic based verification

- To verify if a software system satisfies a regular specification
 - System is modeled as a pushdown automaton M
 - Requirement is specified as a finite automaton S
- M |= S iff:
 - $L(M) \subseteq L(S)$
 - $L(M) \cap L(S)^{C} = \emptyset$
- Model checking problems are reduced to decision problems of formal languages
- Model checker: SPIN, MAGIC,...

Checking Context-free Specifications

- When S is a context-free specification
- Checking M|= S becomes undecidable

Obstacles

- Context-free languages (CFL) are not closed under intersection, complementation
- > The inclusion problem of CFL is undecidable
- Goals: Find a class of non-regular languages
 - Enjoys closure properties, Inclusion problem is decidable
 - Robustness

Talk Outline

Automata-theoretic based verification

- Checking context-free specifications
- Obstacles

Visibly Pushdown Automata Visibly Pushdown Languages Determinization

Visibly Stack Automata

- Visibly Stack Languages
- Determinization

Pushdown Automata (PDA)

- Def. PDA (P, Σ , Γ , Δ , p_0 , Z_0 ,F) where
 - P : finite control locations
 - **F**: finite stack alphabet
 - Σ: finite input alphabet
 - $\Delta \subseteq (P \times \Gamma \times (\Sigma \cup \{\varepsilon\}) \times (P \times \Gamma^*))$: transition
 - p_0 : initial control location
 - Z₀: initial stack symbol
 - F⊆P :final control locations
- Accepted ⇔ run reaches some control location in F
- PDA are not determinizable. PDA are closed under union, but not closed under intersection, complementation

Visibly Pushdown Automata (VPA)

- VPA was introduced by J. Alur and P.Madhusudan in 2004, [p.202-211, ACM-STOC's 04]
- Pushdown alphabet: partitioned into 3 disjoint sets $\Sigma = \Sigma_{push} \cup \Sigma_{pop} \cup \Sigma_{local}$
- A visibly pushdown automaton over a pushdown alphabet Σ is a pushdown automaton that
 - \succ pushes a symbol onto the stack on a symbol in Σ_{push}
 - \succ pops the stack on a symbol in Σ_{pop}
 - \succ cannot change the stack on a symbol in Σ_{local}

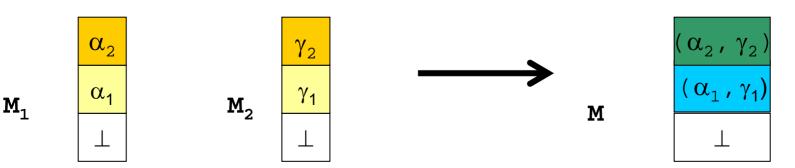
Key: Stack size at any time is determined by the input word but not control state or stack content

Visibly Pushdown Languages (VPL)

- A language L is a <u>VPL</u> over a pushdown alphabet Σ, if it is recognized by a VPA
- Examples

 \succ Every regular language L is a VPL

- VPLs are closed under:
 - > Union:
 - Intersection: Product construction works !
 - Complementation (see later)



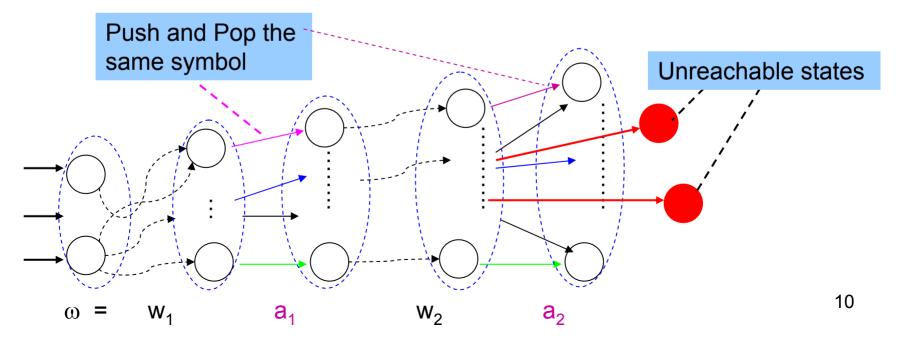
Decision Problems

- Given a nondeterministic A (n states), construct an equivalent deterministic B in size O(2^{n^2}).
- Emptiness: Decidable in polynomial-time (cubic)
- Language inclusion: $L(A) \subseteq L(B)$?
 - Determinize B, take its complement, take product with A, and test for emptiness
 - Exponential-time complete
- VPLs is a subclass of DCFLs (languages defined by deterministic PDAs)
 - DCFLs not closed under union, intersection
 - Equivalence problem for DCFLs decidable, but complex

Determinization: Key ideas

• Def. A word *u* is *well-matched* if

- For each prefix \vec{u} of u, the number of Σ_{push} symbols in \vec{u} is at most the number of Σ_{pop} symbols in \vec{u} .
- For each suffix u of u, the number of Σ_{pop} symbols in u is at most the number of Σ_{push} symbols in u.



Determinization: Sketch of the construction

- Idea: a well-matched word preserves stack; thus regarded as internal transition (expressed as summaries S_i). Transitions by extra Σ_{push} symbols are postponed until corresponding Σ_{pop} symbols will be read.
- Determinized VPA will consist of :
 - Control locations : { (S,R) | S: summary, R: reachables}
 - Stack alphabet : { (S,R,a) | S, R; $a \in \Sigma_{push}$ }
 - The initial state (Id, P_{init}), where Id = {(q,q)| q \in P}
 - Final states { $(S,R) | R \cap F \neq \phi$ },
 - where
 - $R \subseteq P$ = { all states reachable after a word w }
 - $S (\subseteq P \times P) = \{ \text{ all summaries on a well-marched word } w \}$ (i.e., $(q,q') \in S$, if (q,\perp) can reach to (q',\perp)).

Determinization: Sketch of transitions

- Let $w = w_1 c_1 w_2 c_2 \dots c_n w_{n+1}$, where c_i 's are in Σ_{push} , w_i 's are well matched words, let *a* be the next input.
 - Stack is $(S_n, R_n, c_n) \dots (S_l, R_l, c_l) \perp$
 - Control location is (S_{n+1}, R_{n+1}) ,
 - If $a \in \Sigma_{\text{local}}$: (S_{n+1}, R_{n+1}) is combined with transitions by a.
 - $\begin{array}{l} \underset{\{ \mathbf{q}' \mid \text{ reachable from } \mathbf{q} \in R_{n+1}, R_{n+1}, c_{n+1} \}}{\text{If } a \in \Sigma_{\text{push}}: \text{ push } (S_{n+1}, R_{n+1}, c_{n+1}) \text{ and control location is (id, } (\mathbf{q}' \mid \text{ reachable from } \mathbf{q} \in R_{n+1} \text{ by } a \})} \end{array}$
 - If $a \in \Sigma_{\text{pop}}$: let *Update* be combination of transitions by c_n (push $Y \in \Gamma$), S_{n+1} , and transitions by a (pop same Y). *NewS* is S_n combined with *Update*, and *NewR* is R_n combined with *Update* (R_{n+1} is discarded).
 - where
 - $-R_i \subseteq P = Set of all states reachable after <math>w_1 c_1 \dots w_i$
 - $-S_i (\subseteq P \times P) = Set of all summaries on <math>w_i$

Talk Outline

Automata-theoretic based verification

- Checking context-free specifications
- Obstacles
- Visibly Pushdown Automata
 Visibly Pushdown Languages
 Determinization
- Visibly Stack Automata
 - Visibly Stack Languages
 - Determinization

Stack Automata

- Stack automata: introduced by Ginsburg, Greibach and Harrison [JACM, No 2, Vol 14, pp.389-418, 1967]
- Stack automata = PDA + "read inside stack".
- More powerful than PDA. For instance, $\{a^n b^n c^n | n \ge 1\}$, $\{a^n b^{n^2} | n \ge 1\}$
- Def. Stack alphabet: $\Sigma = \Sigma_{push} \cup \Sigma_{pop} \cup \Sigma_{local}$ $\cup \Sigma_{up} \cup \Sigma_{down}$

Visibly Stack Automata (VSA) (1/2)

- Def. A VSA A over stack alphabet Σ : A = $\langle P, P_{in}, \Gamma, \uparrow, \delta, F \rangle$
 - P : finite set of control locations
 - $P_{in} \subseteq P$: set of initial control locations
 - Γ : finite stack alphabet, special symbols \perp , T
 - 1 : stack pointer
 - $F \subseteq P$: set of final control locations

• δ is a set of transitions $\langle \delta_{puah}, \delta_{pop}, \delta_{local}, \delta_{up}, \delta_{down} \rangle$, $\delta_{push} \subseteq P \times \Sigma_{push} \times P \times \Gamma \setminus \{\bot, T\}; \delta_{pop} \subseteq P \times \Sigma_{pop} \times \Gamma \times P;$ $\delta_{local} \subseteq P \times \Sigma_{local} \times P; \delta_{down} \subseteq P \times \Sigma_{down} \times \Gamma \times P; \delta_{up} \subseteq P \times \Sigma_{up} \times \Gamma \times P;$

(q,a,γ,q')∈ δ_{up} (γ≠⊥,T) ⇔ (q,a,γ',q')∈ δ_{up} (γ'≠ γ, ⊥,T)
 (q,a,γ,q')∈ δ_{down} (γ≠⊥,T) ⇔ (q,a,γ',q')∈ δ_{down} (γ'≠ γ, 15,T)

Visibly Stack Automata (2/2)

- Properties:
 - > Stack has form $T_{\gamma_n...\gamma_i} \uparrow_{\gamma_{i-1}...\gamma_1} \bot$
 - VSA can only push, pop when stack pointer at the top
 - > When stack is empty, pop is read but not popped
 - > Stack pointer cannot go beyond T or below \perp
 - When pointer is reading \(\perb) (T), down (up) is read but pointer does not move down (up)
- Def. A language L is a visibly stack language (VSL) if it is accepted by a VSA.
- Example: L={ $a^nb^nc^n$ |n≥1, a∈ \sum_{push} , b∈ \sum_d , c∈ \sum_u }
- VSL class is a proper extension of VPL class

Closure properties & Decision problems

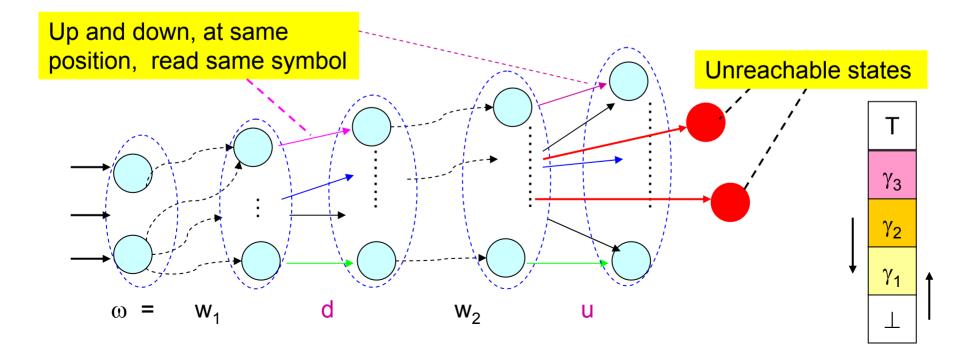
- Similar to VPLs, VSLs are closed under:
 - > Union, intersection, complementation
 - Determinizable (more complicated, see later)
- Emptiness for stack automata is decidable!

D. Harel, Information and Computation, Vol.113, No.2, 278-299, 1994

 Inclusion problem is decidable for visibly stack languages.

Determinization: Key ideas

- Matching condition between push and pop symbols
- Read the same symbol, whenever pointer goes up, or goes down at the same position



Determinization: Some definitions

- Def. A word u is an *up-down* segment if:
 - 1. For each prefix u' of u, the number of Σ_{down} symbols in u' is at most the number of Σ_{up} symbols in u'.
 - 2. For each suffix u'' of u, the number of Σ_{up} symbols in u'' is at most the number of Σ_{down} symbols in u''.
 - 3. There is no push, pop symbols in u
- Def. A word u is *well-matched* if:
 - 1. For each prefix u' of u, the number of Σ_{push} symbols in u' is at most the number of Σ_{pop} symbols in u'.
 - 2. For each suffix u'' of u, the number of Σ_{pop} symbols in u'' is at most the number of Σ_{push} symbols in u''.
 - 3. For each up (down) symbol *a* of u, *a* must belongs to an *up-down* segment *ud*, *ud* is a subword of u.

Determinization: Sketch of the construction

- Determinized VSA will consist of :
 - Control locations : { (S,R) | S: summary, R: reachables}
 - > Stack alphabet : { (S,R,a) | S, R; $a \in \Sigma_{push}$ }
 - > The initial state (Id, P_{init}), where Id = {(q,q)| q \in P}
 - > Final states { (S,R) | $R \cap F \neq \phi$ },

- where

- $R \subseteq P$ = {all states reachable after a word w}
- S (⊆ P×P) = {all summaries on a well-marched word w} (i.e., $(q,q') \in S$, if $(q,T\uparrow\bot)$ can reach to $(q',T\uparrow\bot)$).

Determinization: Sketch of transitions

- Let $W = W_1 C_1 W_2 C_2 ... C_n W_{n+1}$, where c_i 's are in Σ_{push} , W_i 's are well matched words, let *a* be the next input.
 - Stack is $T \uparrow (S_n, R_n, c_n) \dots (S_1, R_1, c_1) \bot$
 - Control location is (S_{n+1}, R_{n+1}) ,
 - If $a \in \Sigma_{\text{local}}$: (S_{n+1}, R_{n+1}) is updated using subset construction with transitions by a.
 - If a $\in \Sigma_{\text{down}}$: $(S_{n \pm 1}, R_{n+1})$ is updated with transition by a. Stack now is $T(S_{n}, R_{n}, c_{n}) \uparrow \dots (S_{1}, R_{1}, c_{1}) \bot$
 - If $a \in \Sigma_{up}$: (S_{n+1}, R_{n+1}) is updated with transitions by a, the pointer cannot go up. Stack stays unchanged, $T \uparrow (S_n, R_n, c_n) \dots (S_1, R_1, c_1) \bot$
 - where
 - $-R_i \subseteq P = Set of all states reachable after <math>w_1 c_1 \dots w_i$
 - $-S_i (\subseteq P \times P) = Set of all summaries on <math>w_i$

Determinization: Sketch of transitions

- If $a \in \Sigma_{\text{push}}$: push $(S_{n+1}, R_{n+1}, c_{n+1})$ and control location is (id, { q' | reachable from $q \in R_{n+1}$ by a}). Stack now is $T \uparrow (S_{n+1}, R_{n+1}, c_{n+1})(S_n, R_n, c_n)...(S_1, R_1, c_1) \bot$
- If $a \in \Sigma_{pop}$: let *Update* be combination of transitions by c_n (push $\gamma \in \Gamma$), S_{n+1} , and transitions by a (pop same γ). *NewS* is S_n combined with *Update*, and *NewR* is R_n combined with *Update* (R_{n+1} is discarded). Stack now is $T \uparrow (S_{n-1}, R_{n-1}, c_{n-1}) \dots (S_1, R_1, c_1) \bot$
 - where
 - $R_i (\subseteq P) =$ Set of all states reachable after $w_1 c_1 \dots w_i$
 - $-S_i (\subseteq P \times P) = Set of all summaries on w_i$

Conclusion

- Proposed the class of visibly stack languages recognized by visibly stack automata
- To our knowledge, to date, VSLs is the largest class which enjoys closure properties. All the decision problems are decidable for VSA.
- Infinite words:
 - Visibly Büchi pushdown automata [AM04]
 - Visibly Büchi stack automata
 - Closure properties, not determinizable, but language inclusion is still decidable!

Thank for your attention !