
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
An Object-Oriented logic for software analysis

and design

Author(s) Yatake, Kenro; Aoki, Toshiaki; Katayama, Takuya

Citation

Issue Date 2005-09-21

Type Presentation

Text version publisher

URL http://hdl.handle.net/10119/8323

Rights

Description

1st VERITE : JAIST/TRUST-AIST/CVS joint workshop

on VERIfication TEchnologyでの発表資料, 開催

：2005年9月21日～22日, 開催場所：金沢市文化ホール

3F

An Object-Oriented logic for
software analysis and design

Kenro Yatake, Toshiaki Aoki
Takuya Katayama

JAIST
2005.9.21

Background
The Object-Oriented method has become the
mainstream of software development.
In the upstream phase of the development,
analysis models are constructed with a
language such as UML.
To ensure that the system satisfies its
requirements, formal verification method
must be applied to the analysis models.

Verification target
Invariant properties about object attributes.
e.g.

AC: The thermometer value always less than 30.
Bank: Balance values never become negative.

Apply theorem proving

The HOL system
The use of HOL theorem prover

Interactive prover of higher-order logic.
A lot of mathematical libraries.
No libraries which implement OO concepts.

Implement object theory in HOL

Existing object theories
in higher-order logic

Semantics of Java program verification
LOOP, Bali, Krakatoa, …

Types of object attributes are limited to primitive ones
appearing in Java (integer, boolean, …).

Compared to program verification, analysis model
verification requires high availability of types.

High abstract types (set, stack, tree …)
Domain-specific types (date, time, currency, …)

Objective

Implement an object theory where
object can have arbitrary types of
attributes.

Verification with a wide variety of types becomes possible
making use of plentiful mathematical libraries
and powerful datatype definition facilities of HOL.

Embedding problem
The type system of HOL is too simple to
express object concepts as a general type.

???
Object HOL

Unified type of arbitrary types
Subtyping
Referencing

Simply-typed lambda
calculus with a first-order
language of types

Approach
Application-specific theory

Automatically construct object theories depending
on the type information of individual applications.

Theory
generatorClass model Object theory

In effect, arbitrary types can be
incorporated into object attributes.

Soundness
Object

Construct the theory by
definitional extension

The standard technique to
construct sound theories in HOL
Derive new theories from existing
sound theories only by
introduction of definitions and
derivation by sound inference
rules.

Derive

Heap memory

Define

Num
Pair

Bool

List

Overview of the theory
The theory is defined by mapping the class
model elements to theory elements

Class model HOL theory

Classes
Attributes, types
Inheritance

Types
Operators
Axioms

fig

x:int y:int

rect

w:num h:num

crect

c:color

Types
Store

The environment of a system which holds a state
of all alive objects.

Object references
Object references are represented by types whose
names are their class names.

:store :fig

:rect

Operators & axioms
6 kinds of primitive operators to handle
objects are defined on the store.

Object creation
Alive test
Attribute read
Attribute write
Casting
Instance-of

36 axioms are introduced on the operators.

Object creators & alive testers
Object creators creates a new object in a store.
Alive testers tests if an object exists in a store.

fig_new
fig_ex:store :store

∀f s. let (f,s’) = fig_new s in fig_ex f s’

“The newly created object exists in the new store.”

Attribute accessors
Attribute accessors read and write the object
attributes.

x

y

:fig

fig_set_x fig_get_x
fig_set_y fig_get_y

∀f x s. fig_ex f s ⇒
(fig_get_x f (fig_set_x f A s) = A)

“The attribute x obtained just after updating it to A
is equal to A.”

Casting functions
Casting functions change the “apparent
types” of objects.

:fig

fig_cast_rect rect_cast_fig

:rect

∀r s. rect_ex r s ⇒
(fig_cast_rect (rect_cast_fig r s) s = r)

“Upcasting and downcasting results in the original object.”

Instance-of predicates
Instance-of predicates remember the “actual
types” of objects.

:rectrect_new

:fig

rect_cast_fig

fig_is_rect

rect_is_rect

∀r s. rect_is_rect r s ⇒
fig_is_rect (rect_cast_fig r s) s

Heap memory model
The theory is derived from the operational
semantics of a heap memory model.

fig

x:int y:int

rect

w:num h:num

crect

c:color

(red,r2)c1

(blue,r4)c2

c0

(2,3,r0)

(-4,5,r1)f2

f0

(1,-2,r2)

(10,0,r3)f4

(0,0,r4)f5

(10,8,f2,c0)r1

(6,12,f3,c1)r2

r0

(5,8,f5,c2)r4

(4,10,f4,c0)r3

f1

f3

Object structure
Subtyping mechanism is implemented by
composing a single instance by multiple cells.

(1,-2,r2)f3

(6,12,f3,c1)r2

(red,r2)c1

:crect
:rect

:fig

fig

x:int y:int

rect

w:num h:num

crect

c:color

Strucrure of a crect instance

Prototype execution
The theory is executable in moscow-ML

Define the operational semantics of the heap
memory model as actual operations in ML.

- val (f,s1) = fig_new store_emp;
> val f = <fig> : fig
> val s1 = <store> : store
- val s2 = fig_set_x f 10 s1;
> val s2 = <store> : store
- val x = fig_get_x f s2;
> val x = 10 : int

Example:
a simple library system

book
isbn:num

days:int
lend

cd

Max number of items
a customer can keep
at a time
Max number of days
a customer can
keep an item

Next customer ID
and item ID to be issued

Customer ID

Item ID

Remaining days of the lent

max:num
days:num
nextcid:num
nextiid:num

customer
cid:num
name:string

iid:num
title:string

item

library

OCL invariant

“The total number of items lent by
all the customers is equal to the
number of unavailable items.”

library
customer.lend->size =
item.select(lend->size>0)->size

:library

:customer :item:lend
<<new>>

1.1:[lib.check_lend(cid,iid)]
1.2:cst:=lib.get_customer(cid)
1.3:itm:=lib.get_item(iid)
1.4:d:=lib.get_days()
1.6:lib.add_lend(lnd)

1:lib.lend(cid,iid)

1.5:lnd:=new_lend(d,cst,itm)

1.5.4:cst.add_lend(lnd) 1.5.5:itm.add_lend(lnd)
1.5.1:lnd.set_days(d)
1.5.2:lnd.add_customer(cst)
1.5.3:lnd.add_item(itm)

Class diagram

Collaboration diagram of
lending service

Invariant verification
Verify that the collaboration maintains the
invariant.

Collaboration F : store -> store

Invariant P : store -> bool

|-∀s. P (s) ⇒ P (F (s))

Collaboration definition in HOL

:library

:customer :item:lend
<<new>>

1.1:[lib.check_lend(cid,iid)]
1.2:cst:=lib.get_customer(cid)
1.3:itm:=lib.get_item(iid)
1.4:d:=lib.get_days()
1.6:lib.add_lend(lnd)

1:lib.lend(cid,iid)

1.5:lnd:=new_lend(d,cst,itm)

1.5.4:cst.add_lend(lnd) 1.5.5:itm.add_lend(lnd)
1.5.1:lnd.set_days(d)
1.5.2:lnd.add_customer(cst)
1.5.3:lnd.add_item(itm)

Collaboration diagram
of the lending service

HOL representation of
the collaboration

library_lend lib cid iid s =
if library_check_lend lib cid iid s then

let cst = library_get_custmer lib cid s in
let itm = library_get_item lib iid s in
let d = library_get_days lib s in
let (lnd,s1) = new_lend cst itm d s in
let s2 = library_add_lend lib lnd s1 in

(“ok”, s2)
else (“fail”, s)

new_lend cst itm d s =
let (lnd,s1) = lend_new s in
let s2 = lend_set_days lnd d s1 in
let s3 = lend_add_customer lnd cst s2 in
let s4 = lend_add_item lnd itm s3 in
let s5 = customer_add_lend cst lnd s4 in
let s6 = item_add_lend lnd s5 in

(lnd, s6)

Library_get_customer lib cid s =
let l = library_get_customerlist lib s in

FST (FILTER
(¥x. customer_get_cid x s = cid) l)

customer_add_lend cst lnd s =
let l = customer_get_lendlist cst s in

customer_set_lendlist (lnd::l) s

Invariant definition in HOL

book
isbn:num

days:int
lend

cd

Max number of items
a customer can keep
at a time
Max number of days
a customer can
keep an item

Next customer ID
and item ID to be issued

Customer ID

Item ID

Remaining days of the lent

max:num
days:num
nextcid:num
nextiid:num

customer
cid:num
name:string

iid:num
title:string

item

library
library
customer.lend->size =
item.select(lend->size>0)->size

HOL representation
of the invariant

OCL invariant

Inv lib s = library_ex lib s ==>
(library_get_customer_lendsum lib s = library_get_item_lendsum lib s)

library_get_customer_lendsum lib s =
let l = library_get_customer_list lib s in

SUM (MAP (¥x. customer_get_lendnum x s) l)

library_get_item_lendsum lib s =
let l = library_get_itemlist lib s in

LENGTH (FILTER (¥x. ~(item_is_available x s)) l)

customer_get_lendnum cst s = LENGTH (customer_get_lendlist cst s)
item_is_avalable itm s = (LENGTH (item_get_lendlist itm s) = 0)

Proof

The collaboration of the lending service
maintains the invariant.

|- ∀lib cid iid s.
Inv lib s ⇒
Inv lib (library_lend lib cid iid s)

Related work
Object embedding using extensible records

W. Narashewski et al. 1998
No referencing concept.

Axiomatic semantics of UML models
T. Aoki et al. 2001
Directly introducing axioms in HOL.

UML/OCL verification in B
R. Marcano et al. 2002
Methods are defined only by attaching pre- and
post-conditions.

Conclusion
Defined an object theory for analysis model
verification in HOL

Application-specific
Sound
Executable

Verification of a library system
Verify a collaboration maintains an invariant.

Future work
Make the proof efficient

Define a collaboration as a sequencial OO program
and implement verification condition generator.

COE-related work (security)
Verify security requirements of a system using the
object theory.

FW: bad packets never goes into the internal network.

	An Object-Oriented logic for software analysis and design
	Background
	Verification target
	The HOL system
	Existing object theories in higher-order logic
	Objective
	Embedding problem
	Approach
	Soundness
	Overview of the theory
	Types
	Operators & axioms
	Object creators & alive testers
	Attribute accessors
	Casting functions
	Instance-of predicates
	Heap memory model
	Object structure
	Prototype execution
	Example: a simple library system
	Invariant verification
	Collaboration definition in HOL
	Invariant definition in HOL
	Proof
	Related work
	Conclusion
	Future work

