JAIST Repository
https://dspace.jaist.ac.jp/

K An Object-Oriented logic for softwal
and design
Author(s) Yat ake, Kenro; Aoki, Toshjaki; Kat a)
Citation
Issue Date 2005-09-21
Type Presentation
Text version publ i sher
URL http://hdl . handle.net/ 101119/ 8323
Rights
1st VERITE JAI ST/ TRUST-AI ST/ CVS j «
_ on VERIfication TEchnol ogydoooon, Ol
Description
0200509021 00220, 0OO0O0OODODOpOOOO
3F
JAPAN
ADVANCED INSTITUTE OF
® SCIENCE AND TECHNOLOGY

Japan Advanced Institute of Science and Technology

An Object-Oriented logic for

!'_ software analysis and design

Kenro Yatake, Toshiaki Aok
Takuya Katayama

JAIST
2005.9.21

i Background

= The Object-Oriented method has become the
mainstream of software development.

= In the upstream phase of the development,
analysis models are constructed with a
language such as UML.

= To ensure that the system satisfies its
requirements, formal verification method
must be applied to the analysis models.

i Verification target

= Invariant properties about object attributes.
e.g.

= AC: The thermometer value always less than 30.
= Bank: Balance values never become negative.

v

Apply theorem proving

i The HOL system

= The use of HOL theorem prover
= Interactive prover of higher-order logic.
= A lot of mathematical libraries.
= No libraries which implement OO concepts.

v

Implement object theory in HOL

Existing object theories
In higher-order logic

= Semantics of Java program verification

= LOOP, Bali, Krakatoa, ...
= Types of object attributes are limited to primitive ones
appearing in Java (integer, boolean, ...).
= Compared to program verification, analysis model
verification requires high availability of types.
= High abstract types (set, stack, tree ...)
= Domain-specific types (date, time, currency, ...)

i Objective

= Implement an object theory where
object can have arbitrary types of
attributes.

Verification with a wide variety of types becomes possible
making use of plentiful mathematical libraries
and powerful datatype definition facilities of HOL.

i Embedding problem

= The type system of HOL is too simple to
express object concepts as a general type.

27?7
‘ Object ‘ > HOL
Unified type of arbitrary types Simply-typed lambda
Subtyping calculus with a first-order

Referencing language of types

i Approach

= Application-specific theory

= Automatically construct object theories depending
on the type information of individual applications.

Theory
generator

Class model —> Object theory

=) In effect, arbitrary types can be
Incorporated into object attributes.

i Soundness

‘Object‘
= Construct the theory by A
definitional extension Derive
= The standard technique to =

construct sound theories in HOL

_ _ o ‘ Heap memory‘
= Derive new theories from existing

sound theories only by ﬁ
iIntroduction of definitions and Define
derivation by sound inference =

rules.

i Overview of the theory

= The theory is defined by mapping the class
model elements to theory elements

Class model HOL theory
4 A 4 A
Classes Types
Attributes, types % Operators
kInheritance) L Axioms

fig rect crect
x-int y:int w:onum h:num c:color

= The environment of a system which holds a state
of all alive objects.

= ODbject references

= Object references are represented by types whose
names are their class names.

.store

o O -fig
O

-rect

i Operators & axioms

= 6 kinds of primitive operators to handle
objects are defined on the store.
= Object creation
= Alive test
= Attribute read
= Attribute write
= Casting
= Instance-of

= 36 axioms are introduced on the operators.

i Object creators & alive testers

= Object creators creates a new object in a store.
= Alive testers tests If an object exists In a store.

:store :store fig_ex
fig_new

>

fs. let (f,s”) = fig new s iIn fig ex T s’

“The newly created object exists in the new store.”

i Attribute accessors

= Attribute accessors read and write the object

attributes.
-fig
fig_set Xx @ fig get x
fig_set vy @ fig_get y

T xs. fig ex T s
(fig get x T (fig set x F As) = A)

“The attribute x obtained just after updating it to A
is equal to A.”

i Casting functions

= Casting functions change the “apparent
types” of objects.

fig_cast_rect l ‘ rect cast_fig

r s. rectex r s
(fi1ig cast rect (rect cast figr s) s =r)

“Upcasting and downcasting results in the original object.”

i Instance-of predicates

= Instance-of predicates remember the “actual
types” of objects.

‘4— fig_Is_rect

rect_cast_fig

rect_new _"‘_ rect IS rect

rect IS rect r s
flg IS rect (rect _cast fig r s) s

i Heap memory model

= The theory is derived from the operational
semantics of a heap memory model.

fig rect crect
x-int y:int w:onum h:num c:color

o] _— | ro cO

1l (2,3,r0) rl (10,8,f2,c0)/ cl] (red,r2)
2| (-4,5,r1) r2| (6,12,¥3,cl) c2| (blue,r4)
| @,-2,r2) ﬁrs (4,10,f4,c0)/|

f4] (10,0,r3) |/Ir4 (5,8,15,c2)

51 (0,0,r4)

Object structure

= Subtyping mechanism is imp
composing a single instance

emented by
oy multiple cells.

r2| (6 12 ,£3,c1)|
|f3| (1 2 ,r2)

:ﬁg

‘rect

fig rect crect
x-int y:int w:onum h:num c:color
: \

/Icll (red,r2) |

.crect

‘ Strucrure of a crect instance ‘

i Prototype execution

= The theory Is executable in moscow-ML

= Define the operational semantics of the heap
memory model as actual operations in ML.

val (f,sl) = fig new store_emp;
val f = <fig> :© fig

val sl = <store> : store

val s2 = fig set x T 10 s1;

V V I

V |

val s2 <store> : store
- val x = fig get x T s2;
> val x = 10 : 1Int

Example:
a simple library system

library
ST L - ->Si =
Max number of items TG Nexdt» tUstomer C_:UStomer lend Slze_ .
a custoner can keepe__f———22Y ___1..+=>*and iten ID t 1Tem.select(lend->size>0)->size
- ~maXx - num
at a time L days:-num
Max number of days/ next(-:id:num _ 1tem OCL Invarlant
a customgr can nexctiid-nunt |!d:num - = Item ID
keep an e title:string “The total number of items lent by
customer T /N | all the customers is equal to the
cidznum — number of unavailable items.”
name:string days: int ___book | cd .
1sbn:num ‘
Customer 1D Remaining days of the_lent

1:1ib.lend(cid, iid) {

Class diagram - 1.1:[1ib.check_lend(cid,iid)]
MY\J 1.2:cst:=lib.get_customer(cid)
i L , 1.3:1tm:=lib.get item(iid)
1.5:Ind:=new_lend(d,cst, itm) * 1.4-d:=lib.get_days()
<<new>> 1.6:lib.add_lend(Ind)
zcustomer slend sitem
-customer -1end -1ten

. . -
Collaboration diagram of |1.5.4:cst.add_tend(ind) A 1.5.5:itm.add_lend(Ind)
1.5.1:Ind.set_days(d)

|ending SerVice 1.5.2:Ind.add_customer(cst)
1.5.3:Ind.add_item(itm)

i Invariant verification

= Verify that the collaboration maintains the

Invariant.

Collaboration

Invariant

=)

=)

F : store -> store

P : store -> bool

l[1- s. P(s)

P (F (s)) |

Collaboration definition in HOL

library_lend lib cid 1id s =

L 1ib. londcoid. 1id * if library_check lend lib cid 1i1id s then
-11b-fendcet ”')_ 1.1:[Nib.check_lend(cid, iid)] let cst = Iibrary_get_?ustmer Iip cid_s in
JE@&E 1.2:cst:=lib.get_customer(cid) let itm = library get item lib iid s in
1.5: Ind:=new_lend(d, cst, itm) 12'?3:?25?&&5?0'® let d = library get_days lib s in
<<nens> 1.6 nbzmdlaw(nM) let (Ind,sl1) = new_lend cst itm d s iIn
let s2 = library_add lend lib Ind sl in
- (““ok”, s2)
1.5.4:cst.add_lend(Ind) 1.5.5:1tm.add_lend(Ind) else (“fai 1” S)

nd.set_days(d)

1.5.1:1
1.5.2:1Ind.add_customer(cst)
1.5.3:Ind.add_item(itm) new _lend cst itm d s =

let (Ind,s1l) = lend new s iIn

Collaboratlon dlagram let s2 = lend_set_days Ind d sl in
i i let s3 = lend_add_customer Ind cst s2 in
Of the Iendlng Service let s4 = lend_add_item Ind itm s3 in
let s5 = customer_add _lend cst Ind s4 in
let s6 = i1tem_add_lend Ind s5 in
(Ind, s6)

Library_get_customer lib cid s =
let 1 = library_get_customerlist lib s in
FST (FILTER

HOL representation of (¥x. customer_get_cid x s = cid) D
. customer_add_lend cst Ind s =
the collaboration let 1 = customer_get_lendlist cst s in

customer_set_lendlist (Ind::l) s

i Invariant definition in HOL

_ | library
Max number of items Tibrary Next customer _
a custamer can keep—_f—-o0 a0yl customer. lend->size =
at a time - y‘ - - -
Vex nunber of days — | toen | Item.select(lend->size>0)->size
a customer can nexctii id:nur Tidnum e
keep an item . title:string OCL i iant
| AN invarian
cid:num _!end I
A name:string days: int isbnt:)cr:cL)J; I cd |
Customer ID Remaining days of the lent

HOL representation

Inv lib s = library ex lib s ==>
(library_get _customer_lendsum lib s = library_get item_lendsum lib s)

library get customer_lendsum lib s =
let 1 = library_get _customer_list lib s in
SUM (MAP (¥x. customer_get lendnum x s) 1)

library_get_item_lendsum lib s =
let 1 = library_get_itemlist lib s iIn
LENGTH (FILTER (¥x. ~(item_is_available x s)) 1)

Of the invariant customer_get _lendnum cst s = LENGTH (customer_get lendlist cst s)

item_is_avalable i1tm s = (LENGTH (item_get lendlist itm s) = 0)

i Proof

= The collaboration of the lending service
maintains the invariant.

|- 1ib cid 11d s.
Inv lib s
Inv 1ib (library lend lib cid 11d s)

i Related work

= Object embedding using extensible records
« W. Narashewski et al. 1998
= No referencing concept.

s Axiomatic semantics of UML models
= 1. Aokl et al. 2001
= Directly introducing axioms in HOL.

s UML/OCL verification in B

= R. Marcano et al. 2002

= Methods are defined only by attaching pre- and
post-conditions.

i Conclusion

= Defined an object theory for analysis model
verification in HOL

= Application-specific
= Sound
= Executable

= Verification of a library system
= Verify a collaboration maintains an invariant.

i Future work

= Make the proof efficient

=« Define a collaboration as a sequencial OO program
and implement verification condition generator.

= COE-related work (security)

« Verify security requirements of a system using the
object theory.
« FW: bad packets never goes into the internal network.

	An Object-Oriented logic for software analysis and design
	Background
	Verification target
	The HOL system
	Existing object theories in higher-order logic
	Objective
	Embedding problem
	Approach
	Soundness
	Overview of the theory
	Types
	Operators & axioms
	Object creators & alive testers
	Attribute accessors
	Casting functions
	Instance-of predicates
	Heap memory model
	Object structure
	Prototype execution
	Example: a simple library system
	Invariant verification
	Collaboration definition in HOL
	Invariant definition in HOL
	Proof
	Related work
	Conclusion
	Future work

