
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
Specification and Verification of Inter-Component

Constraints in CTL

Author(s) Nguyen, Truong Thang; Katayama, Takuya

Citation

Issue Date 2005-09-21

Type Presentation

Text version publisher

URL http://hdl.handle.net/10119/8326

Rights

Description

1st VERITE : JAIST/TRUST-AIST/CVS joint workshop

on VERIfication TEchnologyでの発表資料, 開催

：2005年9月21日～22日, 開催場所：金沢市文化ホール

3F

1

Specification and Verification of Inter-
Component Constraints in CTL

Nguyen Truong Thang Takuya Katayama
Japan Advanced Institute of Science and Technology – JAIST

{thang, katayama}@jaist.ac.jp

2

Contents

Component-Based Software
Software Verification
A Formal Model of Components
Incremental Verification of Component Consistency
Component Specification and Verification
Conclusion

3

CB Software (1/4)

Component-based software:
structured from a set components
- Ideally, components are plug-and-play.
- Flexible for changes: handling new functional
requirements or operating platforms.
- E.g.: mobile phones → camera-equipped
mobile phones.

Many current software practice are
essentially component-based.
- Feature-oriented software.
- Each feature is treated as a large component
which is formed from several member
components.

199x: components with
talking features only

2004: offering varieties of
features via extra
components:
- Email/MMS
- Photo-shooting
- Contact-less IC
- Web browsing
- Document Viewer
- GPS etc.

evolving

4

Component-Based Software (2/4)

Components:
- Component-Off-The-Shelf (COTS): independent components in which computation
paths rarely interleave each other (only a single exit state, no reentry state).
- Component refinement: interleave at some degree.
- This work: focusing on refinement (also applicable to COTS). Specifically, a
property initially holds in B. How to verify that subsequent refinements like E and E’
still preserve p in the composition component.

… … … …

COTS

… …

Refinement

B E E’
p

5

Specification and Verification of CBS (3/4)

Current practice in component technology:
- Component plugging: only up to the level of syntactical matching.
- The issue: after being plugged, the components are inconsistent with each
other.
- The work: focusing on the consistency in terms of CTL properties.

6

Specification and Verification of CBS (4/4)

An important issue of component-based software paradigm:
- Specifically, what to formally specify component consistency and how to verify it
in consistent and efficient manner?

Solution:
- Component specification: enforced with interface-mapping compatibilities and
consistency constraints.
- Verification: via Open Incremental Model Checking (OIMC).
- OIMC: using assumption at reentry states, checking if the preservation constraints
are preserved at the interface between components. If so, the consistency among
components is guaranteed. (explained later in Software Verification section)

7

Contents

Introduction
Software Verification
- Model Checking: CTL and Assumption Model Checking
- Incremental Model Checking

A Formal Model of Components
Incremental Verification of Component Consistency
Component Specification and Verification
Conclusion

8

Model Checking & CTL (1/4)

CTL* logic: constructed from two quantifiers:
- A (for all paths) and E (for some path); plus five temporal operators: X (next), F
(eventually), G (always), U (until), R (release).

CTL: a true subset of CTL*.
- 10 basic normal CTL properties: AX f, EX f, AF f, EF f, AG f, EG f, A [f U g], E [f U g],
A [f R g], E [f R g]; where f and g are CTL or atomic propositions.

A [f U g]
f

f

f

g

g g

g

EG f
f

f

f

ff

9

Model Checking & CTL (2/4)

Definition: The closure set, cl(p), of p is the set of all sub-formulae
of p.
- p is an atomic proposition: cl(p) = {p}
- p is among AX f, EX f, AG f, EG f, AF f, EG f: cl(p) = {p} ∪ cl(f)
- p is among A [f U g], E [f U g], A [f R g], E [f R g]: cl(p) = {p} ∪ cl(f) ∪ cl(g)
- p = ¬f: cl(p) = cl(f)
- p = f ∧ g or p = f ∨ g: cl(p) = cl(f) ∪ cl(g)

In model checking, the characteristic is inside-out.
- To verify p in a model M, all sub-formulae closure set cl(p) of p are in general
checked on the way.

10

Assumption Model Checking (3/4)

Idea [Laster98]: 2 sequential modules M1, M2.
- Possible to model check within M1 only if knowing the labels at the interface states
between M1 and M2 by representing the whole M2 with those labels.
- A critical note on AMC: There should be no circle involving the interface nodes of
M1 and M2.

M1A [f U g]
f

f

M2
f

g

g g

g

=

M1A [f U g]
f

fg g

A [f U g]

Assumption model checking is reliable only if the
assumed labels at the interface states are proper.

11

Incremental Model Checking (4/4)

…

B E

The assumption made at this state
represents the computation tree in B

After assumption model checking in E, if the
constraints at this state are preserved, there
is no need to check further in B.Incremental verification (or Open

Incremental Model Checking)
[Fisler01 etc]:
- An application of Assumption Model Checking.
- Difference from AMC: ensuring the
preservation of constraints.
- Efficient: model checking each component
separately.
- Open: handling even unanticipated future
changes.

OIMC:
- Focusing on component refinement, but also
applicable to COTS.
- Initially, a property under consideration holds
in a base component.
- The property is guaranteed to hold in the
system as long as other components preserve
constraints at the interface of the base
component.

12

Contents

Introduction
Software Verification
A Formal Model of Components
Incremental Verification of Component Consistency
Component Specification and Verification
Conclusion

13

A Formal Model of Components (1/2)

A component is formally represented by a state
transition model:
- A set of states: S
- A set of input events: Σ
- An initial state: s0
- A state transition function: R: S x PL(Σ) → S
- Labeling function at states: L – showing a set of atomic
propositions to be true at a given state.

Typical case: a base component B is extended
with an extension component E.
- B = <SB, ΣB, s0B, RB, LB> (see figure in next page)
- E = <SE, ΣE, ⊥, RE, LE> (⊥ : no-care value)
- B and E are either composite or primitive components.

Associated with a component is an interface of
two state sets.
- B: <exit, reentry> - at which control is released
from/returned to the base.
- E: <in, out> - states receiving/returning control respectively

e1[g] e2

[f∧¬g] e2

14

A Formal Model of Components (2/2)

Interfaces of B and E to be mapped accordingly.
- Defining the compatible conditions for which ex ↔ i, o ↔ re.

- ex ↔ i if ∧[LB(ex)] ⇒ ∧ [LE(i)], where ∧ is the inter-junction.

- o ↔ re if ∧ [LE(o)] ⇒ ∧ [LB(re)].

The composition model C = <SC, ΣC, s0B, RC, LC> is defined via
elements of B and E.
- E can overrides some part of B.

e1[f] e2

e1[g] e2

exit state

in-stateout-state

reentry state

E e1

B

15

Contents

Introduction
Software Verification
A Formal Model of Components
Incremental Verification of Component Consistency
- Component Consistency
- A Theorem on Component Consistency
- Incremental Verification
- Scalability of Incremental Verification

Component Specification and Verification
Conclusion

16

Component Consistency
(1/5)

B

E

i3/f

i1/fi0/¬f

i1/fi0/¬f

i2/f

Definition: a property p holds on a
model M = (S, Σ, s0, R, L) if M, s0 |= p.

Component consistency definition:
- In terms of CTL properties.
- Initially, p holds on B = (SB, ΣB, s0B, RB, LB), i.e.
B, s0B |= p.
- E does not violate p on B if within C, p still
holds at s0B in C, i.e. C, s0B |= p.

In the example: p = AG EX f
- Initially: B, i0 |= p
- After composition, C, i0 |= p
- E does not violate p in B in this case.

E does not
violate B w.r.t

p

i1/fi0/¬f

i3/f

i2/f

17

A Theorem on Component Consistency (2/5)

Definition: Given a model M, the truth values of a state s with
respect to a closure set cl(p), VM(s, cl(p)) are
- ∀φ ∈ cl(p): if M, s |= φ then φ ∈ VM(s, cl(p)).
- Otherwise, ¬φ ∈ VM(s, cl(p)).

Conformance condition: B and E conform with each other (with
respect to cl(p)) at an exit state ex if VE(ex, cl(p)) = VB(ex, cl(p)).

Theorem: Given a property p holding in B, E does
not violate p in B if B and E conform with each
other (w.r.t cl(p)) at all exit states.
- Regardless of composition type: additive or overriding.

18

Incremental Verification of Components
(3/5)

During verifying p on B, the preservation constraints pc(s) =
VB(s, cl(p)) at any interface state s are recorded.

The algorithm of OIMC: within E (the refinement) only

1. For each reentry state re in B, seeding pc(re), i.e. VB(re, cl(p)),
at the corresponding mapped out-state o in E.

2. For each in-state i in E: run the CTL assumption model checking
procedure in E to check sub-formulae φ, ∀φ ∈ cl(p).

3. Checking if VE(i1,cl(p)), VE(i2,cl(p)), … are matched with the
preservation constraints VB(ex1,cl(p)), VB(ex2,cl(p)), … at
respective mapped exit states ex1, ex2 … of B.

Note: - In case of COTS, there is no assumption since no reentry states.
- Assumption model checking is then replaced by standard model checking.
- The constraints stay the same as above.

19

Incremental Verification of Components
(4/5)

…

Base

re/VB(re,cl(p)) ex1/VB(ex1,cl(p))

ex2/VB(ex2,cl(p))

VB(re,cl(p))

…

Extension 1

prop. values prop. values

values(i1)

checking if B and E agree on
the truth values at ex1, i.e.
values (i1) = VB(ex1,cl(p))

…

VB(re,cl(p))

Extension 2

prop. values prop. values

values(i2)

checking if B and E
conform at ex2, i.e.

values (i2) = VB(ex2,cl(p))

20

Scalability of Incremental Verification (5/5)

Considering subsequent component refinements.

Theorem: The method preserves its incremental
characteristic for any subsequent extensions as long as Ei
conform with C(i-1) at all exit states between them.

- The complexity only depends on the size of En (extending the base C(n-1)).

C0
C0

C1
C1

C(n-1)
C(n-1)

Cn
CnE1

E1
…

E2
E2

En
En

At all evolution steps, incremental verification for component consistency is scalable.

21

Contents

Introduction
Software Verification
A Formal Model of Components
Incremental Verification of Component Consistency
Component Specification and Verification
- Component Specification
- Component Composition
- Incremental Verification of Components

Conclusion

22

Component Specification (1/4)

Component-based software:
- Problem: components are often inconsistent after composition.
- Consistency: several types ⇒ focusing on CTL property preservation.
- This work: enforcing component matching in terms of consistency semantic.

Current component technology (OMG CORBA, Sun Java and
JavaBeans, Microsoft .NET and COM/DCOM, UML/OCL etc):
semantic is limited to a simple logic of weak expressiveness and
syntactical component matching.
- Internal to components.
- Inter-component: Consumer.num_items ≤ Producer.num_items.
- The underlying logic only expresses constraints at the moment the interface
element is invoked, i.e. static view.

Component specification:
- Interface signature: traditionally, attributes and operations (static and syntactical
matching).
- Constraints: component matching in terms of semantic (via the interface
compatibility in the formal model and the CTL consistency).

23

Component Composition (2/4)

Encapsulating temporal semantic constraints to component
interface via 2 constraint types.
- Plugging compatibility: for two components to be plugged together via exit-in
and reentry-out states (p.11).
- Consistency constraint: making components to be consistent after being
composed (p.15).

Consistency constraint:
- Written in CTL showing components’ execution traces, i.e. dynamic view.
- Regarding to a CTL property p inherent to a component B, at an interface
state s, its constraints are VB(s, cl(p)).

Composing two components: C = B + E
- Signature (attributes and operations): the sum of those from B and E.
- Plugging constraint: taken as LB(s) or LE(s) accordingly.
- Consistency constraint: taken as VB(s, cl(p)) or VE(s, cl(p)) accordingly.

24

Incremental Verification of Components
(3/4)

VB(s2, cl(p))

Constraints for future
composition VR(s1, cl(p))

VR(s, cl(p)) = VB(s, cl(p))

Initially, p holds in B.

B (Red) and E (Blue) are composed via
two exit states ex1, ex2 and a reentry
state re.

If VE(ex1, cl(p)) = VB(ex1, cl(p)) and
VE(ex2, cl(p)) = VB(ex2, cl(p)), E does
not violate p in B.
- only executed in E (i.e. incrementally).

Similar checking for Red and Yellow.

…

re ex1

ex2

25

Incremental Verification of Components
(4/4)

…

Base Checking (Red)

re/VB(re,cl(p)) ex1/VB(ex1,cl(p))

ex2/VB(ex2,cl(p))

VB(re,cl(p))

…

Ext. Checking (Blue) 1

prop. values prop. values

values(i1)

checking if B and E agree on
the truth values at ex1, i.e.
values (i1) = VB(ex1,cl(p))

…

VB(re,cl(p))

Ext. Checking (Blue) 2

prop. values prop. values

values(i2)

checking if B and E
conform at ex2, i.e.

values (i2) = VB(ex2,cl(p))

26

Contents

Introduction
Software Verification
A Formal Model of Components
Consistency among Components
Component Specification and Verification
Conclusion

27

Conclusion (1/3)

Modular verification [Grumberg91, Kupferman98 etc]: based on
assume-guarantee paradigm
- Often dealing with hardware verification; modules are composed in parallel.
- Verifying each module separately while assuming about the behaviors of the
external environment and other modules.
- Interfaces are pre-defined and static.
- Verification task needs to re-run in the whole system if a new module is inserted
or removed.

Modular software verification [Laster98]: exactly Assumption
Model Checking.
- Characteristically different from hardware verification.
- Taking the advantage of sequential nature in software.

OIMC: the application of AMC in an open way (unanticipated future
evolution via component refinement).
- Open verification comes at the cost of fixed preservation constraints at interface.

28

Conclusion (2/3)

Open incremental model checking
- Interface is dynamically defined.
- Systems are more open for changes.
- Only model checking within the new module, i.e. incremental.
- The approach is also scalable for the whole evolution process as long as bases and
extensions pair-wise conform.

Several research on software modules (components) compatibility
or consistency.
- Different types of consistency.

[Chakrabarti02]: interface compatibility among software modules
- Also state-based model.
- Focusing on different aspects of component semantic: correctness and
completeness of operation definitions within components.
- Complementary to the temporal consistency among components in this work.

29

Conclusion (3/3)

OIMC is based on assumption model checking.
- AMC is not supported by well-known model checkers such as SMV, SPIN etc.

Improvement from current stage:
- Tool support: NuSMV2 is the target for adapting OIMC into real practice.

NuSMV2 is selected as the target because:
- open-source: comprehensibility and documentation.
- derived, i.e. re-design and re-engineering, from SMV (focusing on CTL properties).

	Specification and Verification of Inter-Component Constraints in CTL
	Contents
	CB Software (1/4)
	Component-Based Software (2/4)
	Specification and Verification of CBS (3/4)
	Specification and Verification of CBS (4/4)
	Contents
	Model Checking & CTL (1/4)
	Model Checking & CTL (2/4)
	Assumption Model Checking (3/4)
	Incremental Model Checking (4/4)
	Contents
	A Formal Model of Components (1/2)
	A Formal Model of Components (2/2)
	Contents
	Component Consistency (1/5)
	A Theorem on Component Consistency (2/5)
	Incremental Verification of Components (3/5)
	Incremental Verification of Components (4/5)
	Scalability of Incremental Verification (5/5)
	Contents
	Component Specification (1/4)
	Component Composition (2/4)
	Incremental Verification of Components (3/4)
	Incremental Verification of Components (4/4)
	Contents
	Conclusion (1/3)
	Conclusion (2/3)
	Conclusion (3/3)

