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Automated reasoning

– problems with social needs

– decidable fragments of problems (in theory)

– heterogeneous data structures in simple framework
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I. Equational tree automata



Automata for strings

Given a0 a1 · · · ai ai+1 · · · an and finite automaton A

a0 a1 · · · ai ai+1 · · · an

(q0)

a0 a1 · · · ai ai+1 · · · an

q1

1st step: q0
a0−→ q1

· · ·

a0 a1 · · · ai ai+1 · · · an

qi

a0 a1 · · · ai ai+1 · · · an

qi+1

i-th step: qi
ai−→ qi+1

Input tape is accepted if A results in a0 a1 · · · ai ai+1 · · · an

qn+1

such that qn+1 is a final state
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Tree automata vs. automata

tree automata finite automata

input

transition rules

f(α1, . . . , αn) → β

f(α1, . . . , αn) → f(β1, . . . , βn)

α → β

α
a→ β

α → β

closure properties ∪ ∩ ( )c ∪ ∩ ( )c

decidability ∈ ⊆ =∅? ∈ ⊆ =∅?
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Definition

A: tree automaton (F ,Q,Qfin,Δ)

F signature, that is set of function symbols with fixed arity

Q set of state symbols (special constant symbols) such that

F ∩Q = ∅

Qfin set of final state symbols such that Qfin ⊆ Q

Δ set of transition rules with the following forms:

f(p1, . . . , pn) → q (Type 1)

f(p1, . . . , pn) → f(q1, . . . , qn) (Type 2)

p → q (Type 3)
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Transition move

• →A : move relation of tree automaton is defined below

s →A t if s = C[l] and t = C[r]

for some l → r in Δ and context C

E.g. Consider A with transition rules Δ

a → q1 b → q2 f(q1, q2) → q3

then tree language accepted by A is { f(a,b) }

• L(A)/AC : set of trees t reaching by A some final state, i.e.

t →A t1 →A · · · →A tn (≡ q ) for some q in Qfin

• regular tree languages
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Basic properties (tree automata)

• Union

• Intersection

• Complementation:

– Deterministic and complete tree automata

• Downsizing technique

– Epsilon-free tree automata

• Emptiness problem:

– Pumping lemma
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Associativity and commutativity axioms in tree automata

Given a signature F with FAC some of the binary function symbols

AC-tree automaton A/AC :

a pair of A and the following AC-axioms for all symbols in FAC

f

f

x y

z =

f

fx

y z

associativity

f

x y

=

f

y x

commutativity

Likewise

A-tree automaton: tree automaton with associativity axioms of FA

C-tree automaton: tree automaton with commutativity axioms of FC
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Transition move with associativity and commutativity

• →A/AC : move relation for AC-tree automaton defined as below

s →A/AC t if s =AC C[l] and t =AC C[r]

for some l → r in Δ

E.g. Consider A/AC with FAC = { f } and transition rules Δ

a→q1 b→q2 f(q1, q2)→q3

then f(b, a) →A/AC f(q2, a) →A/AC f(q2, q1) →A/AC q3

• L(A/AC) : set of trees t reaching by A/AC some final state, i.e.

t →A/AC t1 →A/AC · · · →A/AC tn (= q ) for some q in Qfin

• AC-regular tree languages
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Basic properties (AC-tree automata)

• Union

• Intersection

• Complementation:

– Translation by Parikh theorem

• regular AC-tree automata vs. non-regular AC-tree automata
([6], Ohsaki et al. LPAR 2005)

• Emptiness problem:

– Commutation lemma ([8], Ohsaki CSL 2001)
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Example

Consider regular AC-tree automaton with the transition rules

a → qa b → qb f(qa, qb) → q f(q, q) → q

where FAC = { f } and q is final state

Then the accepted tree language L satisfies

|t|a = |t|b
for all t in L

Observations

• The above language L is not accepted by any tree automaton if FAC = ∅

• In general, tree languages L represented by linear (in)equational constraints

are accepted by regular AC-tree automata: e.g.

|t|a > |t|b

2|t|a = |t|b

|t|a + 1 = |t|b

f

f

fa

b

b a

f

f

f

b a a b
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Closure under Boolean operations
[Ohsaki CSL’01, Ohsaki & Takai RTA’02

Ohsaki et al. RTA’03, Ohsaki et al. LPAR’05]

regular TA regular AC-TA AC-TA

closed under ∪ � � �
closed under ∩ � � �
closed under ( )c � � ×

regular TA < regular AC-TA < AC-TA

regular TA regular A-TA A-TA

closed under ∪ � � �
closed under ∩ � × �
closed under ( )c � × �

regular TA < regular A-TA < A-TA
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Proof of not closed under complement of AC-TA (outline)

Given a signature F = { f } ∪ { a1, . . . , an }
P : arithmetic constraint over the natural numbers s.t.

P := C

| P ∨ P

| P ∧ P

| ¬( P )

C := �ai � c (c ∈ N)

| �ai + �aj � �ak

| �ai × �aj � �ak

LP : tree language over F s.t. each tree in LP satisfies P , meaning that

e.g. L�a=�b is the tree language whose element t satisfies |t|a = |t|b

Suppose tree languages recognizable with AC-tree automata are closed under ( )c

• Given P ≡ c1 xk1

1 + · · · + cn xkn
n = c , LP is recognizable with AC-tree automata

• LP 
= ∅ iff ∃ (x1, . . . , xn) in Nn− 0: c1 xk1

1 + · · · + cn xkn
n = c

It contradicts to the fact that (weak variant of) Hilbert’s 10th problem is undecidable
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Decidability results

regular TA regular AC-TA AC-TA

t ∈ L(A/AC)? � � �
L(A/AC) = ∅? � � �
L(A/AC) ⊆ L(B/AC)? � � ×
L(A/AC) = T (F)? � � ?

regular TA regular A-TA A-TA

t ∈ L(A/A)? � � �
L(A/A) = ∅? � � ×
L(A/A) ⊆ L(B/A)? � × ×
L(A/A) = T (F)? � × ×

Note 1: One question remains open since CSL 2001

Note 2: The question is registered in the list of RTA Open Questions

(http://www.lsv.ens-cachan.fr/rtaloop/problems/101.html)
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Yet further tree language hierarchy

monotone A-TA = monotone A-PTA � monotone AC-PTA

� �

regular A-PTA

�

� monotone AC-TA

�� �

regular A-TA

�

� regular AC-TA

=

regular AC-PTA

⊇ : tree language inclusion

� : representability relation
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II. Towards system verification



Model checking based on term rewriting and tree automata

set of initial states reachable state space

(system automaton)

→→→ · · ·

rewriting steps
︷ ︸︸ ︷

Observation1 Undecidable fragments exist in the fixpoint computation

Observation2 Intersection-emptiness problem is EXPTIME-complete

for regular TA

∅?
¬ ( verified property )

(property automaton)
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One step of the procedure

t2

q2
t1

s

y

L

q1

q

L(Ai/AC) L(Ai+1/AC)

t2
t1

y x

R

q1

q

q2

t

qf qf

R

x

∃ L → R in R such that

Lσ →∗
Ai/AC q but

Rσ 
→∗
Ai/AC q

then

add new transition rules

to Ai/AC to satisfy

Rσ →∗
Ai+1/AC q

19



Specs on ACTAS & user-interface

– Platform OS:

Linux, Solaris

– Software requirement:

Java

ant (for rebuild)

– Memory:

∼ 512M byte
(standard model)

∼ 2G byte
(advanced model)

– Version:

0.8.20050912
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Security flaw in a network protocol (1)

alice

server

bob
K(alice) K(bob)

1© E(K(alice), r), alice,bob

2© E(K(bob), r)

3© E(K(bob), r), E(r,m)
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Security flaw in a network protocol (2)

alice

server

bob
K(alice) K(bob)

1© E(K(alice), r), alice,bob

2© E(K(bob), r)

3© E(K(bob), r), E(r,m)
chris

K(chris)
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Security flaw in a network protocol (3)

alice

server

bob
K(alice) K(bob)

1© E(K(alice), r), alice,bob

2© E(K(bob), r)

3© E(K(bob), r), E(r,m)
chris

K(chris)

E(K(alice), r),alice, chris

E(K(chris), r)
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Security flaw in a network protocol (4)

alice

server

bob
K(alice) K(bob)

1© E(K(alice), r), alice,bob

2© E(K(bob), r)

3© E(K(bob), r), E(r,m)
chris

K(chris)

E(K(alice), r),alice, chris

E(K(chris), r)

D( K(chris) , E(K(chris), r ) ) rAxiom

D( x, E( x, y ) ) y
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Security flaw in a network protocol (5)

alice

server

bob
K(alice) K(bob)

1© E(K(alice), r), alice,bob

2© E(K(bob), r)

3© E(K(bob), r), E(r,m)
chris

K(chris)

E(K(alice), r),alice, chris

E(K(chris), r)

D( K(chris) , E(K(chris), r ) ) rAxiom

D( x, E( x, y ) ) y
D( r , E(r,m) ) m (secret message)
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ACTAS specification (Lines 1 – 25)

1: [Signature]

2: const: a,b,c,s

3: var: x,y,z

4:

5: [R-rule: TRS]

6: Ds(x,Es(x,y)) -> y

7:

8: p1(pair(x,y)) -> x

9: p2(pair(x,y)) -> y

10:

11: # S1_s(pair(pair(x,y),z)) -> pair(y,Es(k(y),Ds(k(x),z)))

12: S1_s(pair(pair(a,b),z)) -> pair(b,Es(k(b),Ds(k(a),z)))

13: S1_s(pair(pair(a,c),z)) -> pair(c,Es(k(c),Ds(k(a),z)))

14:

15: # S2_x(y,z) -> pair(z,Es(nonce(x,y),m(x,y)))

16: S2_a(pair(b,z)) -> pair(z,Es(nonce(a,b),m(a,b)))

17:

18: S1_s(x) -> x

19: S2_a(x) -> x

20:

21: [T-rule( p, p_client ): TA]

22: Es(p,p) -> p

23: Ds(p,p) -> p

24: p1(p) -> p

25: p2(p) -> p

x, y, z y, E(K(y), D(K(x), z)))server

y, z z, E(r(x, y),m(x, y))client(x)
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ACTAS specification (Lines 26 – )

26: pair(p,p) -> p

27: pair(p_client,p_client) -> p

28: q_a -> p_client

29: q_b -> p_client

30: q_c -> p_client

31:

32: S1_s(p) -> p

33: S2_a(p) -> p

34:

35: # C’s initial knowledge

36: k(q_c) -> p

37:

38: # initial messsage transfer:

39: # S1_s(pair(pair(a,b),Es(k(a),nonce(a,b)))) -> p

40:

41 # --- subterm decomposition ---

42: S1_s(q_p_ab_Es_ka_nab) -> p

43: pair(q_p_ab,q_Es_ka_nab) -> q_p_ab_Es_ka_nab

44: pair(q_a,q_b) -> q_p_ab

45: Es(q_ka,q_nab) -> q_Es_ka_nab

46: k(q_a) -> q_ka

47: nonce(q_a,q_b) -> q_nab

48: a -> q_a

49: b -> q_b

50: c -> q_c

1. If chris knows x and E(x, y), then
chris also knows y

2. If chris knows x and y, chris can
construct E(x, y) and D(x, y)

3. chris knows its own secret key
K(chris) and all principals names:
alice, bob, chris

4. chris knows message going through
the network (wiretapping)

5. chris decomposes sequences of
data (modification)

6. chris pretends to be other principals
(impersonation)
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Descendant computation for reachability analysis

Loop number �(T-rules) �(states) time (sec)

0 23 13 3

1 56 34 4

2 102 46 6

3 109 46 18

4 109 46 23

Note 1. ∀ i: L(Ai/AC) ⊆ L(Ai+1/AC)

Note 2. ∃ i: L(Ai/AC) = L(Ai+1/AC)

⇒ ∃ i: L(Aj/AC) = L(Aj+1/AC) for all j � i

(⇒ ∃ i: L(Ai/AC) = L(A∞/AC) )

Note 3. ∃ i: m(a, b) ∈ L(Ai/AC)

⇒ secret message m is retrieved by chris
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Tool support for state space analysis

Computation mode

Module names (i.e. selected R-rule and T-rule names)

Parameters 1–3 (0 � i � 100)

Execution time

Number of transition rules

Number of state symbols for each loop computation

Graph1: number of transition rules × time(sec)

Graph2: number of state symbols × time(sec)

Graph3: time(sec) × loop number

(in HTML file format)
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AC-axioms in encryption scheme

alice bob

(1) r, K(a) ◦ r

(2) K(b) ◦ r

(3) E( K(a) ◦K(b) ◦ r, m )

K(a) r m K(b)

K(a) K(b) : secret keys

r : random number

m : secret message

E : encryption function

◦ : AC symbol (infix operator)

Claim: secret message m is not retrieved by wiretapping only

(Cf. “Easy Intruder Deductions” by Comon-Lundh & Treinen 2003)
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AC-function symbols in ACTAS specification

1: [Signature]
2: AC: f
3: const: a,b,c,m,r
4: var: x,y
5:
6: [R-rule: TRS2]
7: Ds(x,Es(x,y)) -> y
8:
9: [T-rule( p ): TA2]

10: Ds(p,p) -> p
11: Es(p,p) -> p
12: f(p,p) -> p
13:
14: f(q_ka,q_r) -> p
15: r -> q_r
16:
17: r -> p
18:
19: f(q_kb,q_r) -> p
20: k(q_b) -> q_kb
21: b -> q_b
22:
23: e(q_f_kba_r,q_m) -> p
24: f(q_kab,q_r) -> q_f_kba_r
25: f(q_kb,q_ka) -> q_k_ba
26: k(q_a) -> q_ka
27: a -> q_a
28: m -> q_m

29: # C’s initial knowledge
30: a -> p
31; b -> p
32: c -> p
33: k(q_c) -> p
34: c -> q_c

initial knowledge

&

messages on

the network

base knowledge obtainable knowledge

→→→ · · ·

Dolev-Yao’s axioms + E
︷ ︸︸ ︷

∅?

secret data
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Intruder deduction problem (general version)

Given two sets L, M (of messages) and equational rewrite system R/E:

Is the intersection of [→∗
R/E ](L ) and M the empty or not ?

Note 1. In the previous setting

L : initial knowledge + messages on the network

M : secret data

R/E : Dolev-Yao’s axioms and AC({f})

Note 2. Tree languages recognized by AC-TA, called AC-recognizable tree languages

are closed under ∩ and

AC-regular tree languages are also closed under ∩

Note 3. The emptiness problems for AC-TA and regular AC-TA are decidable
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Non-left-linear case

∃ L → R in R such that L = C[x, x ] e.g. D(x, E(x, y) ) → y

• Check L(Ai/AC, q1) ∩ L(Ai/AC, q2) 
= ∅

If the above condition holds for q1 
= q2, we take the following assignment:

t
q2

t

x x

L

q1

q

• In fully automated verification, under- or over-approximation is
needed to be applied

The intersection-emptiness for AC-TA is decidable but the complexity is extremely high!

• In fact, we use in ACTAS under- (or over-)approximation
algorithms when solving emptiness problems in AC-case
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Bounded computation for emptiness test

x x

P P

x x

P Q

x

P

L

L

R

x

P

R

search depth for emptiness test is controlled by

Parameters 2,3

�(T-rule) = 21

�(state symbols) = 16

P2 = 10

P3 state space for time (sec)
emptiness test

1 0 1

2 256 2

3 4096 2

4 65536 3

5 1048576 9

6 16777216 –
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