
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
ACTAS : Automated Verification Based on

Equational Tree Automata

Author(s) Ohsaki, Hitoshi

Citation

Issue Date 2005-09-21

Type Presentation

Text version publisher

URL http://hdl.handle.net/10119/8327

Rights

Description

1st VERITE : JAIST/TRUST-AIST/CVS joint workshop

on VERIfication TEchnologyでの発表資料, 開催

：2005年9月21日～22日, 開催場所：金沢市文化ホール

3F

ACTAS

Automated Verification Based on Equational Tree Automata

Hitoshi Ohsaki

National Institute of .
Advanced Industrial Science and Technology (AIST)

JAIST – AIST Workshop, Kanazawa

September 2005

Automated reasoning

– problems with social needs

– decidable fragments of problems (in theory)

– heterogeneous data structures in simple framework

1

I. Equational tree automata

Automata for strings

Given a0 a1 · · · ai ai+1 · · · an and finite automaton A

a0 a1 · · · ai ai+1 · · · an

(q0)

a0 a1 · · · ai ai+1 · · · an

q1

1st step: q0
a0−→ q1

· · ·

a0 a1 · · · ai ai+1 · · · an

qi

a0 a1 · · · ai ai+1 · · · an

qi+1

i-th step: qi
ai−→ qi+1

Input tape is accepted if A results in a0 a1 · · · ai ai+1 · · · an

qn+1

such that qn+1 is a final state

4

Tree automata vs. automata

tree automata finite automata

input

transition rules

f(α1, . . . , αn) → β

f(α1, . . . , αn) → f(β1, . . . , βn)

α → β

α
a→ β

α → β

closure properties ∪ ∩ ()c ∪ ∩ ()c

decidability ∈ ⊆ =∅? ∈ ⊆ =∅?

5

Definition

A: tree automaton (F ,Q,Qfin,Δ)

F signature, that is set of function symbols with fixed arity

Q set of state symbols (special constant symbols) such that

F ∩Q = ∅

Qfin set of final state symbols such that Qfin ⊆ Q

Δ set of transition rules with the following forms:

f(p1, . . . , pn) → q (Type 1)

f(p1, . . . , pn) → f(q1, . . . , qn) (Type 2)

p → q (Type 3)

6

Transition move

• →A : move relation of tree automaton is defined below

s →A t if s = C[l] and t = C[r]

for some l → r in Δ and context C

E.g. Consider A with transition rules Δ

a → q1 b → q2 f(q1, q2) → q3

then tree language accepted by A is { f(a,b) }

• L(A)/AC : set of trees t reaching by A some final state, i.e.

t →A t1 →A · · · →A tn (≡ q) for some q in Qfin

• regular tree languages

7

Basic properties (tree automata)

• Union

• Intersection

• Complementation:

– Deterministic and complete tree automata

• Downsizing technique

– Epsilon-free tree automata

• Emptiness problem:

– Pumping lemma

8

Associativity and commutativity axioms in tree automata

Given a signature F with FAC some of the binary function symbols

AC-tree automaton A/AC :

a pair of A and the following AC-axioms for all symbols in FAC

f

f

x y

z =

f

fx

y z

associativity

f

x y

=

f

y x

commutativity

Likewise

A-tree automaton: tree automaton with associativity axioms of FA

C-tree automaton: tree automaton with commutativity axioms of FC

9

Transition move with associativity and commutativity

• →A/AC : move relation for AC-tree automaton defined as below

s →A/AC t if s =AC C[l] and t =AC C[r]

for some l → r in Δ

E.g. Consider A/AC with FAC = { f } and transition rules Δ

a→q1 b→q2 f(q1, q2)→q3

then f(b, a) →A/AC f(q2, a) →A/AC f(q2, q1) →A/AC q3

• L(A/AC) : set of trees t reaching by A/AC some final state, i.e.

t →A/AC t1 →A/AC · · · →A/AC tn (= q) for some q in Qfin

• AC-regular tree languages

10

Basic properties (AC-tree automata)

• Union

• Intersection

• Complementation:

– Translation by Parikh theorem

• regular AC-tree automata vs. non-regular AC-tree automata
([6], Ohsaki et al. LPAR 2005)

• Emptiness problem:

– Commutation lemma ([8], Ohsaki CSL 2001)

11

Example

Consider regular AC-tree automaton with the transition rules

a → qa b → qb f(qa, qb) → q f(q, q) → q

where FAC = { f } and q is final state

Then the accepted tree language L satisfies

|t|a = |t|b
for all t in L

Observations

• The above language L is not accepted by any tree automaton if FAC = ∅

• In general, tree languages L represented by linear (in)equational constraints

are accepted by regular AC-tree automata: e.g.

|t|a > |t|b

2|t|a = |t|b

|t|a + 1 = |t|b

f

f

fa

b

b a

f

f

f

b a a b

12

Closure under Boolean operations
[Ohsaki CSL’01, Ohsaki & Takai RTA’02

Ohsaki et al. RTA’03, Ohsaki et al. LPAR’05]

regular TA regular AC-TA AC-TA

closed under ∪ � � �
closed under ∩ � � �
closed under ()c � � ×

regular TA < regular AC-TA < AC-TA

regular TA regular A-TA A-TA

closed under ∪ � � �
closed under ∩ � × �
closed under ()c � × �

regular TA < regular A-TA < A-TA

13

Proof of not closed under complement of AC-TA (outline)

Given a signature F = { f } ∪ { a1, . . . , an }
P : arithmetic constraint over the natural numbers s.t.

P := C

| P ∨ P

| P ∧ P

| ¬(P)

C := �ai � c (c ∈ N)

| �ai + �aj � �ak

| �ai × �aj � �ak

LP : tree language over F s.t. each tree in LP satisfies P , meaning that

e.g. L�a=�b is the tree language whose element t satisfies |t|a = |t|b

Suppose tree languages recognizable with AC-tree automata are closed under ()c

• Given P ≡ c1 xk1

1 + · · · + cn xkn
n = c , LP is recognizable with AC-tree automata

• LP
= ∅ iff ∃ (x1, . . . , xn) in Nn− 0: c1 xk1

1 + · · · + cn xkn
n = c

It contradicts to the fact that (weak variant of) Hilbert’s 10th problem is undecidable

14

Decidability results

regular TA regular AC-TA AC-TA

t ∈ L(A/AC)? � � �
L(A/AC) = ∅? � � �
L(A/AC) ⊆ L(B/AC)? � � ×
L(A/AC) = T (F)? � � ?

regular TA regular A-TA A-TA

t ∈ L(A/A)? � � �
L(A/A) = ∅? � � ×
L(A/A) ⊆ L(B/A)? � × ×
L(A/A) = T (F)? � × ×

Note 1: One question remains open since CSL 2001

Note 2: The question is registered in the list of RTA Open Questions

(http://www.lsv.ens-cachan.fr/rtaloop/problems/101.html)

15

Yet further tree language hierarchy

monotone A-TA = monotone A-PTA � monotone AC-PTA

� �

regular A-PTA

�

� monotone AC-TA

�� �

regular A-TA

�

� regular AC-TA

=

regular AC-PTA

⊇ : tree language inclusion

� : representability relation

16

II. Towards system verification

Model checking based on term rewriting and tree automata

set of initial states reachable state space

(system automaton)

→→→ · · ·

rewriting steps
︷ ︸︸ ︷

Observation1 Undecidable fragments exist in the fixpoint computation

Observation2 Intersection-emptiness problem is EXPTIME-complete

for regular TA

∅?
¬ (verified property)

(property automaton)

18

One step of the procedure

t2

q2
t1

s

y

L

q1

q

L(Ai/AC) L(Ai+1/AC)

t2
t1

y x

R

q1

q

q2

t

qf qf

R

x

∃ L → R in R such that

Lσ →∗
Ai/AC q but

Rσ
→∗
Ai/AC q

then

add new transition rules

to Ai/AC to satisfy

Rσ →∗
Ai+1/AC q

19

Specs on ACTAS & user-interface

– Platform OS:

Linux, Solaris

– Software requirement:

Java

ant (for rebuild)

– Memory:

∼ 512M byte
(standard model)

∼ 2G byte
(advanced model)

– Version:

0.8.20050912

20

Security flaw in a network protocol (1)

alice

server

bob
K(alice) K(bob)

1© E(K(alice), r), alice,bob

2© E(K(bob), r)

3© E(K(bob), r), E(r,m)

21

Security flaw in a network protocol (2)

alice

server

bob
K(alice) K(bob)

1© E(K(alice), r), alice,bob

2© E(K(bob), r)

3© E(K(bob), r), E(r,m)
chris

K(chris)

22

Security flaw in a network protocol (3)

alice

server

bob
K(alice) K(bob)

1© E(K(alice), r), alice,bob

2© E(K(bob), r)

3© E(K(bob), r), E(r,m)
chris

K(chris)

E(K(alice), r),alice, chris

E(K(chris), r)

23

Security flaw in a network protocol (4)

alice

server

bob
K(alice) K(bob)

1© E(K(alice), r), alice,bob

2© E(K(bob), r)

3© E(K(bob), r), E(r,m)
chris

K(chris)

E(K(alice), r),alice, chris

E(K(chris), r)

D(K(chris) , E(K(chris), r)) rAxiom

D(x, E(x, y)) y

24

Security flaw in a network protocol (5)

alice

server

bob
K(alice) K(bob)

1© E(K(alice), r), alice,bob

2© E(K(bob), r)

3© E(K(bob), r), E(r,m)
chris

K(chris)

E(K(alice), r),alice, chris

E(K(chris), r)

D(K(chris) , E(K(chris), r)) rAxiom

D(x, E(x, y)) y
D(r , E(r,m)) m (secret message)

25

ACTAS specification (Lines 1 – 25)

1: [Signature]

2: const: a,b,c,s

3: var: x,y,z

4:

5: [R-rule: TRS]

6: Ds(x,Es(x,y)) -> y

7:

8: p1(pair(x,y)) -> x

9: p2(pair(x,y)) -> y

10:

11: # S1_s(pair(pair(x,y),z)) -> pair(y,Es(k(y),Ds(k(x),z)))

12: S1_s(pair(pair(a,b),z)) -> pair(b,Es(k(b),Ds(k(a),z)))

13: S1_s(pair(pair(a,c),z)) -> pair(c,Es(k(c),Ds(k(a),z)))

14:

15: # S2_x(y,z) -> pair(z,Es(nonce(x,y),m(x,y)))

16: S2_a(pair(b,z)) -> pair(z,Es(nonce(a,b),m(a,b)))

17:

18: S1_s(x) -> x

19: S2_a(x) -> x

20:

21: [T-rule(p, p_client): TA]

22: Es(p,p) -> p

23: Ds(p,p) -> p

24: p1(p) -> p

25: p2(p) -> p

x, y, z y, E(K(y), D(K(x), z)))server

y, z z, E(r(x, y),m(x, y))client(x)

26

ACTAS specification (Lines 26 –)

26: pair(p,p) -> p

27: pair(p_client,p_client) -> p

28: q_a -> p_client

29: q_b -> p_client

30: q_c -> p_client

31:

32: S1_s(p) -> p

33: S2_a(p) -> p

34:

35: # C’s initial knowledge

36: k(q_c) -> p

37:

38: # initial messsage transfer:

39: # S1_s(pair(pair(a,b),Es(k(a),nonce(a,b)))) -> p

40:

41 # --- subterm decomposition ---

42: S1_s(q_p_ab_Es_ka_nab) -> p

43: pair(q_p_ab,q_Es_ka_nab) -> q_p_ab_Es_ka_nab

44: pair(q_a,q_b) -> q_p_ab

45: Es(q_ka,q_nab) -> q_Es_ka_nab

46: k(q_a) -> q_ka

47: nonce(q_a,q_b) -> q_nab

48: a -> q_a

49: b -> q_b

50: c -> q_c

1. If chris knows x and E(x, y), then
chris also knows y

2. If chris knows x and y, chris can
construct E(x, y) and D(x, y)

3. chris knows its own secret key
K(chris) and all principals names:
alice, bob, chris

4. chris knows message going through
the network (wiretapping)

5. chris decomposes sequences of
data (modification)

6. chris pretends to be other principals
(impersonation)

27

Descendant computation for reachability analysis

Loop number �(T-rules) �(states) time (sec)

0 23 13 3

1 56 34 4

2 102 46 6

3 109 46 18

4 109 46 23

Note 1. ∀ i: L(Ai/AC) ⊆ L(Ai+1/AC)

Note 2. ∃ i: L(Ai/AC) = L(Ai+1/AC)

⇒ ∃ i: L(Aj/AC) = L(Aj+1/AC) for all j � i

(⇒ ∃ i: L(Ai/AC) = L(A∞/AC))

Note 3. ∃ i: m(a, b) ∈ L(Ai/AC)

⇒ secret message m is retrieved by chris

28

Tool support for state space analysis

Computation mode

Module names (i.e. selected R-rule and T-rule names)

Parameters 1–3 (0 � i � 100)

Execution time

Number of transition rules

Number of state symbols for each loop computation

Graph1: number of transition rules × time(sec)

Graph2: number of state symbols × time(sec)

Graph3: time(sec) × loop number

(in HTML file format)

29

AC-axioms in encryption scheme

alice bob

(1) r, K(a) ◦ r

(2) K(b) ◦ r

(3) E(K(a) ◦K(b) ◦ r, m)

K(a) r m K(b)

K(a) K(b) : secret keys

r : random number

m : secret message

E : encryption function

◦ : AC symbol (infix operator)

Claim: secret message m is not retrieved by wiretapping only

(Cf. “Easy Intruder Deductions” by Comon-Lundh & Treinen 2003)

30

AC-function symbols in ACTAS specification

1: [Signature]
2: AC: f
3: const: a,b,c,m,r
4: var: x,y
5:
6: [R-rule: TRS2]
7: Ds(x,Es(x,y)) -> y
8:
9: [T-rule(p): TA2]

10: Ds(p,p) -> p
11: Es(p,p) -> p
12: f(p,p) -> p
13:
14: f(q_ka,q_r) -> p
15: r -> q_r
16:
17: r -> p
18:
19: f(q_kb,q_r) -> p
20: k(q_b) -> q_kb
21: b -> q_b
22:
23: e(q_f_kba_r,q_m) -> p
24: f(q_kab,q_r) -> q_f_kba_r
25: f(q_kb,q_ka) -> q_k_ba
26: k(q_a) -> q_ka
27: a -> q_a
28: m -> q_m

29: # C’s initial knowledge
30: a -> p
31; b -> p
32: c -> p
33: k(q_c) -> p
34: c -> q_c

initial knowledge

&

messages on

the network

base knowledge obtainable knowledge

→→→ · · ·

Dolev-Yao’s axioms + E
︷ ︸︸ ︷

∅?

secret data

31

Intruder deduction problem (general version)

Given two sets L, M (of messages) and equational rewrite system R/E:

Is the intersection of [→∗
R/E](L) and M the empty or not ?

Note 1. In the previous setting

L : initial knowledge + messages on the network

M : secret data

R/E : Dolev-Yao’s axioms and AC({f})

Note 2. Tree languages recognized by AC-TA, called AC-recognizable tree languages

are closed under ∩ and

AC-regular tree languages are also closed under ∩

Note 3. The emptiness problems for AC-TA and regular AC-TA are decidable

32

Non-left-linear case

∃ L → R in R such that L = C[x, x] e.g. D(x, E(x, y)) → y

• Check L(Ai/AC, q1) ∩ L(Ai/AC, q2)
= ∅

If the above condition holds for q1
= q2, we take the following assignment:

t
q2

t

x x

L

q1

q

• In fully automated verification, under- or over-approximation is
needed to be applied

The intersection-emptiness for AC-TA is decidable but the complexity is extremely high!

• In fact, we use in ACTAS under- (or over-)approximation
algorithms when solving emptiness problems in AC-case

33

Bounded computation for emptiness test

x x

P P

x x

P Q

x

P

L

L

R

x

P

R

search depth for emptiness test is controlled by

Parameters 2,3

�(T-rule) = 21

�(state symbols) = 16

P2 = 10

P3 state space for time (sec)
emptiness test

1 0 1

2 256 2

3 4096 2

4 65536 3

5 1048576 9

6 16777216 –

34

References

Research collaboration

[1] Sophie Tison & Jean-Marc Talbot

Université des Sciences et Technologies de Lille, France

– Invited position, June 2002

– Invited position, June 2005

[2] José Meseguer & Joe Hendrix

University of Illinois at Urbana-Champaign, IL, USA

– Invited position, January – March 2004

– Invitation (Hendrix), July – August 2005

[3] Ralf Treinen

École Normale Supérieure de Cachan, France

– Invited position, August – September 2004

– Invitation (Treinen), December 2001 & December 2005

36

Publications I: software & applications

[4] ACTAS: A System Design for Associative and Commutative Tree Automata

Theory

Hitoshi Ohsaki & Toshinori Takai

5th International Workshop on Rule-Based Programming (RULE 2004)

Aachen (Germany), June 2004

ENTCS 124, pp. 97–111

[5] Sufficient Completeness Checking with

Propositional Tree Automata

Joe Hendrix & Hitoshi Ohsaki & José Meseguer

Technical Report AIST-PS-2005-013

AIST/CVS, 2005 (new !)

37

Publications II: equational tree automata

[6] AC-Monotone Tree Languages

Hitoshi Ohsaki & Jean-Marc Talbot & Sophie Tison & Yves Roos

12th International Conference on Logic for Programming

Artificial Intelligence and Reasoning (LPAR 2005)

Montego Bay (Jamaica), December 2005

To appear in LNCS

[7] Recognizing Boolean Closed A-Tree Languages with Membership Conditional

Rewriting Mechanism

Hitoshi Ohsaki & Hiroyuki Seki & Toshinori Takai

14th International Conference on Rewriting

Techniques and Applications (RTA 2003)

Valencia (Spain), June 2003

LNCS 2706, pp. 483–498

c©Springer-Verlag

38

Publications II (cont’d)

[7] Decidability and Closure Properties of Equational Tree Languages

Hitoshi Ohsaki & Toshinori Takai

13th International Conference on Rewriting Techniques and Applications

(RTA 2002)

Copenhagen (Denmark), July 2002

LNCS 2378, pp. 114–128

[8] Beyond Regularity: Equational Tree Automata for Associative and

Commutative Theories

Hitoshi Ohsaki

15th International Conference of the European Association for Computer

Science Logic (CSL 2001)

Paris (France), September 2001

LNCS 2142, pp. 539–553

39

Tool demonstration

[9] ACTAS: Associative and Commutative Tree Automata Simulator

(presented by Toshinori Takai)

4th International Conference on Application of Concurrency to System

Design (ACSD 2004), Hamilton (Canada), June 2004

Software products

[10] CETA:

Library for Equational Tree Automata

Joe Hendrix

http://texas.cs.uiuc.edu/ceta/

[11] ACTAS

Hitoshi Ohsaki

(to be announced)

CETA homepage

40

Research Center for Verification and Semantics, AIST

Office address: Amagasaki site – AIST Kansai
Nakoji 3–11–46, Amagasaki, Hyogo 661–0974, Japan

URL: http://staff.aist.go.jp/hitoshi.ohsaki/

Phone: +81–6–6494–7823
FAX: +81–6–6494–7844

Copyright c© 2005 Hitoshi Ohsaki

All rights reserved. No part of this lecture note may be
reproduced or stored in a retrieval system, in any form or
by any means, electronic, mechanical, photocopying, or
otherwise, without the prior consent of the publisher.

