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Abstract

Assume-guarantee verification method has been recognized as a promising approach

to verify component-based software (CBS) with model checking. The method is not only

fitted to component-based software but also has a potential to solve the state space explo-

sion problem in model checking. This method allows us to decompose a verification target

into components so that we can model check each of them separately. Model-based ver-

ification methods in general and the assume-guarantee verification method in particular

of a system are performed with respect to its model which exactly describes the behavior

of the system. Thus, we have to obtain the accurate model of the system before applying

the verification techniques. However, these methods generally assume that the ways to

obtain the model and its correctness are available. This means that the model-based veri-

fication methods assume the availability and correctness of the model which describes the

behavior of the system under study. Nonetheless, this assumption may not always hold in

practice due to the modelling errors, bug fixing, etc. In addition, evolving of the existing

components of CBS is a daily and unavoidable activity during the software life cycle.

Therefore, even if the assumptions hold, the model could be invalidated when the soft-

ware is evolved by adding or removing some behaviors. Unfortunately, the consequence of

these tasks is the whole evolved software must be rechecked. The purpose of this research

is to provide an effective approach for modular verification of evolving component-based

software systematically in the context of the component evolution. When a component is

evolved after adapting some refinements, the proposed framework focuses on this compo-

nent and its model in order to update the model and to recheck the whole evolved system.

The framework also reuses the previous verification results and the previous models of

the evolved components to reduce the number of steps required in the model update and

modular verification processes.

This dissertation has three main contributions. The first contribution of the research

is to propose a method for generating minimal assumptions for the assume-guarantee ver-

ification of component-based software. The proposed method is an improvement of the

L*-based assumption generation method. The key idea of this method is finding the min-

imal assumptions in the search spaces of the candidate assumptions. These assumptions

are seen as the environments needed for the components to satisfy a property and for the

rest of the system to be satisfied. The minimal assumptions generated by the proposed

method can be used to recheck the whole system at much lower computational cost.

The second contribution is to propose an effective framework for assume-guarantee ver-

ification of component-based software in the context of the component evolution at design

i



level. In this framework, if the model of a component is evolved, the whole component-

based software of many models of the existing components and the evolved model of the

evolved component is not required to be rechecked. The framework only checks whether

the evolved model satisfies the assumption of the system before evolving. If it does, the

evolved component-based software still satisfies the property. Otherwise, if the assump-

tion is too strong to be satisfied by the evolved model, a new assumption is regenerated.

We propose two methods for new assumption regeneration: assumption regeneration and

minimized assumption regeneration. The methods reuses the current assumption as the

previous verification result to regenerate the new assumption at much lower computational

cost.

The third contribution of the research is to propose a framework for modular con-

formance testing and assume-guarantee verification of component-based software in the

context of component evolution at source code level. This framework includes two stages:

modular conformance testing for updating inaccurate models of the evolved components

and assume-guarantee verification for evolving component-based software. When a com-

ponent is evolved, the proposed framework focuses on this component and its model in

order to update the model and to recheck the whole evolved system. The framework also

reuses the previous verification results and the previous models of the evolved compo-

nents to reduce the number of steps required in the model update and assume-guarantee

verification processes.

Keyword: verification, model checking, assume-guarantee reasoning, assume-guarantee

verification, modular verification, component evolution, conformance testing, learning

algorithm, assumption, component-based software.
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Chapter 1

Introduction

1.1 Motivation

Component-based development has been recognized as a promising approach for building

software systems in software engineering as it is considered to be an open, effective and

efficient approach to reduce development cost and time while increasing software quality.

Component-based software (CBS) technology also supports rapid development of complex

evolving CBS by enhancing reuse and adaptability. CBS can be evolved by evolving one

or more software components. As a result, most large-scale information systems today

are built based on software component technology [3, 4, 6]. With component technology,

applications are developed by composing well-defined independent components together.

Components used in an application can be developed by the application developers or can

be provided by third parties.

To realize such an ideal CBS paradigm, one of the key issues is to ensure that those

separately specified and implemented components do not conflict with each other when

composed - the component consistency issue. The current well-known technologies such

as CORBA (OMG), COM/DCOM or .NET (Microsoft), Java and JavaBeans (Sun), etc.

only support component plugging. However, components often fail to co-operate, i.e.,

the plug-and-play mechanism fails. Currently, the popular solution to deal with this

issue is the verification of CBS via model checking [1, 2]. Model checking has been

recognized as a practical approach for improving software reliability. It verifies whether

the formal description of a system satisfies a formal specification. The formal description

called model is generally represented by a state transition system and the model checking

process decides that if the model satisfies the required properties by exploring successive

states of the system. Despite significant advances in the development of model checking,

it remains a difficult problem called the state space explosion in the hands of experts to

make it scale to the size of industrial systems. The assume-guarantee verification proposed

in [7, 8, 10, 16] is a powerful method to deal with the problem. This method is also fitted

1



to CBS. The method decomposes a verification target about a component-based system

into smaller parts about the individual components such that we can model check each

of them. The key idea of this method is to generate assumptions as environments needed

for components to satisfy a property. These assumptions are then discharged by the

rest of the system. In the method, the number of states of the assumptions should be

minimized because the computational cost of model checking is influenced by that number.

This method also should be improved for recheck the evolved CBS in the context of the

component evolution because it is rather closed for the fixed systems. Thus, it is not

prepared for future changes.

Model-based verification techniques have been recognized as the promising approaches

in improving the software reliability. Model-based verification of a system is performed

with respect to its model which exactly describes the behavior of the system. This means

that we have to obtain the accurate model of the system before applying the verification

techniques. Currently, these techniques generally assume that the ways to obtain a model

of the system under checking and its correctness are available. This means that this model

is available and accurate. However, these assumptions may not always hold in practice

due to the modelling errors, bug fixing, etc. Even if the assumptions hold, the model could

be invalidated when software is evolved by adding and removing some behaviors because

evolving of existing components seems to be a daily and unavoidable activity during the

software life cycle. Moreover, software evolution often occurs at any time in any phases

of the software development process. As a results, it is one of the major characteristics

of software. Unfortunately, the consequence of the tasks is the whole evolved software

must be rechecked. Furthermore, the CBS verification is a difficult target due to the

frequent lack of information about software components that may be provided by third

parties without source codes and with incomplete documentations. Even if we have source

code and complete documentation, it is very hard to understand them. The best way

is to consider the software component implementations as black boxes. In this case,

obtaining accurate models which exactly describe behaviors of the software components

under checking is an interesting problem because verification of a system is performed with

respect to its accurate model. There are some works that have been recently proposed in

obtaining the accurate models of software systems [5, 12, 47]. In those works, a learning

algorithm called L* [9, 17] is used to generate models of software systems which can then

be analyzed with model checking and testing techniques. When the software is evolved

after adapting some refinements, its model may be inaccurate. The works reuse a part of

the model to obtain an accurate model of the evolved software. Nonetheless, the works

are not prepared for modular verification because the generated models describes the

behaviors of the whole software. As a result, the state space explosion problem may

occur when rechecking of large-scale software. Rechecking of the evolved component-
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based software has also been investigated in [21, 22, 23]. The work focuses on component

substitutability directly from the verification point of view. The purpose of this work is

to provide an effective verification procedure that decides whether a component can be

replaced with a new one without violation. For each upgraded component, this work uses

abstraction techniques to obtain a new model of the component. This means that the

new model is obtained from scratch. It should be better to reuse the model of the old

component to obtain the new model. Consequently, our main motivation is to study an

effective approach for modular verification of component-based software systematically in

the context of the component evolution.

1.2 Problem Statement

Although there are many works that have been recently proposed in assume-guarantee

verification [7, 8, 10, 11, 14, 16, 40], our research focuses on the method proposed in [10]

because it has been recognized as a promising, incremental and fully automatic fashion

for modular verification of component-based software. This work proposes an iterative

method based on the L* learning algorithm for learning regular languages. The learning

process is based on queries to a software component, and on counterexamples obtained

by model checking the component and its environment, alternately. At each iteration,

the method may conclude that the required property is satisfied or violated in the system

analyzed. This process is guaranteed to terminate and it converges to an assumption

such that the assumption is strong enough for the component to satisfy the property

and weak enough to be discharged by the rest of the CBS. However, the L* learning

algorithm often terminates before reaching this point, and returns the first assumption

that satisfies the requirements of the verification. Moreover, the assumptions generated by

this method are not minimal. As mentioned above, the number of states of the generated

assumptions should be minimized because this number influences on the computational

cost of model checking. Furthermore, when a component is evolved in the context of the

software evolution, the whole evolved CBS of many existing components and the evolved

component is required to be rechecked [27, 28]. In this case, we also can reduce the cost of

rechecking the evolved CBS by reusing the smaller assumption. These observations imply

that the size of the generated assumptions are of primary importance. Consequently,

our first aim is to optimize the method proposed in [10] in order to generate minimal

assumptions for the assume-guarantee verification of CBS.

Consider a popular architecture of CBS where the CBS contains a base component as

a fixed framework, and some extensional components. In this kind of CBS, the component

evolution occurs only on the extensional components. It is known that the component

evolution is a daily and unavoidable activity during the software life cycle. When an
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extensional component is evolved after adapting some refinements, the whole CBS of many

existing components and the evolved component is required to be rechecked. Suppose that

models which exactly describes the behaviors of the software components are available at

design level. In order to recheck the evolved CBS, we can apply the described method

proposed in [10] by rechecking the evolved CBS as a new system from scratch. However,

rechecking of the whole evolved CBS is unnecessary because the evolution often focuses on

a few existing components. It should be better to focus only on the evolved components

and try to reuse previous verification results to verify the evolved CBS. Therefore, the next

aim of our research is to propose an effective framework for assume-guarantee verification

of component-based software in the context of the component evolution at design level.

Obtaining accurate models of the evolved components and rechecking of evolving soft-

ware systems has been investigated in the study about adaptive model checking (AMC)

[12] which necessitates an iterative construction of a model for software by applying the

L* learning algorithm [9, 17]. However, the model in AMC describes the behavior of the

whole software. In order to recheck the evolved CBS, the state space explosion problem

may occur when checking of large-scale software systems. In this case, rechecking of the

whole evolved CBS is unnecessary. It should be better to focus only on the evolved com-

ponents and try to reuse previous verification results to verify the evolved CBS system.

Moreover, AMC is an iterative process for verifying the system including learning the

candidate models of the system and model checking each learned candidate model. In

this process, many test strings are tested repeatedly via a conformance testing algorithm

named Vasilevskii-Chow (VC) [46, 49] and model checking is applied many times as the

number of the learned candidate model. As a result, this makes the computational cost

for verifying the system to be high. In our opinion, the model learning and model check-

ing should be separated into two independent processes. The model learning process first

generates an accurate model of the system. The model is seen as the input of the model

checking process for verifying the system. With this approach, the model checking is

applied only once. Thus, the computational cost for verifying the system can be reduced.

Furthermore, the AMC approach cannot reuse the whole given model because it does not

ensure the achievement of an updated model from the inaccurate model because the con-

cept of software evolution in AMC means adding some new behaviors and removing some

existing behaviors. Moreover, when system is changed, the model is required to update

including comparisons of software with the new candidate model via the VC algorithm. If

the model is inaccurate then updating the whole model is not necessary (and very expen-

sive) because the changes often focus on a few existing components with small changes.

Consequently, our third aim is to propose a framework for modular conformance testing

and assume-guarantee verification of evolving component-based software systematically

in order to solve the above issues in the context of the component evolution.
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1.3 Contributions

This dissertation has three main contributions as follows.

The first contribution of the research is to propose a minimal assumption generation

method for assume-guarantee verification of CBS. The proposed method is an improve-

ment of the L*-based assumption generation method. The key idea of this method is

finding the minimal assumptions in the search spaces of the candidate assumptions that

satisfies the compositional rules. These assumptions are seen as the environments needed

for the components to satisfy a property and for the rest of the system to be satisfied. With

regard to the effectiveness, the proposed method can generate the minimal assumptions

which have the minimal sizes and smaller numbers of transitions than the assumptions

generated by the L*-based assumption generation method proposed in [10]. These min-

imal assumptions generated by the proposed method can be used to recheck the whole

CBS by checking the compositional rules at much lower computational costs.

The second contribution is to propose an effective framework for assume-guarantee

verification of CBS in the context of the component evolution at design level. In the

framework, the component evolution means adding only some new behaviors to the de-

sign model of component without losing the old behaviors. When the design model of a

component is evolved after adapting some refinements, the whole CBS of many models

of the existing components and the evolved model of the evolved component is not re-

quired to be rechecked. The framework only checks whether the evolved model satisfies

the assumption of the system before evolving. If it does, the evolved CBS still satisfies the

property. Otherwise, if the assumption is too strong to be satisfied by the evolved model,

a new assumption is regenerated. We propose two methods for new assumption regen-

eration: assumption regeneration and minimized assumption regeneration. The methods

reuse the current assumption as the previous verification result to regenerate the new

assumption at much lower computational cost.

The third contribution of the research is to propose a framework for modular confor-

mance testing and modular verification of CBS in the context of component evolution

at source code level. This framework includes two stages: modular conformance testing

(MCT) for updating inaccurate models of the evolved components and assume-guarantee

verification for evolving CBS. In this framework, when a software component is evolved

after adapting some refinements, instead of doing conformance testing on the whole sys-

tem and its model, the proposed MCT only performs conformance testing to compare this

component with its model. If the model of the evolved component is inaccurate then it

is used as the initial model for the L* learning algorithm in order to update itself. Oth-

erwise, the component and its model are in conformance. The proposed framework then

applies the assume-guarantee method to verify the evolved CBS. In this case, the whole
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evolved CBS of many existing components and the evolved component is not required to

be rechecked for its satisfaction of property p. The framework focuses only on the model

of the evolved component to recheck the evolved software. Suppose that there is a simple

component-based software which contains a base component C1 as a fixed framework,

and a component C2 as an extension. The extension C2 is plugged into the framework C1

via some mechanisms. Let M1 and M2 be accurate models of C1 and C2 respectively. It

is known that the compositional system M1‖M2 satisfies the property p. During the life

cycle of this system, the extension C2 is evolved to a new component C ′

2 by adding some

new behaviors to C2. In this case, the current model M2 may be an inaccurate model of

the evolved component C ′

2. We proposes a method called modular conformance testing

to compare C ′

2 with M2. If they are not in conformance, M2 is used as the initial model

for the L* algorithm to obtain an accurate model M ′

2 for the evolved component C ′

2. The

evolved CBS then must be rechecked for whether it satisfies the property p or not. For this

purpose, we only check whether the evolved model M ′

2 satisfies the assumption A(p) of the

CBS before evolving. If it does, the evolved CBS still satisfies the property. Otherwise,

if the assumption is too strong to be satisfied by M ′

2, a new assumption is regenerated in

an effective approach. The process for rechecking of the evolved CBS in this context is

presented in Figure 1.1. With regard to effectiveness, the proposed framework can reduce

the number of steps required in the model update and the number of the membership

queries and the candidate assumptions which are needed to regenerate the new assump-

tions. In some successful cases where the current assumptions are actual assumptions of

the evolved CBS, these CBS are verified in the fastest way without regenerating the new

assumptions.

1.4 Dissertation Organization

The dissertation is organized as follows.

The first chapter is the introduction about the research. This chapter sets the context,

describes the motivation and the main contributions, and presents the structure of the

remaining part of the dissertation.

The second chapter is about some basic concepts for the research. This chapter in-

cludes the model and component specifications, safety property and satisfiability, assume-

guarantee reasoning, minimal assumption, component evolution, and others related con-

cepts.

Chapter 3 introduce the concept of deterministic finite state automata, the L*-based

assumption generation method for assume-guarantee verification of CBS and the black-

box checking strategy for verification a system which are improved in our research. A

proposed method for new assumption regeneration in the context of the component evo-
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lution is also presented.

Chapter 4 presents a method for generating minimal assumptions for the assume-

guarantee verification of component-based software. In this chapter, we define a new

technique for answering membership queries which are needed for generating the minimal

assumptions. Some improvements of the proposed method are discussed in order to reduce

the computational cost for generating the minimal assumptions. An implemented tool for

generating the minimal assumptions and experimental results are also presented.

In Chapter 5, we propose an effective framework for modular verification of evolv-

ing component-based software at design level. In this framework, the whole evolved

component-based software of many existing components and the evolved component is

rechecked by focusing only on checking the evolved model of the evolved component. If

the evolved model satisfies the current assumption of the CBS before evolving, the whole

evolved CBS still satisfies the required property. Otherwise, if the assumption is too

strong to be satisfied by the evolved model, a new assumption is regenerated by using

one of the two proposed methods for assumption regeneration. A tool for assumption

regeneration is also presented in this chapter.

Still based on the concept of the component evolution, in Chapter 6, we propose a

method called modular conformance testing (MCT) for testing conformance between the

evolved component and its model and updating the inaccurate model. After that, the

evolved CBS is rechecked by applying the proposed framework presented in Chapter 4.

We also integrate the MCT method and assume-guarantee verification into a framework

for modular conformance testing and assume-guarantee verification of evolving CBS at

source code level.

Chapter 7 presents three typical CBS: automobile cruise control system, gas oven

control system, and banking subsystem and experimental results obtained by applying

the proposed approaches for these systems. These experiments are not only to show the

practical usefulness of our proposed approaches but also to present how to generalize the

proposed approaches for larger CBS (i.e., CBS containing more than two components).

Chapter 8 presents related works.

Finally, we conclude the research and present the future works in Chapter 9.

In this dissertation, Chapter 3, 4, 5 and 6 are the main works of our research. Fig-

ure 1.1 presents the position and relation of these chapters in the modular verification

process of component-based software in the context of the component evolution. When

a software component is evolved, the evolved component-based software is required to

recheck whether it still satisfies a property. We first perform modular conformance test-

ing to compare the evolved component with its model. If the model is inaccurate then

it is used as the initial model for the L* learning algorithm in order to update itself.
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Figure 1.1: The relations between the main chapters of the dissertation and the process
for modular verification of evolved CBS.

Otherwise, the component and its model are in conformance. The accurate models of the

evolved CBS then are used to recheck the evolved CBS by applying the assume-guarantee

verification framework. If the model of the evolved component satisfies the assumption of

the CBS before evolving, the evolved CBS still satisfies the property. Otherwise, if the as-

sumption is too strong to be satisfied by the model, a new assumption is regenerated. One

of the two proposed methods for new assumption regeneration (i.e., assumption regener-

ation method and minimized assumption regeneration method) is applied to regenerate

the new assumption. The applied method returns a new assumption if the evolved CBS

satisfies the property, and a counterexample cex otherwise.
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Chapter 2

Background

This chapter reviews basic concepts from the theory of assume-guarantee verification for

component-based software in the context of the component evolution. Most of these

notions can be found in [10, 12, 16]. Details of the LTSA tool can be found in the text

book by J. Magee and J. Kramer [13].

2.1 Model and Component

In this dissertation, the models of the software components which describe the behaviors

of communicating components are represented by the Labeled Transition Systems (LTSs).

An LTS is a directed graph with labeled edges. In addition to states and transitions, a set

of labels called alphabet is associated with the system. All labels on transitions must be

from that alphabet. Let Act be the universal set of observable actions and let τ denote

a local/internal action unobservable to a component’s environment. We use π to denote

a special error state, which models the fact that a safety violation has occurred in the

compositional system. We require that the error state has no outgoing transition.

2.1.1 Labeled Transition Systems

Definition 2.1.1 (LTSs). An LTS M is a quadruple 〈Q, αM, δ, q0〉 where:

• Q is a non-empty set of states,

• αM ⊆ Act is a finite set of observable actions called the alphabet of M ,

• δ ⊆ Q × αM ∪ {τ} × Q is a transition relation, and

• q0 ∈ Q is the initial state.

Definition 2.1.2 (LTS size). Size of an LTS M = 〈Q, αM, δ, q0〉 is the number of states

of M , denoted |M | (i.e., |M | = |Q|).
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Definition 2.1.3 (deterministic and non-deterministic LTSs). An LTS M = 〈Q, αM, δ, q0〉

is non-deterministic if it contains τ -transition or if ∃(q, a, q ′), (q, a, q′′) ∈ δ such that

q′ 6= q′′. Otherwise, M is deterministic.

Note 2.1.1 Let M = 〈Q, αM, δ, q0〉 and M ′ = 〈Q′, αM ′, δ′, q′0〉. We say that M transits

into M ′ with action a, denoted M −→a M ′ if and only if (q0, a, q′0) ∈ δ and αM = αM ′

and δ = δ′. We use
∏

to denote the LTS 〈{π}, Act, φ, π〉.

2.1.2 Traces

A trace σ of an LTS M is a sequence of observable actions that M can perform starting

at its initial state.

Definition 2.1.4 (Trace). A trace σ of an LTS M = 〈Q, αM, δ, q0〉 is a finite sequence

of actions a1a2...an, where a1 = q0 and ai ∈ αM (i = 1, ..., n).

Note 2.1.2 For Σ ⊆ Act, we use σ↑Σ to denote the trace obtained by removing from

σ all occurrences of actions a 6∈ Σ. The set of all traces of M is called the language

of M , denoted L(M). Let σ = a1a2...an be a finite trace of an LTS M . We use [σ]

to denote the LTS Mσ = 〈Q, αM, δ, q0〉 with Q = 〈q0, q1, ..., qn〉, and δ = {(qi−1, ai, qi)},

where 1 ≤ i ≤ n. We say that an action a ∈ αM is enabled from a state s ∈ Q, if there

exists s′ ∈ Q, such that (s, a, s′) ∈ δ. Similarly, a trace a1a2...an is enabled from s if there

is a sequence of states s0, s1, ..., sn with s0 = q0 such that for 1 ≤ i ≤ n, (si−1, ai, si) ∈ δ.

2.1.3 Parallel Composition

The parallel composition operator ‖ is a commutative and associative operator that com-

bines the behavior of two models by synchronising the actions common to their alphabets

and interleaving the remaining actions.

Definition 2.1.5 (Parallel composition operator). The parallel composition between M1

= 〈Q1, αM1, δ1, q
1
0〉 and M2 = 〈Q2, αM2, δ2, q

2
0〉, denoted M1‖M2, is defined as follows. If

M1 =
∏

or M2 =
∏

, then M1‖M2 =
∏

. Otherwise, M1‖M2 is an LTS M = 〈Q, αM, δ, q0〉

where Q = Q1×Q2, αM = αM1∪αM2, q0 = q1
0 × q2

0, and the transition relation δ is given

by the rules:

(i)
α ∈ αM1 ∩ αM2, (p, α, p′) ∈ δ1, (q, α, q′) ∈ δ2

((p, q), α, (p′, q′)) ∈ δ
(2.1)

(ii)
α ∈ αM1\αM2, (p, α, p′) ∈ δ1

((p, q), α, (p′, q)) ∈ δ
(2.2)
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(iii)
α ∈ αM2\αM1, (q, α, q′) ∈ δ2

((p, q), α, (p, q′)) ∈ δ
(2.3)

Example 2.1.1 When composing the two models represented by two LTSs Input and

Output illustrated in Figure 2.1, the actions send and ack are synchronised while the

others are interleaved. By removing all states which unreachable from the initial state

(0, a) and their ingoing transitions, we obtain the parallel composition LTS Input‖Output

shown in this figure.

Figure 2.1: An illustration of parallel composition.

2.1.4 Safety LTS, Safety Property, Satisfiability, and Error LTSs

Definition 2.1.6 (Safety LTS). A safety LTS is a deterministic LTS that contains no π

states.

Definition 2.1.7 (Safety property.) A safety property asserts that nothing bad happens.

The safety property p is specified as a safety LTS p = 〈Q, αp, δ, q0〉 whose language L(p)

defines the set of acceptable behaviors over αp.

Definition 2.1.8 (Satisfiability). An LTS M satisfies p, denoted as M |=p, if and only

if ∀σ ∈ L(M): (σ↑αp) ∈ L(p).

Note 2.1.3 When checking of the LTS M which satisfies the property p, an error LTS,

denoted perr, is created which traps possible violations with the π state. perr is defined as

follows:
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Definition 2.1.9 (Error LTS). The error LTS of a property p = 〈Q, αp, δ, q0〉 is perr =

〈Q ∪ {π}, αperr, δ
′, q0〉, where αperr = αp and δ′ = δ ∪ {(q, a, π) | a ∈ αp and 6 ∃q′ ∈ Q :

(q, a, q′) ∈ δ}.

Remark 2.1.1 The error LTS is complete, meaning each state other than the error state

has outgoing transitions for every action in the alphabet. For example, Figure 2.2 describes

the LTS of a property p and the corresponding error LTS perr. The property p means

that the int action has to occur before out action. It captures a desired behavior of the

concurrent system containing two models Input and Output shown in Figure 2.1. The

error LTS perr is created from the safety LTS p by applying the above definition. The

dashed arrows illustrate the transitions to the error state that are added to the property to

obtain LTS perr [10].

Figure 2.2: The LTS p of the property and the corresponding error LTS perr.

Note 2.1.4 In order to verify a component M satisfying a property p, both M and perr

are represented by safety LTSs, the parallel composition M‖perr is then computed. If state

π is reachable in the composition then M violates p. Otherwise, it satisfies.

Example 2.1.2 In order to verify the composition system Input‖Output whether it satis-

fies the property p, the parallel composition Input‖Output‖perr is computed in Figure 2.3.

It’s easy to check that the error state π is not reachable in this composition. Thus, we

conclude that the compositional system Input‖Output satisfies the property p.

2.1.5 Component

Although we consider a software component as a black-box, theoretically, a component

can be represented by a finite state machine defined as follows.

Definition 2.1.10 (Component). Let M = 〈QM , Σ, δM , qM
0 〉 be a model which describes

the behaviors of a component C. C is an unknown finite state machine 〈QC , Σ, δC , qC
0 〉

where:
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Figure 2.3: Computing the composition Input‖Output‖perr.

• QC is a non-empty set of states,

• Σ ⊆ Act is a finite set of actions called the alphabet of C (the same alphabet with

the model M),

• δ ⊆ QC × Σ ∪ {τ} × QC is a transition relation, and

• qC
0 ∈ QC is the initial state.

Remark 2.1.2 The unknown finite state machine means that we do not know all its

states and transitions because the component C is considered as a black-box. We can

only perform experiments on the component C. With this fact, we view the software

component C = (Σ, T ) as a (typically infinite) prefix closed set of strings T ⊆ Σ∗ over

the finite alphabet of actions Σ. T is a prefix closed set if and only if for every v ∈ T then

any prefix of v is in T . The strings in T reflect the allowed executions of C [12]. In order

to check conformance between C and its model, we assume that the proposed method can

perform the following experiments on C:

• Reset the component to its initial state (called Reset). The current experiment is

reset to the empty string ε

• Check whether an action a can currently be executed by the component C. The action

a is added to the current experiment. We assume that the component provides us

with information on whether a was executable. If the current experiment was v ∈ T

13



so far, then by attempting to execute a, we check whether va ∈ T . If this is so, then

the current experiment becomes va. Otherwise it remains v.

2.1.6 Accurate Model

Definition 2.1.11 (Accurate model). Let M be a model which describes behavior of a

software component C. The model M accurately models the software component C if for

every v ∈ Σ∗, v is a successful experiment (after applying a Reset) on C exactly when v

is a trace of M .

2.2 Assume-Guarantee Verification

2.2.1 Assume-Guarantee Reasoning

The assume-guarantee paradigm is based on a powerful divide-and-conquer mechanism

for decomposing a verification task about a system into subtasks about the individual

components of the system. The key to assume-guarantee reasoning is to consider each

component not in isolation, but in conjunction with assumptions about the context of

the component. Assume-guarantee principles are known for purely concurrent contexts,

which constrain the input data of a component, as well as for purely sequential contexts,

which constrain the entry configurations of a component.

In the assume-guarantee paradigm, a formula is a triple 〈A(p)〉 M 〈p〉, where M is

a component, p is a property, and A(p) is an assumption about the environment of M .

The formula is true if whenever M is a part of a system satisfying A(p), then the system

must also guarantee p. In our work, to check an assume-guarantee formula 〈A(p)〉 M

〈p〉, where both A(p) and p are safety LTSs, we use a tool called LTSA [13] to compute

A(p)‖M‖perr and check if state π is reachable in the composition. If so, then the formula

is violated, otherwise it is satisfied.

Definition 2.2.1 (Assumption). Given two models M1 and M2, and a required safety

property p, A(p) is an assumption if and only if it is strong enough for M1 to satisfy

p but weak enough to be discharged by M2 (i.e., 〈A(p)〉 M1 〈p〉 and 〈true〉 M2 〈A(p)〉,

called assume-guarantee rule, both hold). Equivalently, A(p) is an assumption if and only

if L(A(p)‖M1)↑αp ⊆ L(p) and L(M2)↑αA(p) ⊆ L(A(p)).

Remark 2.2.1 The assumption A(p) is generated by applying the L* learning algorithm

such that A(p) satisfies the assume-guarantee rule. From the rule, the system M1‖M2

satisfies p without composing M1 with M2. The iterative fashion for generating A(p)

is illustrated in Figure 3.7. Details of this fashion will be presented in Section 3.2 of

Chapter 3.
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2.2.2 Weakest Assumption

An assumption with which the assume-guarantee rule is guaranteed to return conclusive

results is the weakest assumption AW defined in [16], which restricts the environment of

M1 no more and no less than necessary for p to be satisfied.

Definition 2.2.2 (Weakest assumption). Weakest assumption AW describes exactly those

traces over the alphabet Σ = (αM1 ∪ αp) ∩ αM2 which, the error state π is not reachable

in the compositional system M1‖perr. The weakest assumption AW means that for any

environment component E, M1‖E|=p if and only if E|=AW .

2.2.3 Minimal Assumption

The number of states of the assumptions generated by the current method for assume-

guarantee verification proposed in [7, 8, 10, 16] is not mentioned. Thus, the assumptions

generated by the method are not minimal. Our first aim of the dissertation is to optimize

the method in order to generate minimal assumptions for the assume-guarantee verifi-

cation of component-based software. The concept of minimal assumption is defined as

follows.

Definition 2.2.3 (Minimal assumption). Given two models M1, M2 and a property p,

A(p) is an assumption if and only if A(p) satisfies the assume-guarantee rule. An as-

sumption A(p) represented by an LTS is minimal if and only if the number of states of

A(p) is less than or equal to the number of states of any other assumptions.

2.2.4 Labelled Transition Systems Analyzer

The Labelled Transition Systems Analyzer (LTSA) [13] is an automated tool that sup-

ports Compositional Reachability Analysis (CRA) of a concurrent software based on its

architecture. In general, the software architecture of a concurrent software has a hierar-

chical structure. CRA incrementally computes and abstracts the behaviors of composite

components based on the behaviors of their immediate children in the hierarchy. Abstrac-

tion consists of hiding the actions that do not belong to the interface of a component,

and minimizing with respect to observational equivalence.

The input language “Finite State Processes (FSP)” of this tool is a process-algebra

style notation with Labelled Transition Systems (LTSs) semantics. A property is also ex-

pressed as an LTS, but with extended semantics, and is treated as an ordinary component

during composition. Properties are combined with the components to which they refer.

They do not interfere with system behaviors, unless they are violated. In the presence

of violations, the properties introduced may reduce the state space of the (sub)systems

analyzed.
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The LTSA tool also features graphical display of LTSs, interactive simulation and

graphical animation of behavior models, all helpful aids in both design and verification of

system models.

This dissertation uses the LTSA tool to check correctness of the assumptions generated

by our implemented tools. For this purpose, we check whether a generated assumption

A(p) satisfies the assume-guarantee rule (i.e., 〈A(p)〉 M1 〈p〉 and 〈true〉 M2 〈A(p)〉 both

hold) by checking the compositional systems A(p)‖M1‖perr and M2‖A(p)err via the LTSA

tool. If the LTSA tool returns the same result as our verification result for each illustrative

system, the generated assumption A(p) is correct.

2.3 Component Evolution

Component evolution is an important concept in software engineering. It is a general

notion and there are many meanings of this concept, depending on the context in which

it is used. For example, in analysis and design software, the component evolution concept

expresses the relationship between a specification of a component (AS) and it’s implemen-

tation (AI). In this case, the evolution means that more detailed information is added.

The relation “AI evolves AS” is intuitively meant to say that “the specification AS has

more behavioral options than it’s implementation AI ,” or equivalently, “every behav-

ioral option realized by the implementation AI is allowed by the specification AS”. In

the object-oriented programming, component evolution means adding some methods or

attributes or constraints into a class. In the open incremental model checking (OIMC) ap-

proach proposed in [11, 14, 15], this concept means adding (or plugging) a new component

as an (extension) into the Base component via compatible interface states.

In this dissertation, we define a new concept of component evolution: adding only some

new behaviors to the old component without losing the old behaviors. Let C2 = (Σ2, T2)

and C ′

2 = (Σ′

2, T
′

2) be two components as black boxes. C ′

2 is an evolution of C2 if and

only if Σ2 ⊆ Σ′

2 and T2 ⊆ T ′

2. With regard to the formal definition about the evolution

inside of the component, even for this work where we consider the software components as

black boxes, theoretically, we can represents components as LTSs or finite state machines.

Intuitively, evolving the component C2 to a new component C ′

2 means that the component

C ′

2 is created by adding some states and transitions to C2. Formally, we can define the

evolution relation between C2 and C ′

2 inside of the components as follows.

Definition 2.3.1 (Component evolution). Let C2 = 〈Q2, αC2, δ2, q
2
0〉 and C ′

2 = 〈Q′

2, αC ′

2,

δ′2, q′20 〉 be two components. C ′

2 is an evolution of C2 if and only if Q2 ⊆ Q′

2, αC2 = αC ′

2,

δ2 ⊆ δ′2, and q2
0 = q′20 . Equivalently, if the new component C ′

2 is an evolution of C2, it

implies that L(C2) ⊆ L(C ′

2).
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Remark 2.3.1 During the software life-cycle, suppose that we have a mechanism to man-

age versions of each software component. For example, we consider the old versions of the

current evolved component C ′

2. Currently, we have many versions of this component dur-

ing the software development process, i.e., C20, C21, C22, ..., C2, C ′

2 shown in Figure 2.4,

where a new version is produced by adding some new behaviors to the old version. Sup-

pose that we do not allow removing the behaviors of the initial version C20. At the current

version C ′

2, if we allow to remove some old behaviors of the component, suppose that the

version management mechanism is good enough, the new version produced by removing

the old behaviors is exactly one of the old versions (i.e., one of C20, C21, C22, ..., C2).

This means that only adding some new behaviors is enough for the software component

evolution. By this definition, we ensure that we achieve an accurate model M ′

2 of the

evolved component C ′

2 by reusing the entire inaccurate model M2 of the old component C2.

Figure 2.4: Version management mechanism for C2 by only adding new behaviors.

Example 2.3.1 The model M2 of a component C2 is evolved to the evolved model M ′

2

of the evolved component C ′

2 illustrated in Figure 2.5. After some data is sent to M2, it

produces output using the action out and acknowledges that it has finished, by using the

action ack. The evolved model M ′

2 of the component C ′

2 is created by adding the transition

(b,send,b) into the model M2. It means that M ′

2 allows multiple send actions to occur

before producing output.

Figure 2.5: An illustration of the component evolution concept.
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Chapter 3

L* Learning Algorithm and

Black-box Checking

This chapter presents the L* learning algorithm and its applications for assume-guarantee

verification of component-based software (CBS) and black-box checking of a system, and

proposes an effective method for new assumption regeneration in the context of the com-

ponent evolution.

3.1 Deterministic Finite State Automata

In this dissertation, we use a learning algorithm called L* [9, 17] to generate an as-

sumption from two models. A framework for assumption generation will be described in

Section 3.2.2. In the framework presented in Figure 3.7, at each iteration i, the Learning

module produces a Deterministic Finite State Automata (DFA) Mi such that it is unique

and minimal automata and L(Mi) = L(AW ), where AW is the weakest assumption under

which the component M1 satisfies the property p, defined in [16]. The DFA Mi then is

transformed into a candidate assumption Ai, where Ai is represented by a safety LTS. A

DFA is defined as follows:

Definition 3.1.1 (DFA). A DFA M is a five tuple 〈Q, αM, δ, q0, F 〉 where:

• Q, αM , δ, q0 are defined as for deterministic LTSs, and

• F ⊆ Q is a set of accepting states.

Note 3.1.1 For a DFA M and a string σ, we use δ(q, σ) to denote the state that M will

be in after reading σ starting at state q. A string σ is said to be accepted by a DFA M

= 〈Q, αM, δ, q0, F 〉 if δ(q0, σ) ∈ F . The language of a DFA M is defined as L(M) =

{σ | δ(q0, σ) ∈ F}.
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Example 3.1.1 Figure 3.1 describes an illustration of DFA M , where:

• q0 is initial state,

• Q = {q0, q1},

• αM = {a, b},

• δ = {(q0, a, q1), (q0, b, q1), (q1, a, q1), (q1, b, q0)}, and

• F = {q1}.

It’s easy to check that the string aaaa ∈ L(M) but the string aaaab 6∈ L(M).

Figure 3.1: An illustration of DFA.

Definition 3.1.2 (Prefix-closed DFA). A DFA M is prefix-closed if L(M) is prefix-

closed, i.e., for every σ ∈ L(M), every prefix of σ is also in L(M).

Remark 3.1.1 The DFAs returned by the learning algorithm in the proposed approach

are complete, minimal, and prefix-closed. These DFAs therefore contain a single non-

accepting state nas. In order to obtain a safety LTS A from a DFA M , we remove the

non-accepting state nas and all its ingoing transitions. Formally, we can define the way

to transform a DFA M to a safety LTS A as follows:

Definition 3.1.3 (DFA to LTS). Let a DFA M = 〈Q ∪ {nas}, αM, δ, q0, Q〉, the safety

LTS A = 〈Q, αM, δ ∩ (Q × αM×Q), q0〉.

Example 3.1.2 Figure 3.2 describes an illustrative example to transform a DFA M into

a safety LTS A.

3.2 L*-Based Assumption Generation Method

3.2.1 The L* Learning Algorithm

The proposed method uses the learning algorithm developed by Angluin [9] and later

improved by Rivest and Schapire [17]. In this dissertation, we refer to the improved
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Figure 3.2: An illustration of getting the safety LTS A from the DFA M .

version by the name of the original algorithm called L*. L* learns an unknown regular

language and produces a DFA that accepts it. The main idea of the L* learning algorithm

is based on the “Myhill-Nerode Theorem” [29] in the theory of formal languages. It said

that for every regular set U ⊆ Σ∗, there exists a unique minimal deterministic automata

whose states are isomorphic to the set of equivalence classes of the following relation:

w ≈w′ if and only if ∀u ∈ Σ∗: wu ∈ U ⇐⇒ w′u ∈ U . Therefore, the main idea of L*

is to learn the equivalence classes, i.e., two prefix aren’t in the same class if and only if

there is a distinguishing suffix u.

Let U be an unknown regular language over some alphabet Σ. L* will produce a DFA

M such that M is a minimal deterministic automata corresponding to U and L(M) = U .

In order to learn U , L* needs to interact with a Minimally Adequate Teacher, from now

on called Teacher. The Teacher must be able to correctly answer two types of questions

from L*. The first type is a membership query, consisting of a string σ ∈ Σ∗ (i.e., “is

σ ∈ U?”); the answer is true if σ ∈ U , and false otherwise. The second type of these

questions is a conjecture, i.e., a candidate DFA M whose language the algorithm believes

to be identical to U (“is L(M) = U?”). The answer is true if L(M) = U . Otherwise

the Teacher returns a counterexample, which is a string σ in the symmetric difference of

L(M) and U . The interaction between L* Learning and the Teacher in a general view is

illustrated in Figure 3.3.

At a higher level, L* maintains a table T that records whether string s in Σ∗ belong

to U . It does this by making membership queries to the Teacher to update the table. At

various stages L* decides to make a conjecture. It uses the table T to build a candidate

DFA Mi and asks the Teacher whether the conjecture is correct. If the Teacher replies

true, the algorithm terminates. Otherwise, L* uses the counterexample returned by the

Teacher to maintain the table with string s that witness differences between L(Mi) and

U .

For more details, L* builds an observation table (S, E, T ) defined as follows:

Definition 3.2.1 (Observation table). (S, E, T ) is an observation table built by L*,

where:
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Figure 3.3: The interaction between L* Learner and the Teacher.

• S ∈ Σ∗ is a set of prefixes. It presents equivalence classes or states.

• E ∈ Σ∗ is a set of suffixes. It presents the distinguishing.

• T : (S ∪ S.Σ).E 7→ {true, false} where, the operator “.” means that given two sets

of event sequences P and Q, P .Q = {pq | p ∈ P, q ∈ Q}, where pq presents the

concatenation of the event sequences p and q. With a string s in Σ∗, T (s) = true

means s ∈ U , otherwise s 6∈ U .

Remark 3.2.1 An observation table (S, E, T ) is closed if ∀s ∈ S, ∀a ∈ Σ, ∃s′ ∈ S, ∀e

∈ E: T (sae) = T (s′e). In this case, s′ presents the next state from s after seeing a, sa is

undistinguishable form s′ by any of suffixes. Intuitively, the observation table (S, E, T ) is

closed means that every row sa of S.Σ has a matching row s′ in S.

The detailed information of the L* algorithm step by step is presented in Algorithm 1,

line numbers refer to L*’s illustration. Initially, L* sets S and E to {λ} (line 1), where λ

presents the empty string. Subsequently, it updates the function T by making membership

queries so that it has a mapping for every string in (S ∪ S.Σ).E (line 3). It then checks

whether the observation table (S, E, T ) is closed (line 4). If the observation table (S, E, T )

is not closed, then sa is added to S, where s ∈ S and a ∈ Σ are the elements for which

there is no s′ ∈ S (line 5). Because sa has been added to S, T must be updated again

by making membership queries (line 6). Line 5 and line 6 are repeated until the table

(S, E, T ) is closed.

When the observation table (S, E, T ) is closed, a candidate DFA M is constructed

(line 8) from the closed table (S, E, T ) as follows:

Definition 3.2.2 (Closed observation table to DFA). A DFA M = 〈Q, αM, δ, q0, F 〉 is

constructed from a closed table (S, E, T ), where:
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• Q = S.

• Alphabet αM = Σ, where Σ is the alphabet of the unknown language U .

• The transition δ is defined as δ(s, a) = s′ where ∀e ∈ E : T (sae) = T (s′e)

• Initial state q0 = λ.

• F = {s ∈ S | T (s) = true}.

The candidate DFA M is presented as a conjecture to the Teacher (line 9). If the

Teacher replies true (i.e., L(M) = U) (line 10), L* returns M as correct (line 11), otherwise

it receives an counterexample cex ∈ Σ∗ from the Teacher.

The counterexample cex is analyzed by L* to find a suffix e of cex that witnesses a

difference between L(M) and U . After that, e must be added to E (line 13). It will cause

the next conjectured automaton to reflect this difference. When e has been added to E,

L* iterates the entire process by looping around to line 3.

Algorithm 1 The L* learning algorithm.

Input: U, Σ: an unknown regular language U over some alphabet Σ
Output: M : a DFA M such that M is a minimal deterministic automata corresponding

to U and L(M) = U

1: Initially, S = {λ}, E = {λ}
2: loop
3: update T using membership queries
4: while (S, E, T ) is not closed do
5: add sa to S to make S closed, where s ∈ S and a ∈ Σ
6: update T using membership queries
7: end while
8: construct a candidate DFA M from the closed (S, E, T )
9: present an equivalence query : L(M) = U?

10: if M is correct then
11: return M
12: else
13: add e ∈ Σ∗ that witnesses the counterexample cex to E
14: end if
15: end loop

Example 3.2.1 Figure 3.4 presents a closed observation table and its candidate DFA

constructed from this table. It is very easy to check this table is closed. Intuitively, every

row sa of S.Σ has a matching row s′ in S. In order to avoid misunderstanding in the
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figure, we modify state’s name of the DFA, i.e, λ changes into q0, a changes into q1.

From this closed table, L* constructs the candidate DFA M , where αM = Σ = {a, b},

Q = {q0, q1}, the initial state is q0, δ = {(q0, a, q1), (q0, b, q1), (q1, a, q1), (q1, b, q0)}, and

F = {q1}. From the DFA M , we can get a safety LTS simply by removing non-accepting

state q0 and all its ingoing transitions.

Figure 3.4: An illustration of a closed observation table (S, E, T ) and its candidate DFA.

Remark 3.2.2 Each candidate DFA Mi produced by L* is smallest. It means that any

DFA consistent with the observation table (S, E, T ) has at least as many states as Mi. Let

M1, M2, . . . , Mn are candidate DFAs produced by L* step by step, it is very easy to check

that |M1| ≤ |M2| ≤ . . . ≤ |Mn|, where |Mi| denotes number of states of the DFA Mi.

L* is guaranteed to terminate with a minimal automaton M for the unknown language

U . Moreover, for each closed observation table (S, E, T ), the candidate DFA M that L*

constructs is smallest [29], in the sense that any other DFA consistent with the function

T has at least as many states as M . The conjectures made by L* strictly increase in size;

each conjecture is smaller than the next one, and all incorrect conjectures are smaller

than M . Therefore, if M has n states, L* makes at most n-1 incorrect conjectures. The

number of membership queries made by L* is O(kn2 + n log m) [9], where k is the size of

alphabet of U , n is the number of states in the minimal DFA for U , and m is the length

of the longest counterexample returned when a conjecture is made.

3.2.2 L*-Based Assumption Generation

The assume-guarantee paradigm is a powerful divide-and-conquer mechanism for decom-

posing a verification process of a CBS into subtasks about the individual components.
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Consider a simple case where a system is made up of two components including a frame-

work M1 and an extension M2. The extension M2 is plugged into the framework M1

via the parallel composition operator defined in Chapter 2 (i.e., synchronizing the com-

mon actions and interleaving the remaining actions). Figure 3.5 shows a general view of

assume-guarantee verification. The goal is to verify whether this system satisfies a prop-

erty p without composing M1 with M2. For this purpose, an assumption A(p) is generated

[10] by applying the L* learning algorithm such that A(p) is strong enough for M1 to

satisfy p but weak enough to be discharged by M2 (i.e., 〈A(p)〉 M1 〈p〉 and 〈true〉 M2

〈A(p)〉 both hold). From these compositional rules, this system satisfies p. Unfortunately,

it is often difficult to find such an assumption. Formally, given two models and a required

property represented by LTSs M1 , M2 and p, the main goal in this problem is to find an

LTS A(p) such that L(A(p)‖M1)↑αp ⊆ L(p) and L(M2)↑αA(p) ⊆ L(A(p)).

Figure 3.5: A general view of assume-guarantee verification.

Recently, there are two proposed methods for generating such assumptions automati-

cally. The first one is an algorithmic, non-incremental, generation of assumptions proposed

in [16]. It finds the weakest assumption AW by taking the complement of paths in the

product automata leading to error states. The weakest assumption AW describes exactly

those traces over Σ = (αM1∪αp)∩αM2 which do not lead to the error state π in M1‖perr.

For all model M ′

2, M1‖M
′

2 |=p if and only if M ′

2 |=AW . The drawback in this method is

that if the computation runs out of memory (i.e., if the state space of the model is too

large), then no assumption will be obtained as a result. The advantage of this method is

that it does not require knowledge of the environment. We would like to find an assump-

tion A(p) that is stronger than AW because AW is the weakest assumption. This is major

goal of the second method proposed in [10] about assumption generation using the L*

learning algorithm. It is an incremental method, based on counterexamples and learning.

Instead of finding AW , the method uses the L* learning algorithms to learn AW . The

advantage of this method is an any time method, which means that it produces a finite

sequence of approximations to an assumption that can be used to obtain conclusive results

in assume-guarantee reasoning. If it runs out of memory, intermediate assumptions can

still be useful. However, this method requires knowledge of the environment and is quite

difficult to understand.

We explain details of the second proposed method as follows. In order to obtain ap-
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propriate assumptions, the method applies the compositional rules in an iterative fashion

illustrated in Figure 3.7. At each iteration i, a candidate assumption Ai is produced based

on some knowledge about the system and on the results of the previous iteration. The two

steps of the compositional rules are then applied. Step 1 checks whether M1 satisfies p in

an environments that guarantees Ai by computing the formula 〈Ai〉 M1 〈p〉. If the result

is false, it means that this candidate assumption is too weak (i.e., Ai does not restrict the

environment enough for p to be satisfied). Thus, the candidate assumption Ai must be

strengthened, which corresponds to removing behaviors from it, with the help of the coun-

terexample cex produced by this step. In the context of the next candidate assumption

Ai+1, component M1 should at least not exhibit the violating behavior reflected by this

counterexample. Otherwise, the result is true, it means that Ai is strong enough for M1

to satisfy the property p. The step 2 is then applied to check that if the model M2 satisfies

Ai by computing the formula 〈true〉 M2 〈Ai〉. If this step returns true, the property p

holds in the compositional system M1‖M2 (i.e., the system M1‖M2 |=p is verified) and

the algorithm terminates. Otherwise, this step returns false, further analysis is required

to identify whether p is indeed violated in M1‖M2 or the candidate assumption Ai is too

strong to be satisfied by M2. Such analysis is based on the counterexample cex returned

by this step. It must check whether the counterexample cex belong to the unknown lan-

guage U = L(AW ) (i.e., whether cex ∈ L(AW )?). For this purpose, this analysis checks

whether p is violated by M1 in the context of the counterexample cex by checking the

formula [cex]‖M1 6|=p, where [cex] is an LTS defined as follows:

Definition 3.2.3 ([cex]). Let an LTS [cex] = 〈Q, α[cex], δ, q0〉 and the counterexample

cex = a1a2. . .ak. The LTS [cex] is created from the counterexample cex as follows:

• Q = {q0, q1, . . . , qk},

• α[cex] = {a1, a2, . . . , ak},

• δ = {(qi−1, ai, qi) | 1 ≤ i ≤ k}, and

• q0 = q0.

Example 3.2.2 Figure 3.6 illustrates the LTS [cex] is created from the counterexample

cex = a1a2. . .ak.

If the property p does not hold in the compositional system [cex]‖M1 (i.e., [cex]‖M1 6|=p),

it means that the compositional system M1‖M2 does not satisfy the property p (i.e.,

M1‖M2 6|=p). Otherwise, Ai is too strong to be satisfied by M2. The candidate assump-

tion Ai therefore must be weakened (i.e., behaviors must be added) in the iteration i + 1.

The result of such weakening will be that at least the behavior that the counterexample
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Figure 3.6: The LTS [cex] is created from the counterexample cex.

Figure 3.7: The L*-based assumption generation framework.

cex represents will be allowed by candidate assumption Ai+1. New candidate assumption

may of course be too weak, and therefore the entire process must be repeated.

An important question in this method is that how the module L* Learning works.

The same question is that how to generate a candidate assumption Ai at each iteration

i in the framework illustrated in Figure 3.7. In the assume-guarantee method proposed

in [10], L* learns the language of the weakest assumption AW . This means that L* learns

the unknown language U = L(AW ) over the alphabet Σ = αAW = (αM1 ∪ αp) ∩ αM2.

The method uses candidates produced by L* learning as candidate assumptions Ai for

the assume-guarantee rules (compositional rules). In order to produce each candidate

assumption Ai, L* first produces a candidate DFA Mi based on the closed observation

table S, E, T , it then translates the candidate DFA Mi into a safety LTS as candidate

assumptions Ai by applying the definition 3.1.3. In order to learn AW , we need to provide

a Teacher that is able to answer the two different kinds of questions that L* asks. The

first type is a membership query, consisting of a string σ ∈ Σ∗; the answer is true if σ ∈ U ,

and false otherwise. The second type of question is a conjecture, i.e., a candidate DFA

Mi whose language the algorithm believes to be identical to U . The answer is true if

L(Mi) = U . Otherwise the Teacher returns a counterexample, which is a string σ in the
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symmetric difference of L(Mi) and U . This approach uses model checking to implement

such a Teacher.

For the first type of questions, in order to answer a membership query for string σ =

a1a2. . .an whether in Σ∗ = L(AW ), the Teacher simulates the query on the composition

M1‖perr. For the string σ, the Teacher first builds a safety LTS [σ] = 〈Q, α[σ], δ, q0〉,

where Q = {q0, q1, . . . , qn}, α[σ] = Σ, δ = {(qi−1, ai, qi) | 1 ≤ i ≤ n}, and q0 = q0. The

Teacher then checks the formula 〈[σ]〉 M1 〈p〉 by computing the compositional system

[σ]‖M1‖perr. If the state error π is unreachable in this compositional system (the formula

returns true), it means that σ ∈ L(AW ). In this case, the Teacher returns true because

M1 does not violate the property p in the context of σ. Otherwise, the answer to the

membership query is false.

For the second type of questions, with each DFA Mi produced by L* from the obser-

vation table S, E, T at each iteration i, the Teacher must check whether the DFA Mi is a

candidate DFA for the iteration i (i.e., whether L(Mi) = L(AW )?) For this purpose, the

Teacher first translates the DFA Mi into a safety LTS Ai. It then uses the safety LTS Ai

as candidate assumption for the compositional rules. The Teacher applies two steps of

the compositional rules and the counterexample analysis to answer conjectures as follows:

• Step 1 illustrated in Figure 3.7 first is applied, the Teacher checks the formula 〈Ai〉

M1 〈p〉 by computing the compositional system Ai‖M1‖perr. If the state error π is

reachable in this composition system, it means that this formula does not hold. The

Teacher then returns false and a counterexample cex. The Teacher informs L* that

its conjecture Ai is not correct and provides cex↑Σ to witness this fact. Otherwise,

this formula holds, the Teacher forwards Ai to Step 2.

• Step 2 is applied by checking the formula 〈true〉 M2 〈Ai〉 illustrated in Figure 3.7.

If this formula holds, the Teacher returns true. Our framework then terminates

the verification because, according to the compositional rule, the property p has

been proved on the compositional system M1‖M2. Otherwise, this step returns a

counterexample cex. The Teacher then performs some analysis to determine whether

p is indeed violated in M1‖M2 or the candidate assumption Ai is too strong to be

satisfied by M2.

• Counterexample analysis is performed by the Teacher in a way similar to that used

for answering membership queries. Let cex be the counterexample returned by the

Step 2. The Teacher first creates a safety LTS [cex↑Σ] from the counterexample

cex illustrated in Figure 3.6. The Teacher then checks the formula 〈[cex↑Σ]〉 M1

〈p〉 by computing the compositional system [cex↑Σ]‖M1‖perr. If the state error π is

unreachable, then the compositional system M1‖M2 does not satisfy the property
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p (i.e., M1‖M2 6|=p). Otherwise, Ai is too strong for M2 to satisfy in the context of

cex. The cex↑Σ is returned as a counterexample for conjecture Ai.

3.2.3 An Example

An illustrative CBS which contains of the framework M1 and the extension M2 presented

in Figure 3.8. In the CBS, the LTS of the framework M1 as the Input LTS, and the LTS

of M2 as the Output LTS. The initial state of the Input LTS in this example is the state

0. The initial state of the Output LTS is the state a. The extension M2 is plugged into

the framework M1 via the parallel composition operator (i.e., synchronizing the common

actions and interleaving the remaining actions). This system means that the Input LTS

receives an input when the action in occurs, and then sends it to the Output LTS with

action send. After some data is sent to it, the Output LTS produces output using the

action out and acknowledges that it has finished, by using the action ack. At this point,

both LTSs return to their initial states so the process can be repeated. The required

property p means that the in action has to occur before the out action.

Figure 3.8: Components and order property of the illustrative system.

In order to generate an assumption A(p) between the framework M1 and the extension

M2 that is strong enough for M1 to satisfy p but weak enough to be discharged by M2,

L* learns the weakest assumption AW . This means that L* learns the unknown language

U = L(AW ) over the alphabet Σ = αAW = (αM1 ∪ αp) ∩ αM2 = {send, out, ack}.

Initially, L* sets the observation table S, E, T to the empty observation table illus-

trated in Figure 3.9 by setting S and E to {λ}, where λ presents the empty string. The

observation table S, E, T is updated by making membership queries to the Teacher, i.e.,

λ ∈ L(AW )?, ack ∈ L(AW )?, out ∈ L(AW )?, and send ∈ L(AW )?.

The updated table presented in Figure 3.9 is not closed because the row out in S.Σ

has no matching row in S. In order to make this table to be closed, out is added to

S. The observation table S, E, T after adding out to S illustrated in Figure 3.10. The

observation table is updated again by making membership queries to the Teacher, i.e.,

out ack ∈ L(AW )?, out out ∈ L(AW )?, and out send ∈ L(AW )?.

The Teacher uses the safety LTS A1 as a candidate assumption for the compositional

rules. The Teacher applies two steps of the compositional rules and counterexample
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Figure 3.9: The empty observation table and its updated table.

Figure 3.10: The table after adding out to S, its updated table, and the candidate as-
sumption A1.

analysis to answer conjectures from L* Learner.

The step 1 first is applied to check the formula 〈A1〉 Input 〈p〉 by computing the

compositional system A1‖Input‖perr. It is easy to check that the error state π is reachable

in this compositional system, so the Teacher then returns false and a counterexample cex

= in send ack in. The Teacher informs L* Learner that its conjecture A1 is not correct

and provides cex↑Σ = send ack to witness this fact.

The counterexample cex↑Σ = send ack is analyzed by L* to find a suffix e of cex

that witnesses a difference between L(A1) and U = L(AW ). In this case, L* analyzes and

sets e to ack. In order to generate a next candidate assumption, the closed table S, E, T

presented in Figure 3.10 is updated by adding the suffix e = ack to E. The observation

table S, E, T after adding ack to E illustrated in Figure 3.11. This table continuously

is updated by making membership queries to the Teacher, i.e., ack ∈ L(AW )?, out ack

∈ L(AW )?, ack ack ∈ L(AW )?, out ack ∈ L(AW )?, send ack ∈ L(AW )?, out ack ack

∈ L(AW )?, out out ack ∈ L(AW )?, and out send ack ∈ L(AW )?.

The updated table S, E, T presented in Figure 3.11 is not closed because the row send

in S.Σ has no matching row in S. In order to make this table to be closed, send is added

to S. The observation table S, E, T after adding send to S illustrated in Figure 3.12.
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Figure 3.11: The observation table after adding ack to S and its updated table.

This table is updated again by making membership queries to the Teacher.

Figure 3.12: The table after adding send to S, its updated table, and the candidate
assumption A2.

The updated table S, E, T presented in Figure 3.12 is closed. A candidate DFA A2

is constructed from this closed observation table shown in Figure 3.12. The Teacher

then uses the safety LTS A2 as a candidate assumption for the compositional rules. The

Teacher applies two steps of the compositional rules and counterexample analysis to an-

swer conjectures from L* Learner.

The step 1 first is applied to check the formula 〈A2〉 Input 〈p〉 by computing the com-

positional system A2‖Input‖perr. It is easy to check that the error state π is unreachable

in this compositional system, so the Teacher then returns true. This means that the
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formula 〈A2〉 Input 〈p〉 holds. The Teacher forwards A2 to the step 2.

The step 2 is applied by checking the formula 〈true〉 Output 〈A2〉. In order to check this

formula, the Teacher computing the compositional system Output‖A2err
. The error state π

is unreachable in this compositional system, so the Teacher then returns true. This means

that the required property p holds in the CBS Input‖Output (i.e., Input‖Output|=p). The

L* learning algorithms terminates and returns the assumption A(p) = A2.

3.3 Black-box Checking

This section describes the steps of the black-box checking strategy for verification a sys-

tem without a model of the system proposed in [47]. The strategy alternates between

incremental learning of the system by using a learning algorithm called L* [9, 17], and

the black box testing of the learned model against the actual system by using the VC

algorithm [46, 49].

The black-box checking strategy is an iterative process shown in Figure 3.13. At any

iteration, a candidate model which approximately describes behavior of the actual system

is produced by L*. The model is checked (via model checking) whether it satisfies a

property. If the model satisfies the property, the VC algorithm is applied to compare

the model with the actual system. If they are in conformance, the current model is

accurate for the system. In this case, the system is verified and the iterative process

terminates. Otherwise, the VC algorithm returns a string/trace, called a discrepancy,

that distinguishes the behavior of the system from the model. The discrepancy returned

by this step is provided for L* in order to update the approximated model. In the case

where the current model does not satisfy the property, a counterexample is returned to

witness this fact. The counterexample then is compared with the actual system. If it is

an actual execution of the system, the system violates the property and iterative process

terminates. Otherwise, the counterexample witnesses a difference between the model and

the system. Thus, it is feeded to L* for improving the accuracy of the model.

3.3.1 Learning a System Model via L*

The black-box checking approach use the L* learning algorithm to learn the minimal

deterministic automaton M corresponding to a system S, where the system S is seen as

a black-box.

In order to learn M , L* needs to interact with a Teacher. The Teacher uses the

VC algorithm presented in Subsection 3.3.2 to answer that for each candidate model Mi

whether L(Mi) = L(S). If it does not, the Teacher returns a discrepancy d distinguishing

Mi from S, i.e., d that is either in L(Mi) \L(S) or L(S) \L(Mi). Otherwise, the Teacher
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Figure 3.13: The black-box checking strategy [12].

returns true. This means that the candidate model Mi is an accurate model of S.

At a higher level, L* maintains a table T that records whether string s in Σ∗ belong

to L(S) by performing the experiment s on the system S. At various stages L* decides to

make a conjecture. It uses the table T to build a candidate DFA Mi and asks the Teacher

whether the conjecture is correct. If the Teacher replies true, the algorithm terminates.

Otherwise, L* uses the discrepancy d returned by the Teacher to maintain the table with

d that witnesses differences between L(Mi) and L(S).

For more details, in order to learn a system model, L* builds an observation table

(V, W, T ) defined as follows:

Definition 3.3.1 (Observation table for learning a system model). (V, W, T ) is an ob-

servation table built by L*, where:

• V ∈ Σ∗ is a set of prefixes. It presents equivalence classes or states.

• W ∈ Σ∗ is a set of suffixes. It presents the distinguishing.

• T : (V ∪ V .Σ).W 7→ {true, false}. With a string s in Σ∗, T (s) = true means

s ∈ L(S), otherwise s 6∈ L(S).

Remark 3.3.1 An observation table (V, W, T ) is closed if ∀v ∈ V , ∀a ∈ Σ, ∃v ′ ∈ V , ∀w

∈ W : T (vaw) = T (v′w). In this case, v′ presents the next state from v after seeing a, va

is undistinguishable form v′ by any of suffixes. Intuitively, the observation table (S, E, T )

is closed means that every row va of V .Σ has a matching row v ′ in V .
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The iterative process of the black-box checking strategy shown in Figure 3.13 starts to

verify the system with the empty model. In this process, at any iteration, if the current

model is required to be updated with a discrepancy d returned by the Teacher, the L*

is called to maintain the current observation table with d for this purpose. Algorithm 2

is the formal description of one phase of the L* algorithm after the Teacher returned a

discrepancy d. If the given observation table (V, W, T ) is empty (line 1), this means that

it is the initial step of the iterative process for the black-box checking strategy, L* sets

V and W to {λ} (line 2&3). Subsequently, it updates the function T (line 4) by setting

T (a, λ) = true for all a ∈ Σ executable in the black box S after a reset, where λ presents

the empty string. Otherwise, the given observation table (V, W, T ) is not empty (line 5).

The discrepancy d is analyzed by L* to find all of its suffixes that witness a difference

between L(Mi) and L(S). After that, for each suffix v′ of d, if v′ 6∈ W then v′ must be

added to W (line 6&7). Consequently, T must be updated by performing the experiments

on the system S (line 9). L* then checks whether the observation table (V, W, T ) is closed

(line 11). If (V, W, T ) is not closed, then va is added to V , where v ∈ V and a ∈ Σ are

the elements for which there is no v′ ∈ V (line 12). Because va has been added to V , T

must be updated again by performing the experiments on the system S (line 13). Line 12

and line 13 are repeated until the table (V, W, T ) is closed. When the observation table

(V, W, T ) is closed, this phase of the L* algorithm terminates and returns the updated

closed table (V, W, T ).

Algorithm 2 Lstar(V, W, T, d)

Input: V, W, T, d: the current observation table (V, W, T ) and the discrepancy d returned
by the Teacher

Output: V, W, T : a maintained table (V, W, T ) after using the discrepancy d

1: if (V, W, T ) is empty then
2: V = {λ}
3: W = {λ}
4: update T by performing the experiments on the system S.
5: else
6: for each v′ ∈ suffix(d) that is not in W do
7: add v′ to W
8: end for
9: update T by performing the experiments on the system S.

10: end if
11: while (V, W, T ) is not closed do
12: add va to V to make V closed, where v ∈ V and a ∈ Σ
13: update T by performing the experiments on the system S.
14: end while
15: return (V, W, T )
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Characteristics of the L* Leaning Algorithm. The complexity of the L* learning

algorithm is O(kn2 + n log m) [9], where k is the size of alphabet Σ, n is the number of

states of the minimal deterministic automaton modelling the black box S, and m is the

length of the longest discrepancy returned by the Teacher when a conjecture is made.

3.3.2 Vasilevskii-Chow Algorithm

As mentioned above, the Teacher is built from the VC algorithm. In the iterative process

of the black-box checking strategy shown in Figure 3.13, at each iteration i, L* first

produces a candidate DFA Di based on the updated closed observation table V, W, T as

follows.

Definition 3.3.2 (V, W, T to DFA). A candidate DFA Di =〈Q, αDi, δ, q0, F 〉 is con-

structed from the closed table (V, W, T ), where:

• Q = V .

• Alphabet αDi = Σ, where Σ is the alphabet of the language L(S) of the actual system

S.

• The transition δ is defined as δ(v, a) = v ′ where ∀w ∈ W : T (vaw) = T (v′w)

• initial state q0 = λ.

• F = {v ∈ V | T (v) = true}.

L* then translates the candidate DFA Di into a safety LTS as a candidate model Mi

of the system S by applying the definition 3.1.3. In order to check conformance between

the candidate model Mi and the system S, the VC algorithm checks some strings s ∈ Σ∗

whether s is either in both L(Mi) and L(S) or in neither of these sets. Let check be

a function which maps Σ∗ to {0, 1}. For each string s ∈ Σ∗, check(s) = 0 if and only

if either s ∈ L(Mi) and s ∈ L(S) or s 6∈ L(Mi) and s 6∈ L(S). For this purpose, the

algorithm uses the sets V, W of the given closed observation table (V, W, T ) and a known

upper bound n on the size of the minimal deterministic automaton modelling the black

box S shown in Algorithm 3. The strings that are checked are those of the form s = vxw,

where v ∈ V , w ∈ W , and |x| ≤ n − |V |.

Characteristics of the VC Algorithm. The complexity of the VC learning algorithm

is O(t2kn−t+1) [46, 49], where t is the size of V (the number of states of Mi), k is the size

of alphabet Σ, n is the known upper bound n on the size of the minimal deterministic

automaton modelling the black box S.
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Algorithm 3 V C(V, W, S, n)

Input: V, W, n: the set V of prefixes and the set W of suffixes of (V, W, T ), the actual
system S as a black box, and a known upper bound n on the size of the minimal
deterministic automaton modelling the black box S.

Output: true or d: true if Mi and S are in conformance, and a discrepancy d, otherwise

1: t = |V |
2: for l = 1 to n − t do
3: for each string x of size l, v ∈ V , w ∈ W do
4: if check(vxw) then
5: return vxw
6: end if
7: end for
8: end for
9: return true

3.4 New Assumption Regeneration Method

The L*-based assumption generation method presented in Section 3.2 designed for check-

ing of the fixed systems. Thus, it is not prepared for future evolutions. When the model

M2 is evolved to M ′

2 by adding some new behaviors to the model, if the current assump-

tion A(p) of the CBS M1‖M2 before evolving is too strong to be satisfied by M ′

2, a new

assumption Anew(p) must be generated again. We propose an effective method for new

assumption regeneration by reusing the entire current assumption A(p) in order to reduce

the number of the required membership queries and the generated candidate assumptions

which are used to regenerate the new assumptions. The new assumption regeneration

method returns a new assumption Anew(p) if the evolved CBS M1‖M
′

2 satisfies the prop-

erty p, and a counterexample cex otherwise.

Let U be an unknown regular language over some alphabet Σ. The L* learning algo-

rithm described in Section 3.2 learns U and produces a DFA that accepts it. In order to

learn U , L* builds an observation table (S, E, T ) where S and E are a set of prefixes and

suffixes respectively, both over Σ∗. T is a function which maps (S ∪ S.Σ).E to {true,

false}, where the operator “.” is defined as follows. Given two sets of event sequences

P and Q, P .Q = {pq | p ∈ P, q ∈ Q}, where pq presents the concatenation of the event

sequences p and q. The previous method about assumption generation [10] presented

in Section 3.2 regenerates the new assumption Anew(p) also using the L* learning algo-

rithm illustrated in Figure 3.7. At the initial step, this method sets the observation table

(S, E, T ) to the empty observation table (i.e., L* sets S and E to {λ}, where λ rep-

resents the empty string). Therefore, the initial assumption A0 created from the empty

observation table is the strongest assumption (i.e., A0 = λ). By this way, the method pro-

posed in [10] regenerates the new assumption Anew(p) from scratch. On the contrary, our
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proposed method reuses the previous verification results (i.e., the previous assumptions)

where possible. After generating the assumption A(p) between M1 and M2, it keeps the

current observation table (S, E, T ). This table is considered as the results of previous ver-

ification. In order to regenerate the new assumption Anew(p) of the evolved CBS M1‖M
′

2,

the proposed method also uses the L* learning algorithm but with the initial observation

table as (S, E, T ) which is used to create the current assumption A(p), from now on called

the old observation table (Sold, Eold, Told). This means that the initial assumption in the

proposed method is A(p) (is not λ). Because the initial assumption A(p) is weaker than

λ (see Theorem 3), the proposed method therefore can significantly reduce the number of

steps involved in computing Anew(p).

In the following more detailed presentation of the improved L*-based algorithm for

regenerating Anew(p), line numbers refer to the proposed algorithm’s illustration in Al-

gorithm 4. Initially, L* sets the initial observation table (S, E, T ) to the old observation

table (Sold, Eold, Told) (i.e., L* sets S to Sold, E to Eold, and T to Told) (line 1). When we

check the formula 〈true〉 M ′

2 〈A(p)〉, the counterexample cex↑Σ, returned by the Teacher

which helps L* to answer whether A(p) is an assumption or not, is analyzed to find a

suffix e of cex↑Σ that witnesses this fact. After that, e must be added to E (line 2).

Subsequently, L* updates the function T by making membership queries so that it has

a mapping for every string in (S ∪ S.Σ).E (line 4). The algorithm then checks whether

the observation table (S, E, T ) is closed [17] (line 5). If the observation table (S, E, T )

is not closed, then sa is added to S, where s ∈ S and a ∈ Σ are the elements for which

there is no s′ ∈ S (line 6). T must be updated by making membership queries (line 7)

because sa has been added to S. Line 6 and line 7 are repeated until the table (S, E, T )

is closed (line 8). When the observation table (S, E, T ) is closed, a candidate assumption

DFA M = 〈Q, αM, δ, q0, F 〉 is constructed (line 9) from the closed table (S, E, T ) using

the approach described in the definition 3.1.3. The candidate DFA M is presented as a

conjecture to the Teacher (line 10). If the Teacher replies true (i.e., L(M) = U) (line 11),

L* returns M and terminates (line 12), otherwise L* receives a counterexample cex ∈ Σ∗

from the Teacher. The counterexample cex is analyzed by L* to find a suffix e of cex that

witnesses a difference between L(M) and U . After that, e must be added to E (line 14).

It will cause the next conjectured automaton to reflect this difference. When e has been

added to E, L* iterates the entire process by looping around to line 4.

In order to regenerate the new assumption Anew(p) of the evolved CBS M1‖M
′

2, the

described improved L*-based algorithm learns the unknown language U = L(AW ) over

the alphabet Σ = αAW = (αM1 ∪ αp) ∩ αM ′

2, where L(AW ) is the language of the

weakest assumption AW defined in [16]. Figure 3.14 presents an iterative framework to

illustrate the proposed improved L*-based algorithm for new assumption regeneration.

At each iteration i, a candidate assumption Ai is produced by the L* learning based on
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Algorithm 4 The improved L* learning algorithm for new assumption regeneration.

Input: U, Σ, (Sold, Eold, Told): an unknown regular language U over some alphabet Σ, and
the current observation table (Sold, Eold, Told)

Output: M : a DFA M such that M is a minimal deterministic automata corresponding
to U and L(M) = U

1: Initially, S = Sold, E = Eold, T = Told

2: add e ∈ Σ∗ that witnesses the counterexample cex to E
3: loop
4: update T using membership queries
5: while (S, E, T ) is not closed do
6: add sa to S to make S closed, where s ∈ S and a ∈ Σ
7: update T using membership queries
8: end while
9: construct a candidate DFA M from the closed (S, E, T )

10: present an equivalence query : L(M) = U?
11: if M is correct then
12: return M
13: else
14: add e ∈ Σ∗ that witnesses the counterexample cex to E
15: end if
16: end loop

some knowledge about the system and on the results of the previous iteration. The two

steps of the compositional rules are then applied. Step 1 checks whether M1 satisfies p in

environments that guarantee Ai. If the result is false, it means that Ai is too weak for M1

to satisfy p. For this reason, Ai must be strengthened with the help of the counterexample

cex returned by this step. Otherwise, the result of this step is true, it means that Ai is

strong enough for M1 to satisfy p. The step 2 is then applied to check that if the evolved

model M ′

2 satisfies Ai. If this step returns true, the property p holds in the evolved CBS

M1‖M
′

2 (i.e., M1‖M
′

2 |=p). In this case, the algorithm terminates and returns a new

assumption Anew(p) = Ai. Otherwise, this step returns false with a counterexample cex

to witness this fact. We have to identify whether p is indeed violated in the evolved CBS

M1‖M
′

2 or Ai is too strong to be satisfied by M ′

2 by analyzing the counterexample cex.

This analysis checks whether p is violated by M1 in the context of the counterexample

cex by checking the formula [cex]‖M1 6|=p, where [cex] is an LTS defined in Section 2.1

of Chapter 2. If the property p does not hold in the compositional system [cex]‖M1,

the evolved CBS M1‖M
′

2 violates the property p. In this case, the algorithm terminates

and returns the counterexample cex returned by this step. Otherwise, Ai is too strong

to be satisfied by M ′

2. The candidate assumption Ai therefore must be weakened in the

iteration i + 1. The result of such weakening will be that at least the behavior that

the counterexample cex represents will be allowed by candidate assumption Ai+1. New
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candidate assumption may be too weak, and therefore the entire process must be repeated.

Figure 3.14: The iterative framework for the new assumption regeneration using the
improved L* learning algorithm.

With regard to effectiveness of the proposed algorithm, Figure 3.15 intuitively de-

scribes the process for the new assumption regeneration by using the improved L* learning

algorithm with the initial assumption A(p). In this figure, λ is the strongest assumption.

It is the initial assumption in the L* used to generate the assumption A(p) of the compo-

sitional CBS M1‖M2 before evolving [10]. In the case where the model M ′

2 of the evolved

component does not satisfy the assumption A(p) (i.e., M ′

2 6|=A(p)), we reuse the entire

assumption A(p) as the initial assumption for the improved L* to generate again the new

assumption Anew(p) of the evolved compositional CBS M1‖M
′

2. It is clear to show that the

new assumption Anew(p) is weaker than A(p) because the assumption A(p) is too strong

to be satisfied by M ′

2 and Anew(p) is strong enough to be satisfied by M ′

2. Intuitively, by

starting at the assumption A(p), the proposed method can reduce the large number of

steps required in the assumption regeneration process.

Characteristics of the Proposed Method. In order to recheck the evolved CBS

M1‖M
′

2 with the current assumption A(p), if M ′

2 satisfies A(p) then the evolved CBS is

rechecked successful without regenerating a new assumption. This is the successful case to

show the effectiveness of the proposed method. Otherwise, this method must regenerate

a new assumption Anew(p) by reusing the entire A(p).
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Figure 3.15: The process for new assumption regeneration using the improved L*.

Let n and n′ be sizes of the DFAs used to get A(p) and Anew(p) respectively. As for

the assumption generation method proposed in [10], the assumption A(p) is generated

by making at most n - 1 incorrect candidate assumptions, and the assumption Anew(p)

is generated by making at most n′ - 1 incorrect candidate assumptions. The numbers

of required membership queries used to generate A(p) and Anew(p) by this method are

O(kn2 + n log m) and O(kn′2 + n′ log m) respectively [10], where k is size of the alphabet

Σ, and m is the length of the longest counterexample.

With regard to the proposed method, the new assumption Anew(p) is regenerated

by making at most n′ − n incorrect candidate assumptions, and the number of required

membership queries used to regenerate Anew(p) is O(k(n′2 − n2) + (n′ − n) log m). These

facts imply that our method is more effective than the method proposed in [10] in the

context of the rechecking of the evolving CBS.
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Chapter 4

A Minimized Assumption

Generation Method for

Component-Based Software

Verification

This chapter proposes a method for generating minimal assumptions for the assume-

guarantee verification of component-based software. The key idea of this method is find-

ing the minimal assumptions in the search spaces of the candidate assumptions. These

assumptions are seen as the environments needed for the components to satisfy a property

and for the rest of the system to be satisfied. The minimal assumptions generated by the

proposed method can be used to recheck the whole system at much lower computational

cost. We have implemented a tool for generating the minimal assumptions. Experimental

results are also presented and discussed.

4.1 Minimized Assumption Generation Method

The assumptions generated by the assume-generation verification proposed in [10] are not

minimal. Figure 4.1 is a counterexample to prove this fact. In this counterexample, given

two models M1 (Input), M2 (Output), and a required property p, the method proposed

in [10] generates the assumption A(p). However, there is a smaller assumption with a

smaller size and a smaller number of transitions. The reason why this method does not

generate a minimal assumption is presented as follows. The L* used in this method learns

the language of the weakest assumption AW over the alphabet Σ = (αM1∪αp)∩αM2 and

produces a DFA that accepts it. In order to learn this language, L* builds an observation

table (S, E, T ) (see definition 3.2.1). The technique for answering membership queries
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Figure 4.1: A counterexample and the reason to show that the assumptions generated
in [10] are not minimal.

used in this method is defined as follows:

Definition 4.1.1 (Function for answering membership queries). Given an observation

table (S, E, T ), T is a function which maps (S ∪ S.Σ).E to {true, false} such that for

any string s ∈ (S ∪ S.Σ).E, T (s) = true if s ∈ L(AW ), and false otherwise.

Remark 4.1.1 In the counterexample showed in Figure 4.1, if s ∈ L(AW ) but s /∈

L(A(p)), then T (s) is set to true (in this case, T (s) should be false). For this rea-

son, the assumption A(p) generated by this method contains some strings/traces which do

not belong to the language of the assumption being learned.

With regard to the importance of the minimal assumptions, obtaining smaller assump-

tions is interesting for several advantages as follows:

• Modular verification of CBS is done by model checking the parallel compositional

rules which has the assumption as one of its components. The computational cost

of this checking is influenced by the size of the assumption. This means that the

cost of verification of CBS is reduced with a smaller assumption which has a smaller

size and smaller number of transitions.

• When a component is evolved, the whole evolved CBS of many existing components

and the evolved component is required to be rechecked [27]. In this case, we can

reduce the cost of rechecking the evolved CBS by reusing the smaller assumption.
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• Finally, a smaller assumption means less complex behavior so this assumption is

easier for a human to understand. This is interesting for checking large-scale sys-

tems.

This section proposes a method for generating minimal assumptions for assume-

guarantee verification of CBS. We also define a new technique for answering membership

queries to deal with the above issue. The minimal assumption is generated by combin-

ing the L* learning algorithm and the breadth-first search strategy. We ensure that the

assumptions generated by this method are minimal (see Theorem 2).

4.1.1 An Improved Technique for Answering Membership Queries

As mentioned above, in order to learn the language of the assumption, the L* learning

algorithm used in [10] builds an observation table (S, E, T ) where T is a function which

maps (S ∪ S.Σ).E to {true, false} (see definition 4.1.1). In the case where s ∈ L(AW ),

we cannot ensure whether s belongs to the language being learned or not (i.e., whether

s ∈ L(A(p))?). If s 6∈ L(A(p)) then T (s) should be false. However, the work in [10] sets

T (s) to true in this case. For this reason, the generated assumptions are not minimal in

this work. In order to solve this issue, we use a new value called “?” to represent the

value of T (s) in such cases, , where “?” can be seen as a “don’t know” value. We define

an improved technique for answering membership queries as follows.

Definition 4.1.2 (Improved function for answering membership queries). Given an ob-

servation table (S, E, T ), T is a function which maps (S ∪ S.Σ).E to {true, false, “?”}

such that for any string s ∈ (S ∪ S.Σ).E, if s is the empty string (s = λ) then T (s) = true,

else T (s) = false if s /∈ L(AW ), and “?” otherwise.

Remark 4.1.2 The “don’t know” value means that for each string s ∈ (S ∪ S.Σ).E,

even if s ∈ L(AW ), we do not know whether s belongs to the language of the assumption

being learned or not.

4.1.2 Algorithm for Minimal Assumption Generation

Finding an assumption where it has a minimal size that satisfies the compositional rules

thus is considered as a search problem in a search space of observation tables. We use the

breadth-first search strategy because this strategy ensures that the generated assumption

is minimal (Theorem 2). In the following more detailed presentation of the proposed

algorithm for generating the minimal assumption, line numbers refer to the algorithm’s

illustration presented in Algorithm 5. In this algorithm, we use a queue data structure

which contains the generated observation tables with the first-in first-out order. These
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observation tables are used for generating the candidate assumptions. Initially, the algo-

rithm sets the queue q to the empty queue (line 1). We then put the initial observation

table OT0 = (S0, E0, T0) into the queue q as the root of the search space of observation

tables, where S0 = E0 = {λ} (λ represents the empty string) (line 2). Subsequently, the

algorithm gets a table OTi from the top of the queue q (line 4). If OTi contains the “don’t

know” value “?” (line 5), we obtain all instances of OTi by replacing all “?” entries in

OTi with both true and false (line 6). For example, the initial observation table of the

illustrative system presented in Figure 4.1 and one of its instance obtained by replacing

all “?” entries with true value are showed in Figure 4.2. The obtained instances then are

put into the queue q (line 7). Otherwise, the table OTi does not contain the “?” value

(line 9). In this case, if OTi is not closed (line 10), an updated table OT is obtained by

calling the procedure named make closed(OTi) (line 11). OT then is put into q (line 12).

In the case where the table OTi is closed (line 13), a candidate assumption Ai is generated

from OTi (line 14). The candidate assumption Ai is used to check whether it satisfies

the two steps of the compositional rules. The step 1 is applied by calling the procedure

named Step1(Ai) to check whether M1 satisfies p in an environment that guarantees Ai

by computing the formula 〈Ai〉 M1 〈p〉. If Step1(Ai) fails with a counterexample cex

(line 15), Ai is too weak for M1 to satisfy p. Thus, the candidate assumption Ai must be

strengthened by adding a suffix e of cex that witnesses a difference between L(Ai) and

the language of the assumption being learned to Ei of the table OTi (line 16). After that,

an updated table OT is obtained by calling the procedure named update(OTi) (line 17).

OT then is put into q (line 18). Otherwise, Step1(Ai) return true (line 19). This means

that Ai is strong enough for M1 to satisfy the property p. The step 2 is then applied by

calling the procedure named Step2(Ai) to check that if M2 satisfies Ai by computing the

formula 〈true〉 M2 〈Ai〉. If Step2(Ai) fails with a counterexample cex (line 20), further

analysis is required to identify whether p is indeed violated in M1‖M2 or Ai is too strong

to be satisfied by M2. Such analysis is based on the counterexample cex. If cex witnesses

the violation of p in the system M1‖M2 (line 21), the algorithm terminates and returns

cex (line 22). Otherwise, Ai is too strong to be satisfied by M2 (line 23). The candidate

assumption Ai therefore must be weakened by adding a suffix e of cex to Ei of the table

OTi (line 24). After that, an updated table OT is obtained by calling the procedure

named update(OTi) (line 25). OT then is put into q (line 26). Otherwise, Step2(Ai)

return true (line 28). This means that the property p holds in the compositional system

M1‖M2. The algorithm terminates and returns Ai as the minimal assumption (line 29).

The algorithm iterates the entire process by looping from line 3 to line 34 until the queue

q is empty or a minimal assumption is generated.
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Algorithm 5 Minimized assumption generation.

Input: M1, M2, p: two models M1 and M2, and a required property p
Output: Am(p) or cex: an assumption Am(p) with a smallest size if M1‖M2 satisfies p,

and a counterexample cex otherwise

1: Initially, q = empty {q is an empty queue}
2: q.put(OT0) {OT0 = (S0, E0, T0), S0 = E0 = {λ}, where λ is the empty string}
3: while q 6= empty do
4: OTi = q.get() {getting OTi from the top of q}
5: if OTi contains “?” value then
6: for each instance OT of OTi do
7: q.put(OT ) {putting OT into q}
8: end for
9: else

10: if OTi is not closed then
11: OT = make closed(OTi)
12: q.put(OT )
13: else
14: construct a candidate DFA Ai from the closed OTi

15: if Step1(Ai) fails with cex then
16: add the suffix e of the counterexample cex to Ei

17: OT = update(OTi)
18: q.put(OT )
19: else
20: if Step2(Ai) fails with cex then
21: if cex witnesses violation of p then
22: return cex
23: else
24: add the suffix e of the counterexample cex to Ei

25: OT = update(OTi)
26: q.put(OT )
27: end if
28: else
29: return Ai

30: end if
31: end if
32: end if
33: end if
34: end while
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Figure 4.2: The initial observation table and one of its instances.

4.1.3 Characteristics of the Search Space

The search space of observation tables used in the proposed method exactly contains

the generated observation tables which are used to generate the candidate assumptions.

This search space is seen as a search tree where its root is the initial observation table

OT0. We can conveniently define the size of an observation table OT = (S, E, T ) as |S|,

denoted |OT |. We use Aij to denote the j th candidate assumption generated from the

j th observation table (denoted OTij) at the depth i of the search tree. From the way to

build the search tree presented in Algorithm 5, we have a theorem as follows.

Theorem 1 Let Aij and Akl be two candidate assumptions generated at the depth i and

k respectively. |Aij| < |Akl| implies that i < k.

Proof The observation tables at the depth i+1 are generated from the observation tables

at the depth i exactly in one of the following cases:

1. There is at least a table OTij of the tables at the depth i which contains the “?”

value. In this case, the instances of this table are the tables at the depth i+1. These

tables have the same size with the table OTij.

2. There is at least a table OTij of the tables at the depth i which is not closed. An

updated table OT(i+1)k at the depth i+1 is obtained from this table by adding a

new element to Sij. This mean that |OTij| < |OT(i+1)k|.

3. Finally, there is at least a table OTij of the tables at the depth i which is not an

actual assumption. In this case, an updated table OT(i+1)k at the depth i+1 is

obtained from this table by adding a suffix e of the given counterexample cex to

Eij. This mean that |OTij| = |OT(i+1)k|.

These facts imply that if the size of the candidate generated from a table at the depth

i less than the size of the candidate generated from a table at the depth k, then i < k.

45



4.1.4 Termination and Correctness

The termination and correctness of the proposed algorithm for the minimized assumption

generation showed in Algorithm 5 are proved by the following theorem.

Theorem 2 Given two models M1 and M2, and a property p, the proposed algorithm for

the minimized assumption generation presented in Algorithm 5 terminates and returns

true and an assumption Am(p) with a minimal size such that it is strong enough for M1

to satisfy p but weak enough to be discharged by M2, if the compositional system M1‖M2

satisfies p, and false otherwise.

Proof At any iteration i, the proposed algorithm returns an actual assumption Am(p) =

Ai or a counterexample cex (i.e., M1‖M2 6|=p) and terminates or continues by providing a

counterexample or continues to update the current observation table (if this table contains

“?” or it is not closed). Because the proposed algorithm is based on the L* learning

algorithm, by the correctness of L* [9, 17], we ensure that if the L* learning algorithm

keeps receiving counterexamples, in the worst case, the algorithm will eventually produce

the weakest assumption AW and terminates, by the definition of AW [16]. This means that

the search space exactly contains the observation table OTW which is used to generate

AW . In the worst case, the proposed algorithm reaches to OTW and terminates.

With regard to correctness, the proposed algorithm uses two steps of the compositional

rules (i.e., 〈Ai〉 M1 〈p〉 and 〈true〉 M2 〈Ai〉) to answer the question of whether the candidate

assumption Ai produced by the algorithm is an actual assumption or not. It only returns

true and a minimal assumption Am(p) = Ai when both steps return true, and therefore

its correctness is guaranteed by the compositional rules. The proposed algorithm returns

a real error (a counterexample cex) when it detects a trace σ of M2 which violates the

property p when simulated on M1. In this case, it implies that M1‖M
′

2 violates p. The

remaining problem is to prove that the assumption Am(p) generated by the proposed

algorithm is minimal. Suppose that there exists an assumption A such that |A| < |Am(p)|.

By using Theorem 1 for this fact, we can imply that the depth of the table used to generate

A less than the depth of the table used to generate Am(p). This means that the table used

to generate A has been visited by our algorithm. In this case, the algorithm generated A

as a candidate assumption and A was not an actual assumption. These facts imply that

such assumption A does not exist.

4.2 Reducing the Search Space

In the algorithm for minimal assumption generation shown in Algorithm 5, the queue has

to hold an exponentially growing of the number of the observation tables. This makes
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our method unpractical for large-scale systems because it consumed too much memory.

For large-scale systems, the computational cost for generating the minimal assumption is

very high. This section presents three solutions to deal with this issue. The first solution

is to apply the depth-first search strategy in the search space of the observation tables

to obtain the assumptions. In the second one, we apply the iterative deepening depth-

first search strategy to combines depth-first search’s space-efficiency and breadth-first

search’s completeness. Finally, we reuse the previous results (previous observation tables)

to reduce the search space of the observation tables.

4.2.1 Depth-First Search

In order to reduce the memory cost for generating the minimal assumption of the proposed

algorithm, we replace the breadth-first search with the depth-first search (DFS) as an

improved algorithm for generating an assumption which satisfies the compositional rules

presented in Algorithm 6. In this algorithm, we use a stack data structure which contains

the generated observation tables with the last-in first-out order.

4.2.2 Iterative Deepening Depth-First Search

Although the memory complexity of depth-first search is much lower than breadth-first

search, the time complexities of both strategies are the same. This means that depth-first

search cannot reduce the computational cost for generating assumptions of the proposed

algorithm. An idea to reduce the computational cost for generating assumptions is to use

the iterative-deepening depth first search (IDDFS). IDDFS combines depth-first search’s

space-efficiency and breadth-first search’s completeness. It is a state space search strategy

in which a depth-limited search (DLS) is run repeatedly, increasing the depth limit with

each iteration until it reaches the actual assumption or a counterexample to show that

the CBS violates the property, the depth of the shallowest goal state. On each iteration,

IDDFS visits the observation tables in the search tree in the same order as depth-first

search, but the cumulative order in which observation tables are first visited, assuming

no pruning, is effectively breadth-first. However, this strategy still has the same time

complexity as breadth-first search. Only the path from the root of the search tree (i.e.,

the initial observation table OT0) to the current instance has to be kept in memory. This

path is represented by a stack data structure s. Algorithm 7 presents the algorithm

named IDDFS for generating the assumption by using iterative-deepening depth first

search. Algorithm 8 shows the algorithm named DLS for applying depth-limited search.

DLS(d) returns an assumption A(p) with a smaller size (than the size of the assumption

generated in [10]) if M1‖M2 satisfies p. It return a counterexample cex if M1‖M2 violates

p. Otherwise, it returns a value named notfound to show that DLS(d) cannot find an
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Algorithm 6 Assumption generation algorithm by using DFS.

Input: M1, M2, p: two models M1 and M2, and a required property p
Output: A(p) or cex: an assumption A(p) with a smaller size (than the size of the as-

sumption generated in [10]) if M1‖M2 satisfies p, and a counterexample cex otherwise

1: Initially, s = empty {s is an empty stack}
2: s.push(OT0) {putting OT0 into the top of s, where OT0 = (S0, E0, T0), S0 = E0 = {λ},

and λ is the empty string}
3: while s 6= empty do
4: OTi = s.pop() {getting OTi from the top of s}
5: if OTi contains “?” value then
6: for each instance OT of OTi do
7: s.push(OT ) {putting OT into the top of s}
8: end for
9: else

10: if OTi is not closed then
11: OT = make closed(OTi)
12: s.push(OT ) {putting OT into the top of s}
13: else
14: construct a candidate DFA Ai from the closed OTi

15: if Step1(Ai) fails with cex then
16: add the suffix e of the counterexample cex to Ei

17: OT = update(OTi)
18: s.push(OT ) {putting OT into the top of s}
19: else
20: if Step2(Ai) fails with cex then
21: if cex witnesses violation of p then
22: return cex
23: else
24: add the suffix e of the counterexample cex to Ei

25: OT = update(OTi)
26: s.push(OT ) {putting OT into the top of s}
27: end if
28: else
29: return Ai

30: end if
31: end if
32: end if
33: end if
34: end while
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assumption with the depth limit d in the search space. The algorithm IDDFS calls DLS

with increasing depth limits.

Algorithm 7 IDDFS(M1, M2, p, max)

Input: M1, M2, p, max: two models M1 and M2, a required property p, and the maximum
depth max

Output: A(p) or cex: an assumption A(p) with a smaller size (than the size of the as-
sumption generated in [10]) if M1‖M2 satisfies p, and a counterexample cex otherwise

1: for i = 0 to max do
2: DLS(i) {Applying depth-limited search with depth limit i}
3: if DLS(i) returns an assumption A(p) then
4: return A(p)
5: else
6: if DLS(i) returns a counterexample cex then
7: return cex
8: end if
9: end if

10: end for

4.2.3 Reusing the Previous Verification Result

Another idea to reduce the search space of the observation tables of the proposed method

presented in Section 4.1 is to reuse the observation table of the current assumption as

previous verification result in order to generate the minimal assumption of CBS in the

context of the component evolution.

Consider a simple case where a CBS is made up of two models including a framework

M1 and an extension M2. It is known that the compositional system M1‖M2 satisfies the

property p. During the life cycle of this CBS, the model M2 is evolved to a new model M ′

2

by adding some new behaviors to M2. The evolved compositional system M1‖M
′

2 must be

rechecked whether it satisfies the property p. For this purpose, the proposed method in

this section only checks the evolved model M ′

2 satisfying assumption Am(p), where Am(p)

is a minimal assumption between two components M1 and M2 that is strong enough for

M1 to satisfy p but weak enough to be discharged by M2. The minimal assumption

Am(p) is generated by using the proposed method for minimal assumption generation

presented in Section 4.1. If M ′

2 satisfies Am(p), the evolved compositional system M1‖M
′

2

satisfies the property p. Otherwise, if Am(p) is too strong to be satisfied by M ′

2, a new

minimal assumption Amnew(p) between the framework M1 and the evolved model M ′

2 is

regenerated. The proposed method regenerates the new minimal assumption Amnew(p)

by applying the proposed method presented in Section 4.1 with the initial observation

table as the observation table of Am(p). By staring from the observation table of Am(p),
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Algorithm 8 DLS(d)

Input: d: depth limit d for depth-limited search
Output: A(p) or cex or notfound

1: Initially, s = empty {s is an empty stack}
2: s.push(OT0) {putting OT0 into the top of s, where OT0 = (S0, E0, T0), S0 = E0 = {λ},

and λ is the empty string}
3: depth(OT0) = 0
4: while s 6= empty do
5: OTi = s.pop() {getting OTi from the top of s}
6: if depth(OTi) ≤ d then
7: if OTi contains “?” value then
8: for each instance OT of OTi do
9: s.push(OT ) {putting OT into the top of s}

10: depth(OT ) = depth(OTi) + 1
11: end for
12: else
13: if OTi is not closed then
14: OT = make closed(OTi)
15: s.push(OT ) {putting OT into the top of s}
16: depth(OT ) = depth(OTi) + 1
17: else
18: construct a candidate DFA Ai from the closed OTi

19: if Step1(Ai) fails with cex then
20: add the suffix e of the counterexample cex to Ei

21: OT = update(OTi)
22: s.push(OT ) {putting OT into the top of s}
23: depth(OT ) = depth(OTi) + 1
24: else
25: if Step2(Ai) fails with cex then
26: if cex witnesses violation of p then
27: return cex
28: else
29: add the suffix e of the counterexample cex to Ei

30: OT = update(OTi)
31: s.push(OT ) {putting OT into the top of s}
32: depth(OT ) = depth(OTi) + 1
33: end if
34: else
35: return Ai

36: end if
37: end if
38: end if
39: end if
40: else
41: return notfound
42: end if
43: end while
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we can reduce several observation tables of the search space which is used to regenerate

the new minimal assumption Amnew(p) of the evolved CBS. Moreover, we know that

L(Am(p)) ⊂ L(Amnew(p)) because Am(p) is too strong to be satisfied by M ′

2 and the

component evolution means only adding some new behaviors. Thus, we improve the

technique for answering membership queries to reduce the number of the instances of

each table which contains the “?” entries. At any step i of the learning process, if the

current candidate assumption Ai is too strong for M ′

2 to be satisfied, then L(Ai) is exactly

a subset of the language of the assumption being learned. For every s ∈ (S ∪ S.Σ).E, if

s ∈ L(Ai) (this implies s ∈ L(AW )), instead of setting T (s) to “?”, we set T (s) to true.

We can reduce several number of the “?” entries by reusing such candidate assumptions.

Details of this method will be presented in Section 5.2.2 of Chapter 5.

4.3 Small Experiment

In order to evaluate the effectiveness of the proposed method, we have implemented

the assumption generation method proposed in [10] (called AG tool) and the proposed

minimized assumption generation method (called MAG tool) in the Objective Caml

(OCaml) [31]. OCaml is a powerful functional programming language that supports

numerous architectures for high performance, a bytecode compiler for increased porta-

bility, and an interactive loop for experimentation and rapid development [31]. Details

of the introduction to functional programming and OCaml can be found in [18, 19] and

in [26, 31, 32, 34] respectively. Although the AG tool for L*-based assumption generation

method proposed in [10] have been implemented and presented in [36], this tool is not

available. This means that there is not any tool which supports the assume-guarantee

verification and assumption generation. Thus, in order to compare the effectiveness of

both methods, we also have to implement the AG tool.

Figure 4.3 shows the architecture of the implemented AG tool and an example which

illustrates how to use the tool. Inputs of this tool are two model M1 and M2, and a

required property p where M1, M2, and p are represented by LTSs. This tool returns

an assumption A satisfying the compositional rules if the CBS M1‖M2 satisfies p, and a

counterexample cex to show that M1‖M2 violates p otherwise. For example, given two

models M1 as the LTS Input and M2 as the LTS Output, and a property as the LTS p. The

AG tool returns an assumption as LTS A shown in Figure 4.3. With regard to correctness

of our implementation about the AG tool, checking correctness of the tool is very difficult.

The correctness of the AG tool implementation means that we have to check whether the

assumptions generated by this tool are the actual assumptions by checking that each

generated assumption A satisfies the compositional rules (i.e., checking that if 〈A〉 M1 〈p〉

and 〈true〉 M2 〈A〉 both hold). For this purpose, we use the tool for verifying concurrent
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systems called LTSA [13] presented in Section 2.2.4 of Chapter 2 to check correctness

of the generated assumption A by checking the compositional systems A‖M1‖perr and

M2‖Aerr in the LTSA tool. If both formulas hold, correctness of A generated by our tool

is proven. Figure 4.4 presents an example for checking correctness of the assumption A

generated by the AG tool in the LTSA tool.

Figure 4.3: The architecture of the AG tool and an example.

With regard to the MAG tool which supports the proposed minimized assumption

generation method, Figure 4.5 shows the architecture of the implemented MAG tool and

an example which illustrates how to use the tool. Inputs of this tool are two models M1

and M2, a required property p, and an option o where M1, M2, and p are represented by

LTSs, and the option o means that we can apply breadth-first search, depth-first search,

and iterative-deepening depth first search depending on the given value of o. This tool

returns a minimal assumption Am satisfying the compositional rules if the CBS M1‖M2

satisfies p, and a counterexample cex to show that M1‖M2 violates p otherwise. For

example, given two models M1 as the LTS Input and M2 as the LTS Output, a property

as the LTS p, and an option o as empty (breadth-first search). The AG tool returns

a minimal assumption as LTS Am shown in Figure 4.5. The correctness of Am also is

checked by using the LTSA tool presented in Figure 4.6.

In order to evaluate the effectiveness of the proposed method, we have tested our

method by using several variations of the Sender/Receiver example shown in Figure 3.8

and compared the method with that proposed in [10]. The sizes, the numbers of transi-

tions, and the generating time of the generated assumptions are evaluated in this exper-

iment. We also evaluate the rechecking time for each system by reusing the generated
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Figure 4.4: An example for checking correctness of the AG tool via LTSA.

assumptions for checking of the compositional rules. Table 4.1 shows experimental re-

sults for this purpose. In the results, the system size is the product of the sizes of the

software components and the size of the required property for each CBS. Our obtained

experimental results imply that the generated minimal assumptions have smaller sizes and

number of transitions than the generated ones by the method proposed in [10]. These

minimal assumptions are effective for rechecking the systems with a lower cost. However,

our method has a higher cost for generating the assumption.

The implemented tools and the illustrative systems which are used in our experimental

results can be found at the site [33].
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Figure 4.5: The architecture of the MAG tool and an example.

Figure 4.6: An example for checking correctness of the MAG tool via LTSA.

54



Table 4.1: Experimental results
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Chapter 5

An Effective Framework for

Assume-Guarantee Verification of

Evolving Component-Based Software

This chapter proposes an effective framework for assume-guarantee verification of component-

based software in the context of the component evolution at design level. In this frame-

work, if the model of a component is evolved after adapting some refinements, the whole

component-based software (CBS) of many models of the existing components and the

evolved model of the evolved component is not required to be rechecked. The method

only checks whether the evolved model satisfies the assumption of the system before evolv-

ing. If so, the evolved CBS still satisfies the property. Otherwise, if the assumption is too

strong to be satisfied by the evolved model, and a new assumption is regenerated. We

propose two methods for the new assumption regeneration: assumption regeneration and

minimized assumption regeneration. The methods reuse the current assumption as the

previous verification result to regenerate the new assumption at much lower computational

cost. An implementation and experimental results are presented.

5.1 An Effective Framework for Assume-Guarantee

Verification of Evolving CBS

This section proposes an effective framework for modular verification of component-based

software in the context of the component evolution at design level. The component

evolution means adding only some new behaviors to the component without losing the old

behaviors. In the proposed framework, if the design model of a component is evolved

to a new model by adding some new behaviors, the whole evolved CBS is not required

to be rechecked. We only focus on the evolved model to recheck the evolved CBS. The
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framework only checks whether the evolved model satisfies the current assumption of

the CBS before evolving. If so, the evolved CBS still satisfies the required property.

Otherwise, if the assumption is too strong to be satisfied by the evolved model, a new

assumption is regenerated by a new assumption regeneration method. The method reuses

the assumption to reduce a large number of required membership queries and generated

candidate assumptions which are needed to regenerate the new assumption. With this

approach, we have a faster assume-guarantee method to recheck the evolved CBS.

5.1.1 A Framework for Assume-Guarantee Verification of Evolv-

ing CBS

Currently, there are many approaches proposed in modular verification of CBS [20, 10,

16, 37, 38, 39, 40]. In these approaches, modular verification is rather closed for fixed

systems. It is not prepared for future changes. However, evolving of existing components

of component-based software seems to be an unavoidable task during the software life

cycle. Unfortunately, the consequence of the tasks is the whole evolved software must

be rechecked. In order to recheck the evolved CBS, we can apply one of the recently

approaches which have been proposed in modular verification and verify the whole evolved

CBS as a new system from scratch. In this case, rechecking of the whole evolved CBS is

unnecessary because the changes often focus on a few existing components. It should be

better to focus only on the evolved models of the evolved components and try to reuse

the previous verification results to verify the evolved CBS.

The main goal in this section is to find a faster method for rechecking the evolved

component-based software in the context of the component evolution. The motivation in

this method is shown by a simple CBS presented in Figure 5.1. Suppose that there is a

simple component-based software which contains a model M1 of the base component as

a fixed framework, and a model M2 of the extensional component. The extension M2 is

plugged into the framework M1 via the parallel composition operator (synchronizing the

common actions and interleaving the remaining actions). This kind of CBS only allows

us to evolve the behavior of the extension component in the context of the component

evolution and it is popular in practice. We know that the compositional CBS M1‖M2

satisfies a property p (i.e., M1‖M2 |=p). M2 is then evolved to a new model M ′

2 by adding

some new behaviors to the model M2. The major goal of the proposed method is to verify

if the evolved compositional CBS M1‖M
′

2 satisfies p without rechecking it from scratch.

The method reuses the results of the previous verification (between M1 and M2) in order

to have an incremental verification manner to verify the evolved CBS.

In a general view of the proposed approach, when we have verified the system M1 ‖M2

satisfying the property p, we have generated an assumption A(p) that is strong enough for
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Figure 5.1: A simple case for evolving component-based software.

M1 to satisfy p but weak enough to be discharged by M2 (i.e., 〈A(p)〉 M1 〈p〉 and 〈true〉

M2 〈A(p)〉 both hold) by applying the method presented in Section 3.2 of Chapter 3.

Figure 5.2 presents the proposed framework for rechecking the evolved CBS. When the

model M2 of the extensional component is evolved to a new model M ′

2, in order to recheck

the evolved CBS M1‖M
′

2, the proposed method does not recheck on the whole evolved CBS

containing of the framework M1 and the evolved model M ′

2. It only checks the assume-

guarantee formula 〈true〉 M ′

2 〈A(p)〉. If the formula 〈true〉 M ′

2 〈A(p)〉 holds, the evolved

CBS M1‖M
′

2 satisfies the property p. This is the fastest way to recheck the evolved CBS

because it rechecked the CBS without regenerating a new assumption. In this case, the

assumption A(p) will be seem as the previous verification result to recheck the new system

with the future changes in an incremental manner. In practice, the difference between

M2 and M ′

2 is often small thus probability for M ′

2 satisfying p is very high. Otherwise,

the formula 〈true〉 M ′

2 〈A(p)〉 does not hold, it returns a counterexample cex to witness

this fact. The proposed framework then performs some analysis to determine whether p

is indeed violated in the evolve CBS M1‖M
′

2 or if A(p) is too strong to be satisfied by

M ′

2. The counterexample analysis is performed by the Teacher in a way similar to that

used for answering membership queries. The Teacher first creates a safety LTS [cex↑Σ]

from the counterexample cex. The Teacher then checks the formula 〈[cex↑Σ]〉 M1 〈p〉 by

computing the compositional system [cex↑Σ]‖M1‖perr. If the state error π is unreachable

in this system, the compositional system M1‖M
′

2 violates the property p (i.e., M1‖M
′

2 6|=p).

Otherwise, Ai is too strong to be satisfied by M ′

2 in the context of cex. The proposed new

assumption regeneration method presented in Section 3.4 of Chapter 3 regenerates a new

assumption Anew(p) between M1 and M ′

2 by reusing the entire A(p). The new assumption

regeneration method returns a new assumption Anew(p) of the evolved CBS if M1‖M
′

2

satisfies the property p, and a counterexample cex otherwise.

The proposed framework can reduce a large number of the required membership queries

and the generated candidate assumptions which are used to regenerate the new assump-
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tions. In some cases where the current assumptions are actual assumptions of the evolved

CBS, these CBS are verified in the fastest way without regenerating new assumptions.

Figure 5.2: The proposed framework for modular verification of evolved CBS.

5.1.2 Correctness and Termination

Correctness and termination of the proposed framework is proved by the following theo-

rem.

Theorem 3 Given an accurate model M1, an evolved model M ′

2 which is an evolution of

a model M2, a required property p, and an assumption A(p) which is strong enough for M1

to satisfy p but weak enough to be discharged by M2, the proposed framework terminates

and returns true if M ′

2 still satisfies A(p), returns a new assumption Anew(p) if the evolved

compositional CBS M1‖M
′

2 satisfies p, and false otherwise.

Proof The proposed framework terminates and returns true if M ′

2 satisfies A(p), and

false if the evolved system M1‖M
′

2 violates p. Otherwise, the current assumption A(p) is

too strong to be satisfied by M ′

2. In this case, the proposed method for new assumption

regeneration uses two steps of the compositional rule (i.e., 〈A(p)〉 M1 〈p〉 and 〈true〉 M ′

2

〈A(p)〉) to answer the question of whether the candidate assumption Ai produced by the

L* Learner is an assumption or not. It only returns true and a new assumption Anew(p)

= Ai when both steps return true, and therefore its correctness is guaranteed by the

compositional rule. The proposed method returns a real error when it detects a trace
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σ of M ′

2 which violates the property p when simulated on M1. In this case, it implies

that M1‖M
′

2 violates p. The remaining problem is to prove whether we always achieve

the new assumption Anew(p) from the assumption A(p) if M1‖M
′

2 satisfies p. In the case

where the new assumption is regenerated, we know that M ′

2 6|=A(p) because A(p) is too

strong for M ′

2 to satisfy. We also know that M ′

2 |=Anew(p) because Anew(p) satisfies the

compositional rule. These observations imply that Anew(p) is weaker than A(p). By using

the L* learning algorithm, we can obtain directly a weaker candidate assumption from a

stronger one [10]. It means that we always achieve the new assumption Anew(p) directly

from A(p). With regard to the termination of the proposed method, at any iteration,

the algorithm returns true or false (i.e., M1‖M
′

2 6|=p) and terminates or continues by

providing a counterexample from the L* Learner. By the correctness of L* [9, 17], we

ensure that if the L* learning algorithm keeps receiving counterexamples, in the worst

case, the algorithm will eventually produce the weakest assumption AW and terminates,

by the definition of AW [16].

5.1.3 Examples

Figure 5.3 describes an illustrative concurrent CBS which contains two model M1 and

M2. The model M1 is plugged into the model M2 via the parallel composition operator

defined in Section 2.1 of Chapter 2. In this CBS, the LTS of M1 is the Input LTS, and

the LTS of M2 is the Output LTS. This concurrent CBS is an extension of the CBS

described in Figure 3.8 of Chapter 3. The CSB means that the sender (Input LTS)

can acquire messages via two different input actions in1 and in2, and then proceeds to

send the message on one of two corresponding channels. The receiver (Output LTS)

acts analogously. A required property p and the current assumption A(p) of the CBS

also described in this figure. The assumption A(p) is generated by using the framework

illustrated in Figure 3.7 in Chapter 3 that is strong enough for M1 to satisfy p but weak

enough to be discharged by M2.

The model M2 of the extensional component is then evolved to a evolved model M ′

2

presented in Figure 5.4 by adding a new behavior which allows multiple send1 actions

to occur before producing out1 action. In order to recheck the evolved CBS M1‖M
′

2, the

proposed framework only checks the formula 〈true〉 M ′

2 〈A(p)〉. This checking returns

false and the counterexample analysis implies that A(p) is too strong to be satisfied by

M ′

2. A new assumption Anew(p) for the evolved CBS M1‖M
′

2 must be regenerated. For

the purpose, the new assumption regeneration method reuses the assumption A(p) to

regenerate the new assumption Anew(p) shown in Figure 5.4. In the assumption genera-

tion method proposed in [10], for the same goal, the method has generated 6 candidate

assumptions and 294 membership queries to generate Anew(p). We regenerate Anew(p) at
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Figure 5.3: Models of the components, order property, and assumption A(p) of the illus-
trative CBS.

much lower computational cost with 3 generated candidate assumptions and 210 required

membership queries.

Figure 5.4: The evolved model M ′

2 and the new assumption Anew(p) of the evolved CBS.

Consider the next component evolution of the described evolved CBS where the

evolved model M ′

2 is evolved continuously to a evolved model M ′′

2 shown in Figure 5.5

by adding a new behavior which allows multiple send2 actions to occur before producing

out2 action. The proposed framework then rechecks the evolved CBS M1‖M
′′

2 by checking

the formula 〈true〉 M ′′

2 〈Anew(p)〉. The result of this checking is true. This means that

the evolved CBS M1‖M
′′

2 satisfies the property p without regenerating a new assumption.

This is a successful example to show the effectiveness of the proposed method. In such

cases, our method can recheck the evolved systems in the fastest way.
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Figure 5.5: The evolved model M ′′

2 of the model M ′

2.

5.2 Optimized the Proposed Framework

5.2.1 Reducing the Number of Candidate Queries

Recall the iterative framework for the new assumption regeneration shown in Figure 3.14.

Although the proposed framework reuses the assumption A(p) of the system before evolv-

ing as an effective method to reduce the large number of the generated candidate as-

sumptions which are needed to regenerate the new assumption Anew(p), the core of this

framework is based on the framework for L*-based assumption generation proposed in [10].

In the proposed framework, at each iteration i, a candidate assumption Ai is produced.

In order to check whether Ai is an actual assumption of the evolved CBS, a candidate

query “is L(Ai) = U?” is sent to the Teacher. The two steps of the compositional rules

are applied by the Teacher to answer the candidate query. However, There are some Ai

which are not assumption candidates without using candidate queries. To detect such Ai

as a way to reduce the number of the candidate queries which are sent to the Teacher

is very important because that number primarily influences on the computational cost

for assumption regeneration. In this section, we presents an improvement of the pro-

posed method for the new assumption regeneration to reduce the computational cost of

assumption regeneration.

For each candidate assumption Ai produced by L* at iteration i, the Teacher checks

whether Ai satisfies the compositional rules (i.e., 〈Ai〉 M1 〈p〉 and 〈true〉 M ′

2 〈Ai〉) of the

evolved CBS in order to answer the candidate query about “is L(Ai) = U?”. For this

purpose, the Teacher first checks the step 1 (whether M1 satisfies p in environments that

guarantee Ai) by computing the formula 〈Ai〉 M1 〈p〉. If the result is false with a coun-

terexample cex, it means that Ai is too weak for M1 to satisfy p (i.e., Ai does not restrict

the environment enough for p to be satisfied by M1). Thus, Ai must be strengthened

which corresponds to removing behaviors from it with the help of the counterexample cex

produced by this step. In the context of the next candidate assumption Ai+1, component

M1 should at least not exhibit the violating behavior reflected by this counterexample.
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Formally, the strengthening of a candidate assumption is defined as follows.

Definition 5.2.1 (Candidate assumption strengthening). Let cex be a counterexample

returned by the step 1 such that cex ∈ L(Ai) but cex 6∈ U , where U is the language of

the target assumption being learned. The strengthening Ai means that the counterexample

cex should be removed from L(Ai).

If the result of the step 1 is true, it means that Ai is strong enough for M1 to satisfy p.

The step 2 is then applied to check that if the evolved model M ′

2 satisfies Ai by computing

the formula 〈true〉 M ′

2 〈Ai〉. If this step returns true, the property p holds in the evolved

CBS M1‖M
′

2 (M1‖M
′

2 |=p) and the proposed algorithm terminates. Otherwise, this step

returns false with a counterexample cex, further analysis is required to identify whether

p is indeed violated in M1‖M
′

2 or Ai is too strong to be satisfied by M ′

2. If Ai is too strong

to be satisfied by M ′

2, Ai therefore must be weakened (i.e., behaviors must be added) in

the iteration i+1. The result of such weakening will be that at least the behavior that the

counterexample cex represents will be allowed by candidate assumption Ai+1. Formally,

the weakening of a candidate assumption is defined as follows.

Definition 5.2.2 (Candidate assumption weakening). Let cex be a counterexample re-

turned by the step 2 such that cex ∈ U but cex 6∈ L(Ai). The weakening Ai means that

the counterexample cex should be added to L(Ai).

Example 5.2.1 Figure 5.7 presents the meaning of the strengthening and weakening of

the generated candidate assumptions for the new assumption regeneration of the evolved

CBS shown in Figure 5.6.

Figure 5.6: An evolved CBS including the model M1, the evolved model M ′

2, and the
required property.

We explain an improvement of the proposed method for the new assumption regener-

ation by detecting the candidate assumptions which are not assumptions without using

the candidate queries as follows.

Suppose that the formula 〈Ai〉 M1 〈p〉 returns false with a counterexample cex for

the generated candidate assumption Ai at the iteration i of the proposed framework
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Figure 5.7: The meaning of the strengthening and weakening of the generated candidate
assumptions.

presented in Figure 3.14. Ai must be strengthened which corresponds to remove the

counterexample cex↑Σ from L(Ai). In this case, cex is called a negative counterexample.

For the purpose, the proposed algorithm adds a suffix c of cex↑Σ to the set of suffixes

E of the current observation table (S, E, T ). This table may be updated to be closed

by using the membership queries. The next candidate assumption Ai+1 is produced by

the closed table. However, this refinement process does not guarantee the elimination

of the counterexample cex↑Σ from L(Ai). Thus, the counterexample cex↑Σ may still be

accepted by the next candidate assumption Ai+1.

In a similar case where the formula 〈true〉 M ′

2 〈Ai〉 returns false with a counterexample

cex for the generated candidate assumption Ai at the iteration i. If Ai is too strong

to be satisfied by M ′

2, Ai therefore must be weakened which corresponds to add the

counterexample cex↑Σ to L(Ai). In this case, cex is called a positive counterexample.

For the goal, the proposed algorithm adds a suffix c of cex↑Σ to the set of suffixes E

of the current observation table (S, E, T ). This table may be updated to be closed by

using the membership queries. The next candidate assumption Ai+1 is produced by the

closed table. However, this refinement process does not guarantee the addition of the

counterexample cex↑Σ to L(Ai). Thus, the counterexample cex↑Σ may still be rejected

by the next candidate assumption Ai+1.

In order to detect such candidate assumptions, for every candidate Ai+1 obtained by

refining on a negative counterexample, we check whether cex↑Σ ∈ L(Ai+1) before sending

a candidate query “is L(Ai+1) = U?” to the Teacher. If cex↑Σ ∈ L(Ai+1), Ai+1 is not an

assumption without checking the compositional rules (without using the candidate query).

In this case, we repeat the refinement process on Ai+1 using cex instead of performing

the candidate query “is L(Ai+1) = U?”. Similarity with the positive counterexample,

we check that the positive counterexample cex↑Σ 6∈ L(Ai+1) before sending a candidate
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query “is L(Ai+1) = U?” to the Teacher. If so, cex is reused to further refine Ai+1. This

improvement can reduce the number of candidate queries which are needed for the new

assumption regeneration presented in Figure 3.14.

5.2.2 A Minimized Assumption Regeneration Method

This section proposes a minimized assumption regeneration method for modular veri-

fication of component-based software in the context of the component evolution. This

method is an improvement of the minimized assumption generation method presented in

Section 4.1 of Chapter 4. In this method, if the current assumption is too strong to be

satisfied by the evolved model of the evolved component, a new minimal assumption is

regenerated. The method reuses the assumption in order to reduce the search space of

the observation tables which are used for regenerating the new minimal assumption of

the evolved CBS.

Although the proposed new assumption regeneration method presented in Section 5.1

is an effective approach to regenerate the new assumption at much lower computational

cost, the core of this approach is the framework proposed in [10]. Thus, the new assump-

tions regenerated by the proposed method are not minimal. As mentioned in Section 4.1

of Chapter 4, obtaining minimal assumptions is interesting for several advantages. The

key advantage is that the minimal assumptions can be used to recheck the whole CBS

at much lower computational cost. However, in the proposed algorithm for minimal as-

sumption generation presented in Algorithm 5 of Chapter 4, the queue has to hold an

exponentially growing of the number of the observation tables. This makes the method

unpractical for large-scale systems because it consumed too much memory. For large-

scale systems, the computational cost for regenerating the minimal assumption is very

expensive. In the context of the component evolution, when the current assumption is

too strong to be satisfied by the evolved model presented in Section 5.1, we guarantee

that the new minimal assumption can be obtained directly from the strong assumption.

Algorithm 9 presents the proposed algorithm for the new assumption regeneration by

improving the algorithm for minimized assumption generation presented in Algorithm 5.

Recall the proposed framework presented in Subsection 5.1.1, when the model M2 of the

extension component is evolved to a new model M ′

2, in order to recheck the evolved CBS

M1‖M
′

2, the proposed framework does not recheck on the whole evolved CBS. It only

checks whether the assume-guarantee formula 〈true〉 M ′

2 〈A(p)〉. If so, the evolved CBS

M1‖M
′

2 still satisfies the property p. Otherwise, the formula does not hold, it returns a

counterexample cex to witness this fact. The proposed framework then performs some

analysis to determine whether p is indeed violated in the evolve CBS M1‖M
′

2 or if A(p)

is too strong to be satisfied by M ′

2.
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If A(p) is too strong to be satisfied by M ′

2 in the context of cex, the minimized

assumption regeneration method presented in Algorithm 9 is applied to regenerate a new

minimal assumption Annew(p) between M1 and M ′

2 by reusing the entire A(p). The method

returns a new minimal assumption Amnew(p) of the evolved CBS if M1‖M
′

2 satisfies the

property p, and a counterexample cex otherwise. In order to regenerate the new minimal

assumption Amnew(p) of the evolved CBS, at the initial step, instead of putting the initial

observation table OT0 = (S0, E0, T0) into the empty queue q as the root of the search space

of observation tables, the method sets the initial observation table OT0 to the observation

table OTold = (Sold, Eold, Told) of the current assumption A(p) (line 2). A suffix e of cex to

E0 of the table OT0 in order to weaken the assumption A(p) because A(p) is too strong to

be satisfied by M ′

2 (line 3). After that, the table OT0 is updated by calling the procedure

named update(OT0) (line 4). The remaining of the proposed algorithm is the same as the

algorithm presented in Algorithm 5. By this approach, we can reduce the search space

of the observation tables which are used for regenerating the new minimal assumption of

the evolved CBS.

5.3 Small Experiment

In order to evaluate the effectiveness of the proposed framework for assume-guarantee

verification of evolving CBS presented in Section 5.1.1, we have implemented the L*-

based assumption generation method proposed in [10] (the AG tool shown in Section 4.3

of Chapter 4) and the proposed assumption regeneration method (called AR tool) in the

Objective Caml (OCaml) functional programming language [31]. Figure 5.8 shows the

architecture of the implemented AR tool and an example which illustrates how to use the

tool. The inputs of this tool are a model M1 of the fixed framework, an evolved model

M ′

2 of the model M2, an assumption A(p) of the CBS M1‖M2, and a required property p

where M1, M ′

2, A(p), and p are represented by LTSs. This tool returns true if the evolved

model M2 satisfies A(p) (the evolved CBS M1‖M
′

2 still satisfies p without regenerating a

new assumption), a new assumption Anew satisfying the compositional rules if the CBS

M1‖M
′

2 satisfies p, and a counterexample cex to show that M1‖M
′

2 violates p otherwise.

For example, given two models M1 as the LTS Input and M ′

2 as the evolved LTS Output,

a property as the LTS p, and an assumption as LTS A. The AR tool returns a new

assumption as LTS Anew shown in Figure 5.8. The correctness of Anew also is checked by

using the LTSA tool.

The concurrent system Sender/Receiver (Evolved channel) illustrated in Figure 5.6 and

two evolved versions (i.e., Sender/Receiver (Two channels) and Sender/Receiver (Evolved

two channels)) of this system have been verified by applying both methods. Because the

computational cost for assumption generation is influenced by the number of the required
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Algorithm 9 Minimized assumption regeneration.

Input: M1, M
′

2, p, OTold = (Sold, Eold, Told): existing model M1, evolved model M ′

2, a
required property p, and the current observation table OTold

Output: Am(p) or cex: an assumption Am(p) with a smallest size if M1‖M2 satisfies p,
and a counterexample cex otherwise

1: Initially, q = empty {q is an empty queue}
2: OT0 = OTold {S0 = Sold, E0 = Eold, T0 = Told}
3: add the suffix e of the counterexample cex to E0

4: OT0 = update(OT0)
5: q.put(OT0)
6: while q 6= empty do
7: OTi = q.get() {getting OTi from the top of q}
8: if OTi contains “?” value then
9: for each instance OT of OTi do

10: q.put(OT ) {putting OT into q}
11: end for
12: else
13: if OTi is not closed then
14: OT = make closed(OTi)
15: q.put(OT )
16: else
17: construct a candidate DFA Ai from the closed OTi

18: if Step1(Ai) fails with cex then
19: add the suffix e of the counterexample cex to Ei

20: OT = update(OTi)
21: q.put(OT )
22: else
23: if Step2(Ai) fails with cex then
24: if cex witnesses violation of p then
25: return cex
26: else
27: add the suffix e of the counterexample cex to Ei

28: OT = update(OTi)
29: q.put(OT )
30: end if
31: else
32: return Ai

33: end if
34: end if
35: end if
36: end if
37: end while
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Figure 5.8: The architecture of the AR tool and an example.

membership queries and the number of the generated candidate assumptions, we only com-

pute these measures for each evolved system to compare the effectiveness of the methods.

Table 5.1 shows experimental results for this purpose. In our method, for the first and

second evolved systems (Sender/Receiver (Evolved channel) and Sender/Receiver (Two

channels)), the current assumptions are not actual assumptions of these systems. In this

case, the new assumptions are regenerated with a smaller number of the required mem-

bership queries and the generated candidate assumptions which are needed to regenerate

the new assumptions. In the third system (Sender/Receiver (Evolved two channels)),

the current assumption is an actual assumption of this system so the system is verified

without regenerating a new assumption.

The implemented tool and the illustrative systems which are used in our experimental

results is available at the site [45].

We also use the tool for verifying concurrent systems called LTSA [13] to check cor-

rectness of the new assumption Anew(p) which is generated by our proposed method. For

this purpose, we check whether Anew(p) satisfies the compositional rule (i.e., 〈Anew(p)〉

M1 〈p〉 and 〈true〉 M ′

2 〈Anew(p)〉 both hold) by checking the compositional systems

Anew(p)‖M1‖perr and M ′

2‖Anew(p)err in the LTSA tool. For each compositional system,

the LTSA tool returns the same result as our verification result for each evolved system.

With regard to the overhead of the proposed framework, we have verified some CBS

examples directly by using the model checker named LTSA. Based on the checking time
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Table 5.1: Experimental results

evaluated by LTSA, the overheads do not increase so much for our approach. The reason

is as follows. In the case, where the current assumption A(p) is actual assumption of the

evolved CBS M1‖M
′

2, the evolved CBS still satisfies the property p without regenerating a

new assumption. As a result, we can recheck the evolved CBS faster than model checking

directly. In others, our approach generates new assumptions from the current assumption

A(p) by using the improved L*. Our approach returns new assumptions and the evolved

CBS systems are rechecked successfully. This means that rechecking the evolved CBS via

generating a new assumption.

Our obtained experimental results imply that the proposed framework can reduce

the number of the membership queries and the candidate assumptions which are needed

to regenerate the new assumptions. In some cases where the current assumptions are

actual assumptions of the evolved CBS, these CBS are verified in the fastest way without

regenerating new assumptions. This means that the proposed framework can reduce the

computational cost for modular verification of the evolved CBS.
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Chapter 6

Modular Conformance Testing and

Assume-Guarantee Verification for

Evolving Component-Based Software

This chapter proposes a framework for modular conformance testing and assume-guarantee

verification of evolving component-based software at source code level. This framework

includes two stages: modular conformance testing for updating inaccurate models of

the evolved components and modular verification for evolving component-based software.

When a component is evolved after adapting some refinements, the proposed framework

focuses on this component and its model in order to update the model and to recheck the

whole evolved system. The framework also reuses the previous verification results and

the previous models of the evolved components to reduce the number of steps required in

the model update and assume-guarantee verification processes.

6.1 Modular Conformance Testing

In this section, we propose a conformance testing method called modular conformance

testing (MCT) to reduce the cost of the conformance testing process in the context of the

software component evolution. In this method, when a software component is evolved

after adding some new behaviors, instead of doing conformance testing on the whole

system and its model [47, 12, 48], the proposed MCT only performs conformance testing

to compare the evolved component with its current model. If the model of the evolved

component is inaccurate then it is used as the initial model for the L* learning algorithm

in order to update itself. Otherwise, the component and its model are in conformance.

By this approach, we can reduce the computational cost for learning the accurate models

of the evolved components of the evolved CBS.
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Consider a simple case where a system contains two components C1 and C2. We can

see these components as black boxes due to the frequent lack of information about software

components that are provided by third parties without source codes and with incomplete

documentations. Suppose that, for each component Ci (i=1,2), we have obtained an

accurate model Mi by applying the L* learning algorithm. The model Mi is an accurate

model of the component Ci (i=1,2), denoted Mi |=T Ci, if and only if Ci and Mi satisfy

the definition about accurate model defined in Chapter 2. C2 then is evolved to a new

component C ′

2 by adding some new behaviors to the component C2. In this case, the MCT

is applied to check whether the current model M2 is an accurate model of the evolved

component C ′

2. Let C2 = (ΣC2
, TC2

) and C ′

2 = (ΣC′

2
, TC′

2
) where the strings in TC2

and

TC′

2
reflect the allowed executions of C2 and C ′

2 respectively.

In order to check conformance between C ′

2 and its current model M2, instead of doing

conformance testing on all strings in TC′

2
, MCT only checks on all strings in v ∈ (TC′

2
\

TC2
) via the VC algorithm. MCT does not check the strings in TC2

due to M2 |=T
C2. This means that for every string/trace v ∈ (TC′

2
\ TC2

) (after applying a Reset), if

v ∈ L(M2) then C ′

2 and M2 are in conformance and MCT terminates. Otherwise, the

inaccurate model M2 must be updated by using the L* learning algorithm with the help of

a discrepancy d returned by VC algorithm. The L* performs experiments on the evolved

component C ′

2 and produces a minimized finite automaton representing behavior of this

component.

At a higher level, the learning algorithm is an iterative process illustrated in Figure 6.1.

At the initial step, we use the current model M2 as the initial model for learning an

accurate model M ′

2 of the evolved component C ′

2. In our research, the component evolution

means that adding only some new behaviors to the component C2 without losing the old

behaviors. This means that L(M2) is a subset of L(M ′

2). As a result, we guarantee that

M ′

2 can be learned from the entire M2 directly. At each iteration i, a candidate model

M2i is produced based on some knowledge about the component C ′

2 and the results of the

previous iteration. The MCT is then applied to check conformance between C ′

2 and its

candidate model M2i. If they do conform, MCT terminates. Otherwise, a discrepancy d

that distinguishes the behavior of C ′

2 from the candidate model M2i is provided by MCT

to generate the next candidate model M2(i+1) and the entire process must be repeated.

The MCT’s performance always terminates because (TC′

2
\ TC2

) is a finite set of the test

strings.

The following is more detailed presentation of the L*-based algorithm for learning

an accurate model M ′

2 of the evolved component C ′

2. As mentioned above, before the

component C2 is evolved to C ′

2, we have obtained an accurate model M2 of C2 by applying

the L* learning algorithm. Let V2, W2, T2 be the observation table which has been used to

construct the model M2, from now on called the old observation table (V2old, W2old, T2old).
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Figure 6.1: The modular conformance testing framework.

In order to obtain the accurate model M ′

2 of the evolved component C ′

2, we also use the

L* learning algorithm but with the initial observation table (V2old, W2old, T2old). With this

approach, we can significantly reduce the number of steps involved in learning M ′

2.

Algorithm 10 presents the L*-based algorithm for learning an accurate model M ′

2 of

the evolved component C ′

2 after obtaining the discrepancy d returned by VC algorithm

when checking conformance between C ′

2 and M2. The discrepancy d witnesses that M2 is

an inaccurate model of the evolved component C ′

2. Initially, L* sets the initial observation

table (V, W, T ) to the old observation table (V2old, W2old, T2old) (i.e., L* sets V to V2old,

W to W2old, and T to T2old) (line 1). The discrepancy d is analyzed by L* to find all

of its suffixes that witness a difference between L(M2) and L(C ′

2). After that, for each

suffix v′ of d, if v′ 6∈ W then v′ must be added to W (line 2&3). Consequently, T must

be updated by performing the experiments on the evolved component C ′

2 (line 6). L*

then checks whether the observation table (V, W, T ) is closed (line 7). If (V, W, T ) is not

closed, then va is added to V , where v ∈ V and a ∈ Σ are the elements for which there

is no v′ ∈ V (line 8). Because va has been added to V , T must be updated again by

performing the experiments on C ′

2 (line 9). Line 8 and line 9 are repeated until the table

(V, W, T ) is closed (line 10). When the observation table (V, W, T ) is closed, L* checks

whether the candidate model corresponding to the closed table (V, W, T ) is an accurate

model of C ′

2 by applying the VC algorithm (conform = V C(V, W, C ′

2, n2)) (line 11). If

they are in conformance (conform == true) (line 12), a DFA M2i = 〈Q, αM2i, δ, q0, F 〉 is

constructed (line 13) from the closed table (V, W, T ) using the approach described in the

definition 3.2.2. L* then returns M2i and terminates (line 14). Otherwise, conform is a

discrepancy that distinguishes the behavior of C ′

2 from the candidate model M2i (line 15).

The discrepancy conform then is analyzed by L* to find all of its suffixes that witness a

difference between L(M2i) and L(C ′

2). After that, for each suffix v′ of conform, if v′ 6∈ W

then v′ must be added to W (line 16&17). When all suffixes of conform have been added

to W , L* iterates the entire process by looping around to line 6.

Correctness of MCT. We use M1‖M2 |=T C1‖C2 to denote that the compositional

model M1‖M2 is an accurate model of the compositional system C1‖C2. Correctness of
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Algorithm 10 L*-based algorithm for learning an accurate model M ′

2 of the evolved
component C ′

2.

Input: (V2old, W2old, T2old), d, n2: the observation table (V2old, W2old, T2old) of the inaccu-
rate model M2, the discrepancy d, and a known upper bound n2 on the size of the
minimal deterministic automaton modelling the evolved component C ′

2.
Output: M ′

2: an accurate model M ′

2 of the evolved component C ′

2

1: Initially, V = V2old, W = W2old, T = T2old

2: for each v′ ∈ suffix(d) that is not in W do
3: add v′ to W
4: end for
5: loop
6: update T by performing the experiments on the system C ′

2.
7: while (V, W, T ) is not closed do
8: add va to V to make V closed, where v ∈ V and a ∈ Σ
9: update T by performing the experiments on the system C ′

2.
10: end while
11: conform = V C(V, W, C ′

2, n2)
12: if conform == true then
13: construct a candidate DFA M2i from the closed (V, W, T )
14: return M2i

15: else
16: for each v′ ∈ suffix(conform) that is not in W do
17: add v′ to W
18: end for
19: end if
20: end loop
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the modular conformance testing is guaranteed by the following theorem.

Theorem 4 Given two software components C1 = (ΣC1
, TC1

) and C2 = (ΣC2
, TC2

). If M1

and M2 are accurate models of C1 and C2 respectively (i.e., M1 |=T C1 and M2 |=T C2)

then the compositional model M1‖M2 is an accurate model of the compositional system

C1‖C2 (i.e., M1‖M2 |=T C1‖C2).

Proof For every trace v ∈ (ΣC1
∪ ΣC2

)∗, if v is a successful experiment of C1‖C2 then

v↑ΣC1
is a successful experiment of C1 and v↑ΣC2

is a successful experiment of C2. Because

of M1 |=T C1 and M2 |=T C2, by checking the accurate model definition defined in

Chapter 2, it follows that v↑ΣC1
∈ L(M1) and v↑ΣC2

∈ L(M2) . This means that v is a

trace of the compositional model M1‖M2 (i.e., v ∈ L(M1‖M2)).

6.2 Assume-Guarantee Verification of Evolving CBS

Suppose that there are two components including a fixed based architecture C1 as a

framework and an extension C2. Let M1 and M2 be accurate models of C1 and C2

respectively. We know that the property p holds in the compositional system M1‖M2. C2

is then evolved to a new component C ′

2 by adding some new behaviors to the component

C2. Let M ′

2 be the updated model of the M2, obtained by applying the proposed MCT

(i.e., M ′

2 |=T C ′

2). In order to recheck the evolved compositional system M1‖M
′

2, we

apply the proposed framework presented in Section 5.1.1 of Chapter 5. The framework

only checks the formula 〈true〉 M ′

2 〈A(p)〉, where A(p) is an assumption between M1

and M2 that is strong enough for M1 to satisfy p but weak enough to be discharged

by M2. If this formula holds, the evolved system satisfies the property p. Otherwise, a

counterexample cex returned. The counterexample cex then is analysed to check whether

the evolved system violates the property p in the context of the counterexample cex or the

assumption A(p) is too strong to be satisfied by M ′

2. If the assumption A(p) is too strong,

a new assumption Anew(p) is regenerated by applying the new assumption regeneration

method with the initial assumption A(p). By this approach, the method can reduce the

number of the membership queries and the candidate assumptions which are needed to

regenerate the new assumption Anew(p). In some cases where the current assumptions are

actual assumptions of the evolved CBS, these CBS are verified in the fastest way without

generating again the new assumptions.
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6.3 Framework for MCT and Assume-Guarantee Ver-

ification of Evolving CBS

This section proposes an integrated framework for modular conformance testing and

assume-guarantee verification of component-based software in the context of the com-

ponent evolution. In this framework, the model learning (i.e., MCT) and model checking

(assume-guarantee verification) are separated into two independent processes. The MCT

process first generates an accurate model of the evolved component. The model is seen

as the input of the assume-guarantee verification process for rechecking the evolved CBS.

With this approach, the assume-guarantee verification method is applied only once. Thus,

the computational cost for rechecking the evolved CBS is lower than the computational

cost in AMC [12].

We explain an overview of the proposed framework as follows. Suppose that there

is a simple component-based software which contains a base component C1 as a fixed

framework, and a component C2 as an extension. The extension C2 is plugged into the

framework C1 via some mechanisms. This kind of CBS only allows us to evolve the

behavior of the extension component in the context of the component evolution and it is

popular in practice. Let M1 and M2 be accurate models of C1 and C2 respectively. It is

known that the compositional system M1‖M2 satisfies the property p (i.e., C1‖C2 satisfies

p). During the life cycle of this system, the extension C2 is evolved to a new component

C ′

2 by adding some new behaviors to C2. The proposed MCT only performs conformance

testing to compare C ′

2 with M2. If they are not in conformance, M2 is used as the initial

model for the L* algorithm to obtain an accurate model M ′

2 for the evolved component

C ′

2. The new compositional system M1‖M
′

2 then must be rechecked for whether it satisfies

the property p or not. For this purpose, the proposed modular verification method only

checks that the new model M ′

2 satisfies an assumption A(p), where A(p) is an assumption

between M1 and M2 that is strong enough for M1 to satisfy p but weak enough to be

discharged by M2. The assumption A(p) is generated by using the L* learning algorithm.

In this method, models of components, properties, and assumptions are represented by

Labeled Transition Systems (LTSs). If M ′

2 satisfies A(p), then the evolved CBS C1‖C
′

2

satisfies the property p. Otherwise, this step returns a counterexample cex to witness

this fact. The proposed method then performs some analysis to determine whether p

is indeed violated in the evolved system M1‖M
′

2 or if A(p) is too strong to be satisfied

by M ′

2. If the assumption A(p) is too strong, a new assumption Anew(p) between M1

and M ′

2 is regenerated. The proposed method regenerates the new assumption Anew(p)

without rerunning on the whole evolved system. We try to reuse the results of the previous

verification (i.e., the generated assumptions) in order to reduce the number of steps of

the new assumption regeneration process.
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6.3.1 Proposed Framework

We integrate the proposed modular conformance testing and the assume-guarantee verifi-

cation into a framework for rechecking component-based software in the context of com-

ponent evolution. This framework is illustrated in Figure 6.2. It consists of the following

steps.

1. Updating the inaccurate model M2 of the evolved component C ′

2 by using the mod-

ular conformance testing method with the initial model M2. This step returns an

updated accurate model M ′

2 of C ′

2.

2. Checking whether the evolved system M1‖M
′

2 satisfies the property p by applying

the assume-guarantee verification method. This step only focuses on checking the

updated model M ′

2 of the evolved component C ′

2. If M ′

2 satisfies the assumption

A(p), the evolved compositional system M1‖M
′

2 still satisfies p. Otherwise, it returns

a counterexample cex to witness this fact.

3. Further analysis is required to identify whether p is indeed violated in M1‖M
′

2 or

A(p) is too strong to be satisfied by M ′

2. Such analysis is based on the counterex-

ample cex returned by the step 2. This step must check that if the counterexample

cex belongs to the unknown language U = L(AW ). If it does not, the property p

does not hold in the system M1‖M
′

2. Otherwise, A(p) is too strong.

4. The assumption regeneration method is applied to generate a new assumption

Anew(p) with the help of the counterexample cex returned by the step 2. The

generated assumption Anew(p) is strong enough for M1 to satisfy p but weak enough

to be discharged by M ′

2.

Figure 6.2: The proposed framework for MCT and modular verification of evolving CBS.
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Though the proposed framework considers the simple case where the CBS only con-

sists of two components C1 and C2, we can generalize it for a larger CBS containing

n-components C1, C2, ..., Cn (n ≥ 2). Let C1, C2, ..., Ci (i ≥ 1) be fixed components. This

means that these components do not allows to be evolved. In order to apply the proposed

framework for the CBS, we can consider the CBS as a software system which contains two

compositional components, i.e., C1‖C2‖...‖Ci and Ci+1‖Ci+2‖...‖Cn. With the approach,

the framework for the CBS consists of the similarly steps as described above because we

only focus on the evolved compositional component Ci+1‖Ci+2‖...‖Cn..

6.3.2 An Example

Figure 6.3 describes an illustrative concurrent system which contains the accurate model

M1 of a base component C1 and the accurate model M2 of a extension component C2 .

The model M1 is plugged into the model M2 via the parallel composition operator defined

in Section 2. In this system, the LTS of M1 is the Input LTS, and the LTS of M2 is the

Output LTS. This concurrent system means that the Input LTS receives an input when

the action in occurs, and then sends it to the Output LTS with action send. After some

data is sent to it, the Output LTS produces output using the action out and acknowledges

that it has finished, by using the action ack. At this point, both LTSs return to their

initial states so the process can be repeated. The property p means that the in action has

to occur before the out action. The assumption A(p) is generated by using the framework

illustrated in Figure 3.7 of Chapter 3 that is strong enough for M1 to satisfy p but weak

enough to be discharged by M2.

Figure 6.3: Models of the components, order property and assumption A(p) of the illus-
trative system.

The extension component C2 of the model M2 is then evolved to a new component C ′

2

by adding a new behavior which allows multiple send actions to occur before producing

out. In this case, the current model M2 is inaccurate. For example, the string send send

out is a successful experiment on C ′

2 but it is not a trace of M2. The proposed MCT

is applied to update M2. The updated model M ′

2 produced by MCT is illustrated in

Figure 6.4. In order to recheck the evolved compositional system M1‖M
′

2, the proposed

framework only checks the formula 〈true〉 M ′

2 〈A(p)〉. In this case, this formula does not
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hold and a counterexample cex = send send out is returned to witness this fact. The

method then performs some analysis to determine whether the evolved system violates

the property p or A(p) is too strong. The result is that A(p) is too strong to be satisfied by

M ′

2. A new assumption Anew(p) must be generated again. For this purpose, the framework

reuses the assumption A(p) as the initial assumption and applies the improved L* learning

algorithm showed in Algorithm 4 to generate again the new assumption Anew(p) illustrated

in Figure 6.4.

Figure 6.4: The updated model and the regenerated assumption Anew(p).
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Chapter 7

Experiment and Evaluation

This chapter presents three component-based software (CBS): automobile cruise control

system, gas oven control system, and banking subsystem and experimental results ob-

tained by applying the proposed approaches for these systems. These experiments are

not only to show the practical usefulness of our proposed approaches but also to present

how to generalize the proposed approaches for larger CBS (i.e., CBS containing more than

two components).

7.1 An Automobile Cruise Control System

The automobile cruise control system (ACCS) has been recognized as a control system for

modern vehicles. It is also used popularly in software engineering community for several

purposes. This system is taken from the text book by J. Magee and J. Kramer [13].

7.1.1 Description of ACCS

The function of ACCS is to accurately maintain the driver’s desired set speed, without

intervention from the driver, by actuating the throttle-accelerator pedal linkage. The

ACCS has the following requirements. It is controlled by three buttons: on, off , and

resume (Figure 7.1). When the engine is running and the on button is pressed, the

automobile cruise control system records the current speed and maintains the speed of

the car at the recorded setting. When the accelerator, brake or off is pressed, the

system disengages but retains the speed setting. If resume button is pressed, the system

accelerates or de-accelerates the car back to the previously-recorded speed.
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Figure 7.1: Automobile cruise control system.

7.1.2 Structure of ACCS

Structure diagram and observable actions for the ACCS shown in Figure 7.2 can be

produced using the following design activities:

• Identify the main observable actions and interactions of the system.

• Identify and define the main components of the system.

• Identify the main properties of the system.

• Structure the components into a structure diagram.

The main internal control for the system is provided by two components: the cruise

controller and the speed control. The interface to the external sensors and actuators

is provided by the other three components: sensor scan, input speed, and throttle. The

cruise controller receives the buttons, brake, accelerator and engine events from the sensor

scan. The input speed component monitors the speed when the engine is switched on and

provides the current speed readings to the speed control. Depending on the circumstances,

the cruise controller triggers clear or record the speed, and enable or disable the speed

control. The speed control then sets the throttle accordingly. In this way, the sensor scan

encapsulates (information hiding) the periodic process of scanning sensors, the cruise

controller encapsulates the decision as to when speed maintenance is activated, and the

speed control encapsulates how to record and maintain speed.

With regard to the required properties, the behavior of the system can be checked

using the particular scenarios as follows:

• Is the system enabled after the engine is switched on and the on button is pressed?
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• Is the system disabled when the brake is pressed?

• Is the system enabled when the resume button is pressed?

• Is the system disabled when the engine is switched off?

Figure 7.2: Structure diagram and observable actions of ACCS.

7.1.3 Design Models of Components

Each component is defined in Figure 7.3 by FSP as a process-algebra style notation

with LTS semantics. The sensors are repeatedly scanned; the input speed is repeatedly

monitored when the engine is on; and, when the throttle is set, the car “zooms” off. Speed

control is initially disabled. It clears and records the current speed setting and, when it is

enabled, it sets the throttle according to the current speed and the recorded speed. The

behavior of the cruise controller becomes active. When active, pressing the on button

triggers the recording of the current speed and enables the speed control. The system

is then cruising. Pressing the on button again triggers the recording of the new current

speed and the system remains cruising. Pressing the off button, brake or accelerator

disables the speed control and sets the system to standby. Switching the engine off at any

time makes the system inactive.
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Figure 7.3: Design models of the components for ACCS.

7.1.4 Safety Properties

A safety property required of the ACCS named CRUISESAFETY is shown in Figure 7.4.

This property states that if the system is enable by pressing the on or resume buttons,

then pressing the off button, the brake or the accelerator should result in the system

being disabled.

The described CRUISESAFETY safety property does not include a check on the

engine status. This must now be included to form an improved safety property named

IMPROVEDSAFETY show in Figure 7.5. It is clear that control should be disabled when

the engine is switched off.

7.1.5 Assume-Guarantee Verification of ACCS

Checking of ACCS
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Figure 7.4: A required safety property of ACCS.

Figure 7.5: An improved safety property of ACCS.

At first, we have to verify whether the ACCS before evolving satisfies the required prop-

erties, i.e., CRUISESAFETY denoted p1 and IMPROVEDSAFETY denoted p2. In order

to apply the assume-guarantee verification approach for checking the system, we consider

ACCS as a CBS containing two compositional components: M1 and M2, where M1 is

a composition of SPEEDCONTROL and THROTTLE shown in Figure 7.3 (i.e., M1 =

SPEEDCONTROL ‖ THROTTLE) and M2 is a composition of SENSORSCAN, INPUT-

SPEED, and CRUISECONTROLLER shown in Figure 7.3 (i.e., M2 = SENSORSCAN

‖ INPUTSPEED ‖ CRUISECONTROLLER). We verify the system for each property

separately. In this case, the size of this system, which is the product of the sizes of the

software components and the size of the required property, is 720 states.

Consider the CRUISESAFETY safety property shown in Figure 7.4, safety analy-

sis using the assume-guarantee verification approach proposed in [10] (via the AG tool

described in Section 4.3 of Chapter 4) verifies that the property violates in the ACCS

with a counterexample engineOn clearSpeed on recordSpeed enableControl engineOff

disableControl. It violates because the property does not include a check on the engine

status.
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With regard to the IMPROVEDSAFETY safety property (p2 safety property) shown

in Figure 7.5, the assume-guarantee verification approach proposed in [10] verifies that

the property is not violated in the ACCS with the generated assumption A(p2) shown

in Figure 7.6. We generate the assumption with 144 required membership queries, 3

generated candidate assumption, and 4 required conjectures.

Figure 7.6: The generated assumption A(p2) of ACCS.

Checking of Evolving ACCS

The design model of the CRUISECONTROLLER component shown in Figure 7.3 is

evolved to EVOLVEDCRUISECONTROLLER model shown in Figure 7.15 to ensure that

the system should be inactive when the engine is switched off at any time. The EVOLVED-

CRUISECONTROLLER model is obtained by adding a new behavior engineOff→INACTIVE

(the bold typeface).

Figure 7.7: Evolved model of the CRUISECONTROLLER component.

In order to recheck the evolved ACCS M1‖M
′

2 (M ′

2 = SENSORSCAN ‖ INPUTSPEED
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‖ EVOLVEDCRUISECONTROLLER), our framework presented in Section 5.1.1 of Chap-

ter 5 only checks the formula 〈true〉 M ′

2 〈A(p2)〉, where A(p2) is an assumption of ACCS

before evolving (shown in Figure 7.6). This checking returns false and the counterex-

ample analysis implies that A(p2) is too strong to be satisfied by M ′

2. A new assumption

Anew(p2) for the evolved ACCS M1‖M
′

2 must be regenerated. For the purpose, the new

assumption regeneration method reuses the assumption A(p2) to regenerate the new as-

sumption Anew(p2) shown in Figure 7.8. In the assumption generation method proposed

in [10], for the same goal, the method has used 360 required membership queries, 5

generated candidate assumption, and 8 required conjectures to generate Anew(p2). Our

method generates Anew(p2) at much lower computational cost with 216 required member-

ship queries, 2 generated candidate assumption, and 4 required conjectures.

Figure 7.8: The new assumption Anew(p2) regenerated by the proposed framework.

7.1.6 Discussion

As mentioned above, the automobile cruise control system is used popularly in software

engineering community for several purposes. In fact, there are many versions of this

system. In this experiment, we use one of them presented in the text book by J. Magee

and J. Kramer [13].

The obtained experimental result for rechecking the evolving ACCS is a nice example

to show the practical usefulness of the proposed framework presented in Chapter 5. In

this case, the current assumption A(p2) is not actual assumption of the evolved ACCS.

It is too strong to be satisfied by M ′

2. The new assumption Anew(p2) is regenerated with

a lower computational cost. By reusing the entire current assumption A(p2), we reduce
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144 required membership queries, 3 generated candidate assumption, and 4 required con-

jectures for regenerating the new assumption.

However, the reduced numbers are quite small. The reason is that the evolution of

the CRUISECONTROLLER component is too small, i.e., adding engineOff→INACTIVE

in to the model of the component. Even if the reduced computational cost is small, our

approach is applied many times during the software life-cycle because the evolution often

occurs at any time in any phases of the software development process. As a result, the

obtained benefit from our approach becomes larger and larger.

7.2 A Gas Oven Control System (GOCS)

7.2.1 Description of GOCS

A gas oven has recognized as a control system that it can be remote-controlled at home

or outside using mobile devices. This remote control system may be useful for turning off

the gas oven when we forgot to turn it off at going outside or when we want to control

the oven remotely at home. However, it is unsafe to control a gas oven remotely since we

cannot check its status such as gas leakage and inflammable materials on it. Therefore,

for safety, we need some complementary devices such as a flame detection sensor, which

can be monitoring the status of the gas oven. Figure 7.9 shows the overall structure of

the gas oven that can be remote-controlled. Now, is the gas oven system safety? [50].

Figure 7.9: An example of remote-controlled gas oven system.

7.2.2 Structure of GOCS

Figure 7.10 represents a structure diagram and observable actions of the remote-controlled

gas oven system. For simplicity, we abstractly describe only core components. The gas
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oven system is composed of a gas oven controller, a valve controller, a flame sensor, a

communication media, and mobile devices.

Figure 7.10: A structure diagram and observable actions of the remote-controlled gas
oven system.

7.2.3 Design Models of Components

Each component of the structure diagram is described by FSP. Figure 7.11 shows the

LTS models of the remote-controlled gas oven system. Communicating channels between

components such as vCon and cCon are described by shared labels. In a LTS, all the

states are considered as accepting states. The parallel composition of two LTS models,

denoted by P‖Q, models the synchronized behavior of shared labels. Local events behave

independently while the shared labels should be synchronized.

Figure 7.11: Design models of the components for GOCS.
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7.2.4 Safety Property

A safety property required of the GOCS named GOCSSAFETY is shown in Figure. This

property states that after a gas valve is opened, it should be closed.

Figure 7.12: A required safety property of GOCS.

7.2.5 Assume-Guarantee Verification of GOCS

Checking of GOCS

In order to apply the assume-guarantee verification approach for verifying the GOCS

such that whether the system satisfies the GOCSSAFETY safety property denoted p,

we consider GOCS as a CBS containing two compositional components: M1 and M2,

where M1 is a composition of GASOVENCONTROLLER and MOBILEDEVICE shown

in Figure 7.11 (i.e., M1 = GASOVENCONTROLLER ‖ MOBILEDEVICE) and M2 is

a composition of FLAMESENSOR, VALVECONTROLLER, and COMMUNICATION-

MEDIA shown in Figure 7.11 (i.e., M2 = FLAMESENSOR ‖ VALVECONTROLLER ‖

COMMUNICATIONMEDIA).

The assume-guarantee verification approach proposed in [10] (via the AG tool de-

scribed in Section 4.3 of Chapter 4) verifies that the GOCSSAFETY safety property is

not violated in the GOCS with the generated assumption A(p) shown in Figure 7.13. The

generated assumption A(p) has 14 states and 110 transitions.

For the same purpose, the proposed minimized assumption generation method pre-

sented in Section 4.1 of Chapter 4 generates a minimal assumption Am(p) shown in Fig-

ure 7.14. The generated minimal assumption Am(p) has 6 states and 26 transitions.

Checking of Evolving GOCS

The design model of the COMMUNICATIONMEDIA component shown in Figure 7.11 is

evolved to EVOLVEDCOMMUNICATIONMEDIA model shown in Figure 7.15 to ensure

that the gas valve is opened after the event “con” be occurred. The EVOLVEDCOMMU-

NICATIONMEDIA model is obtained by adding a new behavior con→von→EVOLVEDCOMMUNICATIONMEDIA

(the bold typeface).
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Figure 7.13: The generated assumption A(p) of GOCS.

In order to recheck the evolved GOCS M1‖M
′

2 (M ′

2 = FLAMESENSOR ‖ VALVE-

CONTROLLER ‖ EVOLVEDCOMMUNICATIONMEDIA), our framework presented in

Section 5.1.1 of Chapter 5 only checks the formula 〈true〉 M ′

2 〈A(p)〉, where A(p) is an

assumption of GOCS before evolving (shown in Figure 7.13). This checking returns true.

This means that the evolved GOCS still satisfies the required safety property without

regenerating a new assumption.

7.2.6 Discussion

The gas oven control system is a nice example to show the effectiveness of the proposed

minimized assumption generation method presented in Chapter 4. Our obtained ex-

perimental result imply that the generated minimal assumption Am(p) (6 states and 26

transitions) has smaller size and number of transitions than the generated one (14 states

and 110 transitions) by the method proposed in [10]. The minimal assumption is effective
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Figure 7.14: The generated minimal assumption Am(p) of GOCS.

Figure 7.15: Evolved model of the COMMUNICATIONMEDIA component.

for rechecking the systems with a lower computational cost.

In order to recheck the evolved GOCS, the proposed framework for verification of

evolving CBS presented in Chapter 5 only checks the formula 〈true〉 M ′′

2 〈A(p)〉. The

result of this checking is true. This means that the evolved GOCS still satisfies the

GOCSSAFETY safety property without regenerating a new assumption. In this case, our

approach can recheck the evolved system in the fastest way.

However, the current assumption A(p) is still strong enough to be satisfied by the

evolved model M ′

2 because the evolution of the COMMUNICATIONMEDIA component is

too small by adding a new behavior con→von→EVOLVEDCOMMUNICATIONMEDIA

into the model of the component. If the evolution will be bigger, the current assumption

will be too strong for the evolved model to satisfy. In this case, a new assumption must

be regenerated and this example will be better to show the effectiveness of both proposed

approach (minimized assumption generation and new assumption regeneration).

7.3 A Banking Subsystem (BS)

7.3.1 Description of BS

Consider a subsystem of a banking system which contains two components: Deposit and

Withdraw. Figure 7.16 shows the overall structure of the banking subsystem. Two re-

quests for withdrawal and deposit from the same account comes to a bank from two

different ATMs (or ATM and Banker, etc.). The request for deposit requires via the
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RequireDepo action. After completing the deposit, it releases the shared bank account

via the ReleaseDepo action. Similarity with the request for withdrawal, it requires and

releases the shared bank account via RequireWithd action and ReleaseWithd action re-

spectively. The bank account is called as a critical section (shared data) of the system. In

the banking system, one of the key issues is to ensure that only one component accesses

the bank account at any given time (the mutual exclusion problem).

Figure 7.16: A banking subsystem.

7.3.2 Peterson’s Algorithm

One of the popular solutions to deal with the the mutual exclusion is the Peterson’s al-

gorithm [51]. In the work, Peterson presents an elegant algorithm to solve the mutual

exclusion problem for two processes, A and B, which use only shared memory for com-

munication. There are three shared variables, x, y and turn. Both x and y are initially

set to zero. The variable turn can hold one of two possible values A and B (we use these

instead of 0 and 1 for clarity of presentation), and is initially set to A. The algorithm is

shown in Figure 7.17.

Figure 7.17: Peterson’s algorithm.
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7.3.3 Design Models of Components

The described Peterson’s algorithm is applied to deal with the the mutual exclusion

problem in the banking subsystem. Since every variable can only take one of a finite

number of values, the state space of the composition of the models of the components,

Deposit and Withdraw, is finite. We have modelled both components as FSPs. The

design model of the Deposit component is shown in Figure 7.18, the design model of the

Withdraw component in Figure 7.19.

The states are labelled by four-tuples, which represent the shared variables as well

as the program counter. The tuples are of the form 〈turn; x; y; pc〉, where the program

counter pc counts the number of steps taken so far in each component. The program

counter starts with 0 and is increased with each transition that the component makes.

Both models of the described components have the same label for their initial states.

Once a component has left it critical section, it returns to the initial state to start a new

run.

Since our notion of labeled transition system does not include reading and writing

of variables, we model the communication between the models using the semantics of

the parallel composition, introduced in Section 2.1 of Chapter 2. Hence each model

also contains those transitions which correspond to the writing of shared variables by

the respective other model. The alphabet includes actions like xeq1, which are taken

synchronously by both models whenever the model sets x to 1. The actions requireDepo,

ReleaseDepo, requireWithd, and releaseWithd indicate that a model enters or leaves its

critical section. Since this does not affect the shared variables, the DEPOSIT model does

not have any transitions labelled by requireWithd or releaseWithd, and similarly, the

WITHDRAW model does not have any transitions labelled by requireDepo or releaseDepo.

7.3.4 Safety Properties

A safety property required of the banking subsystem named ME (mutual exclusion) is

shown in Figure 7.20. This property states that only one component accesses the bank

account at any given time.

7.3.5 Assume-Guarantee Verification of BS

In order to verify whether the compositional system DEPOSIT‖WITHDRAW satisfies

the described ME property, the assume-guarantee verification approach proposed in [10]

verifies that the property is not violated in the system with the generated assumption A(p)

shown in Figure 7.21. The generated assumption A(p) has 13 states and 102 transitions.

For the same purpose, our proposed minimized assumption generation method gener-
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Figure 7.18: Design model of the Deposit component.

ates a minimal assumption Am(p) shown in Figure 7.22. The generated minimal assump-

tion Am(p) has 12 states and 48 transitions.
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Figure 7.19: Design model of the Withdraw component.

Figure 7.20: A required safety property of the banking subsystem.
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Figure 7.21: The generated assumption A(p) of the banking subsystem.
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Figure 7.22: The generated minimal assumption Am(p) of of the banking subsystem.
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Chapter 8

Related Works

There are many works that have been recently proposed in assume-guarantee verification

of component-based systems, by several authors. We focus only on the most recent and

closest ones as follows.

D. Giannakopoulou et al. proposes an algorithm for automatically generating the

weakest possible assumption for a component to satisfy a required property [16]. Although

the motivation of this work is different, the ability to generate the weakest assumption can

be used for assume-guarantee verification of CBS. Based on this work, the work proposed

in [10] presents a framework to generate a stronger assumption incrementally and may

terminate before the weakest assumption is computed. The key idea of the framework

is to generate assumptions as environment for components to satisfy the property. The

assumptions are then discharged by the rest of the CBS. However, this framework focuses

only on generating the assumptions. The number of states of the generated assumptions

is not mentioned in this work. Thus, the assumptions generated by this work are not

minimal. This work has been extended in [20, 25] for modular verification of component-

based systems at the source code level. Our work improves these works to generate the

minimal assumptions in order to reduce the computational cost for rechecking of the

CBS. Our work about assume-guarantee verification of evolving CBS at design level is

similar to the works proposed in [20, 10, 16, 37, 35]. However, our method differs these

works in some key points. Firstly, our work presents a faster assume-guarantee method

to verify component-based systems in the context of the component evolution. There is

a strong relationship between two design models M2 and M ′

2, where M ′

2 is the evolution

of M ′

2. For this reason, the proposed method is efficient to change. On the contrary, the

component evolution is not mentioned in these works. Secondly, in the proposed method,

if the model M2 is evolved to a new model M ′

2 and if the formula 〈true〉 M ′

2 〈A(p)〉

does not hold, the new assumption Anew(p) is regenerated on a faster approach. These

works in [20, 10, 16, 37, 35] are viewed from a static perspective, i.e., the component and

the external environment do not evolve. If the component changes after adapting some
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refinements, the assumption generation method is run again on the whole evolved system,

i.e., the model of the component has to be constructed again; and the assumption about

the environment is then regenerated from that model. At source code level, our work is

close to the works proposed in [20, 37, 25]. However, these works assume that the models

which describe the behaviors of the software components are available and accurate. On

the contrary, our work do not assume that. If a model is not accurate for its component,

we provide a mechanism for updating an accurate model.

An approach about optimized L*-based assume-guarantee reasoning was proposed by

Chaki et al. [24]. The work suggests three optimizations to the L*-based automated

assume-guarantee reasoning algorithm for the compositional verification of concurrent

systems. The purposes of this work is to reduce the number of the membership queries and

the number of the candidate assumptions which are used for generating the assumption,

and to minimize the alphabet used by the assumption. However, the core of this approach

is the framework proposed in [10]. Thus, the assumptions generated by this work are not

minimal. Our work and this work share the motivation for optimizing the framework

presented in [10] but we focus on generating the minimal assumptions.

An approach for verification of evolving software was suggested by Chaki et al. [21,

22, 23]. This work focusses on component substitutability directly from the verification

point of view. The purpose of this work is to provide an effective verification procedure

that decides whether a component can be replaced with a new one without violation.

The approach also reuses previous assumptions by using the dynamic L* algorithm. We

share the motivation with this work, but the concept about component evolution in our

work means adding only some new behaviors to the component before evolving. In our

opinion, adding is enough for the component evolution. By this definition, our verification

method is simpler than the method proposed in [21, 22, 23]. Moreover, this work uses

abstraction technique to obtain a new model of the upgraded component. Regenerating

the new model is not necessary because the component changes are often small. Our work

reuses the previous model to update the new one by applying the L* learning algorithm.

Even though the proposed approaches in this dissertation is based on component-

based modular model checking, there is a fundamental difference between the conven-

tional modular verification works [38, 39, 40] and our work. Modular verification in the

previous works [38, 39, 40] is rather closed. It also is not prepared for future changes. If

a component is added to the system, the whole system of many existing components and

the new component are required to re-checked altogether. On the contrary, the proposed

method verifies global system properties by checking components separately. In the sim-

plest form, it checks whether a component M1 guarantees a property p when the external

environment satisfies an assumption A(p), and checks that the remaining components in

the system (M1’s environment) indeed satisfy A(p).
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Our work relates to many works have been proposed in model checking publish/sub-

scribe systems [41, 42, 43, 44]. The paper in [44] based on the idea of providing a generic,

parametric publish/subscribe model checking framework is proposed. This framework

allows for decomposing the problem in two parts: (1) a reusable model that captures run-

time event management and dispatch, and (2) components that are specific to the appli-

cation being modelled. This work has been extended in [41, 42, 43] by the different ways.

In particular, [42] uses architectural patterns as an abstraction to carry on, and reuse,

formal reasoning on systems whose configuration can dynamically change. [43] presents

a compositional reasoning to verify middleware-based software architecture descriptions.

[41] embeds the asynchronous communication mechanisms of publish-subscribe infrastruc-

tures within Bogor. Our work and [43] share the compositional reasoning approach but

we focus on solving a smaller part in the framework that is assumption regeneration in

the context of the component evolution.

Peled et al. proposes an approach called black box checking [47] as a way to directly

verify a system when its model is not given but a way of conducting experiments is

provided. This work has been improved in [48] for grey-box checking. A related idea,

called adaptive model checking (AMC) [12], allows using an inaccurate and updated model

to do the verification, while refining it during verification process. Our work combines the

idea of AMC and modular model checking in order to deal with the state space explosion

problem and to reduce the expensiveness of the conformance testing process.

Finally, the different approaches about assume-guarantee verification methods for

component-based systems were proposed in [11, 15]. These papers assume the avail-

ability and correctness of models that describe the behaviors of the software components.

Furthermore, our work differs in the concept of software component evolution. In our

framework, the component evolution means only adding some behaviors to the component

whereas the concept in [11, 15] means adding (or plugging) a new component (extension)

to the base component via compatible interface states. These works also assume the avail-

ability and correctness of the new model of the evolved component. In practice, checking

correctness of the new model and updating the inaccurate model are the difficult tasks.
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Chapter 9

Conclusion

9.1 Summary of the Dissertation

The research in this dissertation focuses on assume-guarantee verification of evolving

component-based software (CBS) in the context of the component evolution at software

design level and source code level. In the research, the component evolution means adding

only some new behaviors to the component without losing the old behaviors. We think that

adding behaviors to the component is enough for the software component evolution. With

this approach, we have a simpler and faster assume-guarantee approach to recheck the

evolved CBS. The key idea of our research is to reuse the previous verification results and

the previous models of the evolved components in order to reduce the number of steps re-

quired in the model update and the assume-guarantee verification processes. The research

focuses only on checking the safety properties of CBS where behaviors of components can

be represented by LTSs.

The first and the second chapters of the dissertation are about the context and the

background of this research. The third chapter is about two current approaches for model

checking a system and a proposed method for new assumption regeneration in the context

of the component evolution. The main contributions of the research are in Chapters 4,

5, and 6. Chapter 7 is a larger experiment for three typical CBS systems. Chapter 8 is

about related works.

In Chapter 4, we propose a method for generating minimal assumptions for the assume-

guarantee verification of CBS. The method is an improvement of the described L*-based

assumption generation method. The key idea of the proposed method is finding a minimal

assumption in the search spaces of the candidate assumptions. These minimal assump-

tions are seen as the environments needed for the components to satisfy a property and for

the rest of the system to be satisfied. In this method, we have improved the technique for

answering membership queries of the Teacher which helps the L* to correctly answer the

membership query questions by using the “don’t know” value. By using this technique,
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the proposed method guarantees that every trace which belongs to the language of the

generated assumption exactly belongs to the language being learned. The search space

of observation tables used in the proposed method exactly contains the generated obser-

vation tables which are used to generate the candidate assumptions. This search space is

seen as a search tree where its root is the initial observation table. Finding an assumption

with a minimal size such that it satisfies the compositional rules thus is considered a search

problem in this search tree. We apply the breadth-first search strategy because this strat-

egy ensures that the generated assumptions are minimal (see Theorem 2). The minimal

assumptions generated by the proposed method can be used to recheck the whole system

at much lower computational cost. We also present some improvements of the method

in order to reduce the computational cost for generating the minimal assumptions. We

have implemented tools for the assumption generation method proposed in [10] and our

minimized assumption generation method. This implementation is used to verify some

typical CBS systems to show the effectiveness of the proposed method.

Chapter 5 proposes an effective framework for assume-guarantee verification of component-

based software in the context of the component evolution at design level. The component

evolution means that adding only some new behaviors to the component without los-

ing the old behaviors. In this framework, if the model of a component is evolved after

adapting some refinements, the whole CBS of many models of the existing components

and the evolved model of the evolved component is not required to be rechecked. It only

checks whether the evolve model satisfies the assumption of the system before evolving.

If it does, the evolved CBS still satisfies the property. Otherwise, if the assumption is

too strong to be satisfied by the evolved model, a new assumption is generated again by

reusing the entire assumption as the previous verification result. We propose two methods

for the new assumption regeneration: assumption regeneration and minimized assump-

tion regeneration. Our work does not regenerate the new assumption from scratch. The

methods reuse the current assumption as the previous verification result to regenerate

the new assumption at much lower computational cost. Though the proposed framework

considers the simple case where the CBS only consists of two components M1 and M2,

we can generalize it for a larger CBS containing n-components M1, M2, ..., Mn (n ≥ 2).

Although evolution may occur on some components, theoretically, we can suppose that

the CBS only allows us to evolve Mn. In order to apply the proposed framework for the

larger CBS, we can consider the CBS as a software system which contains two compo-

nents, i.e., the compositional component M1‖M2‖...‖Mn−1 and Mn. The framework for

the larger CBS consists of the similarly steps as described above because we only focus on

the evolved component M ′

n of Mn. In order to improve the proposed method, we present

a solution for reducing the number of candidate queries which are needed for regenerating

the new assumption. We also propose a minimized assumption regeneration method for
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modular verification of component-based software in the context of the component evo-

lution. This method is an improvement of the minimized assumption generation method

presented in Section 4.1 of Chapter 4. We have implemented a tool for the assumption

generation method proposed in [10] and our assumption regeneration method. This im-

plementation is used to verify some evolved CBS systems to show the effectiveness of the

proposed method. Although we understand that the CBS systems used in the experiment

may not large enough to show effectiveness of the proposed framework, the systems are

typical in practice. Even if the systems are not large enough, our approach can reduce

the numbers of membership queries and candidate assumptions (see Table 5.1). Though

the reduced numbers are small, our approach is applied many times during the software

life-cycle because evolution often occurs at any time in any phases of the software de-

velopment process. As a result, the obtained benefit from our approach becomes larger

and larger. Moreover, LTSs are popular and practical models to describe behaviors of

software in software engineering community. When verifying large-scale CBS systems,

even if the behaviors of the software components are very complex, our work only focuses

on the observable behaviors of each components. With this approach, we hope that our

framework is effective for verifying practical software systems.

Chapter 6 proposes a framework for modular conformance testing and assume-guarantee

verification of evolving CBS at source code level. This framework exactly is a combination

of the proposed approaches presented in Chapters 4 & 5 and the modular conformance

testing approach in order to deal with the described issues of AMC for rechecking of the

evolved component-based software. The framework includes two stages: modular con-

formance testing for updating inaccurate models of the evolved components and assume-

guarantee verification for evolving CBS. In this framework, when a component is evolved

after adapting some refinements, the whole evolved system of many existing components

and the evolved component are not required to be rechecked. The proposed framework

focuses only on this component and its model in order to update the model and to recheck

the whole evolved system. With this approach, we have a simpler assume-guarantee ap-

proach to recheck the evolved CBS at source code level. Moreover, when a component

is evolved, its model may be inaccurate. We propose the modular conformance testing

method to check conformance between this model and the actual evolved component via

the VC algorithm. If they do not conform, this model is updated by using the L* learning

algorithm with the initial model as itself. In our work, the models describe the behav-

iors of the corresponding software components. Therefore, the proposed framework can

deal with the state space explosion problem in model checking and reduce the cost of the

conformance testing when checking large-scale software. The proposed framework in this

Chapter not only focuses on the evolved component and its model but also reuses the

entire current model of the component before evolving for learning the accurate model
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and rechecking the evolved CBS. By this approach, the framework can reduce the num-

ber of steps required in the model update and the number of the membership queries

and the candidate assumptions which are needed to regenerate the new assumptions. In

some cases where the current assumptions are actual assumptions of the evolved CBS,

these CBS are verified in the fastest way without regenerating the new assumptions.

Moreover, we separate the model learning and the assume-guarantee verification into two

independent processes. The assume-guarantee verification method is applied once when

an accurate model of the evolved component has been generated. Therefore, the approach

is more effective than the current approaches proposed in [47, 12, 48]. The effectiveness

of the assume-guarantee verification has been presented in Chapter 5.

In Chapter 7, we describe three CBS examples which have sizes larger than the sizes

of the examples used in Chapter 4 & 5. We also present the experimental results obtained

by applying the proposed approaches for the systems. These experiments are not only

to show the practical usefulness of our proposed approaches but also to present how to

generalize the proposed approaches for larger CBS.

9.2 Future Directions

In this dissertation, we focus on the simple component-based software where the software

only consists of two components. Therefore, one of our future works is to generalize

all of the proposed frameworks and the proposed methods in the dissertation for larger

component-based software, where CBS contains more than two components. We are also

improving the frameworks and the methods, and applying some larger CBS, where their

sizes are larger than the sizes of the CBS which are used in our experiments in order to

show their practical usefulness. Our work focuses only on checking the safety properties

so we are going to extend the proposed approaches for checking other properties, e.g.,

liveness properties.

The models used in this dissertation are represented by LTSs as a kind of finite state

machines. The LTS models are familiar to many programmes and engineers. They are

used to specify the dynamic behaviors of objects in well-known object-oriented design

methods such as object-oriented development [52], object modelling technique [54] and,

more recently, the all-encompassing Unified Modelling Language [53]. They are also ex-

tensively used in the design of digital circuits - the original engineering use. Moreover,

the LTS models have well-defined mathematical properties, which facilitate formal anal-

ysis and mechanical checking, thus avoiding the tedium and error introduction inherent

in manual formal methods. However, the LTS models cannot describe behaviors of all

software systems in practice. This is one of the limitations of our work. We only focus on

checking the CBS systems where their components can be represented by LTSs. We are
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going to apply other specification methods to model behaviors of software components,

e.g., modal transition systems (MTSs).

In Chapter 4, we have proposed a method for generating minimal assumptions. How-

ever, the breadth-first-search which is used in our work, may be not practical because it

consumed too much memory. For larger-scale systems, the computational cost for gen-

erating the minimal assumption is very high. An idea to solve this issue is using the

iterative-deepening depth first search strategy. The search strategy combines the space

efficiency of the depth-first search with the optimality of breadth-first search. It proceeds

by running a depth-limited depth-first search repeatedly, each time increasing the depth

limit by one. The assumptions generated by using this search strategy are smaller than

the assumption generated in [10] but they may be not minimal. Another problem in the

proposed method is that the queue has to hold an exponentially growing of the number

of the observation tables. This makes our method unpractical for large-scale systems.

In order to reduce the search space of the observation tables, we improve the technique

for answering membership queries to reduce the number of instances of each table which

contains the “?” entries. At any step i of the learning process, if the current candidate

assumption Ai is too strong for M2 to be satisfied, then L(Ai) is exactly a subset of the

language of the assumption being learned. For every s ∈ (S ∪ S.Σ).E, if s ∈ L(AW ) and

s ∈ L(Ai), instead of setting T (s) to “?”, we should set T (s) to true. We can reduce

several number of the “?” entries by reusing such candidate assumptions. Although we

have presented some improvements of the method in order to reduce the computational

cost, the effectiveness of the improvements should be evaluated by applying some larger

illustrative system in our experiment. Moreover, in the proposed method, we focus only

on minimizing the size of the generated assumption. The generated minimal assump-

tion does not correspond to the strongest assumption which satisfies the compositional

rules. Instead of focusing on the size, it should be better to focus on the weakness of the

generated assumption.

As mentioned in Chapter 5, in the case where a new assumption is required to regen-

erate for rechecking the evolved CBS, we can apply one of the two proposed methods:

assumption regeneration and minimized assumption regeneration. In the former, its core

is based on the framework proposed in [10]. Thus it should be improved to obtain a more

effective method for assumption regeneration by reducing the number of the membership

queries and the candidate assumptions which are needed to generate again the new as-

sumptions. One of solutions we intend to use is applying the approach about optimized

L*-based assume-guarantee reasoning proposed by Chaki et al. [24]. The core of the latter

is based on the method proposed in Chapter 4. Although we reuse the current assumption

as an approach for reducing the search space of the observation tables, the computational

cost for regenerating the minimal assumptions still is high. We are investigating to apply
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the improvements presented in Chapter 4 for this method in order to reduce the compu-

tational cost. We also are investigating to implement a tool supporting for the minimized

assumption regeneration method. Moreover, in the case where the component evolution

means that adding some new behaviors to the component and removing some old behav-

iors from the component, the proposed methods cannot reuse the entire assumption of

the CBS before evolving directly because the component evolution may change the un-

known language U of the assumption being learned. A potential solution for this issue is

to combine the proposed framework and the method for verification of evolving CBS via

component substitutability analysis proposed in [22, 23]. When the unknown language U

is changed to U ′ by the component evolution, the current assumption A(p) of the CBS

before evolving may be invalidated for the new language U ′. A validated assumption

A(p) for U ′ means that for every trace s of A, s exactly belongs to U ′. If A(p) is invali-

dated, a validated candidate assumption A′(p) is obtained by revalidating A(p). If A′(p)

is too strong to be satisfied by the evolved model, the L* learning algorithm is applied to

regenerate a new assumption with the initial assumption as A′(p).

In Chapter 6, we have proposed a method for modular conformance testing for up-

dating inaccurate models of the evolved components. However, we have not implemented

the tool yet. The most difficult part in building this tool is checking the conformance

between a component and its model via the VC algorithm. Furthermore, in the case

where the component evolution means that adding some new behaviors to the component

and removing some old behaviors from the component as mentioned above, the proposed

modular conformance testing method cannot reuse the entire inaccurate model for learn-

ing the accurate one of the evolved component. The method should be improved in order

to deal with this issue.
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