
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title 計算の難しさ---スケジューリングと回路計算量

Author(s) 田中, 圭介

Citation

Issue Date 1997-03

Type Thesis or Dissertation

Text version author

URL http://hdl.handle.net/10119/835

Rights

Description Supervisor:Milan Vlach, 情報科学研究科, 博士

Computational Di�culty

Scheduling and Circuit Complexity

by Keisuke Tanaka

A dissertation submitted to

School of Information Science

Japan Advanced Institute of Science and Technology

in partial ful�llment of the requirements

for the degree of

Doctor of Information Science

Graduate Program in Information Science

Written under the direction of

Professor Milan Vlach

January 14, 1997

Abstract of the Dissertation

Computational Di�culty

Scheduling and Circuit Complexity

by Keisuke Tanaka

Dissertation Director: Professor Milan Vlach

The classi�cation of problems according to their computational di�culty requires estab-

lishing both upper and lower bounds on the amount of computational resources necessary

to solve them. In this thesis, we are investigating computational di�culty by studying the

complexity of scheduling problems and boolean circuits. In particular, we are focusing on

single machine scheduling problems with new types of due dates and release dates, and

negation-limited circuits, where the number of negations available is restricted.

In 1986, Hall proposed a new type of due dates called generalized due dates. First,

we investigate the problems of minimizing the maximum absolute lateness and range of

lateness under generalized due dates. In contrast to the traditional due date cases, we

show that these problems are NP-hard in the strong sense. Furthermore, we present simple

approximation algorithms with non-trivial performance guarantee for these problems.

Second, we are concerned with scheduling with both traditional and generalized due

dates, and show that a polynomial time algorithm exists for the problem of minimizing

the maximum of maximum latenesses induced by traditional and generalized due dates.

In addition to scheduling involving generalized due dates, we also consider scheduling

with a new type of release dates which are related to the traditional release dates in a

similar way as the generalized due dates to the traditional ones. In 1992, Ishii, Tada, and

Masuda proposed another new type of due dates called fuzzy due dates. We improve the

algorithms for basic scheduling problems with fuzzy due dates.

The di�culty of a problem can be expressed as the number of gates in a circuit with

the minimum number of gates, which computes the problem. We consider the complexity

of negation-limited inverters, giving lower bounds as well as new upper bounds on the size

and depth of the inverters. This suggests improved upper bounds for slice functions as well

as a tighter relationship between negation-limited and general circuit complexity. We also

show lower bounds for various symmetric functions. Finally, we establish relationships

between the number of negations available and circuit sizes.

i

Acknowledgements

I wish to thank everyone who has been helped me during these �ve years of my studies

at JAIST.

I am very grateful to my supervisor, Milan Vlach for his guidance. I cannot imagine

how my studies at JAIST would have been without him. The discussion with him has

always stimulated my interest and curiosity. He has been a tireless source of insights and

inspiration. I thank him for his generous contribution to this work.

I wish to thank Tetsuro Nishino for his help. The work on this thesis has been done

in part also under his supervision, while he was at JAIST. I am greatly indebted to him

for devoting his time to help me at various stages in my studies. I thank him for his

contribution to this work.

I would like to thank Masayuki Kimura for accepting me in his laboratory. He has

supported me and enabled me to work smoothly. I wish to thank Hiroshi Shimodaira and

Mitsuru Nakai for their support. I have bene�ted greatly from them.

I wish to thank Kunihiko Hiraishi and Hiroakira Ono for serving on my committee

and providing valuable suggestions on this thesis.

I am grateful to Yoji Kajitani and Osamu Watanabe for serving on my advisors for

peripheral works. I also thank Osamu Watanabe for handling my frequent visits to Tokyo

Institute of Technology.

I would like to thank Robert Beals, Masanori Okada, and Shao-Chin Sung for helpful

discussion and their contribution to this work.

I with to thank all my teachers for their help. I am grateful to Magn�us M. Halld�orsson

for teaching me various things including approximation algorithms. I also thank him for

his encouragement. I would like to thank Jaikumar Radhakrishnan for sharing with me

his knowledge of circuit complexity. I thank Tomohiko Uematsu, Yoshihito Toyama,

Barun Chandra, Mineo Kaneko and Kunihiro Fujiyoshi for teaching me algebraic and

combinatorial arguments.

I am grateful to Tetsuo Asano, Seinosuke Toda, Tatsuie Tsukiji, Kazuyuki Amano,

Akira Maruoka, Akihiro Nozaki, Shigeki Iwata, Hiroaki Ishii, and Gilbert Young for shar-

ing their knowledge of computational geometry, circuit complexity, fuzzy scheduling, and

generalized due date scheduling.

I would like to thank James Wong. I have had an enjoyable time in San Francisco

with him. I thank him for the helpful discussion on generalized due date scheduling. I

wish to thank Toshihiko Yamakami. I have stayed fruitfully at NTT Telecommunication

Networks Laboratories in Yokosuka. His fertile imagination has bene�ted me.

I with to thank Takuya Katayama for his support and mentoring. I am grateful to

Yoshimichi Watanabe for his encouragement. Without him, I would not have been at

ii

JAIST for my graduate work.

I would like to thank my fellow graduate students, Takashi Mihara, Takahito Aoto,

and Hiroyuki Shirasu for explaining to me their works and for their comments on parts

of this thesis.

I would like to thank Hiroshi Iida, Takumi Hayashi, Moriyasu Komase, Keeni Konad,

and the members in Kimura{Shimodaira Laboratory and Nishino Laboratory for provid-

ing me the environment to pursue my studies. I thank Akira Sano, Tomohiko Morioka,

and Yasuhito Suzuki. I have enjoyed the life in JAIST with them.

I am grateful to Chinatsu Kita and the members in the administration o�ce for their

assistance.

I would like to thank JAIST and PFU for providing �nancial support for my studies.

Finally, I wish to thank my family, Yoshihiko, Chifumi, Shinichi, and Takako Tanaka

for their support.

iii

Contents

Abstract i

Acknowledgements ii

1 Introduction 1

I Single machine scheduling with new types of due dates and
release dates 6

2 Preliminaries 7

2.1 Scheduling problems . 7

2.2 Generalized due dates . 9

2.2.1 Complexity for the traditional and generalized due date models . . 10

2.2.2 Useful sequencing rules . 10

2.2.3 Sequence-dependent due dates . 10

2.3 Generalized release dates . 12

2.4 Fuzzy due dates . 13

3 Scheduling with generalized due dates 15

3.1 Introduction . 15

3.1.1 Background and motivation . 15

3.1.2 Main results . 16

3.2 Complexity . 16

3.3 Approximation algorithms . 20

4 Scheduling with both traditional and generalized due dates 29

4.1 Introduction . 29

4.1.1 Background and motivation . 29

4.1.2 De�nitions and preliminaries . 30

4.1.3 Main results . 31

4.2 Previous works . 31

4.3 An algorithm for minimizing maxfLmax; L
H
maxg 32

4.4 An algorithm for minimizing maxLi
max . 34

4.5 NP-hardness . 35

4.6 Conclusion . 37

iv

5 Scheduling with generalized release dates 38

5.1 Introduction . 38

5.2 Results . 39

5.2.1 The sum of completion time problems 39

5.2.2 The maximum lateness problems 42

5.3 Summary and open problems . 43

6 Scheduling with fuzzy due dates 45

6.1 Introduction . 45

6.1.1 Background and previous results 45

6.1.2 Main results . 45

6.2 Tada's algorithm and its improvement . 46

6.3 Lawler's algorithms . 48

6.4 Improved methods based on Lawler's algorithms 49

II Negation-limited circuit complexity 55

7 Preliminaries 56

7.1 Background and motivation . 56

7.2 De�nitions . 57

7.3 Simulations of circuits by Turing machines 58

7.4 Inversion complexity . 62

8 The complexity of negation-limited inverters 65

8.1 Introduction . 65

8.1.1 Background . 65

8.1.2 De�nitions and preliminaries . 66

8.1.3 Main results . 66

8.2 The Fischer and Tanaka{Nishino inverters 68

8.2.1 Description of the Tanaka{Nishino inverter 68

8.2.2 Common elements of the inverters 70

8.3 Description of the inverter . 71

8.4 Monotone (k; n)-inverters . 74

8.5 Lower bounds for the inverter . 76

8.6 Superlinear lower bounds for particular inverters 79

8.7 Conclusion . 81

9 Negation-limited circuit complexity for symmetric functions 82

9.1 Introduction . 82

9.2 A technical lemma on functions computed at

NEGATION gates . 83

9.3 The negation-limited circuit complexity of the parity function 84

9.4 Lower bounds on a restricted type of negation-limited parity circuits 86

9.5 Concluding remarks and open problems . 88

v

10 Relationships between the number of negations available and circuit

sizes 90

10.1 Introduction . 90

10.2 An exponential growth with the removal of two negations 92

10.3 An exponential growth with the removal of one negation 93

10.4 The complexity of circuits computing clique

functions with a limited number of negations 94

10.5 Lower bounds for clique functions . 96

11 Conclusion 98

Bibliography 100

Publications 108

Vita 110

vi

Chapter 1

Introduction

We know from our experience that some computational problems are easy to solve and

that some are di�cult to solve. When we are confronted with a new problem, a natural

question to ask is whether it is solvable e�ciently, i.e., whether it has a polynomial time

algorithm. A polynomial time algorithm is de�ned to be one whose time complexity

function can be bounded by some polynomial function of the input length.

If the answer is obviously \yes", then we can concentrate our e�orts on trying to �nd

as e�cient a polynomial time algorithm as possible.

If the answer seems to be \no", then it is not likely that we will try to �nd a polyno-

mial time algorithm. Certainly, we can try to �nd an exponential time algorithm, whose

time complexity function cannot be bounded by any polynomial function of the input

length. However, we know that the di�erence between polynomial and exponential time

algorithms has particular signi�cance when we consider large problem instances. Thus,

we can put a second natural question whether the problem is intractable, i.e., whether it

cannot be solved by any polynomial time algorithm.

At the present time, we have a tool of NP-hardness in hand, with the help of which

we can replace the second question with that whether the problem is NP-hard. If the

answer is \yes", we will have another question whether NP-hard problems are really

intractable. Certainly, the question whether the problem is NP-hard is meaningful and

most researchers believe that NP-hard problems cannot be solved by polynomial time

algorithms. However, at present, \NP-hard" does not mean non-polynomially hard. This

is known as the famous P versus NP question.

A natural way of establishing an upper bound is to construct an algorithm to solve

the problem under investigation. To establish non-trivial lower bounds are usually more

di�cult, because it must concern all possible algorithms.

In this thesis, we are studying computational di�culty, by investigating both upper

and lower bounds. In particular, we are focusing on the complexity of scheduling problems

and boolean circuits.

Scheduling is concerned with an optimal allocation of scarce resources to activities

over time. It has been studied extensively because of its practical importance. We are

especially concerned with single machine scheduling with new types of due dates and

release dates.

Owing to close relationship between Turing machines and boolean circuits, a strong

lower bound on the size of circuits computing a problem implies a strong lower bound on

1

the time required to solve it.

Circuit complexity is supposed to derive strong lower bounds in the area of the com-

putation theory, because it is simple and has good mathematical property. To understand

circuit complexity is one of the basic and important issues in theoretical computer sci-

ence. We are especially concerned with and negation-limited circuits, where the number

of negations available is restricted.

Computational models When we consider the di�culty of computational problems,

we somehow assume some reasonable model of computation. In the areas of algorithms

and computation, there are models which reect well our natural notion of computa-

tion, namely, Turing machines and boolean circuits. They have been commonly used for

many years to investigate the di�culty of problems. This thesis is also based on these

computational models.

In this thesis, we construct algorithms for scheduling problems. We do not intend

to make these algorithms in order to run them on Turing machines, however, there are

always Turing machines behind the algorithms.

Optimization and decision problems A computational problem can be viewed as

a function f that maps each input x in some given domain to an output f(x) in some

given range. In this thesis, we consider scheduling problems. When we refer to scheduling

problems, they are supposed to be optimization problems, where for input x, the output

f(x) is the smallest value in a range of feasible values with x. However, it is sometimes

convenient to consider decision problems, where the output of f(x) ranges \yes" and \no".

For example, a problem to ask how large value of optimality criterion an optimal schedule

gives with a given instance is a optimization problem, while a problem to ask whether

there is a schedule with some value of optimality criterion with a given instance is a

decision problem.

Turing machines When we study the time required to solve problems, a deterministic

Turing machine is known to be reasonable. A nondeterministic Turing machine makes an

important notion of NP-completeness in the theory of computation. A Turing machine

was proposed by Alan Turing [102], and it can formalize the notion of e�ectiveness. This

model was invented quite a long ago in the history of the theory of computation, but is

still the most common model. Here, we mention the two important variants of a Turing

machine.

Deterministic Turing machines A deterministic Turing machine consists of a �nite

control and a �nite collection of tapes each with a head to read and write (see Figure 1.1).

The �nite control is a �nite collection of states. A tape is an in�nite list of cells each

containing a symbol. Initially, all tapes have blanks except for the �rst, which contains

the input string. Once started, the machine goes from state to state, reading the symbols

under the heads, writing new ones, and moving the heads. The exact action taken is

determined by the current state, the symbols read, and the transition function of the

machine. This continues until a designated halt state is entered. The machine indicates

its output by the halting condition of the tapes.

2

Finite control

Head

Tape 1=Input tape

Tape 2

Tape 3

Tape 4

Head

Head

Head

Figure 1.1: Turing machine.

The deterministic Turing machine model provides the basis for de�ning the di�culty

of computational problems. We now de�ne the Turing machine computations within a

time bound T and a space bound S. Let f be a decision problem, and let T and S

be functions from N to N , where N denotes the set of natural numbers. Problem f is

computable in deterministic time T (n) and space S(n), if, for all inputs of size n, f can

be computed by a deterministic Turing machine which halts after at most T (n) steps and

scans at most S(n) cells on any tape, respectively.

Nondeterministic Turing machines In a nondeterministic Turing machine, the tran-

sition function is multivalued. This implies that there may be several computations on a

given input and several output values.

We also de�ne nondeterministic Turing machine computations within a time bound T

and a space bound S. Let f be a decision problem and, let T and S be functions from N

to N . Problem f is computable in nondeterministic time T (n) and space S(n), if there

is a nondeterministic Turing machine such that for any input of size n whose output is

\yes", some sequence of moves terminates and returns \yes" in at most T (n) steps and

scans at most S(n) cells on any tape, respectively.

Incidentally, the e�ect of one step of a Turing machine is localized around the heads

and the �nite control. Clearly, this local property helps the simulations of Turing machines

by circuits, as you can see in Chapter 7.

Complexity classes We now de�ne the time and space complexity classes. The de-

cision problems computable in deterministic time O(T (n)) and space O(S(n)) comprise

TIME(T (n)) and SPACE(S(n)), respectively. Analogously one has the classes

NTIME(T (n)) and NSPACE(S(n)) for nondeterministic computation. Here we mention

3

two important classes of the complexity of Turing machines:

P=
S
k TIME(nk),

NP=
S
k NTIME(nk).

P corresponds to the class of deterministic polynomial time computable decision problems.

NP can be regarded as the class of polynomial time veri�able problems.

NP-completeness We know that, when we consider the algorithms on Turing ma-

chines, it is su�cient to consider those in any standard programming language. Actually,

we write the algorithms for scheduling problems in this thesis, in order not to depend

particular machines.

Roughly speaking, NP-complete problems are hardest problems in NP in the following

sense. If one of the NP-complete problems is solvable in polynomial time, then so is each

problem in NP. For two decision problems Q and R, we say that Q reduces to R if there

exists a polynomial time computable function f that transforms inputs for Q into those

for R such that x is \yes" input for Q if and only if f(x) is a \yes" input for R. A problem

is NP-complete if it is in NP and every problem in NP reduces to it. An optimization

problem is called NP-hard if the associated decision problem is NP-complete.

Although we have thus far ignored questions of encoding the inputs, there is one

distinction which plays an important role in our discussion. There is an exponential gap

between the lengths of unary and binary encodings. Let us consider the partition problem,

one of so-called number problems. Given a positive integerB and a set A = fa1; a2; : : : ; ang

of positive integers such that
Pn

j=1 aj = B, the question is whether there exists a partition

of A into two sets A1 and A2 such that
P

aj2Ai
aj = B=2 for i = 1; 2. This problem is

NP-complete under a binary encoding. On the other hand, it can be solved by dynamic

programming in O(n
P
aj) time, which is polynomial under a unary encoding. Such a

method is called a pseudo-polynomial time algorithm.

There are number problems, ex. the 3-partition problem, which are NP-complete even

when the numbers are encoded in unary. Such kind of problems are called strongly NP-

complete.

For further detail on the theory of algorithms and NP-completeness, see e.g. the book

by Garey and Johnson [31] and the article by Stockmeyer [86]

In the connection to the current models of computation, we may add a new model

proposed recently, quantum computation (see e.g. the paper by Deutsch [21] and the

thesis by Mihara [68]).

Outline of this thesis

The remainder of this thesis is divided into ten chapters.

Chapter 2 to 6 deal with single machine scheduling with new types of due dates and

release dates.

Scheduling with traditional due dates occupies a large part in the whole scheduling

area. Recently, several new types of due dates are proposed. They arise quite naturally

in many practical situations. In 1986, Hall proposed a new type of due dates called

generalized due dates. After Chapter 2 for providing the formulation of our scheduling

problems, we consider the problems with generalized due dates in Chapter 3. Especially,

4

the problems of minimizing the maximum absolute lateness and range of lateness under

generalized due dates are studied. Then, in Chapter 4, we investigate the problems with

both traditional and generalized due dates. In particular, we consider the problem to

minimize the maximum lateness with both traditional and generalized due dates.

In addition to scheduling involving generalized due dates, in Chapter 5, we consider

scheduling with a new type of release dates, which are related to the traditional release

dates in a similar way as the generalized due dates to the traditional ones. Particularly,

we consider the problems to minimize the sum of completion times with generalized

release dates which have constant intervals, which are equivalent to two machine ow

shop problems to minimize the sum of completion times where the processing times on

the �rst machine are the same.

In 1992, Ishii, Tada, and Masuda proposed another new type of due dates called fuzzy

due dates. Chapter 6 deals with basic problems involving fuzzy due dates.

The di�culty of a problem can be expressed as the number of gates in a circuit with

the minimum number of gates, which computes the problem.

Despite the importance of lower bounds on the circuit complexity of explicit problems,

the best bounds known are only linear. However, good lower bounds are known for the

complexity of monotone circuits, where negations are forbidden. This motivates the study

on the complexity of negation-limited circuits, where the number of negations available

is restricted.

In Chapter 7 to 10, we devote ourself to study negation-limited circuit complexity of

boolean functions. Chapter 7 is intended to give a brief review for the negation-limited

circuit complexity. In Chapter 8, we consider the complexity of negation-limited inverters.

We present lower bounds as well as new upper bounds on the size and depth of the invert-

ers. Chapter 9 describes the negation-limited circuit complexity for symmetric functions,

and gives lower bounds on the size and depth. Chapter 10 describes relationships between

the number of negations available in circuits and the size of the circuits.

Finally, Chapter 11 gives concluding remarks for this entire thesis.

This thesis has been written under the supervision of Professor Milan Vlach. The

work on this thesis has been done in part also under the supervision of Professor Tetsuro

Nishino, while he was at Japan Advanced Institute of Science and Technology. Parts of

this thesis have been published and announced [73, 93, 92, 12, 97, 96, 95, 91, 11, 99, 94,

98].

5

Part I

Single machine scheduling with new

types of due dates and release dates

6

Chapter 2

Preliminaries

Scheduling is concerned with an optimal allocation of scarce resources to activities over

time. It has been studied extensively because of practical importance. Scheduling with

traditional due dates occupies a large part in the whole scheduling �eld. Recently, several

new types of due dates have been proposed. They arise quite naturally in many practical

situations. We are investigating scheduling with some of these new types of due dates,

and giving polynomial approximation and exact optimization algorithms as well as NP-

hardness results. We are also investigating scheduling with a new type of release times.

In this chapter, we describe the formulation of our scheduling problems. First, in

Section 2.1, we provide a basic formulation for scheduling problems. In the following

three sections, we describe new elements for our scheduling problems, i.e., generalized

due dates in Section 2.2, generalized release dates in Section 2.3, and fuzzy due dates in

Section 2.3.

2.1 Scheduling problems

We are only concerned with the single machine scheduling, in which the machine is con-

tinuously available from the beginning and can process only one job at a time. Single

machine scheduling problems have been researched extensively ever since the seminal work

by Jackson [49] and Smith [83].

We have n independent jobs J1; J2; : : : ; Jn to be processed on the machine. Each job

Jj has a single operation on the machine, and its processing time pj which is required for

completion of processing, and is independent of schedules. Job Jj becomes available for

processing on its release date rj. If no release dates are speci�ed, all jobs are available

from the beginning. Each job Jj has also a (traditional) due date dj and a weight wj that

may be used in de�ning a given optimality criterion. Preemption (job splitting) is not

allowed, i.e., the processing of any operation may not be interrupted and resumed at a

later time.

A schedule is an allocation of one time interval on the machine to each job. A schedule

is feasible if no two time intervals on the machine overlap, and if it meets a number of

speci�c requirements concerning the machine environment and the job characteristics. A

schedule is optimal if it minimizes a given optimality criterion.

We consider only deterministic scheduling problems. All information that de�nes

problem instances is known with certainty in advance. Deterministic scheduling is in-

7

cluded in the area of combinatorial optimization. Certainly, some of the techniques for

combinatorial optimization can be used for scheduling problems. It is an obvious exten-

sion to assume that some of the problem instances are subject to random uctuations.

This induces the area of stochastic machine scheduling.

Because of the huge variety of machine scheduling problems, several authors proposed

various schemes for classifying scheduling problems. We shall follow that of Graham,

Lawler, Lenstra, and Rinnooy Kan [37]. It consists of three �elds �j�j for specifying

problems. We only explain here the notations which are dealt with in this thesis.

The �rst �eld � indicates the machine environment. If � = 1, there is only a single

machine. If � = F2, we have a ow shop with two machines.

The second �eld � is used mainly for the job characteristics. For example, pmtn means

that preemption is allowed, precmeans that a non-empty precedence relation between jobs

is speci�ed, and rj means that non-identical release dates are given. Occasionally, this

�eld contains additional characteristics such as pj = 1 for unit processing requirement

and nmit for the requirement that no machine idle time is allowed before the completion

of the last job.

If � is empty, then the default assumptions apply. This means that preemption of

jobs is not permitted, that no precedence relation is put, that all jobs are available at

time zero, that there are no deadlines, and that the processing requirements are arbitrary

positive integers.

The third �eld refers to the optimality criterion. It is usually based on simple

quantities (computed for each job Jj) such as,

� the completion time Cj,

� the lateness Lj = Cj � dj ,

� the tardiness Tj = maxf0; Ci � dig,

� the unit penalty Uj = 0 if Cj � dj , Uj = 1 otherwise.

The optimality criteria commonly used are

� the maximum lateness Lmax = maxLj,

� the sum of completion times
P
Cj,

� the sum of tardiness
P
Tj,

� the number of late jobs
P
Uj.

Traditionally, there has been a enormous number of papers concerning the minimiza-

tion of a single optimality criterion which is regular, i.e., nondecreasing in each of the job

completion times. In this thesis, in addition to such minimization, we also consider the

problems of minimizing non-regular criteria, which involve, e.g., the range of lateness of

jobs. The scheduling problems with non-regular criteria are relatively unexplored.

For further detail on sequencing and scheduling, see e.g. the survey by Lawler, Lenstra,

Rinnooy Kan, and Shmoys [55].

8

2.2 Generalized due dates

In 1986, Hall [40] introduced a new type of due dates called generalized due dates. Each

of generalized due dates is not given for a particular job, but they are given for a set

of jobs. It does not matter which job is completed by each generalized due date. The

�rst generalized due date indicates the time by which at least one of the jobs should be

completed, the second one gives the time by which at least two of the jobs should be

completed, and so on.

This new class of scheduling problems is useful in a exible manufacturing system

(FMS) environment, of the kind described by Stecke and Solberg [85]. The aspect of

exibility, discussed by Browne, Dubois, Rathmill, Sethi, and Stecke [18], arises in reduc-

tions in machine setup costs and e�cient change of component mix, making the order

of job arrival less important, a situation which lends itself to the generalized due date

model. These also include public utility planning, survey design, and robot scheduling.

Automated inspection of work is also a good application for scheduling with generalized

due dates.

The following example can be found in the thesis by Yan [110] on the burn-in test

of integrated circuits (IC) in an IC company. To �nd the yield of a batch of wafers just

processed and diced, burn-in tests are performed to ten chips on the �rst date, and twenty

more to be tested on the second date, and another twenty to be tested on the third date.

In this case, the chances of chips being tested are totally random. Therefore, we obtain

three di�erent generalized due dates.

To illustrate the di�erence between the traditional and Hall's model, we consider

lateness of jobs in a schedule. In the traditional model, each job Ji has a non-negative

number di as its traditional due date. In Hall's model, a set of all jobs has a non-decreasing

sequence

�1 � �2 � � � � � �n

of non-negative numbers as its generalized due dates. In both models, for each 1 � i � n,

each schedule S determines uniquely the job JS(i) in the ith position of schedule S, that

is, an order (sequence)

(S(1); S(2); : : : ; S(n))

in which the jobs are processed on the machine, and the completion time Ci(S) of job Ji
in schedule S.

The lateness LS(i)(S) of the job JS(i) in the ith position of schedule S under the

traditional model is given by

LS(i)(S) = CS(i)(S)� dS(i);

whereas the lateness LH
S(i)(S) of the same job JS(i) under Hall's model is given by

LH
S(i)(S) = CS(i)(S)� �i:

For example, if
p1 = 3; p2 = 2; p3 = 5;

d1 = 4; d2 = 7; d3 = 10;

�1 = 4; �2 = 7; �3 = 10;

9

then, for the permutation schedule given by the sequence (J1; J3; J2), we have

L1 = �1; L2 = 3; L3 = �2;

LH
1 = �1; LH

2 = 0; LH
3 = 1:

2.2.1 Complexity for the traditional and generalized due date

models

Since introduction of generalized due dates by Hall [40], there have been several papers

dealing with scheduling problems involving this type of due dates (see e.g. the papers by

Sriskandarajah [84], Hall, Sethi, and Sriskandarajah [41], Wong, Yan, and Young [109],

and Young, Wong, Yiu, and Yan [111]).

We can expect a variety of changes in results concerning the generalized due date

counterparts of the traditional scheduling problems. Table 2.1 shows that problems in-

volving generalized due dates may be easier, harder, or equally di�cult as their traditional

counterparts. This table suggests that the min-max problems tend to be harder and the

min-sum problems tend to be easier for the problems involving generalized due dates. (see

also Table 1 in the paper by Hall, Sethi, and Sriskandarajah [41] for non-single machine

scheduling problems.)

2.2.2 Useful sequencing rules

The following sequencing rules are useful for many problems. We also use them later.

Shortest processing time (SPT) rule: sequence all jobs in non-decreasing order

of processing times

pS(1) � pS(2) � � � � � pS(n):

Longest processing time (LPT) rule: sequence the jobs in non-increasing order

of processing times

pS(1) � pS(2) � � � � � pS(n):

Earliest due date (EDD) rule: sequence the jobs in non-decreasing order of

(traditional) due dates

dS(1) � dS(2) � � � � � dS(n):

Minimum slack time (MST) rule: sequence the jobs in non-decreasing order

of slack times

dS(1) � pS(1) � dS(2) � pS(2) � � � � � dS(n) � pS(n):

2.2.3 Sequence-dependent due dates

We see that generalized due dates are independent of jobs. However, they depend in a

special way on the sequence in which the jobs are scheduled. Here, we propose more

generalized sequence-dependent due dates, which are arbitrary functions of the positions

of jobs, called sequence-dependent due dates.

10

Problem (notation for

traditional model)

Generalized due date model Traditional due date model

1jjLmax Polynomially solvable [40] Polynomially solvable [49]

1jrj jLmax NP-hard [41] NP-hard [59]

1jpmtn; rj jLmax Polynomially solvable [41] Polynomially solvable [62, 9]

1jprecjLmax NP-hard even if prec =

chain [84]

Polynomially solvable [53]

1jCS(j) � �jj
P
wjCj NP-hard [41] NP-hard [59]

1jj
P
Tj Polynomially solvable [40] NP-hard [22]

1jrj j
P
Tj NP-hard [40] NP-hard [59]

1jprec; pj = 1j
P
Tj Polynomially solvable [41] NP-hard [56]

1jj
P
wjTj NP-hard [84] NP-hard [54]

1jprecj
P
Tj NP-hard even if prec =

chain [84]

NP-hard [56, 57]

1jpmtn; precj
P
Tj NP-hard even if prec =

chain [84]

NP-hard [22]

1jpj = 1j
P
wjTj Polynomially solvable [109] Polynomially solvable [56]

1jprec; pj = 1j
P
wjTj NP-hard even if prec =

chain [109]

NP-hard even if wj = 1 and

prec = chain [56, 57, 58, 60]

1jrj ; pj = 1j
P
Tj Polynomially solvable [111] Polynomially solvable even

for the weighted case [88]

1jj
P
Uj Polynomially solvable [40] Polynomially solvable [69]

1jj
P
wjUj NP-hard [40] NP-hard [50]

1jrj j
P
Uj NP-hard [41] NP-hard [59]

1jprec; pj = 1j
P
Uj Polynomially solvable [41] NP-hard [57]

1jprecj
P
Uj NP-hard even if prec =

chain [84]

NP-hard [56, 57]

1jpmtn; precj
P
Uj NP-hard even if prec =

chain [84]

Open

1jpj = 1j
P
wjUj Polynomially solvable [109] Polynomially solvable [56]

1jprec; pj = 1j
P
wjUj NP-hard even if prec =

chain [109]

NP-hard even if wj = 1 and

prec = chain [57]

1jrj ; pj = 1j
P
Uj Polynomially solvable [111] Polynomially solvable even

for the weighted case [88]

Table 2.1: Complexity status of single machine scheduling problems with generalized due

dates.

11

This might be useful and natural, when we see that there is also a new model of the

processing times of jobs which are dependent on their starting time, which is introduce

by Berger [44] (see also [108, 35, 34]). This model is motivated by military applications

in which a job consists of destroying an aerial threat and its processing time decreases

with time as the threat gets closer.

From this point of view, we obtain the traditional concept and Hall's concept as

two special cases of sequence-dependent due dates D1(S); D2(S); : : : ; Dn(S). If we take

constant (sequence-independent) functions

Di(S) = di for 1 � i � n;

then we obtain the traditional concept. If we take (non-constant) functions

Di(S) = �S�1(i) for 1 � i � n;

then we obtain Hall's concept.

2.3 Generalized release dates

We propose a new type of release dates, called generalized release dates. They are related

to the traditional release dates in similar way as the generalized due dates to the traditional

ones.

Each of generalized release dates is not given for a particular job, but they are given

for a set of jobs. It does not matter which job becomes available for processing by each

generalized release date. The �rst generalized release date indicates the time at which

one job becomes available for processing, the second one gives the time at which another

job becomes available, and so on.

This new class of scheduling problems is useful, e.g., in the following situation. Suppose

that we get material at some points of time, which can be turned into three di�erent kinds

of goods. This induces generalized release dates. The times needed to make di�erent kinds

of goods can be di�erent. This induces processing times. Agnetis, Macchiaroli, Pacciarelli,

and Rossi [1] also described the practical situations where this model is appropriate.

To illustrate the di�erence between the traditional and generalized release date model,

we consider optimal schedules for the maximum lateness problems of jobs with release

dates. In the traditional model, each job Ji has a non-negative number ri as its traditional

release date. In the generalized release date model, a set of all jobs has a non-decreasing

sequence

�1 � �2 � � � � � �n

of non-negative numbers as its generalized release dates.

For example, if
p1 = 3; p2 = 5; p3 = 2;

d1 = 4; d2 = 10; d3 = 7;

r1 = 0; r2 = 2; r3 = 3;

then, the optimal permutation schedule can be given by the sequence (J1; J2; J3), which

gives

L1 = �1; L2 = �2; L3 = 3; Lmax = 3:

12

On the other hand, if we replace the traditional release dates with the generalized release

dates

�1 = 0; �2 = 2; �3 = 7;

then, the optimal permutation schedule can be given by the sequence (J1; J3; J2), which

gives

L1 = �1; L2 = �2; L3 = 0; Lmax = 0:

2.4 Fuzzy due dates

In 1992, Ishii, Tada, and Masuda [48] have proposed to replace the ordinary due dates

by fuzzy due dates. Most papers on scheduling problems assume that due dates are

given numbers. A degree of satisfaction is associated with each job. It is determined

according to its completion time and denoted with a certain membership function of a

fuzzy set de�ned on nonnegative real numbers. If its completion time is before or on time

with respect to a ordinary due date, we are satis�ed completely. If late, the degree of

satisfaction decreases, i.e., the degree of dissatisfaction increases.

In the simplest form of Ishii{Tada{Masuda's model, each ordinary due date di of job

Ji is replaced by a fuzzy due date whose membership function �i is de�ned by

�i(t) =

8><
>:

1 if t � di,

1� (t� di)=ei if di < t � di + ei,

0 if di + ei < t,

where ei is a given positive number. Obviously, the ordinary due date di can be interpreted

as the limit case for ei converging to zero, that is, as

�i(t) =

(
1 if t � di,

0 if di < t.

Scheduling problems with fuzzy due dates arise naturally in real life. For instance,

consider a manufacturing company satisfying demand in a remote place. Goods should

be produced in time for the departure of a regular ight. If late, an express delivery can

recover the delay, but its extra cost reduces the satisfaction of the company. Another

example can be found in a recent paper by Han, Ishii, and Fujii [43].

Other fuzzy versions of scheduling speci�cation, e.g., precedence constraint can be

found in the theses by Tada [87] and Han [42], and the paper by Ishii and Tada [47].

Outline of this part

The remainder of this part is divided into four chapters. First, we consider the problems

with generalized due dates in Chapter 3. Especially, the problems of minimizing the

maximum absolute lateness and range of lateness under generalized due dates are studied.

Then, in Chapter 4, we investigate the problems with both traditional and generalized

due dates. In particular, we consider the problem to minimize the maximum lateness

with both traditional and generalized due dates.

13

In addition to scheduling involving generalized due dates, in Chapter 5, we consider

scheduling with generalized release dates. Particularly, we consider the problems to min-

imize the sum of completion times with generalized release dates which have constant

intervals. These are equivalent to two machine ow shop problems to minimize the sum

of completion times where the processing times on the �rst machine are the same.

Finally, Chapter 6 deals with basic problems involving fuzzy due dates.

14

Chapter 3

Scheduling with generalized due

dates

In this chapter, we investigate the problems of minimizing the maximum absolute lateness

and range of lateness under generalized due dates on a single machine. In contrast to the

traditional due date cases, we show that both problems are NP-hard in the strong sense.

Furthermore, we present simple approximation algorithms for these problems, and show

that they achieve the performance ratios of n for the problem of minimizing the maximum

absolute lateness and of dn=2e for the problem of minimizing the range of lateness, where

n is the number of jobs and dxe is the smallest integer no less than x.

3.1 Introduction

3.1.1 Background and motivation

Most research in scheduling involving generalized due dates has been concerned with

establishing the complexity status of the problems whose traditional counterparts have

regular objective functions [40, 84, 41, 109, 111]. Little is known about the problems whose

traditional counterparts have non-regular objective functions, and about approximation

algorithms for the problems involving generalized due dates.

In what follows, we are concerned with single machine problems involving non-regular

objective functions with generalized due dates. Our two main objective functions are the

maximum absolute lateness, that is, the maximum of the absolute values of the maximum

and minimum lateness, and the range of lateness, that is, the di�erence between the

maximum and minimum lateness.

This scheduling problem is important in real life whenever it is desirable to give equal

treatment to all jobs (customers), i.e., the lateness of all jobs should be as equal as possible.

In particular, the criteria is natural, as mentioned in [33], in scheduling a sequence of

experiments that depend on predetermined external events (such as the position of the

sum) and in scheduling manufacturing process steps to coordinate with deliveries (seeking

to achieve something similar to just-in-time inventory control, in cases where delivery

times are less adjustable than process steps). The maximum absolute lateness problem

with traditional due dates has been considered in [33]. The range of lateness problem

with traditional due dates has also been considered in [38, 101, 61, 45].

15

The objective functions we are interested in are de�ned as follows.

Traditional due date model Generalized due date model

Lmax(S) = max1�i�n Li(S) LH
max(S) = max1�i�n L

H
i (S)

Lmin(S) = min1�i�n Li(S) LH
min(S) = min1�i�n L

H
i (S)

�L(S) = Lmax(S)� Lmin(S) �LH(S) = LH
max(S)� LH

min(S)

Labs(S) = max1�i�n jLi(S)j LH
abs(S) = max1�i�n jL

H
i (S)j

3.1.2 Main results

Main results can be summarized as follows. First, we show that the problems of min-

imizing the maximum absolute lateness and the range of lateness are NP-hard in the

strong sense, both with and without allowing for machine idle time. Second, for all of

these problems, we give simple e�cient approximation algorithms based on the �rst-�t

strategy.

We show that they achieve the performance ratios of n for the problem of minimizing

the maximum absolute lateness and of dn=2e for the problem of minimizing the range of

lateness, where n is the number of jobs and dxe is the smallest integer no less than x.

3.2 Complexity

In this section, we begin with surveying the maximum and minimum lateness problems.

For these problems, simple sequencing rules give optimal schedules. Then, we investigate

the complexity of the problems of minimizing the maximum absolute lateness and mini-

mizing the range of lateness both under and without the requirement that machine idle

time is forbidden.

Proposition 3.1 Each permutation schedule generated by the

� EDD rule is optimal for the 1jjLmax problem,

� MST rule is optimal for the 1jnmitj � Lmin problem,

� SPT rule is optimal for the 1jjLH
max problem,

� LPT rule is optimal for the 1jnmitj � LH
min problem.

Proof. All these results can easily be proved by a straightforward adjacent pairwise

interchange argument.

The �rst case is also known as Jackson's rule [49]. The second case, a mirror image of

Jackson's rule, was already presented in [8, 20].

Now, we investigate the problem of minimizing the maximum absolute lateness. Garey,

Tarjan, and Wilfong [33] proved the following proposition.

Proposition 3.2 The problems

1jjLabs and 1jnmitjLabs

can be solved in polynomial time.

16

In contrast to Proposition 3.2, we have the following result concerning the generalized

due date model.

Theorem 3.3 The problems

1jjLH
abs and 1jnmitjLH

abs

are NP-hard in the strong sense.

Proof. First, we consider the problem 1jnmitjLH
abs. We will prove its strong NP-hardness

by a polynomial reduction from 3-partition problem, which is known to be NP-hard in

the strong sense [31].

Suppose we have an instance of 3-partition problem, i.e., suppose we have a positive

integer B and a family A = fa1; a2; : : : ; a3ng of positive integers such that
P3n

j=1 aj = nB

and B=4 < aj < B=2 for 1 � j � 3n. For this instance, we construct the following

instance of the problem 1jnmitjLH
abs with 4n jobs J1; J2; : : : ; J4n:

� the processing times p1; p2; : : : ; p4n are given by

pi = ai for 1 � i � 3n,

pi = B + 1 for 3n+ 1 � i � 4n,

� generalized due dates �1; �2; : : : ; �4n are given by

�i = (2B + 1)di=4e � B=2 for 1 � i � 4n.

For easy reference, we call jobs J1; J2; : : : ; J3n a-type and J3n+1; J3n+2; : : : ; J4n b-type.

We now show that this instance has a schedule with the maximum absolute lateness

B=2 i� A has a desired partition. Suppose that A has a partition A = A1 [A2 [� � � [An

such that
P

aj2Ai
aj = B for 1 � i � n. Without loss of generality, we assume that

Ai = fa3i�2; a3i�1; a3ig for 1 � i � n. It is easy to check that the permutation schedule

(J3n+1; J1; J2; J3; J3n+2; J4; J5; J6; : : : ; J4n; J3n�2; J3n�1; J3n)

is feasible and gives the maximum absolute lateness B=2.

On the other hand, suppose that there exists a schedule with the maximum absolute

lateness B=2. Notice that all feasible schedules give the maximum lateness no less than

B=2 and the minimum lateness no greater than �B=2, thus, the maximum absolute

lateness no less than B=2.

Now, let us show that, in the schedule under consideration, a b-type job is scheduled

in the (4i�3)rd position from (2B+1)(i�1) to (2B+1)i�B for each 1 � i � n. Indeed,

suppose that an a-type job is scheduled in the (4i � 3)rd position for some i > 1. The

lateness of this job must be at least �B=2. Since the processing time of the job is less

than B=2, the lateness of the job in the (4i � 4)th position must be greater than B=2,

which contradicts our assumption. The fact that no a-type job is scheduled in the �rst

position follows from the inequalities

pk � �1 = ak � �1 < �B=2 for 1 � k � 3n.

17

A b-type job in the �rst position must be scheduled from the beginning because of the

constraint nmit. Suppose that a b-type job in the (4i � 3)rd position is not scheduled

from (2B+1)(i� 1) to (2B +1)i�B for some i > 1. The lateness of this job must be at

least �B=2. Since the processing time of the job is B + 1, the lateness of the job in the

(4i� 4)th position must be greater than B=2, which contradicts our assumption.

The positions of b-type jobs divide the whole time interval where the machine runs

into n time intervals of the same length B, in which only a-type jobs are scheduled. This

implies A has a partition A = A1 [A2 [� � � [An such that
P

aj2Ai
aj = B for 1 � i � n,

where the jobs from the (4i � 2)nd position to the (4i)th correspond to the elements in

Ai for each 1 � i � n.

Next, we consider the problem 1jjLH
abs. Notice that if the machine idle time is inserted,

the maximum lateness of B=2 cannot be attained, neither can the maximum absolute

lateness. So, even if we allow the machine to be idle, no optimal schedule has the machine

idle time. This enable us to apply a similar argument as for the nmit version of the

problem.

Next, we investigate the problems which are related to the problems of minimizing

the range of lateness.

Proposition 3.4 The problems

1jLmin � mjLmax;

1jLmin � m;nmitjLmax;

1jLmax � mj � Lmin; and

1jLmax � m;nmitj � Lmin

can be solved in polynomial time.

Proof. E�cient algorithms for these problems can be derived by modifying EDD and

MST sequencings presented by Hoogeveen [45] and Liao and Huang [61].

The modi�cations used for Proposition 3.4 no longer guarantee the optimality in the

generalized due date versions. We show that all these problems are NP-hard in the strong

sense.

Theorem 3.5 The problems

1jLH
min � mjLH

max;

1jLH
min � m;nmitjLH

max;

1jLH
max � mj � LH

min; and

1jLH
max � m;nmitj � LH

min

are NP-hard in the strong sense.

Proof. We only consider the problem 1jLH
min � mjLH

max. A similar argument applies to

the remaining problems.

For any number x � 0, the problem to decide whether there exists a feasible schedule

which attains LH
abs � x is equivalent to that to decide whether there exists a feasible

schedule which attains LH
max � x with the constraint LH

min � �x.

18

Thus, the maximum absolute lateness problem can be regarded as the special version

of the problem 1jLH
min � mjLH

max. This implies that the problem 1jLH
min � mjLH

max is as

hard as the problem 1jjLH
abs.

Finally, we investigate the complexity of the problems of minimizing the range of

lateness. Based on Proposition 3.4, Hoogeveen [45] proved the following proposition.

Proposition 3.6 The problems

1jj�L and 1jnmitj�L

can be solved in polynomial time.

On the other hand, we have the following two theorems concerning the generalized

due date model.

Theorem 3.7 The problem 1jnmitj�LH is NP-hard in the strong sense.

Proof. We transform 3-partition problem to the range of lateness problem with the

constraint nmit by constructing the same lateness problem as in the proof of Theorem 3.3.

Notice that all feasible schedules give the maximum lateness no less than B=2 and the

minimum lateness no greater than �B=2, thus, the range of lateness no less than B. By

a similar argument as in the proof of Theorem 3.3, we can show that the problem above

has a schedule with the range of lateness equal to B (the maximum lateness B=2 and the

minimum lateness �B=2) i� A has a desired partition.

Theorem 3.8 The problem 1jj�LH is NP-hard in the strong sense.

Proof. We transform 3-partition problem to the range of lateness problem by constructing

the same lateness problem as in the proof of Theorem 3.3.

We now show that the problem above has a schedule with the range of lateness equal

to B i� A has a desired partition. Suppose that A has a partition. It is easy to check that

the following schedule has the range of lateness equal to B: the order of the jobs is the

same as in the proof of Theorem 3.3 and there is no machine idle time in the schedule.

On the other hand, suppose that there exists a schedule whose range of lateness is B.

Let C be the sum of the intervals where the machine is idle. Then, all feasible schedules

give the maximum lateness no less than B=2 + C, and the minimum lateness no greater

than �B=2 + C, thus, the range of lateness no less than B.

We show that the sum of the processing times of the jobs in the (4i� 2)nd position to

the (4i)th is exactly B for all 1 � i � n. Suppose the sum of the processing times of the

jobs in the (4i� 2)nd position to the (4i)th is greater than B for some 1 � i � n. Then,

the di�erence between the completion time of the job in the (4i� 3)rd position and that

in the (4i)th is greater than B, which prevents us from attaining the range of lateness

equal to B.

Now, suppose the sum of the processing times of the jobs in the (4i � 2)nd position

to the (4i)th is less than B for some 1 � i � n. Then, the sum of the processing times of

the jobs in the (4j � 2)nd position to the (4j)th is greater than B for some 1 � j � n,

j 6= i, which we have shown to be impossible. Therefore, the sum of the processing times

19

of the jobs in the (4i�2)nd position to the (4i)th is exactly B for all 1 � i � n. It follows

that there are only a-type jobs in the (4i� 2)nd position to the (4i)th. Consequently, A

has a partition A = A1 [A2 [� � � [An such that
P

aj2Ai
aj = B for 1 � i � n, where the

jobs from the (4i� 2)nd position to the (4i)th correspond to the elements in Ai for each

1 � i � n.

3.3 Approximation algorithms

In this section, we present two simple approximation algorithms for the problems 1jjLH
abs,

1jnmitjLH
abs, 1jj�L

H , and 1jnmitj�LH . The algorithms are based on the �rst-�t strategy.

First, we introduce Algorithm A which works for the problems of minimizing LH
abs

and minimizing �LH without allowing for machine idle time. The algorithm returns the

resulting schedule A as a permutation, i.e., A returns the index A(i) of the job in the ith

position for each i, 1 � i � n.

Algorithm A(p1; p2; : : : ; pn; �1; �2; : : : ; �n)

�0 0

for i = 1 to n do

ai �i � �i�1
Sort all ai's

Sort all pi's

I f1; 2; : : : ; ng

J f1; 2; : : : ; ng

while I 6= ; do

Choose i such that ai = mink2I ak
Choose j such that pj = mink2J pk
A(i) j

I I n fig

J J n fjg

output(A)

end

The time complexity of Algorithm A is O(n log n), if we use a fast sorting scheme.

First, we prove the following lemma which plays an important role in the proofs of estab-

lishing the performance guarantees.

Lemma 3.9 For each schedule S, we have

max
i
fpA(i) � aig � max

i
fpS(i) � aig

and

min
i
fpA(i) � aig � min

i
fpS(i) � aig:

Proof. We only verify the validity of the �rst inequality. The proof of the second one is

analogous. Without loss of generality, we assume that p1 � p2 � � � � � pn. The proof is

20

by contradiction. Suppose that there exists a schedule S such that pA(j)�aj > pS(k)�ak,

where j and k are such that pA(j)�aj = maxifpA(i)�aig and pS(k)�ak = maxifpS(i)�aig.

Since pA(j) � aj > pS(k) � ak � pS(j) � aj, we have pA(j) > pS(j), consequently, A(j) >

S(j). There are at most (A(j)� 2) i's such that i 6= j and pS(i) < pA(j). But, there are at

least (A(j)� 1) i's such that i 6= j and ai � aj. Therefore, there exists i, i 6= j such that

ai � aj and pS(i) � pA(j). Hence,

pS(k) � ak � pS(i) � ai

= pS(i) � aj + aj � ai

� pA(j) � aj + aj � ai

� pA(j) � aj:

This contradicts the assumption.

Now, we analyze the performance of the algorithm for the problem 1jnmitjLH
abs. Let

OPT be an optimal schedule for this problem. We obtain the following bound on the

performance of Algorithm A.

Theorem 3.10

LH
abs(A) � n� LH

abs(OPT):

Proof. Easy calculation shows that

LH
abs(OPT) = maxfLH

max(OPT);�L
H
min(OPT)g

�
1

2
� (LH

max(OPT)� LH
min(OPT))

�
1

2
�max

i
jLH

OPT (i) � LH
OPT (i�1)j

=
1

2
�max

i
jCOPT (i) � �i � (COPT (i�1) � �i�1)j

=
1

2
�max

i
jpOPT (i) � aij:

By Lemma 3.9, we have

max
i
jpOPT (i) � aij � max

i
jpA(i) � aij:

Therefore,

LH
abs(OPT) �

1

2
�max

i
jpA(i) � aij:

Let I = f1; 2; : : : ; ng, and let J and K be the set of the indices such that pA(i) � ai
for all i 2 J and pA(i) < ai for all i 2 K, respectively. From the de�nition of LH

abs and ai,

it follows that

LH
abs(A) = maxfLH

max(A);�L
H
min(A)g

� maxf
X
i2J

(pA(i) � ai);�
X
i2K

(pA(i) � ai)g:

21

First, we assume that jJ j = n=2. Then we have

LH
abs(A) � maxfjJ j �max

i2J
fpA(i) � aig;�jKj �min

i2K
fpA(i) � aigg

� maxf
n

2
�max

i
fpA(i) � aig;�

n

2
�min

i
fpA(i) � aigg

�
n

2
�max

i
jpA(i) � aij:

Since we have shown that

1

2
�max

i
jpA(i) � aij � LH

abs(OPT);

we conclude that

LH
abs(A) � n� LH

abs(OPT):

Next, we assume that jJ j 6= n=2. If jJ j � (n� 1)=2, then we have

LH
abs(A) � maxf

X
i2J

(pA(i) � ai);�
X
i2InJ

(pA(i) � ai)g

= maxf
X
i2J

(pA(i) � ai);
X
i2J

(pA(i) � ai)�
X
i2I

(pA(i) � ai)g

�
X
i2J

(pA(i) � ai) + j
X
i2I

(pA(i) � ai)j

� jJ j �max
i2J
fpA(i) � aig+ jCA(n) � �nj

�
n� 1

2
�max

i
jpA(i) � aij+ jL

H
A(n)j:

If jJ j � (n+ 1)=2, then we have

LH
abs(A) = maxf

X
i2InK

(pA(i) � ai);�
X
i2K

(pA(i) � ai)g

= maxf
X
i2I

(pA(i) � ai)�
X
i2K

(pA(i) � ai);�
X
i2K

(pA(i) � ai)g

� j
X
i2I

(pA(i) � ai)j �
X
i2K

(pA(i) � ai)

� jCA(n) � �nj � jKj �min
i2K
fpA(i) � aig

� jLH
A(n)j+

n� 1

2
�max

i
jpA(i) � aij:

Since

jLH
A(n)j = jL

H
OPT (n)j � LH

abs(OPT);

in both cases, we obtain

LH
abs(A) � LH

abs(OPT) +
n� 1

2
�max

i
jpA(i) � aij:

Combining it again with the inequality

1

2
�max

i
jpA(i) � aij � LH

abs(OPT);

22

we again conclude that

LH
abs(A) � n� LH

abs(OPT):

Theorem 3.10 provides the performance ratio n between the optimal value of LH
abs and

the value induced by a schedule found by Algorithm A. The following theorem says that

this ratio cannot be improved.

Theorem 3.11 There exists an instance satisfying

LH
abs(A) = n� LH

abs(OPT):

Proof. Consider an instance of the absolute lateness problem with n jobs J1; J2; : : : ; Jn:

� the processing times p1; p2; : : : ; pn are given by

p1 = 4;

pi = 5 for 2 � i � dn=2e,

pi = 1 for dn=2e+ 1 � i � n,

� generalized due dates �1; �2; : : : ; �n are given by

�i = 3i for 1 � i � n.

From the instance above, it follows that ai = 3 for all 1 � i � n. So, Algorithm A has

the possibility to give the schedules

S1 = (J1; J2; : : : ; Jn)

and

S2 = (Jdn=2e+1; Jdn=2e+2; : : : ; Jn; J1; J2; : : : ; Jdn=2e);

while an optimal schedule is

(J1; Jdn=2e+1; J2; Jdn=2e+2; : : : ; Jdn=2e; Jn):

Thus, the maximum absolute lateness of S1 is n if n is odd, and that of S2 is n if n is

even, while that of the optimal schedule is one.

Next, we analyze the performance of the algorithm for the problem 1jnmitj�LH . Let

OPT be an optimal schedule for this problem. We obtain the following bound on the

performance of Algorithm A.

Theorem 3.12

�LH(A) � d
n

2
e ��LH(OPT):

23

Proof. By Lemma 3.9, we have

�LH(OPT) = LH
max(OPT)� LH

min(OPT)

� max
i
jLH

OPT (i) � LH
OPT (i�1)j

= max
i
jCOPT (i) � �i � (COPT (i�1) � �i�1)j

= max
i
jpOPT (i) � aij

� max
i
jpA(i) � aij:

Let j and k be arbitrary positions in A at which LH
max(A) and LH

min(A) are achieved,

respectively. If j = k, then �LH(A) = 0 and the inequality is satis�ed. Let us assume

that j > k. The proof for the case j < k is analogous. From the de�nition of �LH and

ai's, it follows that

�LH(A) = LH
max(A)� LH

min(A)

= CA(j) � �j � (CA(k) � �k)

�

jX
i=1

(pA(i) � ai)�
kX
i=1

(pA(i) � ai):

Now, we further assume that j � k � dn=2e. Then we have

�LH(A) �
jX

i=k+1

(pA(i) � ai)

� (j � k)�max
i
jpA(i) � aij

� d
n

2
e �max

i
jpA(i) � aij:

Next, we assume that j � k � dn=2e+ 1. Then we have

�LH(A) � (
nX
i=1

(pA(i) � ai)�
nX

i=j+1

(pA(i) � ai))�
kX
i=1

(pA(i) � ai)

� CA(n) � �n + (n� j + k)�max
i
jpA(i) � aij

� LH
A(n) + (b

n

2
c � 1)�max

i
jpA(i) � aij

� LH
A(n) + (d

n

2
e � 1)�max

i
jpA(i) � aij;

where bxc is the largest integer no greater than x. To conclude the proof, it su�ces to

observe that

LH
A(n) = LH

OPT (n) � �LH(OPT):

Theorem 3.12 provides the performance ratio dn=2e between the optimal value of �LH

and the value induced by a schedule found by Algorithm A. The following theorem says

that this ratio cannot be improved.

24

Theorem 3.13 There exists an instance satisfying

�LH(A) = d
n

2
e ��LH(OPT):

Proof. Consider an instance of the range of lateness problem with n jobs J1; J2; : : : ; Jn:

� the processing times p1; p2; : : : ; pn are given by

pi = 1 for 1 � i � dn=2e,

pi = 3 for dn=2e+ 1 � i � n,

� generalized due dates �1; �2; : : : ; �n are given by

�i = 2i for 1 � i � n.

From the instance above, it follows that ai = 2 for all 1 � i � n. So, Algorithm A has

the possibility to give the schedule

S = (J1; J2; : : : ; Jn);

while an optimal schedule is

(J1; Jdn=2e+1; J2; Jdn=2e+2; : : : ; Jdn=2e�1; Jn; Jdn=2e);

if n is odd, and

(J1; Jdn=2e+1; J2; Jdn=2e+2; : : : ; Jdn=2e; Jn);

if n is even. Thus, the range of lateness of S is dn=2e, while that of the optimal schedule

is one.

Next, we present an approximation algorithm for the problems 1jjLH
abs and 1jj�LH .

To describe a schedule S0, which may involve inserted idle times, we use an ordered pair

S 0 = (S1; S2), where S1 is a permutation of jobs and S2 is a function whose value S2(i)

gives the idle time inserted between jobs JS1(i�1) and JS1(i).

Algorithm A0(p1; p2; : : : ; pn; �1; �2; : : : ; �n)

A1 Algorithm A(p1; p2; : : : ; pn; �1; �2; : : : ; �n).

c0 0

for i = 1 to n do

ci ci�1 + pA1(i)

if ci < �i then

A2(i) �i � ci
ci �i

else

A2(i) 0

output((A1; A2))

end

The time complexity of Algorithm A0 is O(n log n), if we use a fast sorting scheme.

First, we introduce the following lemma which plays an important role in the proofs of

establishing the performance guarantees. This lemma is an immediate consequence of

Lemma 3.9.

25

Lemma 3.14 For each schedule S0 = (S1; S2), and for each number b, we have

max
i
fpA1(i) � ai + bg � max

i
fpS1(i) � ai + bg

and

min
i
fpA1(i) � ai + bg � min

i
fpS1(i) � ai + bg:

Now, we analyze the performance of the algorithm for the problem 1jjLH
abs. Let OPT

0 =

(OPT1; OPT2) be an optimal schedule for this problem. We obtain the following bound

on the performance of Algorithm A0.

Theorem 3.15

LH
abs(A

0) � n� LH
abs(OPT

0):

Proof. From Lemma 3.14, we have

LH
abs(OPT

0) = maxfLH
max(OPT

0);�LH
min(OPT

0)g

�
1

2
� (LH

max(OPT
0)� LH

min(OPT
0))

�
1

2
�max

i
jLH

OPT1(i)
� LH

OPT1(i�1)
j

�
1

2
�max

i
jCOPT1(i) � �i � (COPT1(i�1) � �i�1)j

=
1

2
�max

i
jpOPT1(i) + OPT2(i)� aij

�
1

2
�max

i
jpA1(i) � ai +OPT2(i)j:

Let I = f1; 2; : : : ; ng, and let J and K be the set of the indices such that pA(i) � ai
for all i 2 J and pA(i) < ai for all i 2 K, respectively. From the de�nition of LH

abs and ai,

it follows that

LH
abs(A

0) = maxfLH
max(A

0);�LH
min(A

0)g

� maxf
X
i2J

(pA1(i) � ai); 0g

�
X
i2J

(pA1(i) � ai):

First, we assume that jJ j � n=2. Then we have

LH
abs(A

0) � jJ j �max
i2J
fpA1(i) � aig

�
n

2
�max

i
fpA1(i) � aig

�
n

2
�max

i
fpA1(i) � ai + OPT2(i)g

�
n

2
�max

i
jpA1(i) � ai +OPT2(i)j:

26

Next, we assume that jJ j � (n+ 1)=2. We have

LH
OPT1(n)

=
X
i

(pOPT1(i) � ai + OPT2(i))

=
X
i

(pA1(i) � ai + OPT2(i))

�
X
i2J

(pA1(i) � ai) +
X
i2K

(pA1(i) � ai +OPT2(i)):

From this inequality, it follows that

LH
abs(A

0) � LH
OPT1(n)

�
X
i2K

(pA1(i) � ai +OPT2(i))

� LH
OPT1(n)

� jKj �min
i2K
fpA1(i) � ai + OPT2(i)g

� LH
OPT1(n)

�
n� 1

2
�min

i
fpA1(i) � ai + OPT2(i)g

� LH
OPT1(n)

+
n� 1

2
�max

i
jpA1(i) � ai +OPT2(i)j:

To conclude the proof, it is su�cient to observe that

LH
OPT1(n)

� LH
abs(OPT

0):

Theorem 3.15 provides the performance ratio n. The following theorem says that this

ratio cannot be improved.

Theorem 3.16 There exists an instance satisfying

LH
abs(A

0) = n� LH
abs(OPT

0):

Proof. Identical to that of Theorem 3.11.

Next, we analyze the performance of the algorithm for the problem 1jj�LH. Now, let

OPT 0 = (OPT1; OPT2) be an optimal schedule for this problem. We obtain the following

bound on the performance of Algorithm A0.

Theorem 3.17

�LH(A0) � d
n

2
e ��LH(OPT 0):

Proof. From Lemma 3.14, we have

�LH(OPT 0) = LH
max(OPT

0)� LH
min(OPT

0)

� max
i
jLH

OPT1(i)
� LH

OPT1(i�1)
j

= max
i
jCOPT1(i) � �i � (COPT1(i�1) � �i�1)j

� max
i
jpOPT1(i) +OPT2(i)� aij

� max
i
jpA1(i) � ai + OPT2(i)j:

27

Let j be an arbitrary position in A0 at which LH
max(A

0) is achieved. From the de�nition

of �LH and ai's, it follows that

�LH(A0) = LH
max(A

0)� LH
min(A

0)

� (CA1(j) � �j)� 0

�

jX
i=1

(pA1(i) � ai):

First, we assume that j � dn=2e. Then we have

�LH(A0) � j �max
i
fpA1(i) � aig

� d
n

2
e �max

i
fpA1(i) � ai + OPT2(i)g

� d
n

2
e �max

i
jpA1(i) � ai + OPT2(i)j:

Next, we assume that j � dn=2e+ 1. We have

LH
OPT1(n)

=
nX
i=1

(pOPT1(i) � ai + OPT2(i))

=
nX
i=1

(pA1(i) � ai + OPT2(i))

�

jX
i=1

(pA1(i) � ai) +
nX

i=j+1

(pA1(i) � ai +OPT2(i)):

From this inequality, it follows that

�LH(A0) � LH
OPT1(n)

�

nX
i=j+1

(pA1(i) � ai + OPT2(i))

� LH
OPT1(n)

� (n� j)�min
i
fpA1(i) � ai + OPT2(i)g

� LH
OPT1(n)

+ (b
n

2
c � 1)�max

i
jpA1(i) � ai + OPT2(i)j

� LH
OPT1(n)

+ (d
n

2
e � 1)�max

i
jpA1(i) � ai + OPT2(i)j:

To conclude the proof, it is su�cient to observe that

LH
OPT1(n)

� �LH(OPT 0):

Theorem 3.17 provides the performance ratio dn=2e between the optimal value of �LH

and the value induced by a schedule found by Algorithm A0. The following theorem says

that this ratio cannot be improved.

Theorem 3.18 There exists an instance satisfying

�LH(A0) = d
n

2
e ��LH(OPT 0):

Proof. Identical to that of Theorem 3.13.

28

Chapter 4

Scheduling with both traditional and

generalized due dates

In this chapter, we consider single machine problems involving both traditional and gen-

eralized due dates simultaneously. We show that a polynomial time algorithm exists for

the problem of minimizing maxfLmax; L
H
maxg, where Lmax and L

H
max are the maximum late-

ness induced by traditional and generalized due dates, respectively. We also show that

a simple e�cient algorithm exists for the problem of minimizing the maximum lateness

induced by due dates which are natural generalization of both traditional and generalized

due dates. In addition to the algorithmic results above, we show that the problems of

minimizing maxfLH
max;�Lming and maxfLmax;�L

H
ming are NP-hard in the strong sense,

where Lmin and LH
min are the minimum lateness induced by traditional and generalized

due dates, respectively.

4.1 Introduction

4.1.1 Background and motivation

Since introduction of generalized due dates by Hall [40], there have been several papers

dealing with scheduling problems involving this type of due dates [84, 41, 109, 111]. How-

ever, to the best of our knowledge, there has been no investigation of problems with both

traditional and generalized due dates although they are interesting from both theoretical

and practical view points.

In this chapter, we are mainly concerned with the problems minimizing the maximum

of the maximum lateness induced by traditional and generalized due dates. We consider

two types of such problems. Suppose that all jobs J1; J2; : : : ; Jn have their traditional

due dates d1; d2; : : : ; dn and that simultaneously generalized due dates �1; �2; : : : ; �n are

given. Then, we can calculate the maximum lateness Lmax induced by traditional due

dates and the maximum lateness LH
max induced by generalized due dates. One of the

simplest functions which combine two criteria is the maximum function. We take as our

�rst main criterion the maximum of Lmax and LH
max.

This problem may be useful in many practical situations. For example, a computer

dealer may face a situation to install the same computer systems to several companies.

The dealer is required to install �ve systems per month by a computer provider. The

29

computer provider does not care which systems are sold. This induces generalized due

dates. However, the dealer is required to install each system by its due date speci�ed by

a company. The times needed to install a system can be di�erent, and the dates at which

companies want to start to use a system can also be di�erent. This induces processing

times and traditional due dates. The dealer should make schedules which satisfy both

requirements given by the provider and companies.

Suppose that all jobs J1; J2; : : : ; Jn are partitioned into k � n sets J1; J2; : : : ; Jk and

that each set J i has its own generalized due dates �i1; : : : ; �
i
jJij. Notice that, if all sets

J1; J2; : : : ; Jk are singletons (i.e., k = n), then we have the traditional due date model,

and that, if we do not partition (i.e., k = 1), then we have the standard generalized due

date model. Thus, we can consider the traditional and generalized due date models as

special cases. We take as our second main criterion the maximum lateness induced by

such due dates.

This problem arises naturally as follows. A public utility company may face a situation

to contract multiple services. For one service, the company is required to contract the

service to ten new cities. It is required to include �ve within three months, a further

three within six months, and all ten within one year. For another service, the company

is required to contract the service to ten new cities. It is required to include three within

two months, a further �ve within ten months, and all ten within one year. This induces

generalized due dates for each set of jobs.

We are also interested in the complexity for the problems of minimizing

maxfLH
max;�Lming and maxfLmax;�L

H
ming, where Lmin and LH

min are the minimum late-

ness induced by the traditional and generalized due dates, respectively. We do not know

how important these problems are in practice. However, we are concerned with them

because of theoretical interests.

4.1.2 De�nitions and preliminaries

The objective functions which we are interested in are de�ned as follows:

maxfLmax(S); L
H
max(S)g; (4.1)

maxfLH
max(S);�Lmin(S)g; (4.2)

maxfLmax(S);�L
H
min(S)g; (4.3)

where
Lmax(S) = max1�i�n Li(S);

LH
max(S) = max1�i�n L

H
i (S);

Lmin(S) = min1�i�n Li(S);

LH
min(S) = min1�i�n L

H
i (S):

In addition, we are also interested in the following objective function. Let all jobs

J1; J2; : : : ; Jn are partitioned into k � n sets J1; J2; : : : ; Jk. A set of all jobs in J i has a

non-decreasing sequence

�i1 � �i2 � � � � � �ijJij

of non-negative numbers as its generalized due dates for each 1 � i � k. Let job JSi(j)

be in the jth position of partial schedule Si in schedule S for each 1 � i � k. Then, the

30

objective function which we consider is de�ned as follows:

max
1�i�k

Li
max(S); (4.4)

where
Li
max(S) = max1�j�jJ ij L

i
j(S);

= max1�j�jJ ijfCSi(j)(S)� �ijg:

4.1.3 Main results

In Section 4.2 we survey the previous results on the complexity for the problems related

to our problems. In Section 4.3, �rst, we give an e�cient algorithm for the problem of

minimizing LH
max with the constraint Lmax � m, which plays an important role in solving

problem (4.1). Then, we show that a polynomial time algorithm exists for problem (4.1).

In Section 4.4, we show that problem (4.4) can be solved by a simple e�cient algorithm.

Finally, in Section 4.5, we give NP-hardness results for problems (4.2) and (4.3).

4.2 Previous works

In this section, we survey the complexity of the problems related to our problems, i.e., the

problems of minimizing Lmax, LH
max, �Lmin, �L

H
min, maxfLmax;�Lming, and

maxfLH
max;�L

H
ming.

For the �rst four problems, simple sequencing rules give optimal schedules.

Proposition 4.1 Each permutation schedule generated by the

� EDD rule is optimal for the 1jjLmax problem,

� MST rule is optimal for the 1jnmitj � Lmin problem,

� SPT rule is optimal for the 1jjLH
max problem,

� LPT rule is optimal for the 1jnmitj � LH
min problem.

Proof. All these results can easily be proved by a straightforward adjacent pairwise

interchange argument.

The �rst case is also known as Jackson's rule [49]. The second case, a mirror image of

Jackson's rule, was already presented in [8, 20].

Next, we mention the complexity for the problems of minimizing the maximum ab-

solute lateness for both traditional and generalized due dates. Then, we investigate the

complexity for problems involving both traditional and generalized due dates.

Let us proceed to the maximum absolute lateness problems, i.e., the problems of min-

imizing maxfLmax;�Lming and maxfLH
max;�L

H
ming. Using the results by Garey, Tarjan,

and Wilfong [33], Hoogeveen [45], and Liao and Huang [61], the following proposition

concerning the traditional due date version can be proved.

31

Proposition 4.2 The problems

1jjmaxfLmax;�Lming and 1jnmitjmaxfLmax;�Lming

can be solved in polynomial time.

On the other hand, Tanaka and Vlach [99] proved the following proposition concerning

the generalized due date version.

Proposition 4.3 The problems

1jjmaxfLH
max;�L

H
ming and 1jnmitjmaxfLH

max;�L
H
ming

are NP-hard in the strong sense.

4.3 An algorithm for minimizing maxfLmax; L
H
maxg

In this section, we consider problem (4.1), i.e., the problem of minimizing

maxfLmax; L
H
maxg. First, we present an algorithm for minimizing LH

max with the con-

straint Lmax � m, which has a relation to problem (4.1). The algorithm is based on ideas

of Garey, Tarjan, and Wilfong [33], Hoogeveen [45], and Liao and Huang [61].

The algorithm returns the resulting schedule A as a permutation, i.e., A returns the

index A(i) of the job in the ith position for each i, 1 � i � n. First, the algorithm �nds an

EDD sequencing. This sequencing gives the optimal value of Lmax. Then, the algorithm

�xes a longest remaining job from the last position by checking feasibility. When the

algorithm reaches the �rst position, an optimal schedule is found.

Algorithm A(p1; p2; : : : ; pn; d1; d2; : : : ; dn; m)

Find an EDD sequencing A

if Lmax(A) > m then

output(\There is no feasible schedule.")

and exit

I f1; 2; : : : ; ng

u
Pn

j=1 pj
for k = n down to 2 do

Find i 2 I such that

(1) u� di � m, and

(2) pi � pj for all j 2 I n fig

such that u� dj � m

A(k) i

I I n fig

u u� pi
output(A)

end

The time complexity of the algorithm is O(n log n) if we use a fast sorting scheme

and employ a binary search for the Find statement with the table of jobs sorted by their

processing times. Now, we show the correctness of Algorithm A.

32

Lemma 4.4 If there exists a feasible schedule, then there exists an optimal schedule for

the problem minimizing LH
max with the constraint Lmax � m, and with the property that

Ji precedes Jj for each pair Ji and Jj of jobs such that there exist an EDD and an SPT

sequences in both of which Ji precedes Jj.

Proof. Let S be an optimal schedule. If S has the required property described above,

then we are done. If not, we construct another optimal schedule as follows. Since S does

not have the required property, there is a pair of jobs Jk and Jl such that

� there exist an EDD and an SPT sequences in both of which Jk precedes Jl,

� Jl precedes Jk in S,

� no such pair exists with any job between Jl and Jk.

Let S 0 be the schedule obtained from S by interchanging Jl and Jk. To prove that S
0

is also optimal, it su�ces to show that

1. Lmax(S
0) � m,

2. LH
l (S

0) � LH
max(S),

3. LH
r (S

0) � LH
max(S) for each r such that Jr is scheduled between Jl and Jk.

Proof of 1. We observe that pk � pl. Consequently Cr(S
0) � Cr(S) for all r. Therefore

Lr(S
0) � Lr(S) for all r 6= l. Moreover Cl(S

0)� dl � Ck(S)� dk, because Cl(S
0) = Ck(S)

and dk � dl. Thus Ll(S
0) � Lk(S), and we conclude that Lmax(S

0) � Lmax(S) � m.

Proof of 2. Obvious because LH
l (S

0) = LH
k (S).

Proof of 3. We again observe that pk � pl. Therefore L
H
r (S

0) � LH
r (S) for all r.

If S0 does not have the required property, we repeat this interchange, and after a �nite

number of steps, we obtain an optimal schedule having the required property.

Theorem 4.5 If there exists a feasible schedule, then Algorithm A yields an optimal

schedule for the problem of minimizing LH
max with the constraint Lmax � m.

Proof. We show that a slightly stronger statement holds, Namely, Algorithm A yields an

optimal schedule which satis�es the property described in Lemma 4.4.

First notice that, if an EDD sequencing is feasible, then after the algorithm �xes the

job in the last position, an EDD sequencing is again feasible for the updated problem.

Therefore the algorithm always delivers a feasible schedule, provided one exists.

Suppose that Algorithm A gives a schedule A which is not optimal. Let OPT be an

optimal schedule having the required property. Comparing A and OPT from the last

position, we meet the �rst di�erence in some position, say kth, of A and OPT . Let Ji
and Jj be scheduled in the kth position in A and in OPT , respectively. Algorithm A

always choose a longest possible job with respect to the constraint Lmax � m. So, we

have pi � pj.

Let OPT 0 be the schedule where Ji and Jj are interchanged in OPT . In order to prove

that A is optimal and feasible, it is su�cient to prove the following three claims:

1. OPT 0 is feasible with respect to the constraint Lmax � m,

33

2. OPT 0 is optimal,

3. OPT 0 can be transformed into a new schedule OPT 00 which is optimal, feasible with

respect to the constraint Lmax � m, and equal to A in the last n� k + 1 positions,

and has the required property.

Proof of 1. Since pi � pj, we have Ck(OPT
0) � Ck(OPT). Thus Lk(OPT

0) �

Lk(OPT) for all k except i. Since Ji is chosen by the algorithm, we have Li(OPT
0) � m,

from which the claim follows.

Proof of 2. Analogous to the proof of 2 and 3 in the proof of Lemma 4.4.

Proof of 3. It is possible that there exists job Jl, scheduled between Ji and Jj in OPT ,

with pl < pj and di � dl � dj, or with pl � pj and di � dl < dj . If so, then OPT
0 does not

have the required property. However, it follows immediately from the proof of Lemma 4.4

that OPT 0 can be adjusted to a new schedule OPT 00 which is feasible, optimal, and equal

to A in the last n� k + 1 positions, and which has the required property.

The interchange argument as above can be repeated until A and the new schedule

OPT 00 are the same. This proves that schedule A is optimal and feasible with respect to

the constraint Lmax � m, and has the required property.

An e�cient algorithm for the problem of minimizing LH
max with the constraint Lmax �

m enable us to get a polynomial time algorithm for problem (4.1).

Theorem 4.6 A polynomial time algorithm exists for the problem of minimizing

maxfLmax; L
H
maxg.

Proof. Using Algorithm A, we can get the algorithm for the problem by using a binary

search on the possible values with querying whether LH
max of an optimal schedule under

the constraint Lmax � m. The time complexity of this algorithm is O(n log n logP), where

P = maxfLH
max(EDD)� LH

max(SPT); Lmax(SPT)� Lmax(EDD)g.

A polynomial time algorithm analogous to Algorithm A can be made for the problem

of minimizing �LH
min with the constraint Lmin � m and nmit. Thus, a polynomial time

algorithm exists for the problem of minimizing maxf�Lmin;�L
H
ming with the constraint

nmit.

4.4 An algorithm for minimizing maxLi
max

In this section, we consider problem (4.4), i.e., the problem of minimizing max1�i�k L
i
max.

Recall that all jobs J1; J2; : : : ; Jn are partitioned into k � n sets J1; J2; : : : ; Jk and that

for each 1 � i � k, all jobs have their own generalized due dates �i1; : : : ; �
i
jJij.

The algorithm returns the resulting schedule B as a permutation similarly as Algo-

rithm A. First, the algorithm �nds an SPT ordering for each set Si. Then, it makes

traditional due dates according to SPT orderings. Finally, it �nds an EDD ordering on

new due dates.

Algorithm B(p11; p
1
2; : : : ; p

k
mk
; �11 ; �

1
2; : : : ; �

k
mk

)

for i = 1 to k do

Find an SPT ordering SPT i of all jobs in J i

34

for j = 1 to jJ ij do

dij �i(SPT i)�1(j)

Find a sequence B where all jobs are in

non-decreasing order of dij
output(B)

end

The time complexity of the algorithm is

kX
i=1

O(mk logmk) +O(n log n) = O(n log n):

Now, we show the correctness of Algorithm B.

Lemma 4.7 There exists an optimal schedule where the order of jobs in J i is SPT for

all 1 � i � k.

Proof. Let S be an optimal schedule. If it has the required property, then we are done. If

not, we construct another optimal schedule as follows. Since S does not have the required

property, there exists a pair of jobs J i
j and J i

k such that

� there exist an SPT sequencing in which J ij precedes J
i
k,

� J i
k precedes J

i
j in S.

Let S 0 be the schedule obtained from S by interchanging J ik and J i
j . Then, S0 can be

shown to be optimal by observing that the completion time of J ik in S
0 is equal to that of

J ij in S and that the completion time of each job in S0, scheduled between J ik and J
i
j , is no

greater than that in S. Repeating such interchanges makes a schedule with the required

property.

Theorem 4.8 Algorithm B yields an optimal schedule for the problem of minimizing

max1�i�k L
i
max.

Proof. For each 1 � i � k, if we �x the order of all jobs in J i in a schedule, we can regard

a due date of each job in J i as a traditional due date. Thus, we can �nd an optimal

schedule by an EDD sequencing on all jobs.

4.5 NP-hardness

In this section, we consider the complexity for problems (4.2) and (4.3), i.e., the problems

of minimizing maxfLH
max;�Lming and maxfLmax;�L

H
ming.

Theorem 4.9 The problems

1jjmaxfLH
max;�Lming and 1jnmitjmaxfLH

max;�Lming

are NP-hard in the strong sense.

35

Proof. First, we consider the problem 1jnmitjmaxfLH
max;�Lming. We will prove its

strong NP-hardness by a polynomial reduction from 3-partition problem, which is known

to be NP-hard in the strong sense [31].

Suppose we have an instance of 3-partition problem, i.e., suppose we have a positive

integer B and a family A = fa1; a2; : : : ; a3ng of positive integers such that
P3n

j=1 aj = nB

and B=4 < aj < B=2 for 1 � j � 3n.

For this instance, we construct the following instance of the problem

1jnmitjmaxfLH
max;�Lming with 4n jobs J1; J2; : : : ; J4n:

� the processing times p1; p2; : : : ; p4n are given by

pi = B + ai for 1 � i � 3n,

pi = B for 3n+ 1 � i � 4n,

� traditional due dates d1; d2; : : : ; d4n are given by

di = 0 for 1 � i � 3n,

di = 5B(i� 3n) for 3n+ 1 � i � 4n,

� generalized due dates �1; �2; : : : ; �4n are given by

�i = 5Bdi=4e for 1 � i � 4n,

where dxe is the smallest integer no less than x.

We now show that the problem above has a schedule with LH
max = �Lmin = 0 i� A

has a desired partition. Suppose that A has a partition A = A1 [A2 [� � � [An such thatP
aj2Ai

aj = B for 1 � i � n. Further suppose that Ai = fa3i�2; a3i�1; a3ig for 1 � i � n.

It is easy to check that the schedule

(J1; J2; J3; J3n+1; J4; J5; J6; J3n+2; : : : ; J3n�2; J3n�1; J3n; J4n)

gives LH
max = �Lmin = 0.

On the other hand, suppose that there exists a schedule with LH
max = �Lmin = 0.

Notice that all feasible schedules give LH
max no less than zero and Lmin no greater than

zero. This follows from the fact that, in any feasible schedule, the last job must give LH
max

no less than zero since �4n =
P

1�i�4n pi, and job J4n must give Lmin no greater than zero

since d4n =
P

1�i�4n pi.

Let us consider the jobs in the �rst position to the fourth. We call jobs J1; J2; : : : ; J3n
a-type and jobs J3n+1; J3n+2; : : : ; J4n b-type. We show that the jobs in the �rst position

to the third are a-type and the job in the fourth position is b-type. First, suppose that

there is no b-type job among the �rst four jobs. Then, the completion time of the job in

the fourth position is greater than 5B. So, the lateness of the job induced by generalized

due dates is greater than zero, which disable us from attaining the minimum value zero

of LH
max. Next, suppose that there is a b-type job among the �rst three jobs. Then,

the completion time of this job is less than 4B. So, the lateness of the job induced by

traditional due dates is less than �B < 0, which disable us from attaining the maximum

value zero of Lmin.

36

We can apply a similar argument as above to the jobs in the (4i� 3)rd position to the

(4i)th for 2 � i � n. The positions of b-type jobs divide the whole time interval where the

machine runs into n time intervals of the same length B. This implies A has a partition

A = A1 [A2 [� � � [An such that
P

aj2Ai
aj = B for 1 � i � n, where the jobs from the

(4i� 3)rd position to the (4i� 1)st correspond to the elements in Ai for each 1 � i � n.

It remains to consider the problem 1jjmaxfLH
max;�Lming. Notice that we cannot attain

the minimum value zero of LH
max if we insert the machine idle time. So, even if we allow

the machine to be idle, no optimal schedule has the machine idle time. This enable us to

apply a similar argument as for the nmit version of the problem.

Theorem 4.10 The problems

1jjmaxfLmax;�L
H
ming and 1jnmitjmaxfLmax;�L

H
ming

are NP-hard in the strong sense.

Proof. Similar to the proof of Theorem 4.9.

4.6 Conclusion

We have considered single machine problems with both traditional and generalized due

dates. We have shown that a polynomial time algorithm exists for the problem of minimiz-

ing maxfLmax; L
H
maxg (problem 4.1) and that a simple polynomial time algorithm exists

for the problem of minimizing max1�i�k L
i
max (problem 4.4). We have also shown that the

problems of minimizing maxfLH
max;�Lming and maxfLmax;�L

H
ming (problems 4.2 and 4.3)

are NP-hard in the strong sense. From these results above, we derive a complete charac-

terization of the solvability of all problems arising from maxfA;Bg, where A and B are

Lmax, �Lmin, L
H
max, and �L

H
min, which is shown in Table 4.1.

A=B Lmax �Lmin (under nmit) LH
max �LH

min (under nmit)

Lmax EDD Poly [33] Poly [this chapter] NP-hard [this chapter]

�Lmin | MST NP-hard [this chapter] Poly [this chapter]

LH
max | | SPT NP-hard [99]

�LH
min | | | LPT

Table 4.1: Complexity status

37

Chapter 5

Scheduling with generalized release

dates

In this chapter, we are concerned with single machine scheduling with generalized release

dates. They are related to the traditional release dates in similar way as the generalized

due dates to the traditional ones. First, we consider the problem to minimize the sum

of completion times with generalized release dates which have constant intervals. The

strong NP-hardness is proved for this problem. We also consider the maximum lateness

problems with traditional and generalized due dates in the presence of generalized release

dates.

5.1 Introduction

First, we are concerned with single machine problems of minimizing the sum of completion

times with generalized release dates which have constant intervals. We show that these

problems both with and without permitted machine idle time are NP-hard in the strong

sense.

These problems are equivalent to a special class of two machine ow shop scheduling

problems. In general, two machine ow shop problems can be described as follows. Sup-

pose that we have two machines M1 and M2. Each Jj consists of a pair of operations

(O1j ; O2j). Operation Oij has to be processed on Mi during pij time units, and the or-

der in which the operations are executed is the same through machines. Without loss of

generality, we can assume that each job has to be processed �rst on machine M1, then on

machine M2. Each machine can process at most one job at a time, and each job can be

processed on only one machine at a time.

Here we extend our notation nmit to multiple machine cases. Now, by nmit, we mean

that, on each machine, no idle time from the start of the �rst operation to the completion

of the last is allowed, and the processing on each machine starts as early as possible.

It is known that the problems F2jj
P
Cj and F2jnmitj

P
Cj are NP-hard in the strong

sense [32].

The instance constructed in the proof in [32] allows for various processing times on

the �rst machine. We show that analogous results hold even under the assumption that

all processing times are equal to a given positive number.

38

Furthermore, we show that the maximum lateness problems with generalized release

dates are polynomially solvable, both with traditional and with generalized due dates.

5.2 Results

5.2.1 The sum of completion time problems

We consider that the problems to minimize the sum of completion times with generalized

release dates which have constant intervals. These problems are equivalent to the two

machine ow shop problems to minimize the sum of completion times where the processing

times on the �rst machine are the same, with and without allowing for machine idle time.

We consider these ow shop problems.

We assume that all the jobs have the same processing time a on the �rst machine. We

show that these problems are NP-hard in the strong sense under this assumption.

Theorem 5.1 The problem F2jp1j = aj
P
Cj is NP-hard in the strong sense.

Proof. We use 3-partition problem, which is known to be NP-hard in the strong sense [31].

We transform this 3-partition problem to the ow shop problem. Let A = fa1; a2; : : : ; a3ng

be the set and B a positive number considered on 3-partition problem, such that
P3n

j=1 aj =

nB and B=4 < aj < B=2 for 1 � j � 3n.

We construct the ow shop problem with four types of jobs. Let all jobs have the

same processing times nB2 on the �rst machine. Let p
j
i be the processing time of j-type

job J
j
i on the second machine for j 2 fa; b; c; dg. The �rst type, which we call a-type, has

3n jobs Ja
1 ; J

a
2 ; : : : ; J

a
3n whose processing times pa1; p

a
2; : : : ; p

a
3n on the second machine are

pai = B + ai for 1 � i � 3n.

The second type, which we call b-type, has n(nB � 4) jobs J b
1 ; J

b
2 ; : : : ; J

b
n(nB�4) whose

processing times pb1; p
b
2; : : : ; p

b
n(nB�4) on the second machine are

pbi = B for 1 � i � n(nB � 4).

The third type, which we call c-type, has n jobs J c
1 ; J

c
2 ; : : : ; J

c
n whose processing times

pc1; p
c
2; : : : ; p

c
n on the second machine are

pci = nB2(nB � 1) for 1 � i � n.

The fourth type, which we call d-type, has n5B5 jobs Jd1 ; J
d
2 ; : : : ; J

d
n5B5 whose processing

times pd1; p
d
2; : : : ; p

d
n5B5 on the second machine are

pdi = n5B5 for 1 � i � n5B5.

We now show that the problem above has a schedule with the sum of completion times

less than

T = T1 + T2;

39

where

T1 =
n�1X
j=0

(
nB�1X
i=0

(nB2 + n2B3j + nB2(nB � 1) +Bi) + 9B=4);

and

T2 =
n5B5X
j=1

(nB2 + n3B3 + n5B5j);

i� A has a desired partition. Intuitively, T2 corresponds to the sum of completion times

of d-type jobs and T1 corresponds to that of the rest of jobs.

Suppose that A has a partition A = A1 [A2 [� � � [An such that
P

aj2Ai
aj = B

for 1 � i � n. Further suppose that Ai = fa3i�2; a3i�1; a3ig for 1 � i � n. An easy

calculation shows that the following schedule gives the sum of completion times less than

T :

(J c
1 ; J

b
1 ; J

b
2 ; : : : ; J

b
nB�4; J

a
1 ; J

a
2 ; J

a
3 ; J

c
2 ; J

b
nB�3; J

b
nB�2; : : : ; J

b
2(nB�4); J

a
4 ; J

a
5 ; J

a
6 ; : : : ;

Jcn; J
b
(n�1)(nB�4)+1; J

b
(n�1)(nB�4)+2; : : : ; J

b
n(nB�4); J

a
3n�2; J

a
3n�1; J

a
3n; J

d
1 ; J

d
2 ; : : : ; J

d
n5B5):

On the other hand, suppose that there exists a schedule which gives the sum of com-

pletion times less than T .

First, we claim that all d-type job must be scheduled in the last n5B5 positions from

time nB2 + n3B3. Suppose that there exists a job scheduled after d-type jobs. Then, the

job must be completed after nB2 + n5B5 and the sum must be greater than T2 + n5B5�

nB2(nB� 1) > T2+T1 = T . Next, suppose that d-type jobs are not scheduled from time

nB2+n3B3. Then again, the sum must be greater than T2+ n5B5 > T2 +T1 = T . Thus,

we have the claim.

Notice here that the sum of completion times of all d-type jobs is T2 and that the sum

of processing times of all a-type, b-type, and c-type jobs is n3B3. From the claim above,

a-type, b-type, and c-type jobs must be scheduled from time nB2 with no inserted idle

time, and we can suppose that there exists a schedule which gives the sum of completion

times of these jobs, less than T1. So, from now on, we restrict our attention to only the

schedules for a-type, b-type, and c-type jobs from time nB2 with no inserted idle time.

Next, we claim that, for any schedule, the sum of completion times of a-type, b-type,

and c-type jobs must be greater than

T3 =
n�1X
j=0

(
nB�1X
i=0

(nB2 + n2B3j + nB2(nB � 1) +Bi) + 7B=4);

if we schedule them from time nB2 with no inserted idle time. In order to claim this, we

consider an optimal schedule and show that it must give the sum greater than T3.

We �rst consider the job in the �rst position. It must be c-type. Otherwise, there

must be inserted idle time between the jobs in the �rst and second positions, or we cannot

schedule the �rst job from time nB2.

We secondly consider the jobs in the second to (nB)th position. The sum of processing

times of these jobs must be greater than nB2. Otherwise, there must be inserted idle time

between the jobs in the (nB)th and (nB + 1)st positions.

If there are c-type jobs in the second to (nB)th position, we can transform a schedule

with c-type jobs in these positions into one with no c-type job in these positions without

increasing the sum by an interchange argument.

40

Thus, there are at least three three a-type jobs in the second to (nB)th position. Even

if we assign (nB � 4) b-type jobs in the second to (nB � 3)th position and three a-type

jobs, whose completion times have the sum no less than 4B, in the (nB � 2)th to nBth

position, the sum of completion times of the jobs in the �rst nB positions must be greater

than
nB�1X
i=0

(nB2 + nB2(nB � 1) + Bi) + 7B=4:

The sum of processing times of the jobs in the second to (nB + 1)st position must be

greater than 2nB2. Otherwise, there must be inserted idle time between the jobs in the

(nB+1)st and (nB+2)nd positions. However, the sum of processing times of any nB jobs

of a-type and/or b-type is no greater than nB2+nB < 2nB2. So, the job in the (nB+1)st

position must be c-type job. Even if we assign a c-type job in the (nB+1)st position from

time nB2 + n2B3 and a-type and/or b-type jobs in the (nB + 2)nd to (2nB)th position

as above, the sum of completion times of the jobs in the (nB + 1)st to (2nB)th position

must be greater than

nB�1X
i=0

(nB2 + n2B3 + nB2(nB � 1) + Bi) + 7B=4:

We can apply a similar argument for the jobs in the (nBj+1)st to nB(j+1)st position

for each 2 � j � n�1, and show the sum of completion times of the jobs in the (nBj+1)st

to nB(j + 1)st position must be greater than

nB�1X
i=0

(nB2 + n2B3j + nB2(nB � 1) + Bi) + 7B=4:

Thus, for any schedule, the sum of completion times of a-type, b-type, and c-type jobs

must be greater than T3.

Recall that we assume there exists a schedule which gives the sum of completion times

less than T1. As we have seen, the job in the �rst position must be c-type.

We consider the jobs in the second to (nB)th position under this assumption. We

show that there exist no c-type jobs in these positions of a schedule which gives the

sum of completion times less than T1. If there exists a c-type job in these positions, we

exchange this c-type job with an a-type or b-type job scheduled after the c-type job. If

the resulting schedule makes inserted idle time, we further exchange b-type jobs scheduled

before the c-type job with a-type jobs scheduled after the c-type job. Finally, we get a

schedule which makes no inserted idle time. This schedule improves the sum by at least

nB2(nB� 1)� 2nB, and the new sum is less than T1� (nB2(nB� 1)� 2nB) < T3. This

contradicts that any schedule gives the sum greater than T3.

We can apply a similar argument for the jobs in the (nBj+1)st to nB(j+1)st position

for each 1 � j � n � 1, and show a c-type job is in the (nBj + 1)st position for each

1 � j � n� 1.

Finally, we consider the completion time of the job in (nBj)th position for each 1 �

j � n. We show that it must be exactly nB2+n2B3j. Suppose that the completion time

of the job in the (nBj)th position is greater than nB2 + n2B3j. This causes the delays

of completion times of jobs in the (nBj + 1) to (nBj + nB � 3)rd position. Then, the

41

sum must be greater than T3+nB� 3 > T1. This contradicts that there exists a schedule

which gives the sum less than T1.

Thus, it follows that there are three a-type jobs in the (nBj + 1)st to (nB(j + 1))th

position and the sum of the processing times of these jobs must be 4B. This implies that

A has a desired partition.

In the proof above, we construct an instance with no inserted idle time. Therefore,

the following theorem has been proved.

Theorem 5.2 The problem F2jp1j = a; nmitj
P
Cj is NP-hard in the strong sense.

From Theorem 5.1 and 5.2, we obtain the following corollary.

Corollary 5.3 The problems

1j�j = cjj
X

Cj and 1j�j = cj; nmitj
X

Cj

are NP-hard in the strong sense.

5.2.2 The maximum lateness problems

We consider two other basic problems with release dates, namely, the maximum lateness

problems with traditional and generalized due dates under generalized release dates. The

problems 1jrjjLmax and 1jrjjL
H
max are known to be NP-complete in the strong sense [59, 41].

Theorem 5.4 The problems

1j�jjLmax and 1j�j jL
H
max

are polynomially solvable.

Proof. First, we claim that 1j�j jL
H
max can be solved by O(n log n) algorithm using the

SPT sequencing rule. The algorithm is as follows. First, we schedule a shortest job from

the �rst generalized release date. Second, we schedule a second shortest job as soon as

the process of the �rst job is completed and the second job is released. We repeat this

until we schedule all jobs. We can prove that this algorithm actually gives an optimal

schedule by a standard interchange argument.

Next, we claim that 1j�j jLmax can be solved by O(n log n) algorithm using the EDD

sequencing rule. The algorithm is as follows. First, we schedule a job with the earliest due

date from the �rst generalized release date. Second, we schedule a job with the second

earliest due date as soon as the process of the �rst job is completed and the second job is

released. We repeat this until we schedule all jobs.

We can prove that this algorithm actually gives an optimal schedule by a standard

interchange argument combined with the result by Ferris and Vlach [28] on the maximum

lateness problem with traditional release dates, which claims that, if the due dates are

agreeable with release dates in the sense that ri < rj implies di � dj , then the problem

can be solved with an EDD based algorithm

From Theorem 5.4, we can easily show the following theorem, where the traditional

counterparts of the problems are polynomially solvable [62, 9, 41, 14].

42

Theorem 5.5 The problems

1jpmtn; �jjLmax and 1jpmtn; �j jL
H
max

are polynomially solvable.

5.3 Summary and open problems

We have studied the algorithms and complexity of the problems with generalized release

dates. We have only investigated the problems to minimize the sum of completion times

and to minimize the maximum lateness. The following table which summarizes our results

and open problems.

43

Problem (notation for

traditional model)

Generalized release date

model

Traditional release date

model

1jrj jLmax Polynomially solvable (The-

orem 5.4)

NP-hard [59]

1jrj jL
H
max Polynomially solvable (The-

orem 5.4)

NP-hard [41]

1jpmtn; rj jLmax Polynomially solvable (The-

orem 5.5)

Polynomially solvable [62, 9]

1jpmtn; rj jL
H
max Polynomially solvable (The-

orem 5.5)

Polynomially solvable [41]

1jpmtn; prec; rj jLmax Open Polynomially solvable [14, 9]

1jrj j
P
Cj NP-hard even if �j = cj

(Theorem 5.1) [32]

NP-hard [59]

1jrj ; nmitj
P
Cj NP-hard even if �j = cj

(Theorem 5.2) [32]

Open

1jpmtn; rj j
P
Cj Open Polynomially solvable [8]

1jpmtn; rj j
P
wjCj Open NP-hard [51]

1jrj j
P
TH
j Open NP-hard [40]

1jrj ; pj = 1j
P
wjTj Open Polynomially solvable [55]

1jrj ; pj = 1j
P
TH
j Open Polynomially solvable [111]

1jrj j
P
Uj Open NP-hard [59]

1jrj j
P
UH
j Open NP-hard [41]

1jrj ; pj = 1j
P
Uj Open Polynomially solvable even

for the weighted case [88]

1jrj ; pj = 1j
P
UH
j Open Polynomially solvable [111]

Table 5.1: Complexity status of single machine scheduling problems with generalized

release dates.

44

Chapter 6

Scheduling with fuzzy due dates

This chapter deals with single machine scheduling problems involving fuzzy due dates.

The objective is to minimize the maximum dissatisfaction with the completion times of

jobs. Several algorithms improving the e�ciency of previously known algorithms are

presented and analyzed.

6.1 Introduction

6.1.1 Background and previous results

We are concerned with single machine problems involving fuzzy due dates. One of the

problems studied in [87] is the problem of scheduling a �nite number of jobs on a single

machine so as to maximize the minimum degree of satisfaction with completion times.

The problem can be formally stated as follows: given n jobs J1; J2; : : : ; Jn with processing

times p1; p2; : : : ; pn and fuzzy due dates �1; �2; : : : ; �n, �nd a permutation schedule S

which maximizes

min
1�i�n

�i(Ci(S));

where Ci(S) denotes the completion time of job Ji in schedule S. For this problem, Tada

presents an O(n2 log n) algorithm. Furthermore, he considers the weighted version of the

problem, i.e., the problem of �nding a permutation schedule S which maximizes

min
1�i�n

wi�i(Ci(S));

where wi is a given positive number. He shows that the argument for the unweighted

problem can be extended to the weighted problem and presents an O(n2 log n) algorithm

for the weighted problem.

6.1.2 Main results

In this section, we present and analyze several algorithms for the problems mentioned

above. First, for the sake of completeness, we briey recall Tada's algorithm, and intro-

duce a fast modi�cation of his algorithm. Next, we show that the problem can be solved in

45

O(n2) time by a straightforward application of Lawler's algorithm for minimizing the max-

imum of non-decreasing functions of completion times. Then, we introduce two methods

based on Lawler's algorithm, and show how they improve Tada's and Lawler's algorithms.

6.2 Tada's algorithm and its improvement

In this section, we briey describe Tada's approach and show how it can be improved.

Let �u be the optimal value of the objective function under consideration, i.e.,

�u = max
S

min
1�i�n

�i(Ci(S));

where the maximum is taken over all permutation schedules. Obviously, 0 � �u � 1.

Observation 6.1 If �u > 0, then each optimal schedule S satis�es the following system

of inequalities

Ci(S) � ei(1� �u) + di; 1 � i � n:

Observation 6.2 If �u = 0, then, for each permutation schedule S, there exists job Jk
such that

ek(1� u) + dk < Ck(S); for each 0 � u � 1.

For each 0 � u � 1, we introduce the following deadlines for completion of jobs:

Di(u) = ei(1� u) + di; for 1 � i � n.

According to the previous observations, we consider as feasible only those permutation

schedules which satisfy the deadlines Di(u) for some 0 < u � 1, i.e.,

Ci(S) � Di(u); for 1 � i � n,

for some 0 < u � 1. If no such a feasible schedule exists, then every permutation schedule

is optimal and the maximum of the minimum degree of satisfaction is zero.

Observation 6.3 For each �xed value of u, a feasible schedule exists if and only if the

permutation schedule induced by ordering the jobs in the non-decreasing order of Di(u) is

feasible.

Observation 6.4 If I is a subinterval of the unit interval [0; 1] such that there is no

u 2 I satisfying

u(ei � ej) = di � dj + ei � ej;

then the order of Di(u) does not change throughout of I .

These observations suggest the following procedure for �nding an optimal schedule.

First, �nd all points of intersection of Di and Dj satisfying 0 < u < 1, then sort them

and employ a binary search for �nding the maximum among them for which a feasible

schedule exists. If no feasible schedule exists, then every permutation schedule is optimal.

The algorithm returns the resulting schedule B as a permutation, i.e., B returns the

index B(i) of the job in the ith position for each 1 � i � n.

46

Tada's algorithm

Let B be an arbitrary schedule

Find all 0 < u < 1 such that u = (di � dj + ei � ej)=(ei � ej)

for some i, j, j 6= i

Let Intersection be a set of such u

Add 0 and 1 to Intersection

Sort all items in Intersection

Choose the initial u for the binary search

while the maximum u is not found do

Find schedule S according to the non-decreasing order of Di(u)

if Ci(S) � Di(u) for all 1 � i � n then

B S

Update u for the binary search

else

Update u for the binary search

output(B)

end

In [87], Tada showed that the time complexity of the algorithm is O(n2 log n). His

algorithm needs to �nd all intersections and to sort them. The cost for these operations

is crucial for the complexity. Actually, to �nd all 0 < u < 1 such that u = (di � dj + ei �

ej)=(ei � ej) for some i, j, j 6= i, his algorithm calculates u = (di � dj + ei � ej)=(ei � ej)

and checks whether 0 < u < 1 or not for each i, j, j 6= i. It costs O(n2).

Next, we show that we can calculate all such u in O(P + n log n) time, where P is the

number of intersections of n membership functions. With this method, his algorithm has

the complexity O(P logP + n log n logP). The idea of this method is similar to that of

Chazelle and Edelsbrunner [19]. They are concerned with the general case of intersecting

line segments in the plane. We take advantage of the special property of our functions,

which enables us to have a simpler algorithm.

The algorithm returns all such u as a set Intersection of points. That is,

Intersection is the set of all points u0 such that

Di(u) 6= Dj(u) for 0 < u < 1, u 6= u0,

Di(u0) = Dj(u0):

In the algorithm, we use two lists UpperJobList and LowerJobList. Intuitively, jobs

according to UpperJobList are ordered by non-decreasing of di + ei's with sharp-sloped

job last, and jobs according to LowerJobList are ordered by non-decreasing of di's with

sharp-sloped job �rst.

FindIntersection

Intersection ;

Make a list of sorted indices f1; 2; : : : ; ng of jobs

according to the order <, de�ned by i < j

if either di + ei < dj + ej, or di + ei = dj + ej and di < dj
Let UpperJobList be such a list

Make a list of sorted indices f1; 2; : : : ; ng of jobs

47

according to the order <, de�ned by i < j

if either di < dj, or di = dj and ei < ej
Let LowerJobList be such a list

Choose the last item i in LowerJobList

while such i is found do

Choose the item j following i in UpperJobList

while such j is found do

Find the point u of intersection such that Di(u) = Dj(u)

Add u to Intersection

Choose the item k following j in UpperJobList

j k

Choose the item k preceding i in LowerJobList

Delete i from UpperJobList

i k

output(Intersection)

end

Now we analyze the complexity of the algorithm. The cost for making two lists

UpperJobList and LowerJobList of indices is O(n log n). The costs for choosing the

last, next and previous item in these lists are O(1) per operation with suitable data

structures, for example, doubly linked lists. For each i 2 LowerJobList, the number of

iteration of the inner while loop is that of intersections of Di. Thus, the total cost of the

algorithm is O(P + n log n).

The correctness of the algorithm is guaranteed as follows. For each i 2 LowerJobList,

we surely �nd all points of intersection of Di and the segments crossing Di from left

bottom to right top. All points of intersection of Di and the segments crossing Di from

left top to right bottom are already found in earlier phases. For each point of intersection,

we cannot �nd it twice because, once it is found, one segment must be deleted at the end

of the phase.

6.3 Lawler's algorithms

In the preceding sections, we consider the problem of maximizing the minimum degree

of satisfaction with completion times of jobs. This problem is equivalent to that of min-

imizing the maximum degree of dissatisfaction. From now on, we consider the problem

minimizing the maximum degree of dissatisfaction. First, we present an algorithm whose

time complexity is O(n2) based on Lawler's algorithm [37]. We are concerned with the

membership functions de�ned by

fi(t) =

8><
>:

0 if t � di,

(t� di)=ei if di < t � di + ei,

1 if di + ei < t,

for each 1 � i � n. The algorithm returns the resulting schedule A as a permutation, i.e.,

A returns the index A(i) of the job in the ith position for each 1 � i � n.

48

Lawler's algorithm

I f1; 2; : : : ; ng

u
P

i2 I pi
for j = n down to 1 do

Choose i 2 I such that fi(u) = minj2 I fj(u)

I I n fig

u u� pi
A(j) i

output(A)

end

Even if we employ a straightforward implementation, the time complexity of the al-

gorithm is O(n2). This improves an O(n2 log n) algorithm by Tada [87]. The correctness

of the algorithm is immediate from the result in [37].

If we replace membership functions fi by

gi(t) = wifi(t) for each 1 � i � n,

then, Lawler's algorithm will be again of complexity O(n2), which also improves an

O(n2 log n) algorithm by Tada [87].

6.4 Improved methods based on Lawler's algorithms

We compare two algorithms based on Tada's and Lawler's algorithm. If P is large,

Lawler's algorithm certainly is better in time complexity than Tada's. But, if P is fairly

small, for example n, then Tada's algorithm is superior to Lawler's. In this section, we

introduce an algorithm whose time complexity is O(P 0 logP 0 + n log n), where P 0 is the

number of all intersections of n membership functions excluding the intersections of fi
and fj both of which appear in an initial lower envelope. This algorithm improves Tada's

algorithm whose complexity is O(P logP + n log n logP). Recall that P is the number of

all intersections of n membership functions. So, P 0 � P .

In Lawler's algorithm, if we can choose i 2 I such that fi(u) = minj2I fj(u) faster, we

can get a faster algorithm. This leads to the idea of utilizing lower envelopes of member-

ship functions. We de�ne an lower envelope f of f1; f2; : : : ; fn by f(t) = mini2I fi(t). For

horizontal line segments of f(t), we treat them as below. We regard the right top hori-

zontal segment of f(t) is as a part of the graph which gives the rightmost non-horizontal

segment intersecting this horizontal segment. Similarly, we regard the left bottom hor-

izontal segment of f (t) is a part of the graph which gives the leftmost non-horizontal

segment intersecting this horizontal segment.

The algorithm consists of two major parts. First, we �nd an initial lower envelope of

n membership functions. Then, we repeat the following with updating the sum u of the

completion times of the remaining jobs: choosing the job facing the lower envelope at u

and updating the lower envelope.

We also show that a slight modi�cation of the algorithm leads to an O(Ln+ n log n)

time algorithm, where L is the number of membership functions not appearing in the

49

initial lower envelope. This enables us to have a fast algorithm when P 0 is large, and the

complexity does not grow faster than Lawler's algorithm.

Now, we present the �rst major part of the algorithm, which �nds an initial lower

envelope of n membership functions. The idea of this algorithm is similar to that of

Megiddo [67]. He deals with linear functions while we are concerned with special line

segments induced by membership functions. To describe a lower envelope f of membership

functions f1; f2; : : : ; fn, we use a list LowerEnvelope of sorted pairs (i; j), where i is an

index of the job which takes part in the lower envelope and j is the left breaking point of

the job in the lower envelope. Let (i1; j1); (i2; j2); : : : ; (ik; jk) be the �rst, second, : : :, and

last (kth) item in LowerEnvelope, respectively. Then, for each 1 � l � k, f (t) = fl(t)

for all jl � t � jl+1 (jk+1 =
Pn

l=1 pl). The algorithm returns a lower envelope as a list

LowerEnvelope.

FindLowerEnvelope

LowerEnvelope ;

Make UpperJobList as in FindIntersection

Make LowerJobList as in FindIntersection

Choose the �rst item i in UpperJobList

Add (i; 0) to LowerEnvelope

Choose the item j following i in UpperJobList

i j

while such i is found do

Let LowerEnvelope = ((i1; j1); (i2; j2); : : : ; (ik; jk))

if fi(di1) � 0 then

Delete all items from LowerEnvelope

Add (i; 0) to LowerEnvelope

else

Choose the largest l such that fil(jl) < fi(jl)

Find the intersection u such that fil(u) = fi(u)

Delete (il+1; jl+1); (il+2; jl+2); : : : ; (il+1; jl+1) from LowerEnvelope

Add (i; u) to the last in LowerEnvelope

Choose the item j following i in UpperJobList

i j

output(LowerEnvelope)

end

Now we analyze the complexity of the algorithm. The cost for adding an item to

LowerEnvelope and that for deleting an item from LowerEnvelope is O(1) per operation

with a reasonable data structure.

In the while loop, the cost for choosing the largest l such that fil(jl) < fi(jl) is

O(log n) per operation by using a binary search. The total cost for deleting items from

LowerEnvelope is O(n) because, for each i, (i; j) is deleted at most once. Thus, the total

cost of the algorithm is O(n log n).

We check the correctness of the algorithm inductively. Suppose that, after some step,

we have a lower envelope LowerEnvelope = ((i1; j1); (i2; j2); : : : ; (ik; jk)). Consider the

next step in which we add fi to the envelope. Since either dk + ek < di + ei, or dk + ek =

50

di + ei and dk � di, we can always add fi to the last in the envelope. The graph of fi(t)

either intersects the previous lower envelope at a unique point or not at any points.

If we have the latter case, fi(t) covers the previous lower envelope from below com-

pletely. This is done in the case fi(di1) � 0 in the algorithm. If we have the former case,

we divide a new lower envelope into two parts at a unique intersection. Then, only fi(t)

faces the right part and only the previous lower envelope faces the left part. This is done

in the case fi(di1) > 0 in the algorithm.

We proceed to the second major part of the algorithm. Suppose that we are given

LowerEnvelope and u. To choose the job facing the lower envelope at u, we choose (i; j)

with the largest j no greater than u in LowerEnvelope. A binary search implements this

in O(log n) time.

Here we introduce a modi�ed version of FindIntersection, which we use in the algo-

rithm to update the lower envelope. The algorithm returns all intersections of n member-

ship functions excluding all intersections of fi and fj both of which appear in the lower

envelope.

The algorithm returns all such intersections as n sets Intersection1;

Intersection2; : : : ; Intersectionn, where Intersectioni corresponds to fi. That is, Intersectioni
is a set of pairs of (j; u) of a job and an point of intersection, where fi(t) intersects fj(t)

at u from below, i.e.,
fi(t) < fj(t) for dj < t < u,

fi(u) = fj(u);

fi(t) > fj(t) for u < t < dj + ej,

where fj(t) appeared in the lower envelope is excluded.

FindIntersection0(LowerEnvelope)

Intersection1; Intersection2; : : : ; Intersectionn ;

Let I be the set of i such that (i; j) 2 LowerEnvelope

Make a list of sorted items in I according to the order similar to

that for UpperJobList in FindIntersection

Let UpperJobList0 be such a list

Make LowerJobList as in FindIntersection

Choose the last item i in LowerJobList

while such i is found do

Choose the item j following i in UpperJobList

while such j is found do

Find the point u of intersection such that fi(u) = fj(u)

Add (j; u) to Intersectioni
Add (i; u) to Intersectionj
Choose the item k following j in UpperJobList0

j k

Choose the item k preceding i in LowerJobList

Delete i from UpperJobList0

i k

output(Intersection1; Intersection2; ; : : : ; Intersectionn)

end

51

The analysis of the complexity is analogous to that for FindIntersection. The number

of iteration of the inner while loop is that of intersections of fi and fj such that fj does not

appear in the lower envelope. Thus, the total cost of the algorithm is O(P 0+n log n), where

P 0 is the number of all intersections of n membership functions excluding all intersections

of fi and fj both of which appear in the lower envelope. Notice that P
0 is bounded by Ln,

where L is the number of fi which does not appear in the lower envelope. So, the total

cost of the algorithm is O(Ln+ n log n) alternatively. The correctness of the algorithm is

analogous to that of FindIntersection.

The algorithm updating a lower envelope also needs the following process before its

�rst execution. The process sorts all items in Intersectioni and returns them as a new

list Intersectioni for each i.

The algorithm updating a lower envelope also needs a process SortItemsInIntersection

before its �rst execution. For each i, this process sorts all items in Intersectioni according

to the order <, de�ned by (i1; j1) < (i2; j2) if either j1 < j2, or j1 = j2 and di1 < di2 , and

returns them as a new list Intersectioni.

SortItemsInIntersection(Intersection1; Intersection2; : : : ; Intersectionn)

for each k do

Make a list of sorted items (i; j) in Intersectionk
according to the order <, de�ned by (i1; j1) < (i2; j2)

if either j1 < j2, or j1 = j2 and di1 < di2
Let Intersectionk be such a list

output(Intersection1; Intersection2; : : : ; Intersectionn)

end

The total cost of the algorithm is O(
Pn

i=1(P
0
i logP

0
i)), where P

0
i is the number of items

in Intersections0i. Thus, the total cost is O(P
0 logP 0).

Now, we present an algorithm to update a lower envelope. The algorithm uses

two lists UpperJobList0 and LowerJobList to indicate the remaining jobs together with

Intersectioni's. Let (i; j) to be deleted from LowerEnvelope. The algorithm returns up-

dated LowerEenvelope with updated UpperJobList0, LowerJobList, and Intersectioni's.

UpdateLowerEnvelope((i; j); LowerEnvelope; UpperJobList0; LowerJobList;

Intersection1; Intersection2; : : : ; Intersectionn)

Let LowerEnvelope = ((i1; j1); : : : ; (il�1; jl�1); (il; jl); (il+1; jl+1); : : : ; (ik; jk))

Let (i; j) = (il; jl)

Delete il from UpperJobList0

Delete il from LowerJobList

Delete (il; jl) from LowerEnvelope

for each item (i; j) 2 Intersectionil do

Delete (il; j) from Intersectioni
if l = 1 then

Choose the last item i0 in LowerJobList

j0 0

if l = k then

Choose the last item ik+1 in UpperJobList0

Delete (il+1; jl+1) from LowerEnvelope

52

if il�1 6= il+1 then

Find the intersection u such that fil�1
(u) = fil+1

(u)

Choose the smallest item (i; j) such that jl � j in Intersectionil�1

according to the order similar to that in SortItemsInIntersection

if j > u then

Insert (il+1; u) into LowerEnvelope

else

while i 6= il+1 do

Insert (i; j) into LowerEnvelope

il�1 i

jl j

Choose the smallest item (i; j) such that jl � j in Intersectionil�1

according to the order similar to that in SortItemsInIntersection

Insert (il+1; j) into LowerEnvelope

output(LowerEnvelope; UpperJobList0; LowerJobList;

Intersection1; Intersection2; : : : ; Intersectionn)

end

Now we analyze the complexity of the algorithm. The cost to get the position of (i; j)

in the lower envelope is O(log n) by a binary search. The cost for choose the smallest item

(i; j) such that jl � j in Intersectionil�1
is O(logP 0) per operation with a binary search.

Since we know the position of (i; j) in the lower envelope, then the cost for inserting (i; j)

into LowerEnvelope is O(1) per operation. Let L0 be the number of the segments which

is newly inserted into the lower envelope. Then, the number of iteration of the while loop

is L0. Thus, the total cost of the algorithm is O(L0 logP 0 + log n).

The correctness of the algorithm is guaranteed as follows. First, the algorithm updates

the lists for the remaining jobs and intersections.

Then, the algorithm �nds the segment fil�1
whose right breaking point jl is the left

breaking point of the deleted segment fl. If there is no such fil�1
, the algorithm takes

the last job in UpperJobList0 as fil�1
, which is the leftmost segment of the new lower

envelope, and set jl = 0. The algorithm also �nds the segment fil+1
whose left breaking

point is the right breaking point of the deleted segment fl. If there is no such fil+1
, the

algorithm takes the last job in UpperJobList0 as fil+1
. In this part, we �nd the part

which needs to be updated in the lower envelope. That is, we �nd that we need to update

the lower envelope from fil�1
to fil+1

. Notice that the part which we need to update is

connected, because lower envelopes are convex functions.

Next, the algorithm updates the part of the envelope found above. If fil�1
= fil+1

, the

new lower envelope consists of a unique function fil�1
(= fil+1

). Otherwise, the algorithm

�nds the intersection x of fil�1
and fil+1

, and the leftmost intersection y on the right of

jl, of fil�1
and fi, where fi is a segment which does not face the initial lower envelope.

If x is not on the right of y, the updated part consists of fil�1
and fil+1

, and the left

breaking point of fil+1
is x. This is correct, since x is the leftmost intersection on the

right of jl, of fil�1
and fj, where fj is a segment which faces the initial lower envelope.

If x is on the right of y, the algorithm begins with fil�1
and y, and traces the intersec-

tions along the updated part with updating y until it reaches fil+1
. This is correct, since

no segment fj appears in the updated part except fil+1
, where fj is a segment which faces

53

the initial lower envelope.

We present the entire algorithm of minimizing the maximum dissatisfaction.

Our algorithm

FindLowerEnvelope

Let LowerEnvelope be such a list

FindIntersection0(LowerEnvelope)

Let Intersection1; Intersection2; : : : ; Intersectionn be such sets

SortItemsInIntersection(Intersection1; Intersection2; : : : ; Intersectionn)

Let Intersection1; Intersection2; : : : ; Intersectionn be such lists

Make UpperJobList0 as in FindIntersection0

Make LowerJobList as in FindIntersection

u
P

i2 I pi
for k = n down to 1 do

Choose (i; j) with the largest j no greater than u in LowerEnvelope

UpdateLowerEnvelope((i; j); LowerEnvelope; UpperJobList0;

LowerJobList; Intersection1; Intersection2; : : : ; Intersectionn)

Let LowerEnvelope; UpperJobList0; LowerJobList;

Intersection1; Intersection2; : : : ; Intersectionn be updated lists

u u� pi
A0(k) i

output(A0)

end

Now we analyze the complexity of the algorithm. Recall that the cost of UpdateLow-

erEnvelope is O(L0 logP 0+ log n), where L0 is the number of the segments which is newly

inserted into a lower envelope. Since each segment is newly inserted into a lower envelope

at most once, the total cast of this operation is O(n logP 0 + n log n). Thus, from the

analysis of each element of the algorithm, the total cost is O(P 0 logP 0 + n log n).

Finally, we present a slight modi�ed version of the algorithm above. In the new

algorithm, we do not execute SortItemsInIntersection. Owing to this, we can discard the

cost O(P 0 logP 0) for sorting intersections. Consequently, in UpdateLowerEnvelope, we

use Intersectioni's as sets (not lists), i.e., the items in Intersectioni's are not ordered.

This prevents us from using a binary search to choosing the smallest item (i; j) such

that jl � j in Intersectionil�1
in UpdateLowerEnvelope. The cost for this operation

is changed to O(P 0
il�1

), where P 0
il�1

is the number of items in Intersections0il�1
. Recall

that L is the number of membership functions not appeared in the initial lower envelope.

Since P 0
il�1

is bounded by L, the cost for the operation is O(L). Thus, the total cost of

UpdateLowerEnvelope is O(LL0 + log n), so, the total cost of the algorithm is O(Ln +

n log n).

54

Part II

Negation-limited circuit complexity

55

Chapter 7

Preliminaries

The study of circuit complexity dates back to the pioneering works by Shannon [82].

Among computational models, the circuit model has an especially simple de�nition, and

enables us to apply combinatorial analyses to it.

Despite the importance of lower bounds on the circuit complexity of explicit problems,

the best bounds known are only linear. However, good lower bounds are known for the

complexity of monotone circuits, where negations are forbidden. This motivates the study

on the complexity of negation-limited circuits, where the number of negations available

is restricted.

This chapter is intended to give a brief review concerning negation-limited circuit

complexity. First, in Section 7.1, we describe background of our study on negation-

limited circuit complexity. Then, we provide a basic formulation for negation-limited

circuit complexity in Section 7.2.

The time and space complexity of Turing machines currently reects intuitive notions

of the complexity of computation. Section 7.1 describes relationships between the time

and space required by a Turing machine and the size and depth required by a circuit.

Finally, in Section 7.4, we present several known results on inversion complexity on which

negation-limited circuit complexity is based.

7.1 Background and motivation

The theory of monotone boolean circuit complexity has met with considerable success.

Good lower bounds for both size and depth of monotone circuits (i.e., circuits without

NEGATION gates) computing many explicit functions are now known. Razborov [77]

obtained a superpolynomial lower bound of size n
(logn) for the monotone circuit com-

plexity of the clique function. Soon after, Andreev [7] proved an exponential lower bound

for some class of monotone functions. Alon and Boppana [5] strengthened the combina-

torial arguments of Razborov, and proved a lower bound for the clique function of size

exponential in exp(
((n= log n)1=3)) (see also [16, 66]). Recently, Amano and Maruoka [6]

further strengthened this argument with a succinct proof, and gave a better bound for

the clique function (see also [39]).

However, the theory of general boolean circuits, with NEGATION gates, is much less

well understood, although Shannon [82] proved an
(2n=n) lower bound on the size of

circuits for almost all boolean functions. Up to now, only linear lower bounds with small

56

constants have been obtained. The largest bound of this sort is 3n, proved by Blum [15]

for circuits on basis of all two-input boolean functions, and 4n, proved by Zwick [112] for

circuits on basis any two-input boolean functions except equivalence and exclusive-or.

Furthermore, exponential gaps between monotone and general circuit complexity are

known, both for circuit size [100] and circuit depth [76]. The e�ect of NEGATION gates

on circuit complexity remains to a large extent a mystery.

This motivates the study of negation-limited circuit complexity: what is the e�ect on

circuit complexity of restricting the number of negations available? Markov [65] gives an

explicit formula (see below) for the maximum number r of NEGATION gates required

to compute a system of boolean functions F , without regard to circuit complexity. The

maximum value of r for a circuit with n inputs is dlog(n+ 1)e, the number of bits in the

binary representation of n (all logarithms in this part are base two). We shall denote this

number by b(n).

Fischer [29] shows that restricting the number of negations in a circuit to b(n) entails

only a polynomial blowup in circuit size. This is in sharp contrast to the situation for

monotone circuits. �E. Tardos [100] has shown that there is an exponential gap between the

general complexity and the monotone complexity of some monotone functions. In related

work, Santha and Wilson [78] have studied the negation-limited complexity of constant

depth circuits, obtaining both upper and lower bounds for the number of NEGATION

gates required by circuits of a given depth. Recently, Tanaka and Nishino [91] have

found an alternative to Fischer's construction; they decrease the size of the circuits at the

expense of increasing the depth.

For some class of monotone functions, the gap between monotone and general circuit

complexity is polynomial. Berkowitz [13] introduced a class of this kind, which is called

slice functions. For any slice function, a lower bound of size !(n log2 n) of monotone

circuit complexity implies a superlinear lower bound on general circuit complexity [104].

Dunne [23] generalized the concept of slice functions, and introduced a special type of

replacement rule called pseudo-complementation. Furthermore, Dunne [24] also showed

that some speci�c slice functions are NP-complete. Thus, a superpolynomial lower bound

on the monotone circuit complexity of this kind of slice function implies that P 6= NP.

But up to date, the methods proving strong lower bounds on the monotone complexity of

boolean functions could not be used to prove strong lower bounds of slice functions (see

also [105, 106, 26, 27]).

7.2 De�nitions

A boolean circuit (or network) is a suitably labeled directed acyclic graph. The nodes with

in-degree zero are called inputs, and are labeled with a variable xi or with a constant 0 or

1. The nodes with in-degree k > 0 are called gates, and are labeled with k-input boolean

functions. Unless otherwise speci�ed, we restrict these functions to boolean functions

AND, OR and NEGATION.

We refer to the in-degree of a node as its fan-in and its out-degree as its fan-out. The

fan-out of a circuit is the maximal fan-out of any node. The fan-in of a circuit is the

maximal fan-in of any node. Unless otherwise speci�ed, we restrict the fan-in of a circuit

to two. One of the nodes is designated the output node. Each gate in a circuit computes

57

a function by applying the function labeling it to the functions computed by the nodes

feeding it. A circuit computes a boolean function in this way.

The size of a circuit is the number of gates, and the depth of a circuit is the length

of a longest path from an input to an output. Let F be a collection of boolean functions

f1; : : : ; fm de�ned on f0; 1gn. We denote by C(F) or C(f1; : : : ; fm) the circuit complexity

of F , i.e., the size of the smallest circuit of AND, OR, and NEGATION gates with inputs

x1; : : : ; xn

and outputs

f1(x1; : : : ; xn); : : : ; fm(x1; : : : ; xn):

We call a circuit with no more than r NEGATION gates an r-circuit. We denote by

Cr(F) or Cr(f1; : : : ; fm) the size of the smallest r-circuit computing F . If the system of

functions cannot be computed with only r NEGATION gates, then Cr(F) is unde�ned.

Similarly, we denote by Dr(F) the minimum depth of an r-circuit computing F .

The inverter is the collection In of functions f1; : : : ; fn, where for all 1 � i � n,

fi(x1; : : : ; xn) = :xi. For 0 � k � n, the (k; n)-inverter is the collection Ikn of functions

f1; : : : ; fn, where for all 1 � i � n,

fi(x1; : : : ; xn) =

8><
>:

0 if
Pn

j=1 xj < k

:xi if
Pn

j=1 xj = k

1 if
Pn

j=1 xj > k.

A circuit with no NEGATION gates is monotone. A monotone function f is a boolean

function which satis�es f(x1; : : : ; xn) � f(y1; : : : ; yn) whenever xi � yi for all i. Monotone

functions are exactly those computed by monotone circuits. Observe that the (k; n)-

inverter is a system of monotone functions. Berkowitz [13] shows that the monotone

complexity of the (k; n)-inverter is polynomial, with a construction of size O(n2 log n)

and depth O(log n). Valiant [104] constructs monotone (k; n)-inverters of size O(n log2 n)

and depth O(log2 n).

We de�ne the kth slice function fk of f by

fk(x1; : : : ; xn) =

8><
>:

0 if
Pn

i=1 xi < k

f(x1; : : : ; xn) if
Pn

i=1 xi = k

1 if
Pn

i=1 xi > k.

We denote by T n
k (x1; : : : ; xn), the kth threshold function which returns one i�

Pn
i=1 xi � k.

For more detail on circuit complexity, see e.g. the survey by Boppana and Sipser [16],

and the books by Dunne [25] and Wegener [107].

7.3 Simulations of circuits by Turing machines

The time and space complexity of Turing machines currently reects intuitive notions of

the complexity of computation. In this section, we discuss the relationships between the

time and space required by a Turing machine and the size and depth required by a circuit.

In order to make close relation between these models, oblivious Turing machines were

introduced. A Turing machine is oblivious if, for �xed n, the positions of all heads at each

step are the same for all inputs of size n.

58

The Turing machine time and space complexity T (n) and S(n) can bound the com-

plexity of boolean circuits. Savage [79] showed that the circuit complexity is at most

O(T (n)2). Pippenger and Fischer [75] reduced this bound to O(T (n)) for oblivious Tur-

ing machines and to O(T (n) log T (n)) for unrestricted Turing machines. These results

were extended by Schnorr [81]. The following three propositions are due to Pippenger

and Fischer [75].

Let fn be the boolean function obtained by restricting f to inputs of size n.

Proposition 7.1 Let an oblivious Turing machine compute f in time T (n). Then,

C(fn) = O(T (n)):

Proposition 7.2 Let a Turing machine M compute f in time T (n). Suppose in addition

M has the property that the steps at which inputs are read or outputs produced depend

only on the length n of the input. Then we can �nd a two tape oblivious Turing machine

for f which runs in time

O(T (n) log T (n)):

Proposition 7.3 Let a Turing machine compute f and run within time T (n) > n for all

inputs of length n. Then,

C(fn) = O(T (n) logT (n)):

We present a proof for the simulation of a Turing machine by a circuit, based on the

lecture notes by Zwick [113]. The proof is for a weaker bound of O(T 2(n)), or actually

O(T (n)S(n)), and given for the case in which the Turing machine has a single tape. It is

easy to generalize it to the case with multiple tapes.

Proof. Let M be a quintuple M = (�; Q; qs; qt; �), where

� � is a �nite alphabet,

� Q is a �nite set of states,

� qs 2 Q is the initial state,

� qt 2 Q is the accepting state,

� � : ��Q! ��Q� fL;Rg is the transition function.

Each state in Q can be represented by logjQj bits, and each letter of � by logj�j bits.

Using this representation, � can be seen as a boolean function of a small number of bits,

and can be implemented by a circuit of small size, as shown in Figure 7.1, which is labeled

�.

The circuit � is a basic building block in a circuit that simulatesM . Let x1; x2; : : : ; xn
be binary sequences representing the �rst n binary digits is the representation of the input

written on the tape ofM , before it starts executing. The circuit simulatingM will receive

the variables xi as input and compute the function calculated by M . It will have T (n)

di�erent layers, one for each time unit 0 � t � T (n). The binary values at each layer of

the circuit encode a con�guration of the machine (its sate, tape content and the location

of the head). It is clearly su�cient to include in such a con�guration, the content of the

59

1 i� the head
should move
to the left

1 i� the head
should move
to the right

�

q 2 Q a 2 �

q0 a0

Figure 7.1: The circuit �.

1 i� the head
at cell i at time t

The letter written
at cell i

The state

Figure 7.2: The binary array.

60

tape cells �T (n) � i � T (n) only. For each point 0 � t � T (n) of time, for every cell

�T (n) � i � T (n) of the tape, we keep a binary array, shown in Figure 7.2.

The circuit computes these arrays, according to the following layers:

First layer For t = 0, these arrays are composed of the variables x1; x2; : : : ; xn, and

constants.

Intermediate layers Given the arrays for time t, the arrays for time t+1 are constructed

in parallel, using circuits, similar to � (see Figure 7.3).

0 1 0

Figure 7.3: A circuit to simulate M .

Each circuit gets one of the arrays of time t as input, and creates, at its output,

the corresponding array of time t+1. If the head is in the cell, for which the circuit

is responsible, the array is changed according to �, and the appropriate neighboring

 circuit is noti�ed of the head movement. This neighbor then updates its array

accordingly. All other circuits output their input arrays without change.

A di�erence between the original transition function of M and the circuit , is that

once M reaches q1, the accepting state, it halts. On the other hand, the circuit

cannot stop, so when a circuit gets as input an array, in which the encoded state

is q1, the array is left unchanged, and the head is not moved.

Last layer The last layer is the construction is a circuit, that checks whether the state,

encoded at the array where the head bit is 1, is q1.

The size of the circuit, thus constructed, is O(T 2(n)). The depth is O(T (n)), which is

the same as M 's time complexity.

The following proposition, proved by Borodin [17], gives a relation between the depth

of circuits and the space of nondeterministic Turing machines.

Proposition 7.4 Let a nondeterministic Turing Machine compute f using space S(n) �

log n, then

D(fn) = O(S(n)2):

61

From Proposition 7.3 and 7.4, large enough lower bounds on size and depth of circuit

complexity can provide superlinear lower bounds on time and space of Turing machine

complexity. The converse of this is false. This is because Turing machines are a uniform

model of computation, while boolean circuits a non-uniform model. Incidentally, all

decision problems may be solved by networks but it is well known that some decision

problems are not computable with Turing machines.

For more detail on the simulations of Turing machines by circuits, see e.g. the lecture

notes by Fischer [30] and Zwick [113], and the books by Dunne [25] and Wegener [107].

7.4 Inversion complexity

In this section, we describe the theorem proved by Markov in 1958 [65]. A theorem of

Markov precisely determines the number of NEGATION gates necessary and su�cient to

compute a system of boolean functions.

Let F be a system of n-input boolean functions f1 : : : ; fm. Let I(F) be the minimum

number of negations in any circuits which computes the set F of boolean functions. I(F)

is called the inversion complexity of F .

A chain C in the boolean lattice f0; 1gn is an increasing sequence a1 < : : : < ak 2

f0; 1gn. The decrease of F on C is the number of i � k such that for some j, fj(a
i�1) >

fj(a
i). We de�ne d(F) to be the maximum decrease of F on any chain C. Markov has

proved that b(d(F)) NEGATION gates are necessary and su�cient to compute any system

F of functions f1; : : : ; fm, where b(d(F)) = dlog(d(F) + 1)e, the number of bits in the

binary representation of d(F).

Theorem 7.5 (Markov)

I(F) = dlog(d(F) + 1)e;

Corollary 7.6 (Markov) Let F be a system of n-input boolean functions f1 : : : ; fm,

where m � 2, then,

max
F

I(F) = dlog(n+ 1)e;

Let f be a n-input boolean function, then,

max
f

I(f) = blog(n+ 1)c:

Markov's theorem says nothing about the circuit size, when we achieve the minimal

numbers of negations.

Nakamura, Tokura and Kasami [71] and Fischer [30] gave algorithms for �nding a

circuit computing F using dlog(d(F)+1)e negations. A proof that I(F) � dlog(d(F)+1)e

also appears in [30].

In this section, using slice functions, we give another proof that dlog(n+ 1)e NEGA-

TION gates are su�cient to compute any system F of functions.

Proof. We construct a circuit T having dlog(n+ 1)e NEGATION gates which computes

F . For simplicity, we construct a circuit T for the case when jF j = 1 i.e. F is singleton,

and n+ 1 is a power of two. Let F = ffg.

62

If we are given the n + 1 slice functions, f0; : : : ; fn of f , and the complements of n

threshold functions, :T n
1 ; : : : ;:T

n
n , we can compute f by using the following relation:

f =
n_

k=0

[:T n
k+1 ^ fk]:

Notice that :T n
n+1 is 1 (a constant function).

Since any slice function is monotone, Each fk can be realized by a monotone circuit.

So, it is su�ce to construct a circuit including dlog(n + 1)e NEGATION gates which

computes f:T n
1 ; : : : ;:T

n
n g. This can be performed by combining a monotone sorting

network for n variable and a circuit Mn (see Figure 7.4).

. .

n
x x x x x1 m m m

.

. . .

. . .

.

. . .

. . .

γ1γ

1γ n γ n
nγ n

mγ n
mγ n

mM

.

1 +1

1

+1

M M M M M
−

m 1−

m 1− m 1−
m 1−

−

Figure 7.4: A network Mn.

Let xS1 ; : : : ; x
S
n be the inputs and yS1 ; : : : ; y

S
n the outputs of the monotone sorting net-

work. First, we identify the inputs of the monotone sorting network with the input of T

as follows:

xSi = xi for each 1 � i � n.

Let xM1 ; : : : ; x
M
n be the inputs and yM1 ; : : : ; yMn the outputs of Mn. Next, we identify each

input of Mn with the outputs of the sorting network as follows:

xMi = ySi for each 1 � i � n.

We use the circuit Mn due to Fischer [29], inductively de�ned as shown in Figure 7.4. Let

n = 2l � 1 and m = 2l�1. In Figure 7.4, ni (1 � i � n) corresponds to yMi , and m�1
j

(1 � j � m� 1) denotes an output of a subcircuit Mm�1.

Then, from [29], we have

yMi = :T n
i (Xn) for each 1 � i � n,

63

and Mn includes only log(n + 1) NEGATION gates. The resulting circuit is shown in

Figure 7.5.

nx

nT
n

1T
n

nM
f

0

...x1nx

fn fn-1
n

nx. . .x1 nx. . .x1x1
.. .x2

.. .

-sorter

1T
n

nT
n. . .

. . .

. . .

. . .

f

Figure 7.5: The network computing f using its slices.

In the case when F is not singleton, the circuit computing f:T n
1 ; : : : ;:T

n
n g can be

commonly used to compute all functions in F . So, the construction above can easily be

applied to the case when jF j � 2. This completes the proof.

For yet another proof for the number of negations necessary to compute parity func-

tions, see the paper by Nishino and Radhakrishnan [72].

Note that Gilbert [36] considered inversion complexity in 1954, and that the syntheses

of circuits with minimal numbers of negations are included in the survey by Fischer [29]

and the early papers by Ibaraki and Muroga [46] and Nakamura, Tokura, and Kasami [71].

In the connection to the relationship with negation and computation, see e.g. [103], in

which he showed that negation is exponentially powerful for computing arithmetic func-

tions. For further detail on negation-limited circuit complexity, see also e.g. the lecture

notes and survey by Fischer [30, 29] and the theses by Tanaka [89, 90].

Outline of this part

The remainder of this part is divided into three chapters. First, in Chapter 8, we consider

the complexity of negation-limited inverters. Then, Chapter 9 describes the negation-

limited circuit complexity for symmetric functions. Finally, in Chapter 10, we investigate

relationships between the number of negations available in circuits and the size of the

circuits.

64

Chapter 8

The complexity of negation-limited

inverters

A circuit with inputs x1; : : : ; xn and outputs :x1; : : : ;:xn is called an inverter. In this

chapter, we mainly study negation-limited inverters, in which we use only dlog2(n + 1)e

NEGATION gates.

Fischer has constructed negation-limited inverters of size O(n2 log2 n) and depth

O(log n). Recently, Tanaka and Nishino have reduced the circuit size to O(n log2 n) at

the expense of increasing the depth to log2 n. We construct negation-limited inverters

of size O(n log n), with depth only O(log n), and we conjecture that this is optimal. We

also improve a technique of Valiant for constructing monotone circuits for slice functions

(introduced by Berkowitz).

Next, we introduce some lower bound techniques for negation-limited circuits. We

provide a 5n + 3 log(n + 1) � c lower bound for the size of a negation-limited inverter.

In addition, we show that for two di�erent restricted classes of circuit, negation-limited

inverters require superlinear size.

8.1 Introduction

8.1.1 Background

Markov [65] gives an explicit formula (see below) for the maximum number r of NEGA-

TION gates required to compute a system F of boolean functions, without regard to

circuit complexity. The maximum value of r for a circuit with n inputs is dlog(n + 1)e,

the number of bits in the binary representation of n (all logarithms in this chapter are

base two). We shall denote this number by b(n). Fischer [29, 30] shows that restricting

the number of negations in a circuit to b(n) entails only a polynomial blowup in circuit

size. This is in sharp contrast to the situation for monotone circuits. �E. Tardos [100] has

shown that there is an exponential gap between the general complexity and the monotone

complexity of some monotone functions. In related work, Santha and Wilson [78] have

studied the negation-limited complexity of constant depth circuits, obtaining both upper

and lower bounds for the number of NEGATION gates required by circuits of a given

depth.

65

Tanaka and Nishino [91] have found an alternative to Fischer's construction; they

decrease the size of the circuits at the expense of increasing the depth. We further reduce

the size, while simultaneously reducing the depth to that of Fischer. We also exhibit

a relationship between negation-limited complexity of the inverter (see below) and the

monotone complexity of certain types of monotone functions.

8.1.2 De�nitions and preliminaries

The inverter is the collection In of functions f1; : : : ; fn, where for all 1 � i � n,

fi(x1; : : : ; xn) = :xi. For 0 � k � n, the (k; n)-inverter is the collection Ikn of func-

tions f1; : : : ; fn, where for all 1 � i � n,

fi(x1; : : : ; xn) =

8><
>:

0 if
Pn

j=1 xj < k

:xi if
Pn

j=1 xj = k

1 if
Pn

j=1 xj > k.

Let F be a system of n-input boolean functions f1; : : : ; fm. A chain C in the boolean

lattice f0; 1gn is an increasing sequence a1 < : : : < ak 2 f0; 1gn. The decrease of F on

C is the number of i � k such that for some j, fj(a
i�1) > fj(a

i). We de�ne d(F) to be

the maximum decrease of F on any chain C. Note that d(F) � n, and this is attained

for F = In. Markov [65] has shown that b(d(F)) NEGATION gates are necessary and

su�cient to compute any system f1; : : : ; fm of functions. Thus, Cr(F) is always de�ned for

r � b(n). We call Cb(d(F))(F) the negation-limited complexity of the system of functions

F .

8.1.3 Main results

We give improved upper bounds and lower bounds on the negation-limited complexity of

the inverter. We show:

Theorem 8.1 The negation-limited complexity of the inverter In is O(n log n). In fact,

In may be computed by negation-limited circuits of size O(n log n) and depth O(log n).

This in turn yields upper bounds on Cb(n)(F) for an arbitrary system of functions F ,

via the standard technique of using DeMorgan's laws to push all negations in a circuit to

the inputs:

Corollary 8.2 For any system F of n-input boolean functions,

Cb(n)(F) � 2C(F) + O(n log n):

Currently no superlinear lower bound for the general circuit complexity of an explicit

boolean function is known. The above Theorem and Corollary imply that if we can show

an !(n log n) lower bound on Cb(n)(f) for some explicit boolean function f , we also obtain

an !(n log n) lower bound on the general circuit complexity of f .

Markov [65] constructs inverters using monotone functions and b(n) negations, but

he does not consider the complexity of the monotone functions that he uses. Akers [4]

(v. [70]) gives the �rst explicit construction of a negation-limited inverter. His circuit uses

66

b(n) NEGATION gates and positive weight threshold gates, and has size O(n) and depth

O(log n). For the remainder of this chapter, we restrict our attention to circuits of AND,

OR, and NEGATION gates. Fischer [29] gives such a circuit for In with size O(n2 log2 n)

and depth O(log2 n), using only b(n) NEGATION gates. Sorting networks play a key role

in Fischer's construction (and in all subsequent constructions). Using the sorting network

of Ajtai, Koml�os, and Szemer�edi [2, 3] (v. [74]). Fischer's construction reduces the size

to O(n2 log n) and the depth to O(logn). Tanaka and Nishino [91] have investigated the

negation-limited complexity of the inverter, giving an upper bound of O(n log2 n), using

a construction of depth �(log2 n).

Our circuit, with size O(n log n) and depth O(log n), improves on previous negation-

limited circuits for In by a factor of at least (log n) in size. Note that the only previous

construction with logarithmic depth had super-quadratic size.

A circuit with no NEGATION gates is monotone. A monotone function f is a boolean

function which satis�es f(x1; : : : ; xn) � f(y1; : : : ; yn) whenever xi � yi for all i. Monotone

functions are exactly those computed by monotone circuits. Observe that the (k; n)-

inverter is a system of monotone functions. Berkowitz [13] shows that the monotone

complexity of the (k; n)-inverter is polynomial, with a construction of size O(n2 log n)

and depth O(log n). Valiant [104] constructs monotone (k; n)-inverters of size O(n log2 n)

and depth O(log2 n). We show:

Theorem 8.3 The monotone complexity of the (k; n)-inverter is O(n log n). In fact, Ikn
has monotone circuits of size O(n log n) and depth O(log n).

We also show (v. Theorem 8.10) that there is a close relationship between C0(Ikn) and

Cb(n)(In). (For more background on monotone circuits, we refer to Section 4 of Boppana

and Sipser's article [16].)

We also obtain several lower bounds. For arbitrary negation-limited inverters, we

obtain:

Theorem 8.4 Let n be one less than a power of 2. Then any negation-limited circuit for

In has size � 5n+ 3 log(n+ 1)� c and depth � 4 log(n+ 1)� c.

In addition, we show that for two di�erent restricted classes of circuits, negation-

limited inverters require size
(n log n).

The remainder of this chapter is organized as follows. In Section 8.2, we �rst precisely

describe the Tanaka{Nishino inverter, which previously gives the best upper bound. Then,

we describe elements of previous constructions of negation-limited inverters which are

common to ours. In Section 8.3, we give the heart of our construction of negation-limited

inverters. In Section 8.4, we show the relationship between negation-limited inverters

and monotone (k; n)-inverters. Section 8.5 gives the main technical lemma on functions

computed at the NEGATION gates of negation-limited inverters, and proves Theorem 8.4.

In Section 8.6, we prove superlinear bounds for various restricted classes of negation-

limited inverters. We conclude in Section 8.7 by mentioning some open problems.

67

8.2 The Fischer and Tanaka{Nishino inverters

8.2.1 Description of the Tanaka{Nishino inverter

We found an alternative to Fischer's construction in 1994, referred as the Tanaka{Nishino

inverter, reducing the size at the expense of the depth. Later in this chapter, we further

reduce the size, while simultaneously reducing the depth to that of Fischer. Here, we

precisely describe the construction of the Tanaka-Nishino inverter, which might be still

interesting and is referred later.

Proposition 8.5

Cb(n)(In) = O(n log2 n):

Proof. We construct an inverter whose size is O(n log2 n). Let Mn be a circuit which

takes T n
1 (Xn); : : : ; T

n
n (Xn) as the inputs, and outputs :T

n
1 (Xn); : : : ;:T

n
n (Xn). Our circuit

consists of the following three components: a monotone sorting network on n valuable, a

circuit Mn (see Figure 8.1), and a monotone (n; 2n)-inverter.

. .

n
x x x x x1 m m m

.

. . .

. . .

.

. . .

. . .

γ1γ

1γ n γ n
nγ n

mγ n
mγ n

mM

.

1 +1

1

+1

M M M M M
−

m 1−

m 1− m 1−
m 1−

−

Figure 8.1: A network Mn.

Let xS1 ; : : : ; x
S
n be the inputs and yS1 ; : : : ; y

S
n the outputs of the monotone sorting net-

work. First, we identify the inputs of the monotone sorting network with the input of the

inverter as follows:

xSi = xi for each 1 � i � n.

Let xM1 ; : : : ; x
M
n be the inputs and yM1 ; : : : ; yMn the outputs of Mn. Next, we identify each

input of Mn with the outputs of the sorting network as follows:

xMi = ySi for each 1 � i � n.

68

We use the circuit Mn due to Fischer [29], inductively de�ned as shown in Figure 8.1. Let

n = 2l � 1 and m = 2l�1. In Figure 8.1, ni (1 � i � n) corresponds to yMi , and m�1
j

(1 � j � m� 1) denotes an output of a sub-network Mm�1.

Then, from [29], we have

yMi = :T n
i (Xn) for each 1 � i � n,

and Mn includes only log(n+ 1) NEGATION gates.

Let xI1; : : : ; x
I
2n be the inputs and y

I
1 ; : : : ; y

I
2n outputs of the monotone (n; 2n)-inverter.

Finally, we identify the inputs xIi of the monotone (n; 2n)-inverter with the inputs of the

inverter and the outputs of Mn as follows:

xIi =

(
xi for each 1 � i � n;

yMi�n for each n+ 1 � i � 2n.

The inverter constructed as above is shown in Figure 8.2.

()-inverter

nT
n

1T
n

nM
2T
n

n -sorter

n1T
n

2T
n

T
n

x1
.. .x2 nx

x1 .. .x2 nx . . .

2 nn ,

unused

x1
.. .x2 nx

Figure 8.2: The inverter.

Let Mn(Xn) denote the output of Mn when Mn is given Xn as the inputs. We denote

by #1(X) the number of ones in X , and by #0(X) the number of zeros in X. Then, it

follows that

#1(Mn(Xn)) = #0(Xn):

It is obvious that #0(Xn) = n�#1(Xn), so #1(Mn(Xn)) = n�#1(Xn). Thus, we have

#1(x
I
1; : : : ; x

I
2n) = #1(x

I
1; : : : ; x

I
n) + #1(x

I
n+1; : : : ; x

I
2n)

= #1(Xn) + #1(y
M
1 ; : : : ; yMn)

= #1(Xn) + #1(Mn(Xn))

= #1(Xn) + (n�#1(Xn))

= n:

Hence, yIi = xIi for all 1 � i � 2n, and in particular, yIi = xi for all 1 � i � n (see

Figure 8.2).

69

It is known that the size of a monotone sorting network is O(n log n) [2]. Notice here

that we can get a much smaller constant factor, if we use the Batcher network [10] whose

size is O(n log2 n) in our construction. This is enough to establish the bound stated in

the theorem. The size of a monotone (k; n)-inverter is O(n log2 n) for any k [104]. Finally,

the size S(n) of the circuit Mn satis�es the following relation:

S(n) = 2n� 1 + S(
n� 1

2
):

Thus, by an easy induction on n, we have

S(n) � 4n:

Hence, Cb(n)(Mn) = O(n). This completes the proof of Proposition 8.5.

Notice that our inverter has depth O(log2 n) while Fischer's inverter with a sorting

network by Ajtai, Koml�os, and Szemer�edi has depth O(log n).

8.2.2 Common elements of the inverters

The circuits of Fischer [29] and Tanaka{Nishino [91] have several elements in common

with each other, and with ours as well. The most important of these is a sorting network.

A comparator is a circuit element with two inputs and two outputs. The inputs are

taken from some ordered set U . The �rst output of the comparator is the maximum of

the two inputs, while the second output is the minimum of the two inputs. A sorting

network is a circuit, with n inputs and n outputs, composed entirely of comparators. For

any n-tuple x1; : : : ; xn of inputs from U , the n outputs y1; : : : ; yn of the sorting network

are a permutation of the xi and are in decreasing order. Ajtai, Koml�os, and Szemer�edi [2]

(v. [74]) have constructed sorting networks using O(n log n) comparators, organized in

O(log n) levels of bn=2c comparators each. Note that if the set U is f0; 1g, then a com-

parator can be constructed without negations. Indeed, for x; y 2 f0; 1g, min(x; y) = x^ y

and max(x; y) = x _ y. Thus, the Ajtai{Koml�os{Szemer�edi result yields a monotone

circuit of size O(n log n) and depth O(log n) for sorting n bits.

Both Fischer and Tanaka{Nishino �rst sort the n input bits x1; : : : ; xn. The outputs

y1; : : : ; yn of the sorting network are fed into a subcircuit Mn (see Figure 8.1,due to

Fischer [29]) with the following properties:

1. Mn has n binary inputs y1; : : : ; yn and n outputs z1; : : : ; zn.

2. Mn has size O(n), depth O(log n), and uses b(n) NEGATION gates.

3. If y1 � y2 � : : : � yn then zi = :yi for 1 � i � n.

The negations of the xi may now be calculated monotonically from the xi, the yi, and

the zi. Fischer does this using O(n) sorting networks in parallel, resulting in a circuit

of size O(n2 log n) and depth O(log n) if the Ajtai{Koml�os{Szemer�edi sorting network

is used. Tanaka and Nishino, on the other hand, use the monotone (n; 2n)-inverter of

Valiant [104] which inverts 2n inputs provided that exactly n of them equal 1 (as is the

case with x1; : : : ; xn; z1; : : : ; zn). Valiant's circuit is monotone, with size O(n log2 n) and

depth O(log2 n).

70

Note that in both the Fischer and the Tanaka{Nishino constructions, the circuit is

arranged in 3 phases: the sorting network, the subcircuit Mn, and the top phase which

computes the �nal answer. (We view circuits as having their inputs at the bottom and

outputs at the top, so the �nal phase of a circuit with several phases is the top phase.) The

bottom two phases require only size O(n log n) and depth O(log n) (in fact, the second

phase has linear size). Also, both the Fischer and the Tanaka{Nishino constructions

require no more than the xi, the yi, and the zi as inputs to the top phase. We show that

by allowing the top phase access to intermediate results from the sorting network (�rst

phase), the top phase may be computed by a size O(n log n), depth O(log n) circuit. Our

top phase may be thought of as an \upside-down" sorting network. We describe this in

the next section.

8.3 Description of the inverter

Our negation-limited circuit for In, like its predecessors, begins with a sorting network

and Fischer's Mn circuit. We present a new approach to the third phase, which achieves

considerable savings in complexity over previous constructions by means of a novel appli-

cation of the Ajtai{Koml�os{Szemer�edi result.

Before going into the details of the circuit, we describe briey the intuition. The

di�erences between the three constructions ([29, 91] and ours) seem to stem from how

one thinks of the outputs of the Mn subcircuit. Of course, in all three constructions, the

outputs of Mn are computing exactly the same system of n functions. Nevertheless, these

outputs are treated completely di�erently by the three approaches. In Fischer's original

negation-limited inverter [29], the inputs and outputs ofMn are thought of as the threshold

functions (of x1; : : : ; xn) and their negations, respectively. Fischer uses these bits to select

the output of an appropriate subcircuit, according to the number k of ones in the input.

There are n+ 1 such subcircuits, one for each 0 � k � n. Tanaka and Nishino [91] avoid

having to consider (n + 1) di�erent cases in parallel by noticing that the xi, together

with the outputs of Mn, are a string of 2n bits containing exactly n ones (such a string

can be inverted monotonically using Valiant's monotone (n; 2n)-inverter [104]). In their

construction, the outputs of Mn are thought of as balancing the inputs x1; : : : ; xn. We

take a di�erent view. We view the outputs of Mn as being a permutation of the negations

of the xi. It is the task of the third phase to rearrange these bits into their proper position.

This rearrangement essentially undoes the sorting performed by the �rst phase, one level

at a time.

We now present the details. Let ` be the depth of the sorting network used in the �rst

phase. For each level in the sorting network, the third phase has a corresponding level,

composed of a monotone, linear size, constant depth circuit. The ordering of the levels,

however, is reversed between the �rst phase and the third phase. That is, we number the

levels in the sorting network from the bottom (numbered 1) to top (numbered `), and

we number the levels in the third phase from 1 at the top to ` at the bottom. When

numbered in this way, level i of the sorting network corresponds to level i of the third

phase. We will use Si to denote level i of the sorting network, and Ti to denote level i of

the top phase.

For 1 � i � `, let xi1; : : : ; x
i
n denote the inputs to Si, and let x`+11 ; : : : ; x`+1n denote the

71

outputs of S`. The subcircuit Ti receives 2n input bits: the n input bits xi1; : : : ; x
i
n of Si,

and the negations :xi+11 ; : : : ;:xi+1n of the n output bits of Si. For 1 � j � n, :xi+1j is

computed one level below by Ti+1, or by Mn in the case i = `. Using only linear size,

constant depth, monotone circuitry, Ti outputs the negations :x
i
1; : : : ;:x

i
n of the n input

bits to Si. If i > 1, these are passed up to the next level, Ti�1. Note that at the top

level, T1 outputs the negations of the inputs to S1, i.e., T1 outputs :x1; : : : ;:xn. The

overall structure of the circuit is shown in Figure 8.3. Note that, for readability, the wires

connecting the outputs of Si�1 to the inputs of Ti are not shown.

S1

S`

T`

T1

Fischer's Mn

� � �

� � �

...

...

x1
: : : xn

:x1 : : : :xn

AKS

sorting

network.

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

Each Ti
receives

inputs

from Si�1
(not shown).

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

x2

:x2

Figure 8.3: Overall structure of the circuit.

To complete the description of the circuit for In, we need to describe a monotone,

linear size, constant depth circuit for Ti. Since Si is simply bn=2c comparators operat-

ing in parallel, it su�ces to give a (constant size and depth) monotone circuit for each

comparator. This we do in the following Lemma:

72

Lemma 8.6 Let x and y be boolean variables, and let u = :max(x; y) and

v = :min(x; y). Then :x and :y may be computed monotonically from x; y; u, and

v.

Proof. A quick check shows that :x = u _ (y ^ v) and :y = u _ (x ^ v).

Suppose that Si has a comparator with inputs xij1 ; x
i
j2
and outputs xi+1k1

; xi+1k2
. Then

Ti will have a corresponding circuit element with inputs

:xi+1k1
;:xi+1k2

; xij1 ; x
i
j2

and outputs

:xij1 ;:x
i
j2
:

By the above Lemma, this can be done monotonically. This is illustrated in Figure 8.4. As

Si is a linear size, depth 1 circuit of comparators, we can construct Ti to be a monotone,

linear size, depth 2 circuit.

W V

W W

V V

xij2xij1 :xi+1k1
:xi+1k2

xij1 xij2

xi+1k1
xi+1k2

:xij1 :x
i
j2

| {z }
From Si�1.

| {z }
From Ti+1.

| {z }
From Si�1.

To Si+1 and

Ti�1.z }| {

To Ti�1.z }| {

Figure 8.4: Corresponding circuit elements of Si (left) and Ti (right).

We are now ready to prove Theorem 8.1:

Proof. We describe the circuit. As in Fischer [29] and Tanaka{Nishino [91], the input

variables x1; : : : ; xn are the inputs of a sorting network with ` levels of O(n) gates each.

By Ajtai{Koml�os{Szemer�edi [2], we may assume ` = O(log n). Still following Fischer and

Tanaka{Nishino, the outputs y1; : : : ; yn of the sorting network are the inputs to Fischer's

Mn circuit, which has size O(n) and depth O(log n) and uses b(n) NEGATION gates.

Since the inputs to Mn are sorted, the outputs z1; : : : ; zn satisfy zi = :yi for i = 1; : : : ; n.

From the zi, and the inputs to the various levels of the sorting network, the subcircuits

T`; : : : ; T1 described above compute the negations of the inputs to successively lower levels

in the sorting network. It is clear by induction on (` � i) that Ti outputs the negations

73

:xi1; : : : ;:x
i
n of the inputs to Si. At the top of our circuit, T1 computes the negations

:x1; : : : ;:xn of the input variables.

The circuit has depth 3`+O(log n) = O(log n). As each level of the circuit has linear

size, the total number of gates used is O(n log n). The only NEGATION gates used are

the b(n) NEGATION gates used by Mn, as desired.

8.4 Monotone (k; n)-inverters

Berkowitz [13] introduces the notion of a slice function. The boolean function f :

f0; 1gn ! f0; 1g is a kth slice if

f(x1; : : : ; xn) =

(
0 if

Pn
i=1 xi < k

1 if
Pn

i=1 xi > k.

For input strings containing exactly k ones, the behavior of f is not constrained. Any

slice function is monotone. Note that an alternative, nonconstructive proof of Lemma 8.6

may be obtained by observing that, of the four bits x; y; u; v, exactly two are equal to

one, so any function of x; y; u; v may be extended to a (monotone) slice function. The

importance of monotone (k; n)-inverters is underscored by the following:

Proposition 8.7 For any system F of n-input kth slice functions,

C0(F) � 2C(F) + C0(Ikn):

The following allows us to focus on the behavior of our circuit on inputs with exactly

k ones:

Proposition 8.8 Ikn is the unique system of monotone functions which agrees with In on

all inputs with exactly k ones.

Proof. Suppose that f1; : : : ; fn are a system of monotone functions which agree with

In on all inputs with exactly k ones. Suppose that the number of ones in x1; : : : ; xn
is strictly greater than k. Let i be any integer between 1 and n. We must show that

fi(x1; : : : ; xn) = 1. By the monotonicity of fi, it su�ces to exhibit y1; : : : ; yn such that

fi(y1; : : : ; yn) = 1 and for all 1 � j � n, yj � xj. For this, we assign the yj in such a way

that exactly k of them are one, yi = 0, and each yj � xj (we obtain the yj by changing

some of the xj from one to zero, including xi if it is nonzero, until exactly k bits are one).

The proof for the case that fewer than k of the xj are one is analogous.

Berkowitz [13] constructs monotone (k; n)-inverters of size O(n2 log n) and depth

O(log n). Valiant [104] gives monotone circuits of size O(n log2 n) and depth O(log2 n) for

the (k; n)-inverter (see also Wegener [105, 106]). Our techniques can be used to improve

on Valiant's results by a factor of (log n) in size and depth. We present the proof of

Theorem 8.3:

Proof. We use our negation-limited circuit for In, replacing theMn subcircuit by a circuit

which outputs k zeroes followed by (n�k) ones. Note that the only negations in our circuit

for In occur in theMn subcircuit. Also, if there are exactly k ones among the inputs to our

74

negation-limited inverter, then the Mn subcircuit will output k zeroes followed by (n�k)

ones. Therefore, the new circuit will agree with In (i.e., it will compute the negations of

its input bits) whenever there are exactly k ones in the input. By Proposition 8.8, we are

done.

Since the inputs to Mn are sorted, the functions computed by the NEGATION gates

depend only on the number of ones in the input. Therefore, in the above construction,

instead of replacing the outputs of Mn by constants, we could have replaced the outputs

of the NEGATION gates by constants. One might ask whether it is always possible

to obtain a monotone (k; n)-inverter from a negation-limited inverter by replacing the

negation gates with constants. We shall see (perhaps surprisingly) that something close

to this is true. Before formalizing this, we quote the following Lemma of Tanaka{Nishino

(v. [91, Lemma 4.2]):

Lemma 8.9 (Tanaka{Nishino) Suppose n + 1 is a power of 2, and let f be the func-

tion computed by some NEGATION gate of a negation-limited circuit for In. Then

f(x1; : : : ; xn) depends only on the number of i such that xi = 1:

We will prove a stronger version of this Lemma later (v. Lemma 8.12).

Now we can make precise the relationship between negation-limited inverters and

monotone (k; n)-inverters:

Theorem 8.10 Let n be a positive integer. Then C0(Ikn) � Cb(n0)(In0), for some n
0 < 2n.

In fact, a monotone (k; n)-inverter can be constructed with the same size and depth as a

negation-limited circuit for In0.

Proof. Let n0 = 2r � 1, where 2r is the smallest power of 2 greater than n. Note

that 2r is at most 2n. Let � be any negation-limited circuit for In0 . By Lemma 8.9, if

the number of ones in the input is constant, then the NEGATION gates in � compute

constant functions. Replacing these gates by appropriate (according to k) constants yields

a monotone (k; n0)-inverter. To obtain a monotone (k; n)-inverter, we simply �x the �rst

(n0� n) input bits to 0, and ignore the �rst (n0� n) output bits. This yields a monotone

circuit �0 computing Ikn with the same size and depth as �.

In fact, all known constructions of monotone (k; n)-inverters may be seen as negation-

limited inverters with the NEGATION gates replaced by constants. This modi�cation

applied to Fischer's circuit for In (using the AKS sorting network [2]) yields Berkowitz'

(k; n)-inverter. There is no previously published negation-limited inverter corresponding

to Valiant's (k; n)-inverter, so we describe one here. First we give a sketch of Valiant's

construction.

Valiant's circuit is very similar to ours (with the Mn removed), except that instead

of using comparators, merging networks are used. A merging network takes as inputs

two sorted lists u and v, and outputs the list w = merge(u; v) obtained by sorting the

concatenated list uv. Batcher [10] shows that two lists of m elements can be merged

by a network of O(m logm) comparators. Thus, if u and v are binary strings of length

m, they can be merged by a monotone circuit of size O(m logm) (this circuit has depth

O(logm)). If u is a binary string, we denote by :u the string obtained from u by replacing

each symbol by its negation, and we denote by reverse(u) the string obtained from u by

75

reversing the order of the symbols. Note that if u is in sorted (i.e., decreasing) order, then

so is reverse(:u).

The bottom half of Valiant's circuit is a sorting network, built out of log n layers of

merging networks (the ith layer merges pairs of consecutive substrings of length 2i). The

top half is analogous to our top phase, with the following taking the place of Lemma 8.6:

Lemma 8.11 (Valiant) Suppose that the sorted binary strings u of length s and v of

length t, together with the string w = reverse(:merge(u; v)) are given. Then reverse(:u)

and reverse(:v) may be calculated by merging networks.

Proof. By symmetry, we only need to consider reverse(:u). This is easily seen to be the

middle s bits of merge(v; w).

(Note that the case s = t = 1 of Valiant's Lemma provides yet another proof of

Lemma 8.6.)

Since k is �xed, the negations of the output bits of the top layer of the bottom half

are constants. (Actually, this top layer of the bottom half is superuous for the monotone

(k; n) inversion problem, and Valiant does without it. We leave it in for simplicity, and

because it is necessary if we are to obtain a negation-limited inverter.) Successively higher

layers of the top half calculate the reverses of the negations of inputs to merging networks

in successively lower layers of the bottom half. At the top layer of the top half, the

negations of the input bits are calculated (reversing a string of length one has no e�ect).

To obtain a negation-limited inverter from Valiant's circuit, we simply feed the output

of the bottom half to Fischer's Mn circuit, which computes the negation of the output of

the top layer of the bottom half. This is then given as input to the top half. (The circuit

constructed in this way is about half the size of that of Tanaka and Nishino [91], since

we modify Valiant's (k; n)-inverter instead of using Valiant's (n; 2n) inverter.) Therefore,

Valiant's techniques for constructing monotone (k; n)-inverters can also be used to con-

struct negation-limited inverters. It is curious that this is true of all known (k; n)-inverters,

since no converse of Theorem 8.10 is known to hold.

8.5 Lower bounds for the inverter

In this section, we shall prove a main technical lemma on functions computed at NEGA-

TION gates in negation-limited inverters. These techniques have recently been generalized

to obtain results for negation-limited circuits computing symmetric functions [11].

For x 2 f0; 1gn, let jxj denote the number of ones in x. Note that in all known

constructions of negation-limited inverters, the negation gates compute the negations of

the bits of jxj. We shall see that this must always hold:

Lemma 8.12 Let n = 2r � 1. Consider any r-circuit � which computes In. Label the

NEGATION gates N1; : : : ; Nr in such a way that the input to Ni does not depend on the

outputs of any of the negation gates Ni+1; : : : ; Nr (such a labeling exists since the circuit

is a DAG). Let zi and yi be the functions computed at the input and output of Ni. Then

z1z2 : : : zr is the binary representation of jxj.

Proof. We proceed by induction on r. The Lemma is trivially true for r = 0 (i.e., the

circuit is monotone). We now suppose that the Lemma holds for r�1 NEGATION gates.

76

Let a 2 f0; 1gn. We wish �rst to show that z1(a) is the �rst (i.e., leftmost) bit of jaj.

We consider the case that z1(a) = 1 (the proof for the case z1(a) = 0 is analogous), and

we wish to show that jaj � (n + 1)=2. Note that simultaneously permuting the inputs

and output of � according to the same permutation yields another circuit for In, so we

may assume that a is of the form 1k0n�k. Also, In�k is obtained from In �xing the �rst

k bits to 1 and ignoring the �rst k output bits. Since z1(a) = 1, and z1 is monotone,

In�k is computed by the circuit �k obtained by �xing the �rst k inputs of � to 1 and

replacing N1 by the constant 0. Note that �k is an (r�1)-circuit. Therefore, by Markov's

Theorem, d(In�k) � 2r�1 � 1 = (n � 1)=2. However, it is clear that d(In�k) = n � k.

Therefore

jaj = k = n� d(In�k) � n� (n� 1)=2 = (n+ 1)=2;

as desired.

Now it remains to show that the functions z2; : : : ; zr are as speci�ed. Again, we

restrict our attention to the case z1 = 1, since the case z1 = 0 is handled similarly. Let

a 2 f0; 1gn such that z1(a) = 1. As above, we assume that a is a string of the form

1`0n�`. Let k = (n � 1)=2 � `. We apply the r � 1 case of the Lemma to the (n � k)-

input/output inverter obtained from � by �xing the �rst k inputs to 1 and replacing N1

by the constant 0. The proof is completed by observing that for all x 2 f0; 1gn�k, the

binary representations of jxj and j1kxj agree in their (r � 1) least signi�cant bits.

In the sequel, we assume that z1; : : : ; zr are as in the Lemma. Let Ni be the NEGA-

TION gate corresponding to zi. We remark that we did not assume that there exists a path

from Ni�1 to Ni for all 2 � i � r. (By path we mean a sequence of gates G1; : : : ; Gp which

satis�es the following conditions: G1 = Ni, Gp = Ni+1, and for any q (1 � q � p � 1),

an output of Gq is an input of Gq+1.) However, the existence of such paths follows at

once from the Lemma: If for some i, there did not exist a path from Ni�1 to Ni, then we

could interchange the labels of Ni�1 and Ni. This is impossible, since by the Lemma the

labeling of a negation gate is determined by what function is computed at the gate.

Lemma 8.13 For any i, 1 � i � r� 1, in any path from Ni to Ni+1, there exists at least

one AND gate and one OR gate.

Proof. The proof is by contradiction. By Lemma 8.12, all four possible values for zi and

zi+1 are attained for some input x 2 f0; 1g
n. Note that the NEGATION gates are labeled

in such a way that no path from Ni to Ni+1 contains a NEGATION gate other than Ni and

Ni+1. If the nodes along a path from Ni to Ni+1 consisted entirely of AND (respectively

OR) gates, then the possibility zi = 1; zi+1 = 1 (respectively zi = 0; zi+1 = 0) would be

ruled out. Therefore, all such paths must include both an AND gate and an OR gate.

Let Lj (1 � j � n) be a gate computing :xj in �.

Lemma 8.14 For all 1 � i � r and 1 � j � n, there exists a path from Ni to Lj which

does not include any NEGATION gate except for Ni.

Proof. First, we �x all the outputs of the NEGATION gates N1; : : : ; Nr in � to 0. Then,

we obtain an (n; n)-inverter C from �. In this case, C(a) = (0; : : : ; 0) for all a 2 f0; 1gn.

Let us �x all the inputs of the circuit C to 1. Next, for some 1 � i � r, we change the

output of Ni to 1. Then, for some 1 � k � n� 1, we obtain a (k; n)-inverter by the proof

77

of Theorem 8.10. Since we �xed all the inputs of C to 1, each of the outputs of L1; : : : ; Ln

in C changes from 0 to 1. Thus, for all 1 � j � n, there exists a path from Ni to Lj ,

such that the output of every gate in the path changes from 0 to 1. Since we �xed all

the outputs of the NEGATION gates except for Ni to 0, we can conclude that there is no

other NEGATION gate in the path.

Lemma 8.15 For all j, 1 � j � n, on any path from Nr to Lj, there exist at least one

AND gate and one OR gate.

Proof. Note that at least one such path exists by the previous Lemma. Now we wish

to show that any such path contains an AND gate and an OR gate. As above, we note

that by Lemma 8.12, each of the four possibilities for the values of zi; Lj are attained for

some input x 2 f0; 1gn. Also, there is a path from Nr to Lj which contains no other

NEGATION gate. Therefore, as in the previous Lemma, we see that any path from Nr

to L must include at least one AND gate and at least one OR gate (all other possibilities

lead to contradictions).

Theorem 8.16 Let n = 2r � 1. Then Cr(In) � 5n+ 3 log(n+ 1)� c.

Proof. By Lemma 8.12, z1 is the majority function, computed by a monotone subcircuit,

so the number of gates required to compute z1 is at least C
0(T n

(n+1)=2). Since it is known

that C0(T n
n=2) � 4n� c where c is a constant (see [63]), we have C0(T n

(n+1)=2) � 4n� c.

From Lemma 8.13, the length of any path from N1 to Nr is at least 3r� 2. Note that

the gates on such a path are distinct from the gates in the subcircuit computing z1.

Furthermore, from Lemma 8.14, for all 1 � j � n, there exists a path from Nr to

Lj . So, for all 1 � j � n, Lj di�ers from any gate in any path from N1 to Nr. And

the functions computed at L1; : : : ; Ln are mutually distinct non-monotone functions (i.e.,

:x1; : : : ;:xn). Hence, we have

Cr(In) � C0(T n
(n+1)=2) + (3r � 2) + n

� (4n� c0) + 3r � 2 + n

� 5n+ 3 log(n+ 1)� c

as desired.

Theorem 8.17 Let n = 2r � 1. Then Dr(In) � 4 log(n+ 1)� c.

Proof. From Lemma 8.12, the number of gates used to compute z1 is at least C
m(T n

(n+1)=2).

These gates are located below N1, that is, there exists a path from each of these gates to

N1.

From Lemma 8.13, the length of any path from N1 toNr is at least 3r�2. Furthermore,

from Lemma 8.15, for all 1 � j � n, the length of any path from Nr to Lj is at least 3.

Then, we obtain

Dr(In) � dlog(Cm(T n
(n+1)=2) + 1)e+ (3r � 2) + 3� 1

� dlog(4n� c0)e+ 3r

� log(n+ 1)� c00 + 3r

� 4 log(n+ 1)� c

as desired.

78

8.6 Superlinear lower bounds for particular inverters

First, we consider so-called synchronous circuits which are circuits with the property that

all paths from the inputs to a given gate have the same length (see [80]).

Theorem 8.18 Let n = 2r + 1. Then any synchronous negation-limited circuit for In
has at least 4n log(n+ 1)� cn gates.

Proof. From Theorem 8.17, for each 1 � i � n, the length of some (and therefore any)

path from an input to Li is at least 4 log(n+ 1)� c. In a synchronous circuit computing

In, the outputs of the gates at level m (2 � m � 4 log(n+1)� c) are computed using the

outputs of the gates at level m� 1.

On the other hand, In can compute 2
n di�erent values, i.e., all binary vectors of length

n. Hence, the number of gates at level m is at least log 2n = n. This completes the proof.

Next, we show another instance where the size of the negation-limited inverter has a

superlinear lower bound. For that purpose, we introduce the following restriction.

Restriction A: Any gate G in the inverter which satis�es the following two

conditions computes some symmetric function:

A1 there exists a path from one of N1; : : : ; Nr�1 to a gate G in �.

A2 there exists a path from G to Nr in �.

Theorem 8.19 Let n = 2r � 1. Then any negation-limited inverter � which satis�es

Restriction A has
(n log n) gates.

Proof. Label the NEGATION gates of � as in Lemma 8.12. Let zi be the function which is

computed at the input ofNi. By Lemma 8.12, for x 2 f0; 1g
n the string z1(x)z2(x) : : : zr(x)

is the binary representation of jxj. This is an increasing function which attains all possible

values in the range 0; : : : ; n.

Let 1 � k � n be arbitrary. We wish to show that there exists a monotone subcircuit

of � computing T k
n . Let w be such that w01r�i is the binary representation of k � 1,

where w is a binary string w1w2 : : : wi of length i for some 0 � i < r. Then the binary

representation of k is w10r�i.

Let �0 be a circuit obtained from � by replacing Nj with the constant :wj for each

1 � j � i. For a gate G in �, let G0 denote the corresponding gate in �0. Let g and g0

denote the functions computed at gates G and G0, respectively. Let
 � f0; 1gn denote

the set of all binary strings with exactly k � 1 or k ones. We have:

1. For any gate G in �, and for any x 2
, g(x) = g0(x).

2. If for all j > i, there is no path from Nj to G in �, then g0 is computed by a

monotone subcircuit of �0.

3. If g is computed by a monotone subcircuit of �, then g = g0.

79

Let G be the gate computing zi+1. Note that by (2), g0 is monotone, and by (1), g0(x) =

g(x) = T q
n(x) for x 2
. Since T

k
n is the unique monotone function which agrees with T k

n

on
, we have g0(x) = T k
n (x) for all x 2 f0; 1g

n.

Recall that we are trying to prove that there is a monotone subcircuit of � computing

T k
n (from which the theorem follows). So far we have shown the existence of a gate G in

� such that g0 = T k
n . It now su�ces to show that for any such gate, either g is computed

by a monotone subcircuit of � (so, by (3), g = g0 and we are done) or there is a gate

lower down in the circuit with the same property.

Suppose that g is not computed by a monotone subcircuit of �. Then there is a path

from some negation gate Nj to G in �. This is illustrated in Figure 8.5.

Nj

G1 G2

G

zj

g

Figure 8.5: A gate G such that G0 computes T k
n . One of G1; G2 shares this property.

By Restriction A, we know that g is a symmetric function. Let G1 and G2 be the gates

whose outputs are the inputs to G, labeled such that a path from Nj to G passes through

G1. Therefore g1 computes a symmetric function. Since g
0
1 is a monotone function which

agrees with g1 on
, either g01 = T k
n or g01 is constant on
. In the latter case, since g0 is

not constant on
, we have that either g01 is identically 1 on
 and G is an AND gate, or

g01 is identically 0 on
 and G is an OR gate. So g0 and g02 agree on
, and g02 = T k
n . In

either case we have found a gate G` below G in � with g0` = T k
n as desired. This can be

continued until a monotone subcircuit of � is found which computes T k
n .

Since k above was arbitrary, all threshold functions fT 1
n ; T

2
n ; : : : ; T

n
n g are computed by

monotone subcircuits of �. Thus, from [52], � has size
(n log n).

Notice that, if we do not have the condition A2, certain symmetric functions must be

computed at the output gates of �n. But this is impossible. Hence, the condition A2 is

necessary although it is not used in the proof of Theorem 8.19.

Since the inverter we construct satis�es Restriction A and has size O(n log n), this

Theorem is tight to within a constant factor.

80

8.7 Conclusion

In this chapter, we have presented new upper and lower bounds on the size of negation-

limited inverters. We have also investigated the negation-limited circuit complexity of

some boolean functions, and have shown relationships between combinational complexity

and negation-limited complexity of boolean functions.

It should be investigated whether the methods used in this chapter to derive lower

bounds on the negation-limited complexity of the inverter can be applied to derive similar

bounds on the negation-limited complexity of one-output boolean functions. We have

made some progress in this regard for symmetric functions [11, 93].

G. Tur�an posed the following question: is the size of any c log n depth inverter using

c log n NEGATION gates superlinear? Though Tur�an's question remains open, we hope

that our work represents a step towards its resolution.

81

Chapter 9

Negation-limited circuit complexity

for symmetric functions

In this chapter, we investigate the complexity of negation-limited circuits which compute

symmetric functions. First, we shall prove a main technical lemma on functions computed

at NEGATION gates in negation-limited circuits computing symmetric functions. Using

this lemma, we show a number of lower bounds on the size and depth of negation-limited

circuits computing several symmetric functions such as PARITYn, :PARITYn, MODk
n

and others. For example, a 4n + 3 log2(n + 1) � c lower bound is given on the size of

circuits computing PARITYn using dlog2(n+1)� 1e of NEGATION gates. Furthermore,

we show nonlinear lower bounds on the size of certain kinds of negation-limited circuits

computing symmetric functions.

9.1 Introduction

We continue the lower bound work of Tanaka and Nishino from [91], obtaining several

bounds for symmetric functions. For a negation-limited circuit computing the parity

function of n bits, we obtain a 4n + 3b(n) � c size lower bound and a 4b(n) � c depth

lower bound.

De�nitions and preliminaries

Let f = (f1; : : : ; fm) be a system of n-input boolean functions. A chain C in the boolean

lattice f0; 1gn is an increasing sequence a1 < : : : < ak 2 f0; 1gn. The decrease of f on

C is the number of i � k such that for some j, fj(a
i�1) > fj(a

i). We de�ne d(f) to be

the maximum decrease of f on any chain C. Notice that d(f) � n (this is attained for

some systems f). Markov [65] has shown that b(d(F)) NEGATION gates are necessary

and su�cient to compute any system of boolean functions, where b(x)dlog(x + 1)e, the

number of bits in the binary representation of x (all logarithms in this chapter are base

two). Thus, Cr(f) is always de�ned for r � b(n). We call Cb(d(f))(f) the negation-limited

complexity of a system f of boolean functions.

82

Main results

For symmetric boolean functions, we obtain several lower bounds. These depend on a

technical result, Lemma 9.2, which determines the functions computed by the NEGATION

gates in a negation-limited circuit for a symmetric function. This gives us a great deal of

knowledge about the structure of any negation-limited circuit for a symmetric function,

and allows lower bounds for monotone circuits to be used. For PARITY function, we

obtain the following:

Theorem 9.1 Let f be the parity function of n bits, where n+1 is a power of two. Then,

a negation-limited circuit for f must have size at least 4n+3 log(n+1)�O(1), and depth

at least 4 log(n+ 1)� O(1).

We obtain similar results for MOD functions, and for the complement of PARITY. We

also obtain an
(n log n) lower bound for a restricted type of negation-limited PARITY

circuit (speci�cally those circuits satisfying Restriction A, de�ned in Section 9.4). More

generally, we show that any negation-limited circuit satisfying Restriction A must have

monotone subcircuits which compute a collection of threshold functions. Once again, we

are able to reduce lower bound results to the monotone case.

The remainder of this chapter is organized as follows. Section 9.2 gives the main

technical lemma on functions computed at the NEGATION gates of negation-limited

circuits computing symmetric functions. In Section 9.3, we obtain the lower bounds for

various symmetric functions. Section 9.4 describes the lower bounds for a restricted type

of negation-limited circuits. We conclude in Section 9.5 with a brief discussion of open

problems.

9.2 A technical lemma on functions computed at

NEGATION gates

In this section, we shall prove a main technical lemma on functions computed at NEGA-

TION gates in negation-limited circuits computing symmetric functions. This lemma is

analogous to a result of Tanaka and Nishino [91] on negation-limited inverters (an inverter

is an n-input n-output circuit which outputs the negations of its inputs).

Let f be an n-input symmetric boolean function. Suppose that d(f) = m, where

m = 2r � 1 for some integer r. For x 2 f0; 1gn, let df (x) be the maximum decrease of f

on a chain a1; : : : ; ak with ak = x (note that this number depends only on the number of

ones in x). We show that the NEGATION gates in any r-circuit for f must compute the

negations of the bits of the binary representation of df :

Lemma 9.2 Let f be an n-input symmetric function with decrease d(f) = m, where

m = 2r � 1. Consider any r-circuit � which computes f . Label the NEGATION gates

N1; : : : ; Nr in such a way that the input to Ni does not depend on the outputs of any of the

negation gates Ni+1; : : : ; Nr (such a labeling exists since the circuit is a directed acyclic

graph). Let zi be the function computed at the input of Ni. Then z1z2 : : : zr is the binary

representation of df

83

Proof. We proceed by induction on r. The Lemma is trivially true for r = 0 (i.e., the

circuit is monotone). We now suppose that the Lemma holds for r�1 NEGATION gates.

Let a 2 f0; 1gn. We wish �rst to show that z1(a) is the �rst bit of df (a). We consider

the case that z1(a) = 1 (the proof for the case z1(a) = 0 is analogous), and we wish to

show that df(a) � (m+ 1)=2. Since the circuit computes the same function regardless of

the order of the input bits, we may assume that a is of the form 1k0n�k. Let fk denote

the n� k input symmetric function obtained from f by �xing the �rst k bits to 1. Since

z1(a) = 1, and z1 is monotone, fk is computed by the circuit �k obtained by �xing the

�rst k inputs of � to 1 and replacing N1 by the constant 0. Note that �k is an (r � 1)-

circuit. Therefore, by Markov's Theorem, d(fk) � 2r�1 � 1 = (m � 1)=2. However, by

considering a maximal chain in f0; 1gn containing a, we see that d(f) = df(a) + d(fk).

Therefore

df(a) = d(f)� d(fk) � m� (m� 1)=2 = (m+ 1)=2;

as desired.

Now it remains to show that the functions z2; : : : ; zr are as speci�ed. Again, we restrict

our attention to the case z1 = 1, since the case z1 = 0 is handled similarly. Let a 2 f0; 1gn

such that z1(a) = 1. As above, we assume that a is a string of the form 1`0n�`. Let k

be the least integer such that z1(1
k0n�k) = 1, so df(1

k0n�k) = 2r�1. We then apply the

r � 1 case of the Lemma to the function fk and the circuit �k, and note that for all

x 2 f0; 1gn�k, the binary representations of dfk(x) and df (1
kx) agree in their (r� 1) least

signi�cant bits.

We now apply the main Lemma to various families of symmetric boolean functions.

Let PARITYn denote the parity function of n bit strings, i.e., PARITYn returns one i� the

number of ones in the input is odd. Note that d(PARITYn) = bn=2c, and dPARITYn(x) =

bk=2c if there are exactly k ones in x. We consider the case that bn=2c = 2r � 1 for some

integer r.

Corollary 9.3 Let n be such that bn=2c = 2r � 1 for some integer r. Let � be an r-

circuit computing PARITYn. Label the NEGATION gates N1; : : : ; Nr in such a way that

the input to Ni does not depend on the outputs of any of the negation gates Ni+1; : : : ; Nr

(such a labeling exists since the circuit is a directed acyclic graph). Let zi be the function

computed at the input of Ni. Then z1z2 : : : zr is the binary representation of bk=2c, where

k is the number of ones in the input.

Similar corollaries can be obtained for the negation of PARITY, and for MOD func-

tions.

9.3 The negation-limited circuit complexity of the

parity function

We begin with a statement of the known upper bounds for the size and depth of negation-

limited parity circuits [29, 78, 91].

Proposition 9.4 Let n � 2r+1 � 1. Then

84

1. Cr(PARITYn) = O(n log n).

2. Dr(PARITYn) = O(log n).

Proof. By using the Ajtai{Koml�os{Szemer�edi sorting network [2], it su�ces to give an

r-circuit of size O(n logn) and depth O(log n) for the parity of n sorted bits. Fischer [29]

gives an r + 1-circuit which, for sorted inputs, computes the negations of the bits in

the binary representation of the number of ones in the input. The input to the top

NEGATION gate in this circuit is PARITY, so by removing the top NEGATION, we

obtain an r-circuit for PARITY. Fischer's circuit has linear size and logarithmic depth,

so the total size of our circuit is O(n log n) and the total depth is O(log n).

We now focus our attention on lower bounds. We consider the case that n = 2r+1� 1.

Let � be an r-circuit computing the parity of n input bits.

In the sequel, we assume that z1; : : : ; zr are the functions and N1; : : : ; Nr are the

NEGATION gates satisfying the conditions in Corollary 9.3.

Lemma 9.5 For any i, 1 � i � r � 1, in any path from Ni to Ni+1, there is at least one

AND gate and one OR gate.

Proof. The proof is by contradiction. By Corollary 9.3, all four possible values for zi and

zi+1 are attained for some input x 2 f0; 1g
n. Note that the NEGATION gates are labeled

in such a way that no path from Ni to Ni+1 contains no other NEGATION gate. If the

nodes along a path from Ni to Ni+1 consisted entirely of AND (respectively OR) gates,

then the possibility zi = 1; zi+1 = 1 (respectively zi = 0; zi+1 = 0) would be ruled out.

Therefore, all such paths must include both an AND gate and an OR gate.

Let L be the output gate of �. Since the output of Nr is necessary to compute

PARITYn, there must be a path from Nr to L.

Lemma 9.6 In any path from Nr to L, there is at least one AND gate and one OR gate.

Proof. As in the proof of the previous Lemma, we note that by Corollary 9.3, each of the

four possibilities for the values of zr;PARITY are attained for some input x 2 f0; 1gn.

Also, no path from Nr to L contains no other NEGATION gate. Therefore, as in the

previous Lemma, we see that any path from Nr to L must include at least one AND gate

and at least one OR gate (all other possibilities lead to contradictions).

Theorem 9.7 Let n = 2r+1 � 1, then

Cr(PARITYn) � 4n+ 3 log(n+ 1)� c:

Proof. By Corollary 9.3, the subcircuit which computes z1 is a monotone circuit which

computes the majority function of the n input bits. It is known [63] that such a circuit

must have size � 4n�c. By Lemma 9.5 and 9.6, the length of any path from N1 to L is at

least 3r. No gate on this path is used to compute z1. Hence, we have at least 4n+3r� c

gates as desired.

We now turn our attention to arbitrary symmetric functions, obtaining lower bounds

for the negation-limited complexity in terms of the decrease. By T `
n we denote the `th

threshold function of n bits, which returns one i� at least ` of the input bits are one.

85

Theorem 9.8 Let f be an n-input symmetric function with decreasem, wherem = 2r�1.

Let ` be such that for x 2 f0; 1gn, df(x) � 2r�1 i� x has at least ` ones. Then Cr(f) �

C0(T `
n) + 3 log(m+ 1)� c.

Proof. Identical to that of Theorem 9.7.

We apply this to the MODk
n function, which outputs one i� the number of ones in the

input (of n bits) is a multiple of k. Note that :PARITYn = MOD2
n, and that the decrease

of MODk
n is 1 + b(n� 1)=kc. We consider those n such that 1 + b(n� 1)=kc = 2r � 1 for

some integer r. For such n, the parameter ` speci�ed in Theorem 9.8 is given by

` = k(2r�1 � 1) + 1:

An elementary calculation shows that

(n+ 1� k)=2 � ` � (n+ 1)=2:

Therefore, C0(T `
n) is at least as big as the monotone complexity of the majority function

of n� i bits, for some 0 � i � k. We obtain:

Corollary 9.9 Let n and k be such that b(n � 1)=kc + 1 = 2r � 1 for some integer r.

Then Cr(MODk
n) � 4(n� k) + 3r � c.

We now consider circuit depth.

Theorem 9.10 Let n = 2r+1 � 1, then

Dr(PARITYn) � 4 log(n+ 1)� c:

Proof. Recall that the subcircuit computing z1 is a monotone majority circuit, which

must have size at least C0(T (n+1)=2
n) � 4n � c. Notice that there must be a path from

an arbitrary gate in this subcircuit to N1, so depth of N1 is at least log n. Recall that

the length of any path from N1 to L is at least 3r. Thus, we have total depth of at least

4 log(n+ 1)� c.

In the case of general symmetric functions, the same techniques yield:

Theorem 9.11 Let f be an n-input symmetric function with decrease m, where m =

2r � 1. Let ` be such that for x 2 f0; 1gn, df(x) � 2r�1 i� x has at least ` ones. Then

Dr(f) � log n+ 3 log(m+ 1)� c.

Corollary 9.12 Let n and k be such that b(n � 1)=kc + 1 = 2r � 1 for some integer r.

Then Dr(MODk
n) � log(n� k) + 3r � c.

9.4 Lower bounds on a restricted type of negation-

limited parity circuits

We give a setting in which the size of parity circuits has a superlinear lower bound. For

this purpose, we introduce the following restriction.

86

Restriction A: If there is a path from one of N1; : : : ; Nr to a gate G in �,

then G computes some symmetric function.

(Here we view the circuit as a directed graph, where the inputs to a gate correspond to

in-edges and the outputs from a gate are out-edges.) For the PARITY function, we obtain

the following:

Theorem 9.13 Let n = 2r+1 � 1. Let � be an r-circuit for PARITYn which satis�es

Restriction A. Then the size of � is
(n log n).

This is an immediate consequence of Theorem 9.14 below, together with known lower

bounds on the monotone complexity of sorting n bits (cf. [29]). Note that the circuit

in Proposition 9.4 satis�es Restriction A, so Theorem 9.13 is within a constant factor of

optimal.

In general, for symmetric boolean functions we obtain:

Theorem 9.14 Let f be an n-input symmetric function with decrease m, where m =

2r � 1. Let � be an r-circuit for f satisfying Restriction A. Let a0; : : : ; an be a maximal

chain in f0; 1gn (so ai is a binary string with i ones and n� i zeros). Then the size of �

is at least

C0(T q1
n ; : : : ; T qk

n);

where fq1; : : : ; qkg = fqj1 � q � n; f(aq�1) 6= f(aq)g.

Proof. Let z1; : : : ; zr be the functions and N1; : : : ; Nr the NEGATION gates satisfying the

conditions in Lemma 9.2. Let zr+1 denote the function f . By Lemma 9.2, for x 2 f0; 1gn

the string z1z2 : : : zr+1 is the binary representation of 2df(x)+f(x), which we shall denote

by h(x). This is an increasing function which attains all possible values in the range

1; : : : ; 2m (the values 0 and 2m+ 1 may or may not be reached).

Suppose that f(aq�1) 6= f(aq). We wish to show that for all such q, there is a monotone

subcircuit of � computing T q
n . Note that we must have h(a

q�1)+1 = h(aq). Let w be such

that w01r�i is the binary representation of h(aq�1), where w is a binary string w1w2 : : : wi

of length i. Then the binary representation of h(aq) is w10r�i.

Let �0 be a circuit obtained from � by replacing Nj with the constant :wj for each

1 � j � i. For a gate G in �, let G0 denote the corresponding gate in �0. Let g and g0

denote the functions computed at gates G and G0, respectively. Let
 � f0; 1gn denote

the set of all binary strings with exactly q � 1 or q ones. We have:

1. For any gate G in �, and for any x 2
, g(x) = g0(x).

2. If for all j > i, there is no path from Nj to G in �, then g0 is computed by a

monotone subcircuit of �0.

3. If g is computed by a monotone subcircuit of �, then g = g0.

Let G be the gate computing zi+1. Note that by (2), g0 is monotone, and by (1),

g0(x) = g(x) = T q
n(x) for x 2
. Since T q

n is the unique monotone function which agrees

with T q
n on
, we have g0(x) = T q

n(x) for all x 2 f0; 1g
n.

87

Recall that we are trying to prove that there is a monotone subcircuit of � computing

T q
n (from which the Theorem follows). So far we have shown the existence of a gate G in

� such that g0 = T q
n . It now su�ces to show that for any such gate, either g is computed

by a monotone subcircuit of � (so, by (3), g = g0 and we are done) or there is a gate

lower down in the circuit with the same property.

Suppose that g is not computed by a monotone subcircuit of �. Then there is a path

from some negation gate Nj to G in �. This is illustrated in Figure 9.1.

Nj

G1 G2

G

zj

g

Figure 9.1: A gate G such that G0 computes T q
n . One of G1; G2 shares this property.

By Restriction A, we know that g is a symmetric function. Let G1 and G2 be the gates

whose outputs are the inputs to G, labeled such that a path from Nj to G passes through

G1. Therefore g1 computes a symmetric function. Since g
0
1 is a monotone function which

agrees with g1 on
, either g01 = T q
n or g01 is constant on
. In the latter case, since g0 is

not constant on
, we have that either g01 is identically 1 on
 and G is an AND gate, or

g01 is identically 0 on
 and G is an OR gate. So g0 and g02 agree on
, and g02 = T q
n . In

either case we have found a gate G` below G in � with g0` = T q
n as desired.

9.5 Concluding remarks and open problems

There remains a factor of log n between the known upper and lower bounds. Also, our

lower bound techniques do not seem to allow any slack in the number of negations. For

instance, it it not clear if it is possible to extend Theorem 9.7 to the case that r + 1

negation gates are allowed. On the other hand, it is not clear how to compute PARITYn

with a circuit of size o(n log n) that uses O(log n) negations. A straightforward divide-

and-conquer approach combining Proposition 9.4 with linear size unrestricted PARITY

circuits yields the following:

Proposition 9.15 Let a be a function of n such that a = !(1) and a = no(1). Then

PARITYn has circuits of size O(n log a) using O(n log a=a) NEGATION gates.

We ask whether a better tradeo� between circuit size and number of negations is possible

for PARITY. In particular, does restricting the number of negations to O(log n) in a

PARITY circuit necessitate superlinear size?

88

In this chapter we have further developed the lower bound techniques introduced by

Tanaka and Nishino [91]. These methods seem very powerful, as they demonstrate a link

between monotone complexity (where some good lower bound results are known) and

negation-limited complexity. We hope that these methods will someday lead to a better

understanding of general circuit complexity.

89

Chapter 10

Relationships between the number of

negations available and circuit sizes

In this chapter, we consider the relationship between the number of NEGATION gates

available and the size of circuits.

In particular, we show that there is an optimal circuit computing some single-output

function with log2(n+1) NEGATION gates, from which the removal of two NEGATION

gate must cause an exponential growth. We also show that there is an optimal circuit

computing some two-output function with log2(n + 1) NEGATION gates, from which

the removal of one NEGATION gate must cause an exponential growth. Both partially

answer an open problem presented by Fischer [30].

In addition, we consider the relationship between the size of circuits computing clique

functions and the number of NEGATION gates in the circuits, and show that we can elim-

inate a constant number of NEGATION gates from circuits computing clique functions

without exponentially increasing the size of the circuit.

10.1 Introduction

The result of Fischer [29] shows that there is only a small gap between the size of a

combinational circuit and that of a circuit which includes only b(n) NEGATION gates

for any boolean function, where b(n) = dlog(n + 1)e, the number of bits in the binary

representation of n (all logarithms in this chapter are base two).

Proposition 10.1 For any boolean function f ,

Cb(n)(f) � 2C(f) + O(n2 log n2):

From Proposition 10.1, we can say nothing general about the size of the circuit, when

we delete even one NEGATION gate from the circuit with b(n) NEGATION gates.

Tardos [100] pointed out that there is a polynomial time computable function Fn whose

monotone circuit complexity is exponential. This function is so-called Lov�asz # function

introduced by Lov�asz [64] to study the Shannon-capacity of graphs, and is known to be

polynomial time computable. Tardos showed the following proposition.

90

Proposition 10.2

C0(Fn) = 2
(n
1=6�o(1)):

From the proposition above, the following proposition is shown,

Proposition 10.3 Let n + 1 be a power of two, then there exists an integer t (0 � t �

log(n+ 1)� 1) such that

Ct(Fn)

Ct+1(Fn)
= exp(
(n1=6�o(1))):

Proof. By observing that there is an exponential gap between the sizes of a monotone

circuit and a circuit with log(n+1) NEGATION gates computing Fn while the di�erence

of the number of NEGATION gates is only log(n+ 1).

Notice that in Proposition 10.3, we cannot determine the value of the integer t. Actu-

ally, t can range over log(n + 1) di�erent values. In other words, we have the possibility

to increase exponentially the size of a circuit computing Fn, when we delete only one

NEGATION from the circuit with b(n) NEGATION gates.

In this chapter, �rst, we construct a single-output boolean function Hn, where t can

range over only two di�erent values.

Theorem 10.4 Let n+1 be a power of two, then there exists an integer t (log(n+1)�2 �

t � log(n+ 1)� 1) such that

Ct(Hn)

Ct+1(Hn)
= exp(
(n1=6�o(1))):

We also construct another functionKn, which has two outputs, where t can be uniquely

determined.

Theorem 10.5 Let n+ 1 be a power of two, then

C log(n+1)�1(Kn)

C log(n+1)(Kn)
= exp(
(n1=6�o(1))):

From Theorem 10.5, we know that there is an optimal circuit with log(n+1) NEGA-

TION gates, from which the removal of one NEGATION gate must cause an exponential

growth.

The k-clique function CLIQUEk;n has n(n� 1)=2 variables each for them indicates an

edge in graph of n vertices, and returns one i� a given graph contains a clique (i.e. complete

subgraph) on some vertices. Notice that clique functions are monotone. We next show

the following theorem for clique functions.

Theorem 10.6 Let n be the number of vertices in graph, and let N = n(n� 1)=2. Then,

for any k (k � 0) and su�ciently large n, the dn
q
1� 1

2k+1 e-clique function f has the

following property:

Cb(N)�k(f) �
N + 1

2k�1
C(f) + O(N 2);

Theorem 10.6 says we can eliminate a constant number of NEGATION gates from

circuits computing clique functions without exponentially increasing the size of

91

10.2 An exponential growth with the removal of two

negations

Let f = (f1; : : : ; fm) be a system of n-input boolean functions. A chain C in the boolean

lattice f0; 1gn is an increasing sequence a1 < : : : < ak 2 f0; 1gn. The decrease of f on

C is the number of i � k such that for some j, fj(a
i�1) > fj(a

i). We de�ne d(f) to be

the maximum decrease of f on any chain C. Notice that d(f) � n (this is attained for

some systems f). Markov [65] has shown that b(d(F)) NEGATION gates are necessary

and su�cient to compute any system of boolean functions, where b(x) = dlog(x + 1)e,

the number of bits in the binary representation of x. Thus, Cr(f) is always de�ned for

r � b(n).

Let f be a system of n-input symmetric boolean functions. Suppose that d(f) = m,

where m = 2r� 1 for some integer r. For x 2 f0; 1gn, let df (x) be the maximum decrease

of f on a chain a1; : : : ; ak with ak = x (note that this number depends only on the number

of ones in x). Tanaka, Nishino, and Beals [93, 11] show that the NEGATION gates in any

r-circuit for f must compute the negations of the bits of the binary representation of df :

Proposition 10.7 Let f be a system of n-input symmetric functions with decrease d(f) =

m, where m = 2r�1. Consider any r-circuit � which computes f . Label the NEGATION

gates N1; : : : ; Nr in such a way that the input to Ni does not depend on the outputs of

any of the negation gates Ni+1; : : : ; Nr (such a labeling exists since the circuit is a directed

acyclic graph). Let zi be the function computed at the input of Ni. Then z1z2 : : : zr is the

binary representation of df

We are now ready to present the proof of Theorem 10.4.

Recall that Fn is a function in Proposition 10.2. We de�ne an n-input function Hn as

follows:

Hn(w1; : : : ; wm�1; x1; : : : ; xm+2) = w1 � � � � � wm�1 � Fm+2(x1; : : : ; xm+2);

where n+ 1 is a power of two and m = (n� 1)=2.

Since Fm+2 is monotone, the maximum decrease d(Hn) is (m � 1)=2 = (n � 3)=4.

So, log(n + 1) � 2 NEGATION gates are necessary and su�cient to compute Hn by the

theorem of Markov [65]. From [11], the following lemma is easily shown.

Lemma 10.8

C log(n+1)(Hn) � 2C(Hn) + O(n log n):

Since Fm+2 is known to be polynomial time computable, C(Hn) is bounded by some

polynomial in n, so is C log(n+1)(Hn).

Proposition 10.7 can be extended by replacing each input xi with an arbitrary mono-

tone function fi(Xi), where X1; : : : ; Xn are disjoint sets of the input variables, i.e.,

Xi\Xj = ; for each i, j (1 � i; j � n; i 6= j), and fi is a non-constant monotone function

over Xi for each i (1 � i � n). This can be done, since the values of f1(X1); : : : ; fn(Xn)

can be changed independently and we can regard f1(X1); : : : ; fn(Xn) as n independent

variables. If we apply the argument above to (log(n + 1) � 2)-circuit computing Hn, we

can obtain the following lemma.

92

Lemma 10.9 Let r = log(n+1)�2. Consider any r-circuit � which computes Hn. Label

the NEGATION gates N1; : : : ; Nr in such a way that the input to Ni does not depend on

the outputs of any of the negation gates Ni+1; : : : ; Nr (such a labeling exists since the

circuit is a directed acyclic graph). Let zi be the function computed at the input of Ni.

Then z1z2 : : : zr is the binary representation of bk=2c, where k is the number of ones in

fw1; : : : ; wm�1; Fm+2g.

Proof. Since fw1; : : : ; wm�1g\fx1; : : : ; xm+2g = ;, the values of Fm+2 can be changed in-

dependently of w1; : : : ; wm�1. Fm+2 is a non-constant monotone function over

fx1; : : : ; xm+2g. Thus, we can regard the value of Fm+2(x1; : : : ; xm+2) as a new variable

wm which is independent of w1; : : : ; wm�1. � includes only r = log(n + 1) � 2 NEGA-

TION gates, which are necessary and su�cient to compute the m-input parity function

This completes the proof of Lemma 10.9.

Lemma 10.10

C log(n+1)�2(Hn) = exp(
(n1=6�o(1))):

Proof. Consider the sub-circuit computing z1 in a (log(n+1))-circuit computingHn. This

sub-circuit is monotone and computes the majority function over fw1; : : : ; wm�1; Fm+2g

from Lemma 10.9. By �xing (m�1)=2 variables in fw1; : : : ; wm�1g to ones and �xing the

other variables in fw1; : : : ; wm�1g to zeros, we can get the function Fm+2(x1; : : : ; xm+2) at

the output of the sub-circuit. Combining this with Proposition 10.2, we have

C log(n+1)�2(Hn) � C0(Fm+2(x1; : : : ; xm+2))

= 2
(m
1=6�o(1))

= 2
(n
1=6�o(1)):

From Lemma 10.8 and 10.10, we obtain Theorem 10.4.

10.3 An exponential growth with the removal of one

negation

We present the proof of Theorem 10.5.

Recall that Fn is a function in Proposition 10.2, and that Hn is an n-input function

de�ned as follows:

Hn(w1; : : : ; wm�1; x1; : : : ; xm+2) = w1 � � � � � wm�1 � Fm+2(x1; : : : ; xm+2);

where n+ 1 is a power of two and m = (n� 1)=2. We now de�ne an n-input two-output

function Kn as Kn = (Hn; Hn).

Since Fm+2 is monotone, the maximum decrease d(Kn) is m = (n� 1)=2. So, log(n+

1) � 1 NEGATION gates are necessary and su�cient to compute Kn by the theorem of

Markov [65]. From [11], the following lemma is easily shown.

93

Lemma 10.11

C log(n+1)(Kn) � 2C(Kn) +O(n log n):

Since Fm+2 is known to be polynomial time computable, C(Kn) is bounded by some

polynomial in n, so is C log(n+1)(Kn). If we apply the extending argument for Proposi-

tion 10.7 to (log(n+ 1)� 1)-circuit computing Kn, we can obtain the following lemma.

Lemma 10.12 Let r = log(n+1)�1. Consider any r-circuit� which computesKn. Label

the NEGATION gates N1; : : : ; Nr in such a way that the input to Ni does not depend on the

outputs of any of the negation gates Ni+1; : : : ; Nr (such a labeling exists since the circuit

is a directed acyclic graph). Let zi be the function computed at the input of Ni. Then

z1z2 : : : zr is the binary representation of the number of ones in fw1; : : : ; wm�1; Fm+2g.

Proof. Since fw1; : : : ; wm�1g\fx1; : : : ; xm+2g = ;, the values of Fm+2 can be changed in-

dependently of w1; : : : ; wm�1. Fm+2 is a non-constant monotone function over

fx1; : : : ; xm+2g. Thus, we can regard the value of Fm+2(x1; : : : ; xm+2) as a new variable

wm which is independent of w1; : : : ; wm�1. � includes only r = log(n+1)�1 NEGATION

gates, which are necessary and su�cient to compute the m-input parity function and its

complement simultaneously. This completes the proof.

Lemma 10.13

C log(n+1)�1(Kn) = exp(
(n1=6�o(1))):

Proof. Consider the sub-circuit computing z1 in a (log(n+1)� 1)-circuit computing Kn.

This sub-circuit is monotone and computes the majority function over

fw1; : : : ; wm�1; Fm+2g from Lemma 10.12. By �xing (m�1)=2 variables in fw1; : : : ; wm�1g

to ones and �xing the other variables in fw1; : : : ; wm�1g to zeros, we can get the func-

tion Fm+2(x1; : : : ; xm+2) at the output of the sub-circuit. Combining this with Proposi-

tion 10.2, we have

C log(n+1)�1(Kn) � C0(Fm+2(x1; : : : ; xm+2))

= 2
(m
1=6�o(1))

= 2
(n
1=6�o(1)):

From Lemma 10.11 and 10.13, we obtain Theorem 10.5.

10.4 The complexity of circuits computing clique

functions with a limited number of negations

We de�ne the kth slice function fk of f by

fk(x1; : : : ; xn) =

8><
>:

0 if
Pn

i=1 xi < k

f(x1; : : : ; xn) if
Pn

i=1 xi = k

1 if
Pn

i=1 xi > k.

94

We denote by T n
k (x1; : : : ; xn), the kth threshold function which returns one i�

Pn
i=1 xi � k.

Now, we present the proof of Theorem 10.6.

Proof. We construct a circuit C computing f . In order to simplify the presentation,

without loss of generality, we assume that N = 2l � 1. It is known that the number of

variables which can be inverted using b(N) � k = l � k NEGATION gates is 2l�k � 1.

Let c = 2l�k � 1. Our circuit C consists of a monotone sorting network on N variables,

the circuit Mc (due to Fischer [29]), and monotone circuits which compute the c+1 slice

functions fN�c; : : : ; fN of f (see Figure 10.1).

Nx x1

.. .

. . .

. . .

NT N
cM

f

x2
.. .x1Nx

fN fN
. . .

+1T N

f

-1N-sorter

NT T N

N-c
N-c

+1
N
N-c

Nx. . .x1 Nx. . .x1

unused

Figure 10.1: A network C for f .

The wires in C are connected as follows. Let x1; : : : ; xN be the inputs and y1; : : : ; yN
the outputs of C, and let xS1 ; : : : ; x

S
N be the inputs and yS1 ; : : : ; y

S
N outputs of the sorting

network. First, we identify the inputs of the sorting network with the inputs of C as

follows:

xSi = xi for 1 � i � N .

Let xM1 ; : : : ; x
M
c be the inputs and yM1 ; : : : ; yMc the outputs of Mc. Next, we identify each

input of Mc with an output of the sorting network as follows:

xMi = ySN�c+i for 1 � i � c.

Then, by the construction of Mc, it follows that

yMi = :TN
N�c+i(x1; : : : xN) for 1 � i � c.

Notice that Mc has only l � k = log(n+ 1)� k NEGATION gates.

Incidentally, in order to form an dn
q
1� 1

2k+1 e-clique, at least
dn
q
1� 1

2k+1e

2

!
=

�
1

2
�

1

2k+2

�
n2 � O(n)

95

edges are necessary. On the other hand, we have

N � c = (2l � 1)� (2l�k � 1)

= (N + 1)(1�
1

2k
)

=

�
1

2
�

1

2k+1

�
n2 �O(n):

Thus, for su�ciently large n, we have

dn
q
1� 1

2k+1 e

2

!
> N � c:

Therefore, dn
q
1� 1

2k+1 e-clique has more than N � c edges for su�ciently large n. This

means f(x1; : : : ; xN) = 0 for any inputs fx1; : : : ; xNg such that
Pn

i=1 xi < N � c. Thus,

we can compute f by using the following relation:

f =
N_

i=N�c

[:TN
i+1 ^ fi]:

Note that :TN
N+1 always returns one (i.e., is a constant function) (see Figure 10.1).

Finally, let us estimate the size of C. Since it is known that Cb(n)(Mn) = O(n) [29],

we have Cb(n)�k(Mc) = O(N). The size of the sorting network is O(n log n) [2], and as

shown in [106], the monotone complexity of the circuits simultaneously computing slice

functions fN�c; : : : ; fN can be bounded as follows

C0(fN�c; : : : ; fN) � 2(c+ 1)C(f) + O(N 2)

�
N + 1

2k�1
C(f) + (N2):

This completes the proof of Theorem 10.6.

10.5 Lower bounds for clique functions

The clique function appearing in Theorem 10.6 is known to be NP-complete [31]. In this

section, we show exponential lower bounds on the monotone circuit complexity of clique

functions.

Before that, we review several de�nitions. f(x1; : : : ; xn) is called a projection of

g(y1; : : : ; ym) if

f(x1; : : : ; xn) = g(�(y1); : : : ; �(ym))

for some mapping � : fy1; : : : ; ymg ! f0; 1; x1; : : : ; xn; x1; : : : ; xng. The projection is

monotone if �(yi) is not a negated variable for each 1 � i � m. It is known that

C(f) � C(g) if f is a projection of g. C0(f) � C0(g) if f is a monotone projection of g

(see [107]).

The following proposition was shown by Alon and Boppana [5], which improved a

superpolynomial lower bounds by Razborov [77].

96

Proposition 10.14 For k � n1=4, the monotone circuit complexity of the function

CLIQUEk;n is n
(
p
k).

Now we show the following theorem.

Theorem 10.15 For an arbitrary ", 0 < " < 1=2, the monotone circuit complexity of the

function CLIQUE(1�")m;m is
(m("m)1=8).

Proof. Let G be a graph with n vertices. For an arbitrary ", 0 < " < 1=2, we require a

graph H with n
"
vertices to satisfy the following condition:

G includes n1=4-clique. () H includes 1�"
"
n-clique (i.e. (1� ")jHj-clique).

Notice that, since 0 < " < 1=2, it follows that 1�"
"
n > n1=4 for all n � 1. The construction

of H is as follows: H includes (1�"
"
n�n1=4)-clique H1, the graph G, and a graph H2 with

n1=4 independent vertices, where each vertex of H1 is connected to all vertices in G (see

Figure 10.2).

)(

H1

G

H2

H nodes

-clique

n

1 −ε
ε

ε
nodesn1/4

nodesn

− n1/4n

Figure 10.2: A projection of the clique function.

It is easy to see that H satis�es the condition above. We can construct a monotone

projection from CLIQUE(1�")m;m to CLIQUEn1=4;n, based on the construction of H. Since

m = n
"
, it follows that the monotone complexity of CLIQUEn1=4;n) is ("m)
(m

1=8) from

Proposition 10.14.

97

Chapter 11

Conclusion

In this thesis, we have studied computational di�culty. We have constructed several

algorithms and circuits for giving upper bounds, and also established NP-hardness of

scheduling problems and lower bounds on circuit complexity.

We have investigated single machine scheduling with new types of due dates and release

dates. We have dealt with scheduling involving generalized due dates, generalized release

dates, and fuzzy due dates.

Concerning single machine scheduling with generalized due dates, the complexity sta-

tus for the following problems, asked by Young, Wong, Yiu, and Yan [111], remains open.

� 1jpmtn; rjj
P
TH
j

� 1jpj = 1j
P
wjT

H
j

� 1jpmtn; rjj
P
UH
j

� 1jprec; ; rjj
P
UH
j

� 1jpmtn; rj; pj = 1j
P
UH
j

� 1jpmtn; rj; pj = 1j
P
wjU

H
j

There are also several open problems on multiple machine scheduling with generalized

due dates, asked by Hall, Sethi, and Sriskandarajah [41] and Young, Wong, Yiu, and

Yan [111].

It might be interesting to extend the generalized due date scheduling model. We have

mentioned, in Chapter 2, generalized due dates can be extended to sequence-dependent

due dates. We can consider yet other models. One is scheduling with due dates which

depend on the starting/completion times of jobs rather than the positions of jobs in sched-

ules. Another is scheduling with due dates which depend on only the preceding/succeeding

jobs. This arises analogously from precedence constraints of jobs. We can consider sim-

ilar generalization as above for generalized release date. Weights are also able to be

generalized.

Fuzzy due dates which we have concerned with are determined by membership func-

tions of completion times of jobs, which are nondecreasing. We can allow these functions

to decrease. This arises analogously from just-in-time scheduling criteria.

We have also investigated negation-limited circuit complexity of boolean functions.

98

We have shown a 4n +
(log n) lower bound on the complexity of negation-limited

circuits computing the parity function in Chapter 9. As far as we know, this is the largest

lower bound on the size of circuits with AND, OR, and NEGATION gates, computing

explicit functions with no restriction on circuit depth. However, G. Tur�an's question still

remains open: is the size of any c log n depth inverter using c log n NEGATION gates

superlinear?

We hope that both sides of investigation will lead us to understand the essence of

computational di�culty of problems.

99

Bibliography

[1] Agnetis, A., Macchiaroli, R., Pacciarelli, D., and Rossi, F. Assigning

jobs to time frames on a single machine to minimize total tardiness. IIE Transactions

(1996). To appear.

[2] Ajtai, M., Koml�os, J., and Szemer�edi, E. An O(n log n) sorting network.

In Proceedings of the Fifteenth Annual ACM Symposium on Theory of Computing

(Boston, Massachusetts, 25{27 Apr. 1983), pp. 1{9.

[3] Ajtai, M., Koml�os, J., and Szemer�edi, E. Sorting in O(c log n) parallel steps.

Combinatorica 3, 1 (1983), 1{19.

[4] Akers, Jr., S. B. On maximum inversion with minimum inverters. IEEE Trans.

Comput. c-17, 2 (Feb. 1972), 134{135.

[5] Alon, N., and Boppana, R. B. The monotone circuit complexity of Boolean

functions. Combinatorica 7, 1 (1987), 1{22.

[6] Amano, K., and Maruoka, A. Potential of the approximation method. In 37th

Annual Symposium on Foundations of Computer Science (Burlington, Vermont,

14{16 Oct. 1996), IEEE. To appear.

[7] Andreev, A. E. On a method for obtaining lower bounds for the complexity of

individual monotone functions. Soviet Math. Dokl. 31, 3 (1985), 530{534.

[8] Baker, K. R. Introduction to Sequencing and Scheduling. Wiley, New York, 1974.

[9] Baker, K. R., Lawler, E. L., Lenstra, J. K., and Rinnooy Kan, A. H. G.

Preemptive scheduling of a single machine to minimize maximum cost subject to

release dates and precedence constraints. Operations Research 31 (1983), 381{386.

[10] Batcher, K. E. Sorting networks and their applications. In Proceedings of

AFIPS Spring Joint Computer Conference, 32 (Montvale, N. J., 1968), AFIPS

press, pp. 307{314.

[11] Beals, R., Nishino, T., and Tanaka, K. More on the complexity of negation-

limited circuits. In Proceedings of the Twenty-Seventh Annual ACM Symposium on

Theory of Computing (Las Vegas, Nevada, 29 May{1 June 1995), pp. 585{595.

[12] Beals, R., Nishino, T., and Tanaka, K. On the complexity of negation-limited

boolean networks. SIAM J. Comput. (1996). To appear.

100

[13] Berkowitz, S. J. On some relationships between monotone and non-monotone

circuit complexity. Tech. rep., Computer Science Department, University of Toronto,

1982.

[14] Blazewicz, J. Scheduling dependent tasks with di�erent arrival times to meet

deadlines. In Modeling and Performance Evaluation of Computer Systems, E. Ge-

lenbe and H. Beilner, Eds. North-Holland, Amsterdam, 1976, pp. 57{65.

[15] Blum, N. A Boolean function requiring 3n network size. Theoretical Comput. Sci.

28, 3 (Feb. 1984), 337{345. Note.

[16] Boppana, R. B., and Sipser, M. The complexity of �nite functions. In Handbook

of Theoretical Computer Science Volume A|Algorithms and Complexity, J. van

Leeuwen, Ed. Elsevier, MIT Press, 1990, ch. 14, pp. 757{804.

[17] Borodin, A. On relating time and space to size and depth. SIAM J. Comput. 6,

4 (Dec. 1977), 733{744.

[18] Browne, J., Dubois, D., Rathmill, K., Sethi, S. P., and Stecke, K.

Classi�cation of exible manufacturing systems. The FMS Magazine (Apr. 1984),

114{117.

[19] Chazelle, B., and Edelsbrunner, H. An optimal algorithm for intersecting

line segments in the plane. In 29th Annual Symposium on Foundations of Computer

Science (White Plains, New York, 24{26 Oct. 1988), IEEE, pp. 590{600.

[20] Conway, R. W., Maxwell, W. L., and Miller, L. W. Theory of Scheduling.

Addison-Wesley, Massachusetts, 1967.

[21] Deutsch, D. Quantum theory, the church-turing principle and the universal quan-

tum computer. In Proc. R. Soc. Lond. A, 400 (1985), pp. 97{117.

[22] Du, J., and Leung, J. Y.-T. Minimizing total tardiness on one machine is

NP-hard. Mathematics of Operations Research 15 (1990), 483{495.

[23] Dunne, P. E. Techniques for the analysis of monotone Boolean networks. PhD

thesis, University of Warwick, 1984. Theory of Computation Report No. 69.

[24] Dunne, P. E. The complexity of central slice functions. Theoretical Comput. Sci.

44, 3 (1986), 247{257.

[25] Dunne, P. E. The Complexity of Boolean Networks. Academic Press, London,

1988.

[26] Dunne, P. E. On monotone simulations of nonmonotone networks. Theoretical

Comput. Sci. 66, 1 (2 Aug. 1989), 15{25.

[27] Dunne, P. E. Ceilings of monotone boolean functions. Journal of Universal

Computer Science 2, 7 (July 1996), 533{548.

101

[28] Ferris, M. C., and Vlach, M. Scheduling with earliness and tardiness penalties.

Naval Research Logistics Quarterly 39 (1992), 229{245.

[29] Fischer, M. J. The complexity of negation-limited networks|a brief survey. In

Lecture Notes in Computer Science 33|Automata Theory and Formal Languages,

2nd GI Conference, H. Brakhage, Ed. Springer-Verlag, 1974, pp. 71{82.

[30] Fischer, M. J. Lectures on network complexity. Tech. Rep. YALEU/DCS/TR-

1104, Department of Computer Science, Yale University, June 1974. Revised April

1977, April 1996.

[31] Garey, M. R., and Johnson, D. S. Computers and Intractability|A Guide to

the Theory of NP-Completeness. Freeman, New York, 1979.

[32] Garey, M. R., Johnson, D. S., and Sethi, R. The complexity of owshop and

jobshop scheduling. Mathematics of Operations Research 1, 2 (May 1976), 117{129.

[33] Garey, M. R., Tarjan, R. E., and Wilfong, G. T. One-processor schedul-

ing with symmetric earliness and tardiness penalties. Mathematics of Operations

Research 13, 2 (May 1988), 330{348.

[34] Gawiejnowicz, S. A note on scheduling on a single processor with speed de-

pendent on a number of executed jobs. Inf. Process. Lett. 57, 6 (25 Mar. 1996),

297{300.

[35] Gawiejnowicz, S., and Pankowska, L. Scheduling jobs with varying processing

times. Inf. Process. Lett. 54, 3 (12 May 1995), 175{178.

[36] Gilbert, E. N. Lattice theoretic properties of frontal switching functions. J.

Mathematics and Physics 33 (1954), 57{67.

[37] Graham, R. L., Lawler, E. L., Lenstra, J. K., and Rinnooy Kan, A.

H. G. Optimization and approximation in deterministic sequencing and scheduling:

A survey. Annals of Discrete Mathematics 5 (1979), 287{326.

[38] Gupta, S., and Sen, T. Minimizing the range of lateness on a single machine.

Journal of the Operational Research Society 35, 9 (1984), 853{857.

[39] Haken, A. Counting bottlenecks to show monotone P 6= NP. In 36th Annual

Symposium on Foundations of Computer Science (Milwaukee, Wisconsin, 23{25

Oct. 1995), IEEE, pp. 36{40.

[40] Hall, N. G. Scheduling problems with generalized due dates. IIE Transactions

18 (1986), 220{222.

[41] Hall, N. G., Sethi, S. P., and Sriskandarajah, C. On the complexity of gen-

eralized due date scheduling problems. European Journal of Operational Research

51 (1991), 100{109.

[42] Han, S. Studies on Fuzzy Multiobjective Scheduling. PhD thesis, Kobe University,

Kobe, Japan, Mar. 1994.

102

[43] Han, S., Ishii, H., and Fujii, S. One machine scheduling problem with fuzzy

duedates. European Journal of Operational Research 79 (1994), 1{12.

[44] Ho, K. I.-J., Leung, J. Y.-T., and Wei, W.-D. Complexity of scheduling

tasks with time-dependent execution times. Inf. Process. Lett. 48 (1993), 315{320.

[45] Hoogeveen, J. A. Minimizing maximum earliness and maximum lateness on

a single machine. Tech. Rep. BS-R9001, Centre for Mathematics and Computer

Science, Amsterdam, 1990.

[46] Ibaraki, T., and Muroga, S. Synthesis of networks with a minimum number

of negative gates. IEEE Trans. Comput. c-20, 1 (Jan. 1971), 49{58.

[47] Ishii, H., and Tada, M. Single machine scheduling problem with fuzzy precedence

relation. European Journal of Operational Research 87 (1995), 284{288.

[48] Ishii, H., Tada, M., and Masuda, T. Two scheduling problems with fuzzy

due-dates. Fuzzy Sets and Systems 46 (1992), 339{347.

[49] Jackson, J. R. Scheduling a production line to minimize maximum tardiness.

Tech. Rep. 43, Management Science Research Project, University of California, Los

Angeles, 1955.

[50] Karp, R. M. Reducibility among combinatorial problems. In Complexity of Com-

puter Computations, R. E. Miller and J. W. Thatcher, Eds. Plenum Press, New

York, 1972, pp. 85{103.

[51] Labetoulle, J., Lawler, E. L., Lenstra, J. K., and Rinnooy Kan, A.

H. G. Preemptive scheduling of uniform machines subject to release dates. Pulley-

blank (1984), 245{261.

[52] Lamagna, E. A., and Savage, J. E. Combinational complexity of some mono-

tone functions. In 15th Annual Symposium on Switching and Automata Theory

(The University of New Orleans, 14{16 Oct. 1974), IEEE, pp. 140{144.

[53] Lawler, E. L. Optimal sequencing of a single machine subject to precedence

constraints. Management Science 19 (1973), 544{546.

[54] Lawler, E. L. A pseudopolynomial algorithm for sequencing jobs to minimize

total tardiness. Annals of Discrete Mathematics 1 (1977), 331{342.

[55] Lawler, E. L., Lenstra, J. K., Rinnooy Kan, A. H. G., and Shmoys,

D. B. Sequencing and scheduling: Algorithms and complexity. In Handbooks in

Operations Research and Management Science, Volume 4|Logistics of Production

and Inventory, S. C. Graves, A. H. G. Rinnooy Kan, and P. H. Zipkin, Eds. North-

Holland, Amsterdam, 1993, ch. 9, pp. 445{522.

[56] Lenstra, J. K., and Rinnooy Kan, A. H. G. Complexity of scheduling under

precedence constraints. Operations Research 26 (1978), 22{35.

103

[57] Lenstra, J. K., and Rinnooy Kan, A. H. G. Complexity results for scheduling

chains on a single machine. European Journal of Operational Research 4 (1980),

270{275.

[58] Lenstra, J. K., and Rinnooy Kan, A. H. G. Two open problems in precedence

constrained scheduling. Annals of Discrete Mathematics 23 (1984), 509{522.

[59] Lenstra, J. K., Rinnooy Kan, A. H. G., and Brucker, P. Complexity of

machine scheduling problems. Annals of Discrete Mathematics 1 (1977), 343{362.

[60] Leung, J. Y.-T., and Young, G. H. Minimizing total tardiness on a single

machine with precedence constraints. Tech. Rep. 75083, Computer Science Program,

University of Texas at Dallas, Richardson, Texas, 1989.

[61] Liao, C.-J., and Huang, R.-H. An algorithm for minimizing the range of lateness

on a single machine. Journal of the Operational Research Society 42, 2 (1991), 183{

186.

[62] Liu, C. L., and Layland, J. W. Scheduling algorithms for multiprogramming

in a hard-real-time environment. J. ACM 20, 1 (1973), 46{61.

[63] Long, D. The monotone circuit complexity of threshold functions. University of

Oxford, 1986.

[64] Lov�asz, L. On the Shannon capacity of a graph. IEEE Transactions on Informa-

tion Theory 25 (1996), 1{7.

[65] Markov, A. A. On the inversion complexity of a system of functions. J. ACM 5,

4 (Oct. 1958), 331{334.

[66] Maruoka, A. Circuit complexity and approximation method. IEICE Transactions

on Information and Systems E75-D (1992).

[67] Megiddo, N. Combinatorial optimization with rational objective functions. Math-

ematics of Operations Research 4, 4 (Nov. 1979), 414{424.

[68] Mihara, T. The Complexity of Quantum Computation. PhD thesis, Japan Ad-

vanced Institute of Science and Technology, Ishikawa, Japan, Mar. 1997.

[69] Moore, J. M. An n job, one machine sequencing algorithm for minimizing the

number of late jobs. Management Science 15 (1968), 102{109.

[70] Muroga, S. Threshold Logic and Its Applications. Wiley, 1971.

[71] Nakamura, K., Tokura, N., and Kasami, T. Minimal negative gate networks.

IEEE Trans. Comput. c-21, 1 (Jan. 1972), 5{11.

[72] Nishino, T., and Radhakrishnan, J. On the number of negations needed to

compute parity functions. IEICE Transactions on Information and Systems E78-D,

1 (Jan. 1995), 90{91.

104

[73] Nishino, T., and Tanaka, K. On the negation-limited circuit complexity of

clique functions. IEICE Transactions on Information and Systems E78-D, 1 (Jan.

1995), 86{89.

[74] Pippenger, N. Communication networks. In Handbook of Theoretical Computer

Science Volume A|Algorithms and Complexity, J. van Leeuwen, Ed. Elsevier, MIT

Press, 1990, ch. 15, pp. 805{833.

[75] Pippenger, N., and Fischer, M. J. Relations among complexity measures.

J. ACM 26, 2 (Apr. 1979), 361{381.

[76] Raz, R., and Wigderson, A. Monotone circuits for matching require linear

depth. J. ACM 39, 3 (July 1992), 736{744.

[77] Razborov, A. A. Lower bounds for the monotone complexity of some Boolean

functions. Soviet Math. Dokl. 31, 2 (1985), 354{357.

[78] Santha, M., and Wilson, C. Limiting negations in constant depth circuits.

SIAM J. Comput. 22, 2 (Apr. 1993), 294{302.

[79] Savage, J. E. Computational work and time on �nite machines. J. ACM 19, 4

(Oct. 1972), 660{674.

[80] Savage, J. E. The Complexity of Computing. Wiley, 1976.

[81] Schnorr, C.-P. The network complexity and the Turing machine complexity of

�nite functions. Acta Inf. 7 (1976), 95{107.

[82] Shannon, C. E. The synthesis of two-terminal switching circuits. Bell System

Technical Journal 28, 1 (1949), 59{98.

[83] Smith, W. E. Various optimizers for single-stage production. Naval Research

Logistics Quarterly 3 (1956), 59{66.

[84] Sriskandarajah, C. A note on the generalized due dates scheduling problems.

Naval Research Logistics Quarterly 37 (1990), 587{597.

[85] Stecke, K. E., and Solberg, J. J. Loading and control policies for a exible

manufacturing system. International Journal of Production Research 19 (1981),

481{490.

[86] Stockmeyer, L. J. Computational complexity. In Handbooks in Operations Re-

search and Management Science, Volume 3|Computing, E. G. Co�man, Jr., J. K.

Lenstra, and A. H. G. Rinnooy Kan, Eds. North-Holland, Amsterdam, 1992, ch. 9,

pp. 455{517.

[87] Tada, M. Studies on Fuzzy Combinatorial Optimization. PhD thesis, Kobe Uni-

versity, Kobe, Japan, Mar. 1994.

[88] Tanaev, V. S., Gordon, V. S., and Shafranskij, Y. M. Scheduling Theory:

One Stage Systems. Nauka, Moscow, 1984. In Russian.

105

[89] Tanaka, K. On the complexity of negation-limited circuits. Master's thesis, Japan

Advanced Institute of Science and Technology, Ishikawa, Japan, Mar. 1994.

[90] Tanaka, K. Computational Di�culty|Scheduling and Circuit Complexity. PhD

thesis, Japan Advanced Institute of Science and Technology, Ishikawa, Japan, Mar.

1997.

[91] Tanaka, K., and Nishino, T. On the complexity of negation-limited Boolean

networks (preliminary version). In Proceedings of the Twenty-Sixth Annual ACM

Symposium on Theory of Computing (Montr�eal, Qu�ebec, Canada, 23{25 May 1994),

pp. 38{47.

[92] Tanaka, K., and Nishino, T. A relationship between the number of negations

and the circuit size. IEICE Transactions on Information and Systems E79-D, 9

(Sept. 1996), 1355{1357.

[93] Tanaka, K., Nishino, T., and Beals, R. Negation-limited circuit complexity

of symmetric functions. Inf. Process. Lett. 59, 5 (9 Sept. 1996), 273{279.

[94] Tanaka, K., and Vlach, M. Improved algorithms for single machine scheduling

with fuzzy due dates. In Proceedings of the Second International Symposium on

Operations Research and its Applications (Guilin, China, Dec. 1996), pp. 260{269.

[95] Tanaka, K., and Vlach, M. Minimizing the maximum absolute lateness and

range of lateness under generalized due dates on a single machine. Annals of Oper-

ations Research (1996). Accepted subject to minor revisions.

[96] Tanaka, K., and Vlach, M. Minimizing the range of lateness on a single machine

under generalized due dates. Information Systems and Operational Research (1996).

Accepted subject to minor revisions.

[97] Tanaka, K., and Vlach, M. Single machine scheduling to minimize the maxi-

mum lateness with both speci�c and generalized due dates. IEICE Transactions on

Fundamentals of Electronics, Communications and Computer Sciences (1996). To

appear.

[98] Tanaka, K., and Vlach, M. Single machine scheduling to minimize the max-

imum lateness with both speci�c and generalized due dates. In Proceedings of

the Second International Symposium on Operations Research and its Applications

(Guilin, China, Dec. 1996), pp. 250{259.

[99] Tanaka, K., and Vlach, M. Single machine scheduling with generalized due

dates. In Symposium on Combinatorial Optimization (London, Mar. 1996).

[100] Tardos, �E. The gap between monotone and non-monotone circuit complexity is

exponential. Combinatorica 8, 1 (1988), 141{142.

[101] Tegze, M., and Vlach, M. Improved bounds for the range of lateness on a

single machine. Journal of the Operational Research Society 39, 7 (1988), 675{680.

106

[102] Turing, A. M. On computable numbers with an application the Entschei-

dungsproblem. In Proc. London Math. Soc. Ser. 2, 42 (1937), pp. 230{265.

[103] Valiant, L. G. Negation can be exponentially powerful. Theoretical Comput. Sci.

12, 3 (Nov. 1980), 303{314.

[104] Valiant, L. G. Negation is powerless for Boolean slice functions. SIAM J. Comput.

15, 2 (May 1986), 531{535.

[105] Wegener, I. On the complexity of slice functions. Theoretical Comput. Sci. 38, 1

(May 1985), 55{68.

[106] Wegener, I. More on the complexity of slice functions. Theoretical Comput. Sci.

43, 2{3 (1986), 201{211.

[107] Wegener, I. The Complexity of Boolean Functions. Teubner, Wiley, 1987.

[108] Woeginger, G. J. Scheduling with time-dependent execution times. Inf. Process.

Lett. 54, 3 (12 May 1995), 155{156.

[109] Wong, C. S., Yan, M., and Young, G. H. A note on a single machine gener-

alized due dates scheduling problems. Journal of Combinatorial Mathematics and

Combinatorial Computing (Dec. 1993). To appear, Revised May 1995.

[110] Yan, M. Q. Generalized due dates scheduling problems on a single machine.

Master's thesis, San Francisco State University, San Francisco, Sept. 1993.

[111] Young, G. H., Wong, C. S., Yiu, V. S., and Yan, M. Scheduling tasks with

generalized due dates and ready times. In Proceedings of the Second International

Symposium on Operations Research and its Applications (Guilin, China, Dec. 1996),

pp. 209{214.

[112] Zwick, U. A 4n lower bound on the combinational complexity of certain symmet-

ric Boolean functions over the basis of unate dyadic Boolean functions. SIAM J.

Comput. 20, 3 (June 1991), 499{505.

[113] Zwick, U. Boolean circuit complexity. Lecture Notes, Tel-Aviv University, Avail-

able at http://www.math.tau.ac.il/~zwick/scribe-boolean.html, 1994.

107

Publications

[1] Nishino, T., and Tanaka, K. On the negation-limited circuit complexity of

clique functions. IEICE Transactions on Information and Systems E78-D, 1 (Jan.

1995), 86{89.

[2] Tanaka, K., Nishino, T., and Beals, R. Negation-limited circuit complexity

of symmetric functions. Inf. Process. Lett. 59, 5 (9 Sept. 1996), 273{279.

[3] Tanaka, K., and Nishino, T. A relationship between the number of negations

and the circuit size. IEICE Transactions on Information and Systems E79-D, 9

(Sept. 1996), 1355{1357.

[4] Beals, R., Nishino, T., and Tanaka, K. On the complexity of negation-limited

boolean networks. SIAM J. Comput. (1996). To appear.

[5] Tanaka, K., and Vlach, M. Single machine scheduling to minimize the maxi-

mum lateness with both speci�c and generalized due dates. IEICE Transactions on

Fundamentals of Electronics, Communications and Computer Sciences (1996). To

appear.

[6] Tanaka, K., and Vlach, M.Minimizing the range of lateness on a single machine

under generalized due dates. Information Systems and Operational Research (1996).

To appear.

[7] Tanaka, K., and Vlach, M. Minimizing the maximum absolute lateness and

range of lateness under generalized due dates on a single machine. Annals of Oper-

ations Research (1996). To appear.

[8] Tanaka, K., and Nishino, T. On the complexity of negation-limited Boolean

networks (preliminary version). In Proceedings of the Twenty-Sixth Annual ACM

Symposium on Theory of Computing (Montr�eal, Qu�ebec, Canada, 23{25 May 1994),

pp. 38{47.

[9] Beals, R., Nishino, T., and Tanaka, K. More on the complexity of negation-

limited circuits. In Proceedings of the Twenty-Seventh Annual ACM Symposium on

Theory of Computing (Las Vegas, Nevada, 29 May{1 June 1995), pp. 585{595.

[10] Tanaka, K., and Vlach, M. Single machine scheduling with generalized due

dates. In Symposium on Combinatorial Optimization (London, Mar. 1996).

108

[11] Tanaka, K., and Vlach, M. Single machine scheduling to minimize the max-

imum lateness with both speci�c and generalized due dates. In Proceedings of

the Second International Symposium on Operations Research and its Applications

(Guilin, China, Dec. 1996), pp. 250{259.

[12] Tanaka, K., and Vlach, M. Improved algorithms for single machine scheduling

with fuzzy due dates. In Proceedings of the Second International Symposium on

Operations Research and its Applications (Guilin, China, Dec. 1996), pp. 260{269.

109

Vita

Keisuke Tanaka

1988 Graduated from Kofu Minami High School, Kofu, Yamanashi,

Japan.

1988{92 Attended Yamanashi University, Kofu, Yamanashi, Japan.

1992 B.Eng. in Computer Science, Yamanashi University.

1992{97 Graduate work in Information Science, Japan Advanced Institute

of Science and Technology, Tatsunokuchi, Ishikawa, Japan.

1994 M.S. in Information Science, Japan Advanced Institute of Science

and Technology.

1997 Ph.D. in Information Science, Japan Advanced Institute of Science

and Technology.

110

