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Abstract

We investigate proof rules in various logics used in the area of computer science and prove
their soundness and completeness in the abstract framework of institutions. The soundness and
completeness results have great significance for logics because they establish a correspondence
between the semantic truth and (syntactic) provability. We aso specify and verify the correct-
ness of software systems showing how theoretical results may be used in concrete specification
examples.

During the process of software specification, we often use different logical systemsto cap-
ture particular aspects of software systems. Each part of a software system may be described
by a distinct logical system that best fit considered problems. It isimportant to present a (ab-
stract) formal concept of alogical system which covers the population explosion of logics used
in computer science. Institution theory of Goguen and Burstall arouse out of this necessity, with
the ambition of doing as much aspossible at alevel of abstraction, independent of any particular
logic. We try to provide general ideas and results that can be easily applied to a multitude of
logical systems and may be reused in different contexts.

This research is largely focused on foundational aspects but it also takes seriously the task
of providing support for the specification and verification of software and hardware systems.
We specify amutual exclusion protocol and prove that it satisfies the desired requirements with
the help of the tools provided by our general framework. Even though we use CafeOBJ for
mechanical assistance for proofs, our goal is not to present CafeOBJ in detail, but rather its
underlying logics.

We develop an abstract proof calculus for logics whose sentences are universal Horn sen-
tences of the form (¥X)(AH = C) and prove an institution generalization of Birkhoff com-
pleteness theorem. Thisresult is applied to Horn clause logic, the “Horn fragment” of preorder
algebra, order-sorted algebra and partial algebra and their infinitary variants.

The completeness of the infinitary logic L, » Was proved by Carol Karp in 1964. We
express and prove the completeness of infinitary first-order logicsin the institution-independent
setting by using forcing, a powerful method for constructing models. As a consequence of this
abstraction, our results become available for the infinitary versions of many first-order logical
systems. Although we emphasize the results for the infinitary logics our framework covers also
the finitary cases.

Many computer science applications concern properties which are true of arestricted class
of models, in most of the cases reachable models with constructor-generated elements. We
introduce the concept of reachable model in the institution model theory. We present a couple
of constructor-based institutions defined on top of the Horn and first-order institutions, basically
by restricting the class of models to the reachable models. We define the proof rules for these
logics, and lift the completeness results previously obtained to the constructor-based logics
using institution-independent techniques.
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Chapter 1

| ntroduction

Thisthesisis about providing practical framework(s) for the development of software systems;
we define the semantics and proof rules for the algebraic specification languages. A suitable
framework in which to carry out this study is the theory of institutions. More precisely, alogic
is described in a very abstract manner, without concrete signatures, sentences, models and so
on; two distinguished components are identified in it: an institution and an entailment system,
corresponding to the semantic and the syntactic parts of alogic, respectively.

The concept of institution is a category-based model-oriented formalization of the model
theory, including syntax, semantics and satisfaction between them. It provides an abstract ap-
proach towards model theory, this perspective having the advantage of clarifying model the-
oretic phenomena and causality relationships between them, allowing thus new fundamental
insights and results even in traditional areas of model theory. A general axiomatic theory of
logics should cover all the key ingredients of alogic, an institution plus a notion of entailment
(also called provahility) of a sentence from a set of axioms. The syntax, i.e. signatures and
sentences, plus the entailment relation form an entailment system. This general approach isim-
portant especially in the context of the recent proliferation of logicsin computer science, mostly
in the area of formal specification, where it is now atradition to have an institution underlying
each language.

In awork like this, notation itself sometime becomes a problem. We try to use the standard
concepts and notations which appear in the literature. The turnstile - is used for the syntactic
provability relation, also called the entailment relation, and the double turnstile |= is used for
the semantic consequence relation, aso called the satisfaction relation. This text justifies proof
measures for alogical systemsin the presence of model theory, with respect to the notions of
model and satisfaction for that system. The concepts used here alow a natural generalization
of the soundness and completeness properties. Soundness says that only sentences which are
true of a class of models of some set of axioms Ax, are provable from Ax, mathematically, the
syntactic relation is embedded into the semantic one (FC=). Completeness is the converse
property to soundness, and it says that a sentence can be formally proved from a set of axioms
Ax when that sentence holdsin every model of Ax, moreformally =Ci-.

Users are concerned whether certain properties, formalized as sentences, are true of certain
models, which may be realized in a (software or hardware) system. Since the syntactic ap-
proach isthe only effective way to infer propertiesfrom agiven set of axioms, the compl eteness
results ensures that the provability relation is reach enough to demonstrate the truth. Neverthe-
less, many logical systems enjoy only the soundness property, which is fundamental because it
prevents the deduction of “invalid” properties.



1.1 Hornlogics

Notice that in most of the standard cases, alogic comes with a notion of atomic sentence, with
the help of with the formulas of the logic are built. Horn logics have the sentences of the form
(VX)(AH) = C, where H is a (finite) set of atoms in the given logic, C is an atom, AH is the
conjunction of the sentencesin H, and (AH) = C is the implication of C by AH. We assume
that the conjunction binds tighter then the implication, and we will write AH =- C rather than
(AH) = C. One important property which holdsin Horn logics presented here is the existence
of initial model(s) for a given set of sentences. Moreover these logics can be implemented
efficiently by term rewriting, which can serve as a theorem prover.

In 1935 Birkhoff first prove a completeness theorem for conditional equational logic, in the
unsorted case. Goguen and Meseguer, giving a sound and complete system of proof rules for
finitary many-sorted equational deduction, generalized the completeness theorem of Birkhoff
to the completeness of finitary many-sorted equational logic and provided simultaneously afull
algebraization of finitary many-sorted equational deduction. The unsorted rules can be unsound
for many-sorted algebras that may have empty carriers, suggesting the idea that generalizations
to other variants of equational logics may imply some difficulties. We generalize the Birkhoff
completenessresult to arbitrary institutions obtaining uniformly sound and compl ete systems of
proof rulesfor Horn clauselogic, the “Horn fragment” of preorder algebra, order-sorted algebra
and partial algebra.

1.2 First-order logics

First-order logics have sentences constructed over the atoms by means of Boolean connectives
and quantification. It is well known that not all sets of sentences in these logics have initial
model or are not even consistent (there isno model for a given set of axioms). At this moment
we can not give a characterization for the sets of first-order sentenceswhich admit initial model.
Aswe will seelater on, in concrete specifications, we use first-order sentences (more precisely
universal sentences of the form (VX)p where p isaformulaformed without quantifications) on
top of the Horn sentences, to restrict the class of models of the Horn sentences, or to recursively
define some operation symbols. Wewill arguethat initial semanticsisimportant only at the level
of specifications, but for the formal verification we need only loose semantics in constructor-
based framework which should include all Boolean connectives.

One important contribution of our study is the formalization of forcing in abstract model
theory, thus providing an efficient tool for obtaining new results and showing the significance
of the top-down approach towards model theory. We use forcing to prove the compl eteness of
the first-order entailment systems in the abstract setting. The forcing technique was invented
by Paul Cohen, for proving consistency and independence results in set theory, and later it was
introduced by Robinson in model theory, and by Gaina and Petriain institution model theory.

1.3 Constructor-based logics

Applications concern properties which are true of a restricted class of models. In most of
the cases the models of interest include the initial model(s) of a set of axioms. Some ap-
proaches consider the initial semantics and reason about properties which are true of initial
model. Our work takes into account the generation aspects of software systems by considering



the constructor-based institutions. For example in Horn clause logic for each signature we dis-
tinguish a set of operation symbols called constructors. The result sorts of the constructors are
called constrained and a sort which is not constrained it is loose. The constructors determine
the class of reachable models which are of interest from the user point of view. Intuitively the
carrier setsof such modelsconsist of constructor-generated elements. The sentences and the sat-
isfaction condition are preserved from the base institution. In order to obtain aconstructor-based
institution the signature morphisms of the base institution are restricted such that the reducts of
the reachable models along the signature morphisms are also reachable. In the examples pre-
sented here it is simply required that constructors are preserved by signature morphisms, and
no “new” constructors are introduced for “old” constrained sorts (for sorts being in the image
of some constrained sorts of the source signature).

At the level of institutions we give a categorical definition of reachable model parameter-
ized by two classes of signature morphisms. In Horn clause logic, by choosing appropriate
parameters, we prove that the abstract definition lead to the same classical concept of reachabil-
ity. Then we apply thisinstitution-independent notion to order-sorted algebra, preorder algebra,
and partial algebra and we obtain the constructor-based variants of these institutions.

We provide probability relations for the constructor-based institutions by adding proof rules
which integrate the reachability concept to the proof rulesfor the base institutions (which may
be Horn or first-order), and we prove a completeness result using institution-independent tech-
niques. However the completeness is relative to a family of sufficient complete basic specifi-
cations (X,T") with signature X and set T of sentences. Intuitively (X,T") is sufficient complete
when any term formed with operation symbols with the constrained result sort and variables of
sort loose can be reduced to a term formed with constructors and variables of sort loose using
the equationsfromT".

1.4 Structureof thethesis

Thisthesis consists of four parts.

The first part, chapters 2 and 3, introduce the main ingredients of institution proof theory,
the concepts of institution and entailment system. We present several examples of basic insti-
tutions together with their constructor-based restrictions. We develop an “internal logic” which
includes an interpretation of Boolean connectives and quantifiers at the level of an arbitrary
ingtitution. The chapter on entailment systems defines the soundness and completeness and
explores the compactness property for the entailment relations generated by proof rules which
deal with Boolean connectives and universal and existential quantifiers. Compactnessis a key
property for making the proofs finitary (written as finite sequences of sentences obtained by
applying the proof rulesto the previous ones).

The second part, chapters 4, 5 and 6, is devoted to the “logic for applications’ and may
be read independently. Conditional equational logic is the basic logic underlying the algebraic
specification languages. We separate the specific proof rules of thislogic from the general ones
and we show how the abstract completenessresults are reflecting in aconcrete example of logic.
We also give an example of unsound deduction showing that the rules for equational deduction
in the unsorted case are unsound for the many-sorted case. The chapter on constructor-based
equational logic defines the Case splitting rules and demonstrates that the rules for equational
deduction plusCase splitting generate an entailment rel ation equal to the semantic consequence
relation. However the rules of Case splitting have infinitary premises and the resulting entail-



ment system is not compact. Therefore, we define a basic induction scheme to deal with the
infinite conditions of the rules and argue that we can not obtain a complete and compact entail-
ment system for the constructor-based equational logic. This part contains also a discussion on
the error handling with order-sorted algebra.

The third part, Chapter 7, demonstrates the applicability of our theoretical results, and may
be seen as amoativation of our study. The example used here is a mutual exclusion protocol, an
algorithm which ensure that no more then one process have access to a common shared source
at agiven time. The rigorous logical framework reflects to the level of proofs; the verification
of the mutual exclusion property is significantly more simpler here comparing to the previous
approaches.

The last part, chapters 8, 9, and 10 is the core of the original developments. We present
several basic notionsin the institution theory, reachability being the key concept for defining the
constructor-based logics. We define the rules of Case splitting which integrate the reachability
and we prove a quasi-completeness result for the constructor-based logics in the institution-
independent setting. Our general layered approach allows to instantiate this result to Horn and
first-order institutions, respectively. Theforcing technique constitutes one of the most important
contribution of the present research and it is used for proving completeness of first-order logics.



Chapter 2

| nstitutions

Institutions were introduced in [33] with the original goal of providing an abstract framework
for algebraic specifications of computer science systems. By isolating the essence of a logi-
cal system in the abstract satisfaction relation, which states that truth is invariant to change
of notation, and leaving open the details of signatures, sentences and models, these structure
achieves an appropriate level of generality for the development of abstract model theory - i.e.
independent of the specific nature of the underlying logic. Many logical notions and results can
be devel oped in an institution-independent way, to mention just afew: ultraproducts| 20], Craig
interpolation [22], elementary chains [30], Robinson consistency [31], Beth definability [58].
A textbook dedicated to thistopicis[24].

2.1 Categories

We assume that the reader is familiar with basic categorical notions like functor, natural trans-
formation, co-limit, comma category, etc. A standard textbook on the topic is [46]. We are
going to use the terminology from there, with a few exceptions that we point out below. We
use both the terms “morphism” and “arrow” to refer morphisms of a category. Composition
of morphisms and functors is denoted using the symbol “;” and is considered in diagrammatic
order.

Let C and C’ be two categories. Given an object A € |C|, the comma category of objects
in C under A is denoted A/C. Recall that the objects of this category are pairs (h,B), where

Be|C|and AlB isamorphismin C. Throughout the paper, we might let either (A o B) or
(h,B) indicate objectsin A/C. A morphismin A/C between two objects (h,B) and (g,D) is
just a morphism B AN D inC suchthat h; f = ginC. There exists a canonical forgetful functor
between A/C and C, mapping each (h,B) to B and each f : (h,B) — (g,D) to f : B— D.
Also, if F: C’ — C isafunctor, Ac |C|, A’ € |C'|, and A= F(A') isin C, then there exists a
canonical functor u/F : A'/C’ — A/C mapping each (A - B,B) to (u;F(h),F(B)) and each
f:(h,B)— (g,D)toF(f): (u;F(h),F(B)) — (u;F(g),F(D)). If C =C’ and F istheidentity
functor 1¢c, we write u/C instead of u/F; and if F(A’) = Aand u = 14, we write A’ /F instead
of u/F.

Let C and S be two categories such that S is small. A functor D:S — C isaso caled a
diagram. We usually identify adiagran D : S — C withitsimagein C, D(S). A co-cone of D
isanatural transformation : D =V between the functor D and [the constant functor mapping
all objectstoV and all morphismsto 1y]; V is an object in C, the vertex of the co-limit, and
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the components of | are the structural morphisms of the co-limit. Any partially ordered set
(I, <) can be regarded as a category in the obvious way, with the arrows being pairsi < j. A
non-empty partially ordered set (1, <) issaid to be directed if for al i, j € |, there existsk € |
such that i < k and j <k, and is called a chain if the order < istotal. A diagram defined on
adirected set (on a chain) shall be called directed diagram (chain diagram), and a co-limit of
such adiagram directed co-limit (chain co-limit).

Let C’ beasubcategory of C. C’ iscalled abroad subcategory if it contains all the objects of
C. C’issaid to be closed under directed co-limits (chain co-limits) if for any directed diagram
(chain diagram) D : (I,<) — C such that [for eachi < jin|, D(i < j) isin C’], any co-limit
{Di & B}ie; of D has al the structural morphisms i in C’. C’ is said to be closed under
pushoutsif for each pushout (AZQAQALAZQA’ <h—2A1) inC, h} isinC’ whenever hy isinC’.

An object Ain acategory C iscalled finitely presented ([1]) if

e for each directed diagram D : (J,<) — C with co-limit {Di L B}ics, and for each mor-
phism A -2 B, there existsi € J and A % Di such that gisHj =0,

e for any two arrows g; and g; asabove, thereexistsi <k, j <k e J suchthat gi;D(i <k) =
9;;D(j <k) =g.

2.2 Déefinition and Examples

Definition 2.2.1. An institution consists of
1. acategory Sig, whose objects are called signatures.

2. afunctor Sen: Sig — Set, providing for each signature a set whose elements are called
(=-)sentences.

3. afunctor Mod : Sig°P — Cat, providing for every signature X a category whose objects
are called (Z-)models and whose arrows are called
(Z-)morphisms.

4. arelation =xC [Mod(X)| x Sen(X) for each X € |Sig|, called (2-)satisfaction, such that
for each morphism¢ : £ — X' in Sig, the following satisfaction condition holds:

M’ [=5 Sen(o)(e) iff Mod()(M') = e
for all modelsM’ € |Mod(X')| and sentences e € Sen(X).

Following the usual notational conventions, we sometimeslet _ [, denote the reduct functor
Mod(¢) and let ¢ denote the sentence translation Sen(¢). WhenM =M’ [, we say that M’ isa
¢-expansion of M, and that M isthe ¢-reduct of M’; and similarly for model morphisms. When
E and E’ are sets of sentences of the same signature X, we let E =5 E’ denote the fact that
M EE impliesM = E’ for all 2-models M. Therelation =5 between sets of sentencesis called
(2-)semantic consequence relation (notice that it iswritten just like the satisfaction relation).

Example 1 (First order logic (FOL) [33]). The signatures are triplets (S F,P), where S is
the set of sorts, F = {Fy_s}wes scs is the (§"x S -indexed) set of operation symbols, and
P = {Puv}wes is the (S*-indexed) set of relation symbols. If w= A, an element of Fy_s is
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called a constant symbol, or a constant. By a slight notational abuse, we let F and P also
denote Uwws)es xsFw—s and Uwes: Ry respectively. A signature morphism between (S, F, P)
and (S,F’,P') isatriplet ¢ = (¢, ¢°P,¢'®), where ¢ : S— S, 9P :F — F/, ¢"® : P — P/

such that @°P(Fy_s) C Fq’)sort(w)ﬂpw(s) and ¢'® (Ry) C P(’pw(w) for al (w,s) € S* x S When

there is no danger of confusion, we may let ¢ denote each of ¢!, ¢"® and °P.
GivenasignatureX = (S F,P), aXZ-model M isatriplet

M = ({Ms}scs, {Mg *} ws)es xsoehus IMi fwes: zer,)
interpreting
1. each sort sasaset Mg,

2. each operation symbol ¢ € Fy_.s as a function M&® : My — Mg (Where M, stands for
Mg, X ... x Mg, ifw=s5;...5),and

3. eachrelation symbol n € Ry asarelation MY C My,.

When there is no danger of confusion we may let My and M, denote Mg° and MY respectively.
Morphisms between models are the usual Z-morphisms, i.e., S-sorted functions that preserve
the structure.

The XZ-sentences are the usual closed first-order logic formulae (formulae without free vari-
ables) built over atomic formulae given either as

1. equality atomst; = tp, wherety, t € (Tg)s L or

2. relational atomsw(ty,...,tn), wheremw € Ps, s, and tj € (Tg)s foreachi e {1,...,n}),
and is closed under:

1. negation, digunction and false;

2. universal or existential quantification over finite sets of constants (variables).

Satisfaction is the usual first-order satisfaction and is defined using the natural interpretations
of ground termst as elements M; in models M. The definitions of functors Sen and Mod on
morphisms are the natural ones: for any signature morphism ¢ : £ — X/, Sen(¢) : Sen(X) —
Sen(%') translates sentences symbol-wise, and Mod (o) : Mod(X') — Mod(X) is the forgetful
functor.

The institution FOEQL of first-order equational logic is obtain from FOL by discarding
both the relation symbols and their interpretationsin models.

Example 2 (Universal first-order logic(UFOL)). A universal sentence for a FOL signature
(S F,P) is a sentence of the form (VX)p, where p is a sentence formed without quantifiers.
UFOL has the same signatures and models as FOL but only universal sentences.

Example 3 ( Horn Clause logic (HCL)). A universal Horn sentence for a FOL signature
(S F,P) is a (universal) sentence of the form (VX)(AH) = C, where H is afinite set of (re-
lational or equational) atoms, and C isa(relational or equational) atom. In the tradition of logic
programming universal Horn sentences are known as Horn Clauses. Thus HCL has the same
signatures and models as FOL but only universal Horn sentences as sentences.

By considering the case of empty sets of relational symbols, we obtain the conditional equa-
tional logic, CEQL [6].

T¢ isthe ground term algebraover F.



Example 4 (Constructor-based first-order logic (CFOL)). The signatures of constructor-based
first-order logic (S, F, F¢, P) consist of

1. afirst-order signature (S,F, P), and
2. adistinguished set of constructors F¢ C F.
The constructors determine the set of

1. constrained sortsS° C S: s S iff there exists a constructor ¢ € Fy_, ¢ with the result sort
S.

2. loosesortsS = S-S

The (S, F, F¢, P)-sentences are the universal constrained first-order sentences of theform (vX)p
where

e X isafinite set of constrained variables 2, and

e p isafirst-order formula formed over the atoms by applying Boolean connectives and
quantifications over loose variables 3.

The (S,F,F¢, P)-models are the usua first-order structures M with the carrier sets for the con-
strained sorts consisting of interpretations of terms formed with constructors and elements of
loose sorts, i.e. there exists

1. asetY = (Ys)ses Of variables of loose sorts, and
2. afunction f:Y — M

such that for every constrained sort s € S the function fg : (Tee(Y))s — Mg is a surjection,
where f isthe unique extension of f to a (S F¢,P)-morphism.

A constructor-based first-order signature morphisms ¢ : (S F,F° P) — (S,F,F{,P1) isa
first-order signature morphism ¢ : (S F,P) — (S1, F1, P1) such that

1. the constructors are preserved along signature morphisms: if ¢ € F¢ then (o) € Ff, and

2. no “new” constructors are introduced for “old” constrained sorts: if 61 € (Ff)w,—s, and
s1 € o(S) then there exists o € F¢ such that ¢(c) = o1.

Example 5 (Constructor-based universal first-order logic CUFOL). Thisinstitution is obtained
from CFOL by restricting the sentences to universal sentences of the form (VX)(VY)p, where
X isafinite set of variables of constrained sorts, Y is afinite set of variables of loose sorts, and
p isasentence formed without quantifiers.

Example 6 (Constructor-based Horn clause logic (CHCL)). Thisinstitution is obtained from
CFOL by restricting the sentences to universal Horn sentences of the form (VX)(VY) AH = C,
where X is afinite set of variables of constrained sorts, Y is a finite set of variables of loose
sorts, H isafinite set of (relational or equational) atoms, and C is an atom.

The ingtitution of constructor-based conditional equational logic CCEQL is obtained from
CHCL by forgetting the relation symbols.

2X = (Xs)ses is aset of constrained variablesif Xs =0 for al s€ S
3Y = (Yo)sesisaset of loose variablesif Ys = 0 for all s€ S

8



Example 7 (Infinitary first-order logic FOL o, ). Thisis the infinitary version of first-order
logic alowing digunctions of countable sets of sentences.

Example 8 (Infinitary Horn clause logic (HCL..)). This is the infinitary extension of HCL
obtained by allowing the set X of variables of a Horn clause (VX) AH =- C to be infinite, and
the hypothesispart /A H to consist of infinitary conjunctionsof atoms. Similarly one may extend
CHCL to CHCL ..

Example 9 (Infinitary universal first-order logic (UFOL..)). This is the infinitary extension
of UFOL obtained by alowing the set X of variables of a universal sentence (VX)p to be
infinite, and the quantifier-free part p to be constructed by applying disunctions to infinite sets
of sentences. Similarly one may extend CUFOL to CUFOL ...

Example 10 (Order-sorted algebra (OSA) [36]). An order-sorted signature (S, <, F) consists of
an algebraic signature (S, F), with apartial ordering (S, <) such that the following monotonicity
conditionis satisfied

6 € Fy—s NFw,—s, anddwy <wo imply 51 <5

A morphism of OSA signatures ¢ : (S <,F) — (S, </,F’) isjust a morphism of algebraic
signatures (S F) — (S, F’) such that the ordering is preserved, i.e. ¢o(s1) <’ ¢(s2) whenever
S1 < $p.

Given an order-sorted signature (S <,F), an order-sorted (S <,F)-algebra is a (SF)-
algebraM such that

o 5 <spimpliesMg, € Ms,, and
e ¢ € Fy,—s; URW,—s, and wy < wo imply Mévl’sl = I\/Igvz’SQ on My, .

Given order-sorted (S, <,F)-agebrasM and N, an order-sorted (S, <,F)-morphismh: M — N
isa (S F)-morphism such that s; < s, implieshs, = hs, on Mg, .

An order-sorted signature (S <,F) is regular iff for each o € Ry, s, and each wp < w;
thereisaunique least element in the set {(w,s) | 6 € Fy—s and wp < w}.

Remark 2.2.2. For regular signatures (S, <,F), any F-termt has a least sort LS(t) and the
initial (S, <,F)-algebra can be defined as a termalgebra, cf. [ 36].

Proof. We proceed by induction on the structure of the term t. If t € F_,5, then by regularity
with wg = w; = A thereisaleast s€ Ssuch that t € F_g; thisis the least sort of t. If t =
o(t1,...,tn) € (Tg)s then by induction hypothesiseach tj hasaleast sort, say s;; letwo =1 ... Sn.
Then ¢ € Fy_g for some pair (W,s) € S* x Swith s < sand wp < w. By regularity, there
exists least pair (W’,s”) € S* x Ssuch that 6 € Fy_¢; thiss” is the desired least sort of t.

(Q.ED.)

Let (S <,F) be an order-sorted signature. We say that the sorts s; and s, are in the same
connected component of Siff s; = sp, where = isthe least equivalence on Sthat contains <. A
partial ordering (S <) isfiltered iff for al s1,s, € S, there is some s € S such that 1 < s and
S < s. A partia ordering islocally filtered iff every connected component of it isfiltered. An
order-sorted signature (S, <, F) islocally filtered iff (S <) islocaly filtered, and it is coherent
iff it is both locally filtered and regular. Hereafter we assume that all OSA signatures are
coherent.



The atoms of the signature (S, <,F) are equations of the form t; = t, such that the least sort
of the termst; and tp are in the same connected component. The sentences are closed formulas
built by application of Boolean connectives and quantification to the equational atoms. Order-
sorted algebras were extensively studied in [ 34, 36, 61].

Universa order-sorted algebra (UOSA) and Horn order-sorted algebra (HOSA) are ob-
tained by restricting the sentences of OSA to universal sentences and universal Horn sentences,
respectively. Their infinitary variants UOSA.. and HOSA.. are obtained as in the first-order
case by alowing the infinitary universal sentences and infinitary universal Horn sentences, re-
spectively. OSA,, «, isextending OSA by allowing disjunctions of countable sets of sentences.

Example 11 (Constructor-based order-sorted logic (COSA)). Thisinstitution is defined on top
of OSA similarly as CFOL is defined on top of FOL. The constructor-based order-sorted
signatures (S, <,F, F°) consists of

1. an order-sorted signature (S, <,F), and

2. adistinguished set of operational symbols F¢ C F, called constructors, such that (S <
,F¢) is an order-sorted signature (the monotonicity and coherence conditions are satis-
fied).

Asinthefirst-order case the constructors determine the set of

1. constrained sorts S° C S se S iff there exists a constructor ¢ € F§_  with the result sort
S.

2. loosesortsS = S-S

The (S, <, F, F¢)-sentences are the universal constrained order-sorted sentences of the form
(VX)p, where

e X isfinite set of variables of constrained sorts, and
e pisaformulawith quantifications over variables of loose sorts only.

The (S <,F,F¢)-models are the usua (S, <,F)-models with the carrier sets for the con-
strained sorts consisting of interpretation of terms formed with constructors and elements of
loose sorts, i.e. there exists

1. aset of variablesY of loose sorts, and
2. afunctionf:Y — M

such that for every constrained sort s € S the function fg : (Tee(Y))s — Mg is a surjection,
where f isthe unique extension of f toa (S, <,F¢)-morphism.

A signature morphism ¢ : (S, <,F,F®) — (S, <1,F,Fy) isan order-sorted signature mor-
phism such that

1. constructors are preserved along the signature morphisms: if ¢ € F© then ¢(o) € Ff,

2. no “new” constructors are introduced for “old” constrained sorts: if 61 € (F{)w,—s, and
s1 € ¢(S) then thereexists ¢ € F¢ such that ¢(c) = 61, and
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3. if sy <1 5] and thereexistss” € S° such that s = ¢(s”) then there exists s’ € S° such that
S = 0(S).

Constructor-based universal order-sorted algebra (CUOSA) and constructor-based Horn
order-sorted algebra (CHOSA) are obtained by restricting the sentences of COSA to univer-
sal sentences and universal Horn sentences, respectively. Their infinitary variants CUOSA ..
and CHOSA.. are obtained asin the first-order case.

Example 12 (Preorder algebra (POA) [26]). The POA signaturesare just the ordinary algebraic
signatures. The POA modelsare preordered algebraswhich are interpretations of the signatures
into the category of preorders Pre rather than the category of sets Set. This means that each
sort gets interpreted as a preorder, and each operation as a preorder functor, which means a
preorder-preserving (i.e. monotonic) function. A preordered algebra morphismisjust afamily
of preorder functors (preorder-preserving functions) which is also an algebra morphism.

The sentences have two kinds of atoms. equations and preorder atoms. A preorder atom
t <t issatisfied by apreorder algebraM when theinterpretationsof thetermsarein the preorder
relation of the carrier, i.e. M; < My . Full sentences are constructed from equational and
preorder atoms by using Boolean connectives and first-order quantification.

Asin case of FOL we define universal preorder algebra (UPOA) and Horn preorder algebra
(HPOA) by restricting the sentences to universal sentences and universal Horn sentences, re-
spectively. The institution of constructor-based preorder algebra (CPOA) is obtained similarly
asinfirst-order case. Their infinitary variants are obtained by allowing infinitary sentences.

POA constitutes an unlabeled form of Meseguer’s rewriting logic [49], but later is not an
institution.

Example 13 (Partial algebra (PA) [59, 12]). A partial algebraic signature (S F) consists of a
set Sof sortsand aset F of partial operations. We assume that there is a distinguished constant
on each sort 1g:s. Signature morphisms map the sorts and operations in a compatible way,
preserving Ls; we also alow that constants can be mapped to terms.

A partial algebra is just like an ordinary algebra but interpreting the operations of F as
partial rather than total functions; L is aways interpreted as undefined. A partial algebra
homomorphismh : A — B isafamily of (total) functions {hs : As — Bs}scs indexed by the set
of sorts S of the signature such that hs(As(a)) = Bs(hw(a)) for each operation 6 : w — s and
each string of argumentsa € Ay, for which Ag(a) is defined.

Remark 2.2.3. For everyinclusionX — %(Z) inD, whereX = (S, S¢,F) and£(Z) = (S §,F U
Z), the X(Z)-models can be represented as pairs (A,a) where AisaX-model anda: Z' — Ais
a function such that Z’ C Z isthe set of variables which are defined.

We consider one kind of ”base” sentences. existence equality t £ t/. The existence equality
t =t/ holds when both terms are defined and are equal. The definedness predicate and strong
equality can be introduced as notations. def (t) stands for t Ztandt =t stands for (t = t')yv
(—def (t) A —def (t')).

We consider the atomic sentencesin Sen(S, F) to be the atomic existential equalitiesthat do
not contain Ls. The sentences are formed from these “base” sentences by logical connectives
and quantification over variables.

The definition of PA given here is dlightly different from the one in [51] since it does not
consider total operation symbols.
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By restricting the sentences to universal sentences and universal Horn sentences formed
over the existential equalities, we obtain UPA and HPA, respectively. Their infinitary versions
are obtained by allowing infinitary sentences above.

Example 14 (Constructor-based partial algebra (CPA)). The signatures of constructor-based
partial algebra (S F,F€) consist of asignature (S, F) in the base institution, and a distinguished
set of constructors F¢ C F.

The constructors determine the set of constrained sorts S* C S s e S iff there exists a
constructor ¢ € RS with the result sort s, and the set of loose sorts S' = S— S°.

The (S F,F¢)-sentences are the universal constrained first-order sentences of the form
(VX)p where X isafinite set of variables of constrained sorts, and p is aformulawith quantifi-
cations over variables of |oose sorts only.

The (S F,F¢)-models are the usua partial algebras M with the carrier sets for the con-
strained sorts consisting of interpretations of terms formed with constructors and elements of
loose sorts, i.e. there exists

1. asetY = (Ys)ses Of variables of loose sorts, and
2. afunction f: Y — M
such that for every constrained sort s € S° the function f#: (Tom,1))s — Msisasurjection, where

1. Tim,f) € Treuy is the maximal partial (S FCUY)-algebra of terms such that (M, f) |=
def(t) foralt € Ty ), and

2. t%:Tw.r) — (M, f) isthe unique (S F°UY)-morphism.
A constructor-based first-order signature morphisms ¢ : (S F,F°) — (S, F1, F) isaPA-signature
morphismo : (SF) — (S1,F1) such that

1. constructors are preserved along signature morphisms: if o € F° then ¢(c) € Ff, and

2. no “new” constructors are introduced for “old” constrained sorts: if 61 € (F{)w,—s, and
s1 € o(S) then there exists o € F¢ such that ¢(c) = o1.

The variants of CPA are defined similarly as in the previous cases.

Example 15 (Institution of presentations). A presentationisapair (X, E) consisting of asigna-
ture ¥ and a set E of Z-sentences. A presentation morphisme : (£, E) — (X/,E’) isasignature
morphism ¢ : £ — X’ which maps the axioms of the source presentation to logical consequences
of the target presentation: E’ = ¢(E). Presentation morphisms form a category, denoted Pres' .
The model functor Miod of an institution can be extended from the category of its signatures
Sig to amodel functor from the category of its presentations Pres, by mapping a presentation
(X%,E) to the full subcategory ModP"®(X,E) of Mod(X) consisting of all X-models satisfy-
ing E. The correctness of the definition of ModP'® is guaranteed by the satisfaction condi-
tion of the base institution; thisis easy to check. This leads to the institution of presentations
| P& = (SigP™ss, SenP's, Mlod ™S, =P'S) over the base ingtitution | where

e Sig”Sisthe category Pres'
e SenP"SS(X E) = Sen(X), and
e for each (X,E)-model M and any X-sentencee, M =P eiff M = e

12



2.3 Internal Logic

Thelogica connectives and quantification can be defined generically in any institution.
Definition 2.3.1. [63] In any institution

1. asentencep € Sen(X) iscalled a semantic negation of a sentence po € Sen(X) if for every
¥-model M we have M = p iff M ¥ po.

2. asentencep € Sen(X) is called a semantic disjunction of two sentences po,p1 € Sen(X)
if for every -model M we have M = p iff M = po or M [|= p1. The extension to the
infinitary caseis straightforward. A sentence p € Sen(Z) is called a semantic disunction
of the set E if for every X-model M we have M = p iff M |= efor someec E.

3. asentence p € Sen(X) is called a semantic existential quantification of a sentence p’ €
Sen(Y') over the signature morphismy : £ — X' if for every £-model M we have M = p
iff there exists a y-expansion M’ of M, i.e. M’ [, = M, that satisfies p’.

A similar definition can be given for universal quantification.

Distinguished negation —, disjunction Vv, and existential quantification (3_) are called first-
order constructorsfor sentences and they have the semantical meaning defined above.

Throughout this paper we assume the following commutativity of first-order constructors
with the signature morphisms, i.e. for every signaturemorphism ¢ : X — X and each Z-sentence

1 —e ¢(-e) = ~o(e),
2. VE, ¢(VE) = vo(E), and
3. (Ix)¢€, there exists a pushout

such that ¢((3x)€) = (Fx1)¢'(€).

Very often quantification is considered only for arestricted class of signature morphisms. For
example, quantification in FOL considers only the finitary signature extensions with constants.
Based on these connectives we can also define the other first-order constructers like A, false,
(V_) using the classical definitions.
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Chapter 3

Entailment Systems

It is difficult (impossible in many cases) to establish the truth using the semantic consequence
relation provided by the notion of institution. We introduce syntactic approach to the truth by
defining consequence relations based on syntactic entities only (in the context of entail ment
systems). Thisis the most efficient way to demonstrate the truth. We justify the correctness
of our proof measures by semantic grounds, i.e. we define soundness and completeness in the
presence of model theory.

The entailment systems have been formalized in [48] in the institutional theory. A more
genera approach to demonstrate the truth isby using proof systemswhich have been introduced
in [52] and developed in [23]. All the resultsin this chapter are particular cases or variations
of the onesin [23]. Our notion of proof rule is more general than the one in [23] allowing to
obtain some results uniformly.

3.1 Definition and Compactness

A sentence system (Sig, Sen) consists of a category of signatures Sig and a sentence functor
Sen : Sig — Set.

Definition 3.1.1. An entailment system (Sig, Sen,-) consists of a sentence system (Sig, Sen)
and a family of entailment relations == {-s } s¢ sig| between sets of sentences with the following
properties:

(Anti-monotonicity) E; s Ep if Ex C Ej,

(Trangitivity) E; s Ez if E; 5 Ez and E, 5 E3, and

(U nions) EiFs EoUE3IfE1Fy Ex and Eq 3 Es.

(Trandation) E s E’ implies@(E) Fy ¢(E’) for all ¢ : £ — ¥/

We say that the entailment system is weak when it satisfies the first three properties, i.e.
Trandlation is omitted from the above definition. When we alow infinite Unions, i.e. E ks
UiesEi If EFx E for al i € J, we call the entailment system infinitary. In any institution
I = (Sig,Sen,Mod, |=), the semantic consequence relation = between sets of sentences gives
an example of an infinitary entailment system (Sig, Sen, |=), which is called the semantic en-
tailment system of the institution I. When there is no danger of confusion we may omit the
subscript X from 3 and for every signature morphism ¢ € Sig, we sometimes let ¢ denote the
sentence translation Sen(o). For the sake of simplicity of notationswe will writeI" 5 p instead
of I'x {p}, whereT" isany set of Z-sentences and p a X-sentence.
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Definition 3.1.2. An entailment system E = (Sig,Sen,t) is compact whenever T+ E¢ for a
finite set of sentences Es C Sen(X), thereexistsT's C T finite such that T’ - E.

For each entailment system E = (Sig,Sen, ) one can easily construct the compact entail-
ment subsystem E ¢ = (Sig,Sen, ) by defining the entailment relation -¢ as follows: T ¢ E
iff for each Es C E finitethere existsI's C I finite such that 't - E¢.

Lemma 3.1.3. E€ = (Sig,Sen,°) isan entailment system.
Proof. We need to show that E © satisfies

1. Anti-monotonicity: assuming E»> C E; we prove E; F° E,. For any finite set Eé C E, there
existsafinite set Ef(= E5) C E; such that Ef - E5 which implies E1 F°¢ Eo.

2. Transitivity: assuming that E1 F° E» and E; -° E3 we prove E1 ¢ E3. Let ES C Es finite,
since E; ¢ E3 there exists E; C E; finite such that E; + E5. Because E; + E; thereisa
finite set E; C E; such that E] - E5. By the Transitivity of E we obtain Ej - E5 which
impliesEj ¢ Es.

3. Unions. assuming that E; ¢ E and E; ¢ E3 we prove E; FC E;UE3. Let E C EpUE3
finite; there existsfinite setsE, C E; and E; C E3z such that E; UES = E; because Eq FC E»
and E; ¢ E3 thereisfinite sets E',E” C E; such that E' - E and E” |- Ej, respectively;
by Anti-monotonicity and Transitivity property we have E; = E'UE" - E} and E; - Ej
and by Unionswe obtain E; - E5UEZ = E. Because E wasarbitrary we get E1 H° Ex UEs.

4. Trandation: assuming that E; I—g E> we prove ¢(E;) I—g, o(Ep) for al signature mor-
phismsg:X —X'. Let EJ C ¢(E) finite; thereexistsE; C E; finite such that (E5) = E”
and since E; ¢ E; there is E] C E; finite such that E] - Ej; by Transitivity we have
¢(E7) - o(E5); notethat E{ = @(E}) isfiniteand EJ = ¢(E5). Because Ej was arbitrary
we get o(Eq) - ¢(E2).

(Q.ED.)

Definition 3.1.4. The entailment systemE = (Sig, Sen, ) of aninstitution | = (Sig, Sen, Mod, =
) issound (resp. complete) when T+ p impliesT =5 p (resp. T’ =5 p impliesT 5 p) for every
set I" of X-sentences and any Z-sentence p.

3.2 Freeentailment systems

Given a sentence system (Sig, Sen), we let |P (Sig)| denote the class of sets of signatures of the
formW = {Z; € |Sig| | i € J}, where J is any set. For every signature X € [Sig| we denote by
P Seny, the set P (Sen(X)) x P (Sen(X)). For each set of signaturesW = {X; € [Sig| | i € J} we
denote by P Seny the cartesian product &) ;P Sens; .

Definition 3.2.1. A system of proof rules (Sig,Sen, Rl) consists of a sentence system (Sig, Sen)
and a family of setsof rules Rl = (Rlw—x )we|P (sig)|ze[sig| SUCh that Rlw .z € P Senw x P Sens.
For any proof ruler € Rly_.x> we say that W isthe arity and X isthe sort of r.
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A proof rule of arity W = {X; | i € J} and sort £ may be written as

{(Ei.E) i<}
(E,E')
or even as
{Eits E |i€d}
ErFsE
or

EFsEifE by E foralied

Note that any entailment system may be seen as a system of rules with the empty arity.
Given an entailment system E = (Sig, Sen, ) and a system of rulesR = (Sig,Sen,Rl) we say
that the entailment system E satisfies a rule % inRlif Ej - E/, foral i € J, implies

EF E’. E satisfiesRl when E satisfiesevery rulein RI.

Definition 3.2.2. Given an entailment system E = (Sig,Sen,i-) and a system of rulesR =

(Sig.Sen,RI), E satisfies arule {5 ELS) in R E -, forall i € J, inplies E - E/. E
satisfies Rl when E satisfiesevery rulein Rl.
The system of rulesR = (Sig,Sen,Rl) of an institution | = (Sig,Sen,Mod, |=) is sound if

the semantic entailment system (Sig, Sen =) satisfiesRI.

Remark 3.2.3. Asystemof rules (Sig, Sen, RI) generatesfreely an entailment system (Sig, Sen, -
), wheret istheleast entail ment rel ation whi ch satisfies Anti-monotonicity, Transitivity, Unions,
Tranglations, and the rules in RI. The free infinitary entailment system is obtain by replacing
Unions with infinite Unions in the above statement.

Remark 3.2.4. Consider an entailment system E = (Sig, Sen, ) freely generated by a system
of rulesR = (Sig,Sen,Rl). Then for any entailment system E’ = (Sig, Sen,+’) satisfying the
rulesin R we have -FCH'.

{Eits,Ellied} .

Definition 3.2.5. We say that arule —EhE isfinitely generated when E isfinite.

The result bellow isa corollary of Lemma 3.1.3.

Proposition 3.2.6. The entailment system freely generated by a system of finitely generated
rulesis compact.

Proof. Consider asystem of finitely generated rulesR = (Sig,Sen,Rl) and let E = (Sig, Sen,-)
be the entailment system freely generated by R . Assumethat E © = (Sig, Sen, ) isthe compact
entailment subsystem of E. It iseasy to notice that E ¢ satisfiesthe rulesin RI. Indeed, for any
rule {SEL inRif E O E/, forall i € J, then E; - E/, for all i € J, and since E satisfiesall
the rulesin Rl we have E - E; given Et C E’ finite by Anti-monotonicity we have E’ - Ef and
by Transitivity E - E}; since E isfinite and E; was arbitrary we get E -° E}. Because - isthe
least entailment relation satisfying the rulesin Rl by Remark 3.2.4 -CH¢ which impliest=F°¢.

(Q.E.D.)

The following lemma shows that the free construction of entailment systems from systems
of rules preserve the soundness property and explains the practice of establishing soundness of
the entailment systems which consists only of checking the soundness of the rules.
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Proposition 3.2.7. The (infinitary) entailment system of an institution is sound whenever it is
freely generated by a sound system of rules.

Proof. Assume an ingtitution | = (Sig, Sen, Mod, =) with a sound system of rulesR = (Sig,
Sen,Rl). Let E = (Sig,Sen,I-) be the (infinitary) entailment system freely generated by R..
Since (Sig,Sen, |=) satisfies Rl by Remark 3.2.4 we have -Ck= which implies E is sound for
l. (QED.)

3.3 Proof internal logic

Entailment systems with digunctions. We say that an entailment system has disunctions
(Vv.) if it satisfies the following rules:

Disjunction introduction
(Dis] ) eF VE

for all sentences \VE such that e € E, where E isafinite set of sentences.
{TFVE}U{TU{e}Fp|ecE}
I'Hp

for al sentences VE, where E is afinite set of sentences, I is any set of sentences, and p isa
sentence.

(Disjunction elimination)

Proposition 3.3.1. The entailment system with digunctions freely generated by a compact en-
tailment system is compact.

Proof. Assume a compact entailment system E = (Sig,Sen,+) and let E’ = (Sig,Sen,+’) be
the entailment system with disjunctions freely generated by E. We show that the compact
entailment subsystem E ¢ = (Sig, Sen, -°) of E’ has disiunctions. Since the rules of Disjunction
introduction are finitely generated, E°€ satisfies Disjunction introduction. Now assume that
I' ¢ VE and for every ec E wehaveT'U {e} ¢ p. By the definition of ¢ there are finite subsets
I"CTrandTeCTsuchthat "+ VE and TeU {e} ' p, for al e € E. Because E isfinite the set
't =T"U(Uecg I'e) isfinite. By Anti-monotonicitywehavel's - VE and Tt U{e} H T'eU{e},
for al e E. By Transitivity 't ' VE and 't U{e} I’ p, for @l e € E. Since the entailment
system E’ satisfies Disjunction elimination, we have I's ' p which implies T" ¢ p. Hence
E°¢ satisfies the rules of Disjunction elimination. Since E € = (Sig, Sen -°) is an entailment
system with digunctions satisfying the rules g in E (regarded as a system of proof rules), by
Remark 3.2.4 we have -CH° which implies F=C. (Q.ED)

The definition of entailment systems with disjunctions can be straightforwardly extended
to the infinitary case by allowing the set E of sentences to be infinite in the definitions of
Digunction introduction and Digunction elimination. Proposition 3.3.1 may not hold for the
free entailment systems with infinitary digunctions (\/ _).

One can easily notice that the semantic entailment system of an institution with digunctions
satisfies the rules of Disjunction introduction and Disjunction elimination. The following
is a corollary of Proposition 3.2.7 and shows that free entailment systems with digunctions
preserves soundness property.

Corollary 3.3.2. The (infinitary) entailment system with (infinitary) digunctions is sound for
an institution when is freely generated by a sound system of rules.
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Entailment systemswith false. We say that an entailment system hasfalse (false) if it satis-
fies the following rules:

(False) Taser p
where p isany sentence.

Proposition 3.3.3. The entailment system with false freely generated by a compact entail ment
systemis compact too.

Proof. Sincetherulesof False arefinitely generated any entailment system with negations and
freely generated by a compact entailment system is compact. (Q.E.D)

The entailment system of an institution which admits false satisfies the rules of False and
by Proposition 3.2.7 the free entailment systems with fal se preserves soundness.

Corollary 3.3.4. The (infinitary) entailment system with false of an institution is sound when is
freely generated by a sound system of rules.

Entailment systemswith negations. We say that an entailment system has negations (—_) if
it satisfies the following rules:

ru{p}t false
'+ Y
where I isa set of sentences and p is a sentence, and

(Redy)

Fl——\p
(Red) TU{p}F false

whereI' isa set of sentences and p is a sentence.

Proposition 3.3.5. The entailment system with negations freely generated by a compact com-
pact entailment systemis compact.

Proof. Assumeacompact entailment system E = (Sig, Sen,t-) and let E’ = (Sig, Sen, ) bethe
entailment system with negations freely generated by E. We show that the compact entailment
subsystem E ¢ = (Sig, Sen, -°) of E’ has negations, i.e. E€ satisfies

1. Red;: assumingthat T U {p} -¢ false we prove T ¢ —p. By the definition of -° thereis
I CT finitesuchthat T U {p} +' false. Since E’ has negationswe have I ' —p which
impliesT" F¢ —p.

2. Redy: assuming that T'+¢ —p we proveT"U {p} ¢ false. By the definition of - thereis
I" C T finitesuch that I H —p. Since E’ has negationswe have I" U {p} I’ false which
impliesTU{p} ¢ false.

Since E’ = (Sig, Sen, ') is the free entailment system with negations over E = (Sig, Sen, )
and E€ = (Sig, Sen, °) has negations and satisfies the rules EFE in E, by Remark 3.2.4 we

have ' C°¢ which implies -'=}-C. (Q.E.D.)

The following is a corollary of Proposition 3.2.7 and shows that free entaillment systems
with negations preserves soundness property.

18



Remark 3.3.6. The conjunction (A .) is introduced using the disunction and the negation:
/\E =—(\/ —e) for any set E of sentences.

ecE

Corollary 3.3.7. The (infinitary) entailment system with negations is sound for an institution
when it isfreely generated by a sound system of rules.

Entailment systems with implications. We say that an entailment system has implications
(=) if it satisfiesthe following rules:

Tr'UHEC

(I mp| |CaI|0nS]_) m

for every sentence (AH) = C and set " of sentences, where H isafinite set of sentences, C isa
sentence, AH isthe conjunction of H and (AH) = C isthe implication of C by AH, and

I'-(AH)=C
TUHEC

for every sentence (AH) = C and set T" of sentences, where H isafinite set of sentencesand C
is a sentence.

We assume that the conjunction (A_) bindstighter then theimplication (-=- _) and we write
AH = C.

(Implicationsy)

Proposition 3.3.8. The entailment system with implications freely generated by a compact en-
tailment system is compact.

Proof. Consider a compact entailment system E = (Sig,Sen, ) and let E’ = (Sig, Sen,’) be
the entailment system with implications freely generated by E. We show that the compact
entailment subsystem E ¢ = (Sig, Sen, ) of E’ hasimplications, i.e. E° satisfies

1. Implications; : assuming that TUH ¢ C we provethat T'+¢ AH = C. By the definition
of ¢ there isT” C T finite such that I UH ' C. Since E’ has implications we have
I" ' AH = C whichimpliesT' ¢ AH = C.

2. Implications; : assuming that ' ¢ AH = C we prove that T UH ¢ C. By the definition
of ¢ thereisT” C T finite such that " ' H = C. Since E’ has implications we have
I"UH ' C. Because I UH isfiniteweget I' ¢ AH = C.

Since E’ = (Sig, Sen, ") isthe free entailment system with implications over E = (Sig, Sen,-)
and the entailment system E ¢ = (Sig, Sen,-°) has implications and satisfies every rule g in
E, by Remark 3.2.4 we have -’ CH¢ which implies -'=-°, (Q.E.D.))

One can easily extend the definition of entailment systems with implications to the infini-
tary case by considering the set H of sentences infinite in the definition of Implications; and
I mplications,. The compactnessresult of Proposition 3.3.8 may not hold for the free entailment
systemswith infinitary implications.

The following is a corollary of Proposition 3.2.7 and shows that free entailment systems
with implications preserves soundness property.

Corollary 3.3.9. The (infinitary) entailment system with (infinitary) implications is sound for
an institution when is freely generated by a sound system of rules.
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Entailment systemswith universal quantifiers. We say that an entailment system (Sig, Sen,
) has universal quantifications (V_) if it satisfies the following rules:

I'Fs (Vy)p'
x(I) Fx p’

for every set of sentencesT", each sentence (Vy)p/, where= % 5/ € D, and

x(T) Fs p’
I'Fs (Vx)p’

for every set of sentencesT', and each sentence (Vy)p’, where = X5 eD.

(Generalization;)

(Generalizationy)

Proposition 3.3.10. The entailment system with universal quantifications freely generated by a
compact entailment system is compact.

Proof. Assume a compact entailment system E = (Sig,Sen,+) and let E’ = (Sig, Sen,+’) be
the entailment systems with universal quantifications freely generated by E. We show that the
compact entailment subsystem E ¢ = (Sig, Sen, -°) of E’ satisfies

1. Generalization;: assuming that ' -5 (Vy)p" we prove x(T') 5, p’, where y : X — X'. By
the definition of ¢ thereisT” C T finite such that T" -5 (Vy)p’. Since E’ has universal
quantifications we have x (I") 5, p’ and because y(I") isfinite we get x (T") F$, p'.

2. Generalizationy: assuming that x (T") F$, p’ we proveT" 5 (Vx)p', wherey : X — X'. By
the definition of ¢ thereisT” C y(I') finite such that T" F,. There existsT's C T  finite
such that y(T'+) =I". Since E’ has universal quantificationswe have Tt F§ (Vy)p’ which
impliesT" =S (Vy)p'.

Since E’ = (Sig, Sen, ') is the free entailment system with universal quantifications over E =
(Sig,Sen, ) and E€ = (Sig, Sen,-°) has universal quantifications and satisfiesthe rules g in
E, by Remark 3.2.4 we have -’ CH¢ which implies =, (Q.ED.))

The following is a corollary of Proposition 3.2.7 and shows that free entailment systems
with universal quantifiers preserves soundness property.

Corollary 3.3.11. The (infinitary) entailment system with universal quantifiersis sound for an
institution when is freely generated by a sound system of rules.

Entailment systemswith existential quantifiers. We say that an entailment system (Sig, Sen, -
) has existential quantifications (3.) if it satisfies the following rules:

(Ix)p'Fse
p' ks x(e)

for every sentence e, each sentence (3 )p’, where = %5 eD,and

(Generalization))

p’ Fx x(e)
(I)p'Fze

for every sentence e, each sentence (3y)p/, where= % 5/ € D.

(Generalization)
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Proposition 3.3.12. The entailment system with existential quantifications freely generated by
a compact entailment systemis compact.

Proof. By noticing that the rules of Generalizaation and Generalization, are finitely gener-
ated. (Q.ED)

The following is a corollary of Proposition 3.2.7 and shows that free entailment systems
with existential quantifiers preserves soundness property.

Corollary 3.3.13. The (infinitary) entailment system with existential quantifiersis sound for an
institution when is freely generated by a sound system of rules.

Consider a system of rulesR = (Sig,Sen,Rl). We say that aruler € Ry_y isinfinitary
when its arity W is an infinite set. If R contains infintary rules, like infinitary versions of
Disjunction elimination or I mplications, the entailment system freely generated by R is not
compact, in general.

All the results in this section hold not only for the entailment systems but also for the weak
entaillment systems but for the sake of simplicity we do not mention it above. One can omit the
Trand ation property from the definition of entailment systemsand all the resultsin this section
will hold. We define the rules of Generalization as the union of the rules of Generalization
and Generalization,. Similarly we define Generalization’, Implications and Red.

Entailment systems have been introduced in [48] in order to formalize the notion of syn-
tactic consequence in the institutional model theory. Abstract systems of proof rules have been
introduced in [23] which aso developed the free proof systems defined in [52]. The results
concerning the compactness and soundness of free entailment systems are due to [ 23] and they
are developed in the more general setting of proof systems. Entailment systems are just proof
systems such that the category of proofsfor agiven signature is a preorder. Our notion of proof
rule ismore general than in [23] since it admits arity, and it allows to obtain uniformly some of
the results.
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Chapter 4

Equational Deduction

Equational deduction is reasoning with properties of equality and constitutes the basis of for-
mal verification in algebraic specifications. We give asystem of rulesfor conditional equational
logic that is sound and such that the entailment system freely generated by the given rulesis
complete. The proof of completenessis organized on three layers reflecting the structure of the
sentences, and allowing the generalization to the institution level. In fact, the completeness re-
sult hereisdueto [16] and it is significantly different from the onein [ 35] where the proof rules
specific to the CEQL (like Reflexivity, Symmetry, Transitivity and Congruence) are mixed
with the rules of Generalization, and the rules of Substitutivity are combined somehow with
therules of I mplications making theresult alittle bit weaker. More precisely in [ 35] itisproved
that
I (VX)t=t"impliesTF (VX)t =t’

for every set " of conditional equations and each equation (VX)t =t’, while here
I'E (VX)AH = (t=t') impliesTF (YX) AH = (t =t')

for every set T" of conditional equations and each conditional equation (VX) AH = (t =t').

We specify different systems by conditional equations and we infer properties from the
formal specifications. The specificationswill be written using the CafeOBJ notations. CafeOBJ
is an algebraic specification language, the modern successor of OBJ. Its definition is given in
[25] and a presentation of the logical foundations can be found in [ 26].

4.1 Prdiminariesand Definition

It is convenient (but not always necessary) for each variable symbol to have just one sort; there-
fore we assume that any S-indexed set X = (Xs)ses used to provide variables for a signature
(S F) issuch that Xs, and X, are digoint whenever s; # s, and such that al symbolsin X are
distinct from thosein F.

Definition 4.1.1 (Ground reachable algebras). A (S F)-algebra M is ground reachable if its
carrier sets consists only of interpretations of terms, i.e. the unique morphism T — M is
surjective.

Notations. Recall that a (S F)-algebra M provides an interpretation for each operation
symbol in F, and in particular, for each constant symbol in F. If X is a set of new constant
symbols (a set of variables), then an interpretation for X is just a (many-sorted) function f :
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X — M. Thus a (S F)-algebra M and a function f : X — M give an interpretation in M of
(S FUX), dlowing the pair (M, f) to be seen asa (S F U X)-algebra. In such situation we call
f : X — M aninterpretation or an assignment of the variable symbolsin X.

Definition 4.1.2 (Algebraic substitutions). Let (S F) be an algebraic signature. A (SF)-
substitution of F-terms with variables in'Y for variables in X is an arrow 6 : X — Tg(Y).
The unique extension of 6 to

1. F-terms with variables in X is 6 : Tg(X) — Te(Y) which replaces the variables x € X
with 6(x) in each (F U X)-termt.

2. sentences in Sen(S F U X) is Sen(0) : Sen(SF UX) — Sen(S FUY) which replaces
all symbols from X with the corresponding (F UY)-terms according to 6. This can be
formally defined as follows:

e Sen(0)(t =t') isdefined asO(t) = B(t’) for each (S,F UX)-equationt =t’.
e Sen(0)(AH = C) is defined as ASen(8)(H) = Sen(6)(C) for each quantifier-free
(S FUX)-sentence AH = C.

e Sen(0)((VZ)AH =C) = (¥Z)Sen(6z)(AH = C) for each (S, F UX)-sentence (VZ) A
H = C, where 8z isthe trivial extension of 6 to a (S, F U Z)-substitution *.

Asin case of signature mor phismswhen there is no danger of confusion we let 6 to denote
the sentence tranglation Sen(6).

For any (S F UY)-model (M, f) we define the (S,F UX)-model (M, f) [¢ as (M, 6; ), where
f:Te(Y) — M isthe unique extension of f to a (S, F)-morphism.

Notation. Givent € Tg(X) and 0 : X — Tg(Y) suchthat X = {xq,..., X} and 6(x;) =t for
i €{1,...,n}, thenwemay write0(t) intheformt(xy « t1,...,%n < tp).

Lemma 4.1.3 (Satisfaction condition for substitutions). Given a (S F)- substitution 6 : X —
Te(Y), for every sentence p € Sen(SF U X) and each (SF UY)-algebra M we have M |=

Sen(8)(p) iff M [o/=p.
Proof. By noticing that Mod(0)(M); = Mg for each (F UX)-termt, and by a straightforward
induction on the structure of the sentences. (QED.)

Definition 4.1.4 (Equationa deduction). The equational entailment system is the least entail-
ment system with implications and universal quantifications and which satisfies the followings

rules

Reflexivity) 0o it for eachtermt € Tg

Symmetry) tizt'F(SF)t/:t for any termst,t’ € Tg
Transitivity) ' — for any termst, t/,t" € T¢

Congruence) for any function

{I=UV=t"}F gp t

(
(
(
(

=Y [1<I<n}F (sF)0(t1,. i) =0 (t;,...th)
symbol ¢ € F and termst; € T, wherei € {1,...,n}
VI ar (70000) for any conditional equation (VY )p

and substitution 6 : Y — Tr (X)

(Substitutivity)

Lwithout loss of generality we assumethat ZsNYs =0, foral se S,
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Proposition 4.1.5 (Soundness of CEQL ). The equational entailment system is sound.

Proof. By Proposition 3.2.7, and Corollaries 3.3.9 and 3.3.11 we have only to show the sound-
ness of the generating rules. Let M be a (S, F)-algebra.

1. (Reflexivity) For any termt € Tg, we have My = M, henceM =t =t.

2. (Symmetry) For any termst,t’ € Tg of the same sort, if M =t =t’ then M; = My. By the
symmetry of the equality we have My = M;, henceM =t/ =t.

3. (Transitivity) For any termst,t’,t"” € Tr of thesame sort, if Mt =t  and M Et' =t”
then M; = My and My = My». By the transitivity of the equality we have My = My, hence
MEt=t"

4. (Congruence) For any terms o (ty,...,tn),o(ty,....t,) € Tr, where o € F is an operation
symbol and t;,t/ € T aretermsfor al i € {1,....n}, if My =My for all i € {1,...,n},
then Mg (M, ..., My,) = Mo(My, ..., My) which means Mg, . t,) = Mg;....1;)- Hence
M= o(ty,....th) =o(t],....1).

5. (Substitutivity) Consider a conditional (S F)-equation (VY )p, and a substitution 6 : Y —
Tr(X) such that M = (VY)p. For any (SF U X)-expansion M” of M, since M’ Jg is
a (SFuUY)-expansion of M we have M [g¢}= p, and by the satisfaction condition for
substitutionsM’ = 6(p).

(Q.ED.)

4.2 Completeness

We present alayered completeness result for conditional equational logic. Informally, the com-
pleteness of the system of rules for the restriction of conditional equational logic to the atomic
sentencesislifted to the completeness of conditional equational logic by firstly adding the rules
which deal with logical implication, and then with universal quantification.

Let AEQL (theatomic equational logic) betherestriction of CEQL to the atomic sentences.
The entailment system of AEQL is freely generated by the rules of Reflexivity, Symmetry,
Trangitivity and Congruence. These rules are sound for CEQL, hence for AEQL too.

Proposition 4.2.1 (Completeness of AEQL ). The followings hold

1. The entailment system of AEQL is compact and complete, and

2. for every set of equational atoms I" and any equation t =t’ we have: T =t =t' iff
M E AT = (t=t'), for all ground reachable algebras M.

Proof. We let - to denote the entailment relation of AEQL.

1. For the compactness part note that all the rules of AEQL are finitely generated and by

Proposition 3.2.6 the entailment system of AEQL is compact. Now we focus on com-
pleteness.
For any set T of equational (S F)-atoms we define =r= {(t,t’)|T' -t =t'}. The system
of rulesfor AEQL insure that = isa F-congruence. Now notethat ' -t =t’ ifft = t’
ifft/=. =t'/= iff (Tp)=, =t =1/, where (Tg)=, is quotient of the term algebra T¢ by
the congruence =r. Now if T' =t =t’ then (Tg)=, =t =t whichmeansT Ht =1t'.
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2. Theimplication from left to right is straightforward. Assumethat M = AT = (t =t’), for
all reachable algebras M. Since (Tr)=,. isreachableand (Tr)=,. =T, weobtain (Tg )=, =

t =t whichimpliesT't =t’. By the completenessresult abovewegetT' =t =t'.
(QED)

Let QFEQL (the quantifier-free equational |ogic) betherestriction of CEQL to the quantifier-
free sentences. The entailment system of QfEQL isfreely generated by the rules of Reflexivity,
Symmetry, Transitivity, Congruence and I mplications.

Proposition 4.2.2 (Completeness of QfEQL). The followings hold
1. The entailment system of QfEQL is compact and complete, and

2. for every set of quantifier-free sentences I' and any conditional equation AH = C we
have: I' = AH = Ciff M = AT = (AH = C), for all ground reachable algebras M.

Proof. We let - denote the entailment relation of QfEQL.

1. The compactness of AEQL islifted to the compactness of QfEQL by Proposition 3.3.8.
As for completeness, because the entailment system of QfEQL has implications it suf-
ficesto provel” =gyt =t' impliesT' - (gp) t = t’ for every set of sentences " and each
equationt =t" in QfEQL . We define the set of sentencesT'o = {t1 =t> | T Ft; =t2} and
the congruence =r= {(t1,t2) | (t1 =t2) € Tp}. We have

@ (Tr)=, Eta=taiffty /= =tp/= iff t1 =r t2iff '+t =1tp, for all equationst; =to.
(b) (Te)=, =T For every sentence H = (t1 =t2) € T'if (Tr)=, = H then by laand
UnionsT F H. By ImplicationsT"-t1 =ty and by 1a (T )=, =t1 =to.
By 1b (Tg)=,. =T whichimpliesT -t =t". By la(Tg)=, Et=t'and '+t =t".

2. Theimplicationfrom left toright isstraightforward. Now assumeM = AT = (AH = C),
for all reachable algebras M. By completenessit sufficesto provel' - AH = C. We define
(TUH)o={ti1=t2 | (TUH) Fty =t2} and =run= {(t1,t2) [t1 =t € (TUH)o}. By 1b
we have (Tr)/=,, ETUH which implies (T¢)/=,,, =C. By laT'UH F C, and by
ImplicationsT" + AH =- C.

(Q.E.D)
Theorem 4.2.3 (Completeness of CEQL). The followings hold
1. the entailment system of CEQL is compact and complete, and

2. for any set of sentences I and any sentence (VX)p in CEQL we have: T |=(gr) (VX)p iff
M =srFux) AT = p for all ground reachable (S F U X)-algebras M.

Proof. Let F bethe entailment relation of CEQL.

25



1. The compactnessof QfEQL islifted to the compactness of CEQL by Proposition 3.3.10.

For the completeness part, assumethat I = (s (VX)p and suppose towards a contradic-

tion I" # (VX)p. We define the set of (S,F UX)-sentences I'Y = {AH = C | T F(gr x)
AH = C}.

Assuming that TS F(sFux) P We have: by the compactness of the entailment system of
CEQL thereisafiniteset I” C I’y such that T F(sFux) P, by UnionsT = (grux TV, by
Transitivity I' - (gFux) p, and by Generalization I' (g g) (VX)p whichisa contradiction
with our assumption. Thus F>1< ¥ p. By Proposition 4.2.2 there exists a reachable (S F U
X)-algebra M’ such that M’ = T'Y and M’ = p. If we prove M’ [ g =T we obtain a
contradiction with " =g (VX)p.

Recall that for any set of variables Z, a (S,F U Z)-algebra consists of a (S, F)-algebra A
plus an interpretation h: Z — A of the variable symbolsin Z. ThusM’ = (M, f), where
M isan (SF)-agebraand f : X — M afunction. Note that M’ [gr)= M, and since
M’ isreachable, f : Tr(X) — M issurjective. Let (VY)€ € T and (M, g) be a expansion
of M to the signature (SFUY). Because f : Tr(X) — M is surjective there exists a
function/substitution 6 : Y — Tg (X) such that 6; f = g.

T
Tr(X) —=M

d f

Y

By SubgtitutivityT'-(gr) (VX)0(€) and by GeneralizationT"F s rx) 8(€') which means
0(€) e T and (M, f) [=0(€). Notethat (M, f) [g= (M, 8; ) = (M, g) and by satisfaction
condition for substitutions (M, f) [¢= (M, Q) = €.

2. We prove the implication from right to left. Assume that I j# s (VX)p by soundness
I'¥(sF) (VX)p" and following the above reasoning there exists a reachable algebra M’
such that M’ ):(SFUX) I and M/ %(SFUX) p.

(Q.E.D.)

4.3 Applications

In applications we use a specialized rule of Congruence which is equivalent to the one previ-
ously defined.
(Congruence) Ay e for every termsty, t, € Tg of sort s, and each term

to € Te ({z}) with one occurrence of variable z of sort s.

Example 16. Consider the following specification of groups theory
mod GROUP {

[Group]

op 0 : -> Group

op -+- : Group Group -> Group
op — : Group -> Group

vars X Y Z : Group
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eq [1lid] : 0 + X = X .
eq [linv] : (- X) + X =0 .
eq [assoc] : X + (Y +2) = (X+7Y) +2 .}

Note that we can give names to the equations in CafeOBJ. Let F = {0,+,—}, T ={1id,
linv, assoc}, and S= {Group}. This specification describes the class of all groups but
this fact is not obvious because the standard specification of group theory contains two more

equations
eq [rid] X + 0 = X .
eq [rinv] X + (- X) =0

The second equation rinv can be deduced from the axiomsT.

Firstly, note that by Generalization we have I' (s (VX) X+ (-X) =0 iff I'F(gpyqay)a
+(-a) =0, where a isaany constant of sort Group. Secondly, we proveI' b (gryapa+ (-a)
= 0 by thefollowing inference chain.

1 -(-a)+(-a)=0by linv for X substituted by -a.

0+ (-a)=-aby lid for X substituted by -a.

-(-a)+(0+(-a))=-(-a)+(-a) by Congruencewithtp=- (- a) +z.

- (-a)+ (0+(-a)) =0 by Transitivity applied to 3 and 1.
-(-a)+(0+(-a))=(-(-a)+0)+(-a) byassocfor X=-(-a), Y=0andz=-a.
(-(-a)+0)+(-a)=-(-a)+(0+(-a)) by Symmetry.

(- (-a)+0) + (-a) =0 by Transitivity applied to 6 and 4.

(-a) +a=0 by linv for X substituted by a.

© © N o g » w b

(-(-a)+((-a)+a))+(-a)=(-(-a)+0)+ (-a) by Congruencewithto= (- (-a) +
z)+(-a).

10. (- (-a)+((-a)+a))+(-a)=0by Transtivity appliedto 9and 7.
11. - (-a)+((-a)+a)=(-(-a)+(-a))+abyassocforx=-(-a),¥Y=(-a) and z=a.
12. (- (-a)+(-a))+a=-(-a)+((-a)+a) by Symmetry.

13. ((-(-a)+(-a))+a)+(-a)=(-(-a)+((-a)+a))+ (-a) by Congruencewithtg=
z+(-a).

14. ((-(-a)+(-a))+a)+(-a)=0Dby Transitivity applied to 13 and 10.

15. ((-(-a)+(-a))+a)+(-a)=(0+a)+ (-a) by Congruencewithtp = (z+a) + (-a)
applied to 1.

16. (0+a)+(-a)=((-(-a)+(-a))+a)+(-a) by Symmetry.
17. (0+a)+ (-a) =0 by Transitivity applied to 16 and 14.

18. 0+a=a by lidfor X=a.
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19. a=0+a by Symmetry.
20. a+ (-a)=(0+a) + (-a) by Congruencewithtg=z+ (-a).
21. a+ (-a) =0 by Transitivity applied to 20 and 17.

Thefirst equation rid can be deduced from the second one rinv. Note that by Generalization
I'Fsr) (VX)X+0=X iff ' (gFu(ay)a+0=a, where a is a any constant of sort Group. We
prove I’ I—(Spu{a})a+0=a as follows.

1. a+ (-a)=0 by rinv for X substituted by a.

(a+ (-a) ) +a=0+a by Congruence with tp=z+a.

O+a=a by 1id for X substituted by a.

(a+ (-a) ) +a=a by Transitivity applied to 2 and 3.

a+ (-a+a)=(a+(-a))+abyassocfor x=a, Y=-a and Z=a.
a+ (-a+a) =a by Transitivity applied to 5 and 4.

-a+a=0 by linv for X=a.

0=-a+a by Symmetry.

© © N o g » w0 D

a+0=a+ (-a+a) by Congruencewithtp=a+z.
10. a+0=a by Transitivity applied to 9 and 6.

Example 17. The formulation of equational deduction in the unsorted case do not involve ex-
plicit universal quantifiers for variables. The unsorted rules of deduction are exactly the same
as the many-sorted rules except that all quantifiers are omitted, the terms in the rules may con-
tain variables, and the rules of Generalization are not considered. We will show that explicit
guantifiers are necessary for an adequate treatment of satisfaction. Consider the following spec-
ification:

mod MAP {

[A B < E1t]

ops T F : -> B

ops (V) (LA) : BB ->1B
op - : B -> B

op map : A -> B

var X : B .

eq [M1] XV - X=TrT

eq [M2] XN~ X=F

eq [M3] XV X=X.

eq [M4] XNX=X.

eq [M5] - F =T

eq [M6] : -~ T =F .

eq [M7]: - map(Y) = map(Y) . }

We will show that unsorted equational deduction can prove an equation that does not hold
in some models of the specification MAP above.
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map (Y) =—map (Y) by Symmetry applied to M7.

map (Y) V-map (Y) =T by M1 for X=map (Y).

map (Y) Vmap (Y) =map (Y) V-map (Y) fromM7 by Congruence withtg=map (Y) Vz.
map (Y) Vmap (Y) =T by Transitivity applied to 3 and 2.

map (Y) Vmap (Y) =map (Y) by M3 with X=map (Y) .

map (Y) =map (Y) Vmap (Y) by Symmetry.

N o o & w bdh R

map (Y) =T by Transitivity applied to 6 and 4.

8. map (Y) Amap (Y) =map (Y) by M4 with X=map (Y) .
9. map (Y) =map (Y) Amap (Y) by Symmetry.
10. map (Y) Amap (Y) =map (Y) V-map (Y) fromM7 by Congruencewithtg=map (Y) Az.
11. map (Y) =map (Y) A—map (Y) by Transitivity applied to 9 and 10.
12. map (Y) A—map (Y) =F by M2 for X=map (Y) .
13. map (Y) =F by Transitivity applied to 11 and 12.
14. F=map (Y) by Symmetry.

15. F=T by Transitivity applied to 14 and 7.

Thus we proved that F=T. Now consider the algebra M interpreting the sort A as the empty
set and the sort B astheset {T, F}, where T and F are distinct, and where v, A, — areinterpreted
as expected for the Booleans, and where map is the empty function. It is easy to check that
M = (VY)F=T, where Y is of sort A, and M does not satisfies the equation F=T. We conclude
that these rules are not sound for the many sorted algebras but we note that the unsorted rules of
deduction are sound and complete for the classical case (studied by Birkhoff and others) where
only unsorted algebras are used as models. For detailed discussion on thisissue see [ 35].

A specialized rule of inference using subterm replacement is the basis for term rewriting, a
powerful technique for mechanical inference implemented in CafeOBJ.

r I—(SF) (VY)AO(H)

(Subterm repl acement )

for every set of sentences I" with (VX) AH = (t1 =t2) € T, each substitution 6 : X — Tg(Y)
and any termto € Te (YU {z}) suchthat z¢ Y.

CafeOBJ not only supports writing theories, such as that of groups, but also deducing new
equations from theories by applying subterm replacement. The proof of the second equation
rinv of using CafeOBJisasfollows.
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open GROUP

op a : -> S

start a + (- a) =0

apply -.1id with X = a +

x%x> result 0 + (a + (- a)

apply -.linv with X = - a

*%> result (- (- a) + (- a

apply assoc at (1)

*x> ((- (- a) + (- a

apply -.assoc at (1

*%> result (- (- a)

apply -.assoc at (1)

*%> result - (- a) + ((- a + a) + (- a)) = 0 : Bool

apply red at term .

*%> result true : Bool

close

The proof of thefirst equation rid in CafeOBJis asfollows.

open GROUP

op a : -> Group

eq [rinv] : X + (- X) =0

start a + 0 = a

apply -.linv with X = a at (1 2)

*%> result a + (- a + a) = a

apply assoc at (1)

*%> result (a + (- a)) + a = a : Bool

apply red at term .

**> result true : Bool

close

Birkhoff calculus and its completeness have been developed for the unsorted version of
CEQL in[10]; thisresult has been extended to many-sorted case in [ 35], and to arbitrary insti-
tutionsin [16]. The completeness result presented here is due to [16], and a layered approach
to institution-independent completeness may be found also in [11] within the framework of
specification theory. Concerning related work, another abstract calculus for equational logicsis
developed in [62], in a categorial framework, based on satisfaction by injectivity. Example 17
showing that the unsorted rules can be unsound for many-sorted algebras that may have empty
carriers, is from [35]. Rewriting is the basis of the CafeOBJ operational semantics and con-
stitutes the operational semantics for the equational specification by regarding the equational
specifications as term rewriting systems. A comprehensive presentation of rewriting can be
foundin[32].

(a + (- a)) =0 : Bool
) + a) + (- a) = 0 : Bool

(- a+a)) + (-a) =0 : Bool

Bool
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Chapter 5
Constructor-based Equational Deduction

Conditional equational logic CEQL isa*sub-institution” of constructor-based equational logic
CCEQL inthesensethat any (ordinary) algebraic signature (S, F) can be regarded as aconstruct-
or-based algebraic signature (S, F, 0), and any conditional equation (VY) AH = Cin CEQL can
be viewed as a conditional equationin CCEQL with the empty set of constrained variables. Ac-
tually an embedding of institutions, formalized as a co-morphism (see [ 37, 48]), can be defined
with source CEQL and target CCEQL . We definetheinfinitary rules of Case splitting and show
that the constructor-based equational entailment system of CCEQL generated by the rules of
equational deduction and Case splitting is sound, complete. We define the rules of Structural
induction to deal with infinitary premises of Case Splitting but the infinitary rules can not be
replaced with the finitary onesin order to obtain a complete and compact entailment system be-
cause the class of sentences true of a class of models for a given constructor-based specification
is not in general recursively enumerable. Godel’s famous incompl eteness theorem show that
this holds even for the specification of natural numbers. The completeness of CCEQL isdueto
[28] and appears to be new in the literature since it infers the completeness of the calculus for
the initial models of the specifications in the context of Godel’s incompl eteness theorem.

5.1 Prdiminariesand Definition

The sentences in CCEQL are of the form (VX)(VY) AH = C, where X isa set of constrained

variables, Y isaset of loose variables, H isafinite set of equational atoms, and C isan equational

atom. For the sake of simplicity wewill write (VX)p, wherep = (vY) AH = C. One can choose

different representations for the sentencesin CCEQL . For example (YXUY)AH =- C denote

the sentence (VX) (VYY) AH = C but we choose to emphases the set of constrained variables.
Recall that for every signature (S F¢, F) we denote by

e S theset of constrained sorts S° = {se S| thereexistso € F_.¢}, and

e 3 the set of loose sorts S— <.

Definition 5.1.1 (Reachable algebras). An (S F)-algebra M is S-reachable, where S C S iff
there existsa set Y of variables with the sortsin S— S and a function f : Y — M such that for
every s € S the function fg: (Te(Y))s — Ms is surjective, where f : T=(Y) — M isthe unique
extension of f to a (S, F)-morphism.

Remark 5.1.2. A (S F)-algebra is S-reachable, where S C S iff there exists a set Y of vari-
ables with sorts in S— S and a function f : Y — M such that for every s € S’ the function
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7 (Tes (Y))s — Ms is surjective, where FS is the set of operations in F with the resulting
sortsin S (Ry s = Fw—s When s€ S and FS ¢ = 0 otherwise) and f#: T_¢(Y) — M isthe
unique extension of f to a (S, FS)-morphism.

Proof. The implication from right to left is straightforward. For the converse implication as-
sume afunction f : Y — M, where Y is a set of variables with the sortsin S— S, such that for
every s S thefunction fg: (TE(Y))s — Msissurjective. Let Z be anew set of variables such
that

e Zg=0whensc S, and
e Zsisrenaming of Msfor all se (S—S).

For al sc (S—S) there exists a bijection gs : Zs — Ms. Let g*: Tes(Z) — M be the unique
extension of g to a (S,FS)-morphism. It suffices to show that for each term t € Tz (Y) there
existsatermt’ € T-g(Z) such that (t) = g*(t’). We proceed by induction on the structure of
the term t.

1. Fort € F_ s If s S thentaket’ =t. If s€ (S—S) then taket’ = g~(M).

2. Fort = o(ty,...,ty). Assumethatt € (T=(Y))s. If se S then 6 € FS; by induction
hypothesis there existst{ € T_¢(Z) suchthat f(t;) = g*(t/) forall i € {1,...,n}; we have
f(t) = f(G(tl, e 7tn)) = MG(f(t1)7~ < f(tn)) = Mc(g#(tjll_)v' . .,g#(tﬁ)) = g#(G(ti, cee >t|{1))
andt' =o(t],...,th) € Tg(Z). If s€ (S—9) thentaket’ = g~} (My).

(Q.ED.)

Remark 5.1.3. Given a constructor-based CCEQL -signature (S F,F€) the (S F,F¢)-models
are S*-reachable (S, F°)-algebras.

Proposition 5.1.4. Assumeasignature (S,F,F¢) andan (S,F)-algebraM. If M € Mod(S,F,F°)
then for every finite set X of constrained variablesand each (S, F U X)-expansion M’ of M there
exists a finite set of loose variables Y, an (S,F UY)-expansion M” of M, and a substitution
6 : X — Tee(Y) suchthat M” [g= M.

Proof. Let Y be a set of loose variablesand f : Y — M an interpretation of variables in'Y
such that fg: (Tre(Y))s — Mg is surjective for all s€ S. Let (M, g) be an expansion of M to
the signature (S F U X). Since T is surjective on the constrained sorts, there exists a function
0 : X — Tre(Y) such that 6; f = g. Because X is finite there exists Y/ C Y finite such that
o(Y) =X,

We define® : X — Tre(Y’) asthe co-restriction of 6 (for al xe X, 6'(x) =6(x)) and f': Y — M
as the restriction of f (for dl y € Y/, f/(y) = f(y)). Now note that (M, f') [¢= (M, 0'; ') =
(M,9; f) = (M, Q).

(QED.)
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We define the rules of constructor-based equational deduction as follows.

Definition 5.1.5 (Constructor-based equational deduction). Constructor-based equational en-
tailment systemisthe least entailment system with implications, universal quantificationsfreely
generated by the rules of equational deduction plus the following (infinitary) rules
{CF(skre) (YY)O(p) | Y —loosevariables, 6: X — Tge(Y)}

T |_(S7F7FC) (VX)p

for every set of sentencesT', and any sentence (VX)p, where X isa set of constrained variables.

(Case splitting)

Remark 5.1.6. For any constructor-based algebraic signature (S F,F¢) we have I' F(gp re) €
whenever I'H(sF) €.

In order to explain the rules of Case splitting we consider the particular case when X = {x}.
If for any term t formed with constructors and loose variables T - (s F re) (VY)p(X < t) holds,
whereY areall (loose) variableswhich occur int, then we have proved I' =gk e) (VX)p. In most
of the cases the set of termst formed with constructors and loose variables ! is infinite which
implies that the rules of Case splitting are infinitary and thus, the corresponding entailment
system is not compact. Not all proofs can be written as finite sequences of sentences which
means that the semantic consequences of the theories are not in general recursively enumerable.

Example 18. Consider the following example of queue with arbitrary elements.
mod SIMPLE-QUEUE {

[E1t]

[Queue]

-- constructors

op empty : -> Queue {constr}

op _,- : Queue Elt -> Queue {constr}
-- operators

op none : -> Elt

op _@_ : Queue Queue -> Queue

vars Q Q' : Queue

vars X Y : Elt

eq [Q1l] : Q @ empty = Q .

eq [Q2] : Q@ (Q',X) = (Q@Q'),X .
}

Note that there is one constrained sort Queue and one loose sort E1t. Suppose we want
to prove the associativity of the concatenation @, (VQ1) (VQ2) (VQ3) (Ql@Q2)@Q3 =
Qle (Q2@Q3), wedeal with each constrained variable separately; by Case splitting we need to
prove

1. (VQ1) (VQ2) (QleQ2)@ empty = Q1 @(Q2 @ empty)
2. (VQ1) (VQ2) (VX) (Q1 @ Q2)@(empty,X) = Q1 @ (Q2 @ (empty, X))

3. (VQ1) (VQ2) (¥X1) (VX2) (Q1 @ Q2)@ (empty,X1,X2) = Ql@(Q2@ (empty,
X1,X2))

1We consider terms modul o renaming variables.
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Remark 5.1.7. The splitting is made without considering the (loose) constant none.

Specia careis needed when we apply the rules of Generalization. In this case we have

(Generalization) T' (g g pey (VY)p iff T (gpuyre) p for every set of (S F, F©)-sentences T’
and any (S F,F¢)-sentence (VY)p such that Y isa set of loose variables.

This rules are sound because the inclusions (S F,F¢) — (S FUX,F¢) are CCEQL signa-
ture morphisms. Note that if Y contains any constrained variable then these rules are not sound
in general.

Remark 5.1.8. If ' F(sFuqy Fe) P, Where y is a constant of constrained sort, then we have
proved T "(SEFC) (Vy)p

Proof. Followseasily in three steps:

1. TH(sFuzFe) p(x 1) by substitutingt for y, for all termst formed with constructors and
loose variables (where Z isthe set of al loose variablesint),

2. T'H(sFFe) (VZ)p(x ) by Generalization, for all termst formed with constructors and
loose variables (where Z isthe set of all variablesint), and

3. T'H(sk ey (Vy)p by Case splitting.

(Q.E.D)
Proposition 5.1.9 (Soundness of CCEQL). The entailment system of CCEQL is sound.

Proof. By Proposition 3.2.7, and Corollaries 3.3.9 and 3.3.11 we have only to show the sound-
ness of the generating rules. By Proposition 4.1.5 the rules of equational deduction are sound
for CEQL, hence they are sound for CCEQL too. We need to check only the soundness of
Case splitting.

LetT beaset of (S F,FC)-sentencesand (VX)p a(S F,F°)-sentencesuchthat T = (VZ)6(p)
for all sentences (VZ)0(p), where Z is a set of loose variablesand 6 : X — Tgce(Z) is a substi-
tution. We assume M |=T', where M € |Mod(S,F,F¢)| and we prove M = (VX)p. Let M’
be an expansion of M to the signature (S F U X,F¢). By Proposition 5.1.4 there exists a fi-
nite set Y of loose variables, a substitution 6 : X — Tec(Y), and an expansion M” of M to the
signature (S,F UY,F€) such that M" [¢= M. By satisfaction condition M |= (g re) I' implies
(V4 ):(SFUY,FC) T'and sinceT” }:(SFJ:C) (W)O(p), we haveT’ ):(SFUY,FC) O(p) and M” ): G(p)
By the satisfaction condition for substitutionsM” [g= M’ |=(grux Fe) p. Since M’ was arbitrary
we get M = (VX)p. (Q.ED)

5.2 Completeness

The result in this section lifts the completeness of CEQL to the completeness of CCEQL by
adding the rules of Case splitting which deals with universal quantifications over variables of
constrained sorts. However, the completeness result is relative to a class of sufficient-complete
sets of sentences.



Definition 5.2.1. A basic specification ((S F,F°¢),T')-sentences, where (S,F,F°) isa signature
and I" is a set of sentences, is sufficient-complete if for every termt formed with operation
symbolsin FS" (where Ry .= Fy_swhense S andF> =0 whense S) and loose variables
inY there exists a termt’ formed with operation symbolsin F°¢ and loose variablesin Y such

Theorem 5.2.2 (Completeness of CCEQL). T =(sp ey p implies T sk re) p Whenever the
specification ((S,F, F°¢),T") is sufficient-compl ete.

Proof. Let I" be a sufficient-complete set of sentences such that T =g re) (VX)p. Suppose
towards a contradiction that I' ¥ (s re) (VX)p. Then there existsaset Y of loose variables and
a substitution 6 : X — Tge(Y) such that T'¥(sp ey (VY)O(p) (if T Fspre) (VY)0(p), for all
sentences (YY)0(p), where Y is a set of loose variables and 6 : X — Tre(Y) is a substitution,
then by Case splitting I' (s r rey (VX)p).

We define the following set of sentencesT2 = {(VZ) AH = C | Z—loosevariables, T'-(gF r)
(VZ) AH = C}.

We show that (VY)8(p) can not be deduced from I'z in CEQL, i.e. T2 (gF) (VY)6(p). If
2 H(sr) (YY)8(p) then by compactness of equational deduction there existsafiniteset " C T,
such that T gy (YY)0(p). By Remark 5.1.6 T (gg rey (YY)6(p), and since T (g e) e for
dlecT’,weobtanT F(gp re) T whichimpliesT = (gg ey (YY)8(p), acontradiction with our
assumption.

By Theorem 4.2.3 there exists a ground reachable (S F UY)-algebra (M, f) such that

(M, ) E(sFuy) Tz and (M, f) = sFuv) 0(p)

1. Firstly we provethat M |=gr) T Let (VX')p’ € T, and g : X’ — M an assignment of the
variablesin X'.

f
T (Y) —M

A
o
X/
Since f: Tr(Y) — M is surjective on the constrained sorts there exists a substitution
0': X' — Te(Y) suchthat 6'; f = g. By Subgtitutivitywehavel' - gg ge) (VY)6'(p’) which
0'(p'). Since (M, f) |¢= (M, 0'; f) = (M, g) by the satisfaction condition for substitutions
(M, 9) F=sFuxy p'-

2. Secondly we prove that M € Mod(S,F,F¢). By Remark 5.1.2 there exists a function
h:Z — M, where Z isa set of loose variables, such that for every sort s € S° the function
hs : Tess(Z) — Mg is surjective, where h: Te«(Z) — M isthe unique extension of hto a
(S,FS")-morphism. We prove that for every s e S° the function h? : (Tre(Z))s — Ms is
surjective, where h* : Tee(Z) — M is the unique extension of h to a (S, F€)-morphism.
Let se€ S and me Ms. Because hs @ (Tess(Z)) — Mg is surjective there exists a term
t € (Tess(Z))s such that hg(t) = m. Since ((S F, F°),T) is sufficient-complete there exists
atermt’ € (Tge(Z'))s, where Z' C Z isthe set of all (loose) variables occurring int, such
impliesm = hg(t) = hg(t’) = h¥(t').

g
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M) TimpliesM =g e T (M, f) & (sruy) 6(p) impliesM [~ (s ) (VX)p and M b= (s e Fe)
(¥X)p whichisacontradiction with T" = (s re) (VX)p. Our assumption ' ¥ (g rey (VX)p does
not hold and we get I' (s re) (VX)p. (Q.E.D.)

Example 19. Thefollowing example showsthat the sufficient-completeness assumptionin The-
orem 5.2.2 iscrucial.

mod ISPEC {

[S]

-- constructors

op a : -> S {constr}

-- operators

opb: ->28

}

Note that 0 = a = b but there isno way to prove 0 - a = b because ISPEC is not
sufficient compl ete.

Example 20. The following is a specification of natural numbers with addition. We will prove
that the following specification is sufficient-compl ete.

mod SIMPLE-NAT {

[Nat]

-- constructors

op 0 : -> Nat {constr}

op s. : Nat -> Nat {constr}

-- operators

op -+- : Nat Nat -> Nat

-- variables

vars M N : Nat

-- equations

eq [1lid] : O + N = N .

eq [ladd] : s M+ N=s (M + N) . }

The signature of the above specification consists of a constrained sort Nat, two constructors
0 and s, and one ordinary operation +. Let Fya = {0,s,+}, RSy = {0,s} and I'nat = {114,
1add}. For the sufficient-completeness of T'ng it sufficesto show that for any termsty, to € Tre.,
there existsatermt ¢ TF'\C‘aI such that I'ng F t1 +t2 = t. By induction on the structure of t;.

For t; = 0. Takety =t and we have

1. O+tp=trbylidfor N =tp.
2. 0+ty =t by Trangitivity.

For t; = stj. By induction hypothesisthere existsatermt’ e Trg, suchthat I - t1+to =
t’. We have that

1. stj+tr=s(tj +t2) by ladd for M =t] and N =t,.
2. st} +1t2) = st’ by Congruence applied to the induction hypothesis.

3. sty +tp=st.
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5.3 Structural induction

Assumewewant I (s rey (VX)p, wherex isavariable of constrained sort s, then we use Case
splitting. In order to prove the premises of Case splitting, in many cases, we use induction on
the structure of terms. For any t formed with constructorsin F© and loose variables we define
(Sructural induction) T' - (g g ey (W)p (X ) if

1. (Induction base) for al cons € FC, T (g Fe) p(X < cons),

2. (Induction step) for dl 6 € Fg ¢ s TU{p(x —X) | X € X} FsFucFe) p(X + o(C1,
.,Cn)), Where

e C={cC1,...,Cn} is aset of new variables such that ¢; has the sort s, for al i €
{1,...,n},and

e X C Cisthe set of variables with the sort s.

whereV are al (loose) variablesint.
A more familiar way to define the rules of Sructural induction is when the conclusion is
(VX)p, however we prefer this formulation.

Proposition 5.3.1. The entailment system of CCEQL satisfiesthe rules of Sructural induction.

Proof. Let Z be aset of loose variables such that for each s’ € S the set Zg isinfinite. We define
the S-sorted set of terms T by

o Ts={t e Tre(Z) | T F(gruz ) p(X 1), Z' C Zistheleast set suchthat t € Tre(Z')},
and

e Ty = (Tee(2))g for al sortss' #s.

We provethat T isa (S F°)-algebra, where Ts(ts, .. .,tn) = o(t1,. . .,tn), for al operation sym-
bolsc € Fg o sandtermsty,...,tn.

By Induction base all the constantscons € F€ arein Ts.

Nowletc € Fg o sandassumethatti € Tg forali € {1,...,n}. Weshowthato(ty,...,th) €
Ts. We denote by Z' the set of variablesin tj, wherei € {1,...,n}. We define J’ C {1,...,n}
such that 5 = sfor every i € J'. We have T gz gy p(x < ti) for al i € J', which implies
T l_(SFUZ’,FC) {p(X — t|) ’ i€ J/}, where 7/ = UiGJ’ Z'. WeobtanT F(SFUZ”,FC) {p(X — t|> ’
i € J'}, where 2 = (J;=]Z'. By Induction step TU {p(x < tj) | i € J'} F(sFuzr o) p(X —
o(ty,...,tn)) whichimpliesT" - (gpuzr ey p(X o (t,. . ., tn)) meaning that 6(t3.. ., tn) € Ts.

Since Tre(Z) does not have any proper subalgebrawe get T = Tge(Z). Therefore T' (s Fe
(W)p(x«t) for al termst € Tre(Z), whereV C Z isthe set of all (loose) variablesint.

Assume that | nduction base and I nduction step holds and let t be a term of sort s formed
with constructors and loose variables; we want I =g pey (YW)p(X < t), where V isthe set of
all loose variables which occur int. Without loss of generality we assumethatV C Z. We have
t € TswhichimpliesT'(gruv,Fe)p(X < t) and by Generalization we obtain I' g re) (VW )p(X <

0. (QED.)
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54 Applications

One example of structural induction is Peano induction. We use it to prove the commutativity
of addition of natural numbers (see Example 20) in three steps:

1. eq [rid] : M + 0 =M
2. eq [radd] : M + ¢ N = s(M + N)
3. eq [comm] : M+ N =N + M

1. We prove first equation rid by induction on the structure of M.

IB open SIMPLE-NAT
red 0 + 0 =0
**> result true : Bool
close

IS open SIMPLE-NAT
op a : -> Nat
eq a + 0 = a
red s a + 0 =8 a
**> result true : Bool
close

2. We prove the equation radd by induction on the structure of M.

IB open SIMPLE-NAT
red 0 + s N = s(0 + N)
**> result true : Bool
close

IS open SIMPLE-NAT
op a : -> Nat
eq a+ s N = s(a + N)
red s a + s N=g(a + s N)
**> result true : Bool
close

3. Finally, we prove the commuitativity of addition by induction on the structure of M. We
add the equations rid and radd as premises for our proof.

IB open SIMPLE-NAT

eq [rid] : N + 0 = N

eq [radd] : M + s N = s(M + N)
red 0 + N =N+ O

**> result true : Bool

close
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IS open SIMPLE-NAT
op a : -> Nat
ega+ N=N+ a .
red s a+N=N+ s a .
**x> result true : Bool
close

Consider Example 18 and prove (VQ1) (VQ2) (VQ3) (Ql@Q2)@Q3 = Ql@(Q2@Q3) hy
induction on the structure of Q3. We need to prove the following:

IB (VQ1) (VQ2) (QleQ2)@ empty = Ql@(Q2@ empty), and

Is Tu{ (VQ1) (VQ2) (Q1 @ Q2)@ g = Q1 @(Q2 @ q) }r(sFufga)Fe) (VO1) (VQ2)
(Q1 @ Q2)@ (g,a) = Q1 @(Q2 @(qg,a)).

where S={Queue, E1t},F = {none, empty, (_, ), @}, F¢={empty, (,,)},andT =
{Q1,02}. The proof in CafeOBJis as follows:
IB open SIMPLE-QUEUE
vars Q1 Q2 : Queue .
red (Q1L @ Q2) @ empty = Q1 @ (Q2 @ empty)
*%> result true : Bool

close

IS open SIMPLE-QUEUE

vars Q1 Q2 : Queue .
op g : -> Queue
op x : -> Elt

eq (Q1 @ Q2) @ g = Q1 @ (Q2 @ Qq)
red (Q1 @ Q2) @ (g,x) = Ql @ (Q2 @ (qg,x))
*%> result true : Bool

close

The constructor-based logics have been studied in [8] and [7]. The calculus given here is
complete for the initial models of the specifications. The completeness of CCEQL is due to
[28], where the result is proved in the framework of institutions. The Sructural induction
generalizes the Peano induction. We may define the rules of Sructural induction with the
conclusion (¥X)p and restrict the institution CCEQL to the signatures with finite number of
constructors; then the entailment system generated by the rules of equational deduction and
Sructural induction are compact, but not complete.
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Chapter 6

Error Handling with Order-Sorted
Algebra

Order-sorted algebra provide sub-sorts declarations which allow a more precise definition of
the operations, declarations of partia functions, and error handling. As the title suggests this
chapter is largely focused on error handling and its correctness. A different approach toward
error handling may be found in [36] where the errors are captured by retract functions. The
method presented here seems to be more efficient than the one in [ 36].

6.1 Order-sorted Equational Deduction

The rules of order-sorted equational deduction are the same as for equational deduction, and
the same results as for equational deduction generally carry over. We prove only the complete-
ness of the restriction of OSA to the equational atoms. The completeness of HOSA and the
completeness of CHOSA are given in Chapter 8, in the framework of institutions.

Definition 6.1.1 (Order-sorted congruence). A congruence relation = on a (S <,F)-model M
is a (S F)-congruence relation == (=s)scs such that if s< s in (S <) and a,a € Mg then
a=sad ifandonlyifa=y .

We denote by AOSA the restriction of OSA to the atomic sentences.

Proposition 6.1.2 (Completeness of AOSA). The entailment system of AOSA generated by the
rules of Reflexivity, Symmetry, Transitivity, and Congruence is complete and compact.

Proof. For any set " of equations for a signature (S, <,F) we define =r= {(t,t')|[THt =1'}.
Since the signature (S, <,F) is regular the term algebra Tg is the initial (S <,F)-agebrain
Mod(S <,F). By Reflexivity, Symmetry, Transitivity and Congruence the relation =r is a
(S,F)-congruence on Tg. =r is aso an order-sorted congruence on Tg, because the definition
of =r doesnot depend upon asort. Sincethesignature (S <,F) islocally filtered we may define
amodel Mr as the quotient of the initial algebra (term algebra) T by order-sorted congruence
=r. Noticethat for each (S, <,F)-equationt =t/, THt=t'iff M=t =t". Nowif T =t =t
thenMr =t =t whichmeansT -t =t'.

For the second assertion, note that all the rules are finitely generated and by Proposition
3.2.6 we obtain the compactness of AOSA. (Q.E.D)
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As in the case of conditional equational logic, it is convenient for each variable symbol to
have only one sort; therefore we assumethat any Sindexed set X = {Xs| s€ S} used to provide
variables for a signature (S <,F) is such that Xs, and Xs, are disjoint whenever s; # s,, and
such that al symbols are in X are distinct from those in F. Note that if (S <,F) is coherent
then (S </, F UX) isalso coherent, where <'=< U{(x,x) | x € X}. By an abuse of notation we
let < to denote <.

Definition 6.1.3 (Order-sorted substitutions). Let (S <,F) be an order-sorted signature. A
(S <,F)-substitution of F-terms with variablesinY for variablesin X is an arrow 6 : X —
Te (X). The unique extension of 6 to

1. F-termswith variablesin X is0: T (X) — Te(Y).

2. sentencesin Sen(S, <,FUX) isSen(0) : Sen(S, <,FUX) — Sen(S, <,FUY). Asincase
of signature morphisms when is no danger of confusion we let 6 to denote the sentence
trandlation Sen(8).

For any (S,F UY)-model (M, f) we definethe (S, <,FUX)-model (M, f) g as(M,6; f), where
f:Te(Y) — M isthe unique extension of f to (S <, F)-morphism.

Recall that given an order-sorted signature (S, <,F) for any F-termt there existsaleast sort
denoted by LS(t).

Lemma 6.1.4. Order-sorted substitutions are sort decreasing, in that LS(0(x)) < s for any
x € Xs and more generally, LS(0(t)) < LS(t) for any (F UX)-term.

Proof. The first assertion follows because 6(x) € (Tr(Y))s and LS(t) < sfor any x € Xs. The
second assertion can be proved by induction on the structure of the term t. (Q.E.D)

6.2 Error Sorts

Therules of order-sorted equational deduction are the same as for the equational deduction, but
special care is needed when applying the rules of Substitutivity, according to Lemma 6.1.4.

Example 21. Consider the following specification
mod NON-DED{

[A<B]

op a : -> A
opb: -8B

ops £ g: A ->A
var X : A

eq £(X) = g(X)

eqa=>b . }

The first equation can deduce g (a) from £ (a), and then the second equation can appar-
ently deduce g (b) from £ (a); but g (b) is not awell-formed term. The problem is we can
not substitute b for X because the sort B of b is (strictly) greater then the sort A of X, and by
Lemma 6.1.4 the substitutions are sort decreasing.
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Example 22. The models of the following specification are what one would expect, lists with
elements 1, 2, 3.

mod LIST {

[E1t]

[NeList < List]

-- constructors

op empty : -> List {constr}
op _,. : List Elt -> NeList {constr}
-- operators

ops : 1 2 3 -> Elt

op put : Elt List -> Nelist
op get : NeList -> List

op top : NelList -> Elt

-- variables

var Q : List
vars X Y : Elt

-- equations

eq [L1] : put(X,empty) = empty,X

eq [L2] put (X, (Q,Y)) = put(X,Q),Y
eq [L3] : get((Q, X)) = Q

eq [L4] top((Q,X)) = X }

Note that the termslike top (get (put (1, put (2, put (3, empty) ) )) ) arenot well-
formed because that the sub-term beginning with get has sort List while top requires sort
NeList. However it is desirable to give such expressions the “benefit of the doubt” because
they could evaluate (for the term above the correct answer is 2). Error sorts provide this capa-
bility by capturing terms which are not well-formed.

Example 23. We definethe list with errors by extending the signature of LI ST with error sorts.
mod ELIST {
[Elt < ErrElt]
[NeList < ErrNeList]
[List < ErrList]
[ErrNeList < ErrList]
-- constructors
op empty : -> List {constr}
op _,- : List Elt -> NeList {constr}
-- operators
op -,- :ErrList ErrElt -> ErrNelList
ops : 1 2 3 -> EIt
op put : Elt List -> Nelist
op put : ErrElt ErrList -> ErrNelList
op get : NeList -> List
op get : ErrList -> ErrList
op top : NelList -> Elt
op top : ErrList -> ErrElt
-- varlables
vars X Y : Elt
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var Q : List

-- equations

eq [L1l] : put(X,empty) = empty,X

eq [L2] put (X, (Q,Y)) = put(X,Q),Y

eq [L3] : get(Q,X) =20

eq [L4] : top(Q,X) =X . }

Terms like top (get (put (1, put (2, put (3, empty) ) ) ) ) dot not parse in the con-

text of List theory of Example 22, but they are accepted when super-sorts are added, as in
Example 23; using CafeOBJ we get the following:

1. parse top(get (put (1,put(2,put(3,empty)))))
result top (get (put (1l,put(2,put(3,empty))))) :ExrrElt

2. reduce top(get (put (1l,put (2,put(3,empty)))))
result 2:Elt

meaning that the term top (get (put (1, put (2, put (3, empty) ) ) ) ) hasthe least sort
ErrElt and it isequivalent modulo equations {11, ..., L4} to the term 2 which has the sort
Elt. Note that the signature of ELIST is coherent.

Example 24. The following example shows that the above strategy needs some improvements.
mod NON-MON {
[S1 < S]

The signature of NON-MON is monotone and coherent. If we extend the above signature
with error sorts then the monotonicity condition is not satisfied. We would have

op £ : ErrS -> ErrS3

op £ : ErrS -> ErrS4
If we use retracts functions (see [36]) then the resulting signature is monotone but in order to
parsetheterm £ (a) we do not know which retract should insert

op r:(8S>»81) : S -> 81, or

op r:(S>82) : S -> 82
to obtain £ (r: (S>S1) (a)) or £ (r: (S>S2) (a)). Bellow we give the condition for a
signature to be extendible with error sorts.

Definition 6.2.1. A signature (S, <,F) with finite number of symbolsis extendible (with error
sorts) if for every ¢ € Fy,—.s, N Fw,—s, We have wy = w, implies s; = sp, where = isthe least
equivalence relation over <.
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There are two ways to make the specification of Example 24 extendible: by adding asort S
greater then S1 and S2, or by changing the name of the operation symbol op £ : S2 ->
sS4

Assume an extendible signature (S, <,F) and let = be the |least congruence relation over <.
For any operation symbol ¢ € Fy_.s we define

e AY={w €S| W = w} the connected component of w,

e ¥={seS|oeFRy_.g,W =w} the set of al sorts of ¢ with the arity in the same
connected component as w,

o (SYy={s eS| (Vs €)s" <} thesetof al sortsgreater then the onesin S, and

o (SN ={se(S)¥]|(vs' € (S)¥s <s"vs’" <} the possible candidates for the error
sort of G.

All sortsin (S)¥ arein the same connected component as s. Since the number of sortsisfinite
and the signature (S, <, F) iscoherent, there exists the greatest element of each connected com-
ponent whichimpliesthat (S')¥ isnon-empty. The greatest element of the connected component
of sisasointheset (S”)¥ and ((S")¥, <) isatotal ordering.

We extend the signature (S, <,F) to the signature (S, <e, F€) having

e thesetof sorts S = SU{se|se€ S},

e the ordering relation <e being the reflexive and transitive closure of < U{(s,S¢) | S€
StU{(se;s) [s< s}, and

e the operations in F€ obtained by overloading the operationsin F: for every 6 € Fy, s,
wedefinec € Ry, o wherew isthe greatest element of A7 and s’ is the least element of

(S)5-
Proposition 6.2.2. (S, <e,F€) isa coherent order-sorted signature.

Proof. We prove that monotonicity condition is satisfied. Let 6 € R g NFg s, such that
Wi <e W>.

1. Casew; € S'. Easy.
2. Casew, =W/, wherew” € S Thereexistss” € Ssuchthat s, = .

(@) Casew; € S'. We have s; € Sand by the definition of 6 € F,_.¢ we have that s’
is the least element of (S")§" and all the sortsin (S”)g" are greater then s; which
impliess; < s’ andwe get 51 < Si.

(b) Case w; = W, where W € S, There exists s € Ssuch that s, = 5. Since o €
Fug—g, NMFwz—g and w, <e Wy, we have w, = w, and s, = (.

It is straightforward to prove that (S, <e,F€) islocaly filtered. We prove that (S, <e, F€) is
regular. Givenc € Fg s andwp <e we show that the set {(w,s) | 6 € Ry and wp <e W} has
an unique least element.

Ys1...2)e=(S1)e---(Sn)e



1. Casew; € S'. Easy.
2. Casew; =W, wherew € S*. Thereexistss' € Ssuchthat 51 = 5.

(@) Assume there exists ¢ € Fy,—.s, such that wo < w,. Since (S, <,F) isregular, the
set {(w;S) | o € Ry—s and wp < w} has an unique least element which is the unique
least element of the set {(w,s) | 6 € Ky, and wp <e W}.

(b) Assuming the contrary we get that (w;,s;) is the unique least element of the set
{(w,s) | 0 € Ry_candwp <ew}.

(Q.E.D.)

Given an order-sorted signature X = (S, <, F ), extend it to the signature Xe = (S, <e, F€) by
adding error sorts and overloading the operations. Our requirement is that the signature inclu-
sion X — X should be conservative in the sense that for every set of sentencesI” C Sen(S, <,F)
and each sentence p € Sen(S <,F) wehavel” =< r) p iff I |=(g, <, Fe) p- Note that theim-
plication from left to right holds by the satisfaction condition.

Proposition 6.2.3. Any inclusiont: (S <,F) — (S, <e,F€) isconservative.

Proof. It suffices to prove that any order-sorted (S, <,F)-algebraM admits an 1-expansion M.
Indeed if T" =g, <. Fe) p then assuming that M |=(g< r) I (for an arbitrary chosen (S <,F)-
model M) there exists an 1-expansion M’ of M; by the satisfaction condition M’ F(s,<eFe) T
andwehave M’ |= (g, <, re) p and using again the satisfaction condition we obtain M |= (s < ) p;
since M was arbitrary we get I [=(s < ) p-

Given an order-sorted (S <, F)-agebra we define the S.-indexed set M€ recursively by the
following:

1. MsC Mg, forse S
2. s<es impliesMg C Mg,

3. 6 € Ry s with (w,s) € ()* x (%), me M, and m¢ My, for al wg <e w such that
6 € FRyy—sy, imply o(m) € Mg.

Now we define the functions on M€:
1. for every 6 € Ry_s, Since Mg, = My, we define M§ = Mg,
2. for every o € Ry _,s we define M§ : M, — Mg asfollows: for every me Mg,
e M$(m) = Mg(m) when there exists 6 € Fy,—.5, such that w <¢ wand me My,
e MS(m) = o(m), otherwise.

Because Mg = Mg for all sorts s € Sand Mg = M§ for al operation symbols ¢ € F, the order-
sorted model M€ is an 1-expansion of M. (Q.E.D)

Example 25. Now extend the signature of MAP (see Example 17) with error sorts.
mod EMAP {
[A B < Elt]
[A < ErrA]
[B < ErrB]
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[Elt < ErrElt]
[ExrrA ErrB < ErrElt]

ops T F : -> B

ops (_V_.) (_A) : BB ->B

ops (_V_.) (_A_.) : ErrElt ErrElt -> ErrB
op =- : B -> B op

—-_ : ErrElt -> ErrB

op map : A -> B

op map : ErrElt -> ErrB

var X : B
var Y : A .

eq [M1] XV - X=TrT

eq [M2] XN~ X=F

eq [M3] XV X=X

eq [M4] XANX =X

eq [M5] - F =T

eq [Mé] - T =F .

eq [M7] - map(Y) = map(Y) . }

Note that the extension of the signature of MAP with error sorts is conservative but the
extension of signature of MAP with retracts is not conservative. Indeed, since MAP | (VY) T
= F and the extension of MAP with retracts RMAP contains the terms r: (A<E1t) (0) and
r: (A<Elt) (1),wehaveRMAP = T = F,butMAP [~ T = F (for detailssee[36, 32]).

Given an arbitrary order-sorted signature (S, <,F) which is not extendible with error sorts,
then by adding a distinguished “ super-sort” sp greater then all the sortsin S, the new signature
becomes extendible. If we denote by (S, <’,F’) the new signature then the signature inclusion
(S<,F)— (S,<',F') isconservativeand also (S, <,F) — (S,, <, (F)®).
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Chapter 7
A Case Study

We specify a transitional system using constructor-based universal order-sorted algebra with
predicates (abrev. CUOSAP) and point out some methodol ogies for modeling and proof plans.
Theinstitution CUOSAP is an extension of CUOSA with

e signatures (S <,F,F¢ P) consisting of a constructor-based order-sorted signature (S, <
,F,F%) and aset P of predicate symbols,

e universal sentences (VX)(VY)p formed over equational and relational atoms, where X is
afinite set of constrained variables, Y afinite set of loose variables and p a quantifier-free
sentence,

e models consisting of an order-sorted algebra M plus an interpretation for each predicate
symbol T € Ry asareation M; C My,.

Remark 7.0.4. Recall that an universal sentence (VX)(VY)p may be written as (YXUY)p.

Not all sets of sentencesin CUOSAP admit initial model, or are even consistent. Since our
work is closely related to algebraic specification languages, one important issue is the consis-
tency of the specifications (the class of models of the given specification is not empty). For
exampleif we consider only sentences of the form (VX)H =- C, where X isany set of variables,
H is any quantifier-free sentence, and C is an equational atom, then any basic specification is
consistent (has models).

The example used to present the applicability of our theoretical results is a mutual exclu-
sion protocol, due to [27] which aso describes the OTSCafeOBJ method. The OTS/CafeOBJ
method is a modeling, specification and verification method for systems, and it has been devel -
oped and refined through some case studies[27, 54, 53, 56, 55]. Our theoretical framework is
dightly different since we do not use hidden logic and initial semantics for the specifications
and the verification of the mutual exclusion property significantly more simpler thanin [ 27].

7.1 Prediminaries

Definition 7.1.1. The entailment systemof CUOSAP isthe entailment systemwith digunctions,
false, negations, and universal quantifications freely generated by the rules of

(Reflexivity)

OF(s<Frep t=t
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for each termt € Tg.

mmetr
S Fs<FRep) U=t

for any termst,t’ € Tg.

(Transitivity)

{t=t V' =t"}rs<prop t=t"
for any termst,t’,t” € Tg.

(Congruence)

{ti=t|1<i<n}Fig<prep) O(l1,....,ta) = o(t, ..., th)
for any function symbol ¢ € F and termst; € T, wherei € {1,...,n}.

PCongruence -
( g ) {t| = ti,‘l <1< n} U {TC(t]_, ,tn)} |_(3§7F,FC,P) TC(ti, ,tI{])

for any predicate symbol &t € P and termst; € Tg, wherei € {1,...,n}.

Substitutivit
( ) P F e rrem (7X0000)

for any universal sentence (VY )p and substitution 6 : Y — Tg(X), where X and Y are any sets
of loose variables, and p a quantifier-free sentence.

{F l_(SSJZ,FcaP) (W)G(p) ’ Y — loose variabl es, 0:X— TFC(Y)}
I's<Frep) (VX)p

for every set of sentences I, and any universal sentence (VX)p, where X isa set of constrained
variables.

(Case splitting)

Theorem 7.1.2 (Completeness of CUOSAP). The entailment system of CUOSAP is sound and
complete.

The proof of the above theorem will be given in Chapter 8 in the framework of institutions.
Note that semantic entailment of CUOSAP satisfies the rules of Implications and by Theorem
7.1.2 we obtain that the entailment system of CUOSAP satisfies the rules of Implications.
One direct consequence is that the entailment system of CUOSAP satisfies the rules of Modus

Ponens.

(Modus ponens) {91:;&
2

Since {—p} - —p, by Red we have
(Contr){—p,p} - false

In CafeOBJ each module imports the data type of the Boolean by default [25]. This has
multiple consequences, for example, it supports a more general form of conditional equations,
where conditions are Boolean-sorted terms rather than just finite conjunctions of identities. By
protecting the Boolean-values t rue and false the Boolean-sorted terms may be interpreted
as predicates. The other operationson Bool (suchasand, or) may beregarded asfirst-order
constructors for sentences in the sense of Definition 2.3.1.
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7.2 Specifying a mutual exclusion protocol

The example used here is a mutual exclusion protocol, an algorithm which ensure that no more
than one process have access to a common shared source at a given time. Initially, each process
i isin the reminder section. After process i putsits name at the bottom of a waiting queue,
i isin the waiting section. Process i will be in the critical section and have access to the
information when it will be the first in the queue. When it |eaves the source process i will be
removed from the queue entering again in the remainder section.

We use a“ super-sort” Univ, greater than therest of the sorts such that the meta equality and
the object-level equality, provided by the predicatepred =_ : Univ Univ, arethesame
according to the equations [m=>0] and [o=>m] bellow. The module UNIV will be imported
by all other modules and it will provide an equality predicate for al the sorts. The sort Univ
works like a parameter.

mod UNIV{

[Univ]

pred _=_ : Univ Univ

vars X Y : Univ

eq [m=>0] : (X = X) = true

ceq [o=>m] : X =Y if (X = Y)

}

Label isthe sort for the set of labels of each section.
mod LABEL (ONE :: UNIV){

[Label < Univ]

-- constructors

ops rm wt c¢s : -> Label {constr}
-- equations

eq [L1] : (rm = wt) = false

eq [L2] : (rm = cg) = false

eq [L3] : (wt = cg) = false

}

We could declare the specification LABEL with initial semantics and ignore the equations
L1,L2,L3. The classes of models of the specifications LABEL and I-LABEL (see bellow)
are equal, but we need to specify that the constantsrm, wt, cs aredistinctinorder to prove
the desired properties.

mod! I-LABEL (ONE :: UNIV){

using (UNIV)

[Label < Univ]

-- constructors

ops rm wt c¢s : -> Label {constr}

}

Pid isthe sort for the set of process names. We use an error sort ErrPid to declare a
constant nonepid different of al process names.

mod PID (TWO :: UNIV){
[Pid < ErrPid < Univl]
-- operations

op nonepid : -> ErrPid
-- variables
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var I : Pid

-- equations

eq (nonepid = I) = false

¥

Queue isthe sort for the queues of process IDs. The constant empty denotes the empty
gueueandtheoperatorop _,_. : Queue Pid -> Queue Iisthedataconstructor of non-

empty queues. The operatorsput, get, top aretheusua functions of queues, which are
defined with equations.
mod QUEUE {

using (PID)

[Queue < Univ]

-- constructors

op empty : -> Queue {constr}
op _,- : Queue Pid -> Queue {constr}
-- operators

op put : Pid Queue -> Queue
op get : Queue -> Queue

op top : Queue -> ErrPid

-- variables vars X Y : Pid
var Q : Queue

-- equations

eqg put (X,empty) = empty,X

eq put (X, (Q,Y)) = put(X,Q),Y
eq get(empty) = empty .

eq get(Q,X) = Q .

eq top(empty) = nonepid .

eq top(Q,X) =X

¥

The pseudo-code executed by each process i can be written as follows:
rm: put (i, queue)

wt: repeat until top (queue) = 1

Critical section

CS. get (queue)

where queue is the queue of process IDs shared by all processes; put (i, queue) puts a
process ID i at the end of queue, get (queue) deletes the top element from queue, and
top (queue) returns the top element of queue. Initialy, each process i is at the label rm
and the queue isempty. The transition system is specified as follows:

mod QLOCK {

using (LABEL (UNIV))

using (QUEUE (UNIV))

[Sys < Univ]

-- constructors
op init : -> Sys {constr}
ops want try exit : Sys Pid -> Sys {constr}
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-- operators

op pc : Sys Pid -> Label
op queue : Sys -> Queue
-- variables

var S : Sys

vars I J : Pid

-- equations

-- for init

eqg queue (init) = empty .

eq pc(init,I) = rm

-- for want

op c-want : Sys Pid -> Bool {strat: (0 1 2)}
eq c-want (S,I) = (pc(S,I) = rm)

ceq pc(want(S,I),d) =
(if (I = J) then wt else pc(S,Jd) fi) if c-want(S,I)

ceqg queue (want (S,I)) = put(I,queue(S)) if c-want(S,I)
ceq want (S,I) = S if not c-want(S,I)

-- for try

op c-try : Sys Pid -> Bool {strat: (0 1 2)}

eq c-try(S,I) = (pc(S,I) = wt) and (top(queue(S)) = I)

ceq pc(trY(S/I)lJ) =
(if (I = J) then cs else pc(S,d) fi) if c-try(S,I)
eqg queue (try(S,I)) = queue(S)

ceq try(S,I) = S if not c-try(S,I)

-- for exit

op c-exit : Sys Pid -> Bool {strat: (0 1 2)}
eq c-exit(S,I) = (pc(S,I) = cs)

ceq pc(exit(S,I),d) =
(if (I = J) then rm else pc(S,Jd) fi) if c-exit (S, I)

ceqg queue (exit (S,I)) = get(queue(S)) if c-exit(S,I)
ceq exit(S,I) = S if not c-exit(S,I)
}

There are three constructors for the sort Queue: want, try and exit. The operators pc
and queue are inductively defined on the structure of the terms of sort Sys. The predicates
c-want, c-try and c-exit may be regarded as derived operators, and depending whether
they are true or false, the state will change or remains the same.

7.3 Verifying the mutual exclusion property

The property to be shown is that at most one process is in the critical section (or at the label
cs) at any moment, that is (VS) (VI) (VJ)pc (S, I)=csApc(S,J)=cs= (I=J) holds.
Firstly we prove (VS) (VI)pc (S, I)=cs=top (queue (S))=I.By Sructural induction
we need to deduce

IB (V I)pc(init,I) = c¢cs = top(queue(init)) = I,and

IS (VJ)pc(s,d) = cs = top(queue(s)) = Jimplies
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1. (VJ)pc(want(s,i),dJ) = cs = top(queue(want(s,i))) = J
2. (VJ)pc(try(s,i),d) = cs = top(queue(try(s,i))) = J
3. (VJ)pc(exit(s,i),d) = cs = top(queue(exit(s,i))) = J

where s isaconstant of sort Sys and 1 isaconstant of sort Pid.

We declare a predicate inv which represents the formulato be proved and we add new con-
stant symbolsop s : -> Sys,ops i j : -> Pid. Sincetheinduction hypothesis
ceq [IH] : top(queue(s)) = J if pc(s,d) = cs isnot executable by rewrit-
ing we add also the equations TH-1i and IH-j obtained from IH by substituting 1 and j for
J.

mod INV{

using (QLOCK)

pred inv : Sys Pid

var S : Sys

var J : Pid

eq inv(S,J) = (pc(S,Jd) = cs implies top(queue(S)) = J)
op s : -> Sys

ops i j -> Pid

ceq [IH] : top(queue(s)) = J if pc(s,d) = cs

ceq [IH-i] : top(queue(s)) = i if pc(s,i) = cs

ceq [IH-j] : top(gqueue(s)) = j if pc(s,j) = cs

}

For the induction base, we write a proof passage, which is asfollows:

open INV

red inv(init, j)

close

Thefirst thing to do for the induction step isto split each case into two sub-cases depending
whether the condition to change the state holds or not. Take for example the constructor want:
because INVH-c-want (s, 1) V-oc-want (s,1) if INV U {c-want (s, 1) } Finv (want
(s,1),3) and INV U {—c-want(s,i)}F inv(want (s,1i),j) then by Digunction
eimnation INV + inv(want(s,i),73).

Because the state does not change when the condition for changing the state does not hold,
we will focus on the (sub-)cases when the conditions hold.

1. SinceO+ (i=3) v—(i=3), where .= _isthe equality predicate, if INV U {i=j} F
inv(want (s,1i),j)adINV U {- 1 = j } F inv(want(s,i),j) thenby
Digunction elimination we have INVH-inv (want (s, 1) ,3). So we split this (sub)-
case into two sub-cases as follows:

(@ -- c-want(s,i) j = 1
open INV
eq j =1
eq c-want(s,i) = true . eqg pc(s,i) = rm .

red inv(want(s,i),J)

close
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(b)

Because c-want (s,1i) = (pc(s,i) = rm) and the object-level equdlity is
equivalent to the meta equality, we have introduced eq pc(s,1i) = rm inthe
proof passage above.

-- c-want(s,1i) j=/=1i

open INV

var X : Pid

var Q : Queue

eq (1 = j) = false

eq c-want(s,1) = true

eq pc(want(s,1),j) = cs . eq pc((s,]j) = cs

ceq top(put(X,Q)) = top(Q) if (top(Q) :is Pid)

red inv(want(s,1i),7)

close

Inthiscasepc (want (s,1) ,J) =pc (s, j) andsincepc (want (s,1i),j)=cs
weintroducedpc (s,j) = cs. Weprovedpc (want (s,1),Jj)=cs implies
(top (queue (want (s,1)))=7) assuming pc (want (s,1),j) = cs. By
Modus ponensweobtain (top (queue (want (s, 1)) )=7j) assumingpc (want
(s,1),3)=cs whichisthegoa here.

2. Using Digunction elimination as above, we split this (sub-)case into two sub-cases de-
pending on whether i = j istrue or not.

@

(b)

-- c-try(s,i) j =1

open INV

eq j = 1

eq c-try(s,1i) = true

eq pc(s,1) = wt . eqg top(queue(s)) = 1

red inv(try(s,i),3)

close

Sincec-try(s,i) = (pc(s,i) = wt and top(queue(s)) = i) and
c-try (s, 1) =true,weaddedtheequationspc (s, i) =csand top (queue (s)
) =1.

-- c-try(s,i) j=/=1

open INV

eq (i = j) = false

eq c-try(s,1) = true

eq pc(try(s,i),j) = cs . eq pc(s,j) = cs

red inv(try(s,i),73)

close

Hereweprovedpc (try(s,1),3j) = cs implies (top(queue (try (s,
i))) = j) assuming pc (try(s,i),j) = cs. By Modus ponens we ob-
tain top (queue (try(s,1)))=jassumingpc (try(s,1),Jj) = cswhich
isthe goal of this case.
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3. As above, we split this (sub)-case into two sub-cases, depending on whether (i=7) is

true or not.
(@ -- c-exit(s,i) j = 1
open INV
eq j =1
eq c-exit(s,1) = true . eq pc(s,i) = cs

(b)

red inv(exit(s,i),7J)

close

-- c-exit(s,i) j=/=1

open INV

eq (1 = j) = false

eq c-exit(s,1) = true

eq pc(s,i) = cs

eq pc(exit(s,1),j) = cs . eq pc((s,]j) = cs
start 1 = jJ

apply -.IH-j at (2)
apply red at term
apply red at term

-- gince (i=j) = false, we have reached a contradiction.
close
Inthiscasewehave (i=j) = false and by addingthe equation eq pc (exit
(s,1),3) = cs wededuce i = j which is a contradiction. By False we
obtain top (queue (exit (s,1))) = 7.

Finally, the proof of mutual exclusion property (V S) (V I) (V J)pc(S,I) = cs

A pc(S,J) = cs = (I = J),isasfollows:

open QLOCK

op s : -> Sys

ops i j : -> Pid

ceq [inv] : top(queue(S:Sys)) = I:Pid if pc(S,I) = cs

eq pc(s,1) = cs . eqg pc(s,j) = cs

start 1 = j

apply -.inv with I = i, S = s at (1)

apply red at term

apply -.inv with I = j, S = s at (2)

apply red at term

apply red at term

close



Breaking the goals into smaller subgoals by applying Sructural induction or Digjunction
elimination, are conducted by hand here but future developments of CafeOBJ aim for mecha-
nizing the proofs. The initial semantics for specifications plays an important role only at level
of specifications. For proving properties of systems we make use of all Boolean connectors.
Intuitively, we use the “non-Horn” sentences to define recursively some operations, like pc or
queue above, or to reduce the class of models of the specifications, possibleto theinitial model
(see the specifications I - LABEL and LABEL).

The theoretical framework and results (more precisely the layered approach to complete-
ness) reflect to the level of proofs. When we want to infer a property from a set of axioms,
firstly, we establish an induction scheme; this has the effect of breaking the initial goal into
“smaller” subgoals, sentences formed without quantifications over constrained variables. The
semantic consequences of the theories of constructor-based logics are not in general recursively
enumerable which implies that there is no general algorithm to find an induction scheme, even
the formulas to be proved are the true of all models of the given specification.

The new goals are sentences of the form (VY )p, whereY isaset of loosevariablesand p isa
quantifier-free sentence, which are “computable” whenever they are the semantic consegquences
of the given axioms. In order to prove the new properties formalized as sentences, we use
the rules of Generalization; we add the loose variables to the initial signature and prove the
guantifier-free part of the sentences in the new signature.

The example with the mutual exclusion protocol is due to [27] which describes also the
OTS/CafeOBJ method. The proof of mutual exclusion property is more simpler thanin[27] be-
cause of theintermediate property/invariant (Vs) (VI)pc (S, I)=cs=top (queue(S))=1I
that we deduce first. This showsthat intuition plays an important role in ssmplifying the proofs.
Also note that we do not use here simultaneous induction.
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Chapter 8

Universal I nstitutions

We present an institution-independent compl eteness result applicable to constructor-based Horn
institutions such as CHCL, CHOSA, CHPOA, CHPA and also their infinitary versions. Our
study isolates the particular aspects of the logicsfrom general onesin order to obtain an abstract
completeness which covers many examples such as the ones mentioned above and also the
variations of them: for example constructor-based Horn order-sorted algebra with transitions
or/and predicates. The applicability of the main theorems are also investigated in the next
chapter.

The present work has agreat significance to computer science. Modern algebraic specifica-
tion languages (such as CafeOBJ [26], CASL [2], or Maude[15]) are rigorously based on logic,
in the sense that each feature and construct in alanguage can be expressed within acertain logic
underlying it. In the context of proliferation of a multitude of specification languages, these
abstract results provide complete systems of proof rules for the logical systems underlying the
algebraic specification languages.

In this chapter we present the abstract concept of universal institution [ 16] and reachable
universal weak entailment system [28] which is proved sound and complete with respect to a
class of reachable models, under conditions which are also investigated. The weak entailment
system developed here is then borrowed by constructor-based institutions through institution
morphisms. Soundness is preserved, and completeness is relative to a family of sets of sen-
tences.

8.1 Definition and Examples

Let | = (Sig,Sen,Mod, =) be an ingtitution, D C Sig be a broad subcategory of signature
morphisms, and Sen® be a sub-functor of Sen (i.e. Sen® : Sig — Set such that Sen®(X) C Sen(X)
and @(Sen*(X)) C Sen*(X'), for each signature morphism ¢ : £ — X’). We denote by | * the
ingtitution (Sig, Sen®,Mod, |=). We say that | isaD-universal institution over | * when

o | admitsall sentences of the form (Vy)p, where y : = — X’ isasignature morphismin D
and p isasentence in Sen®*(¥'), and

e any sentence of | isof the form (Vy)p as above.
The followings are a couple of examples of universal institutions.
Example 26 (Generalized first-order logic (GFOL)). Its signatures (S, S°,F,P) consist of a
first-order signature (S F,P) and a distinguished set of sorts S C S. We call the set of sorts
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S constrained and S = S— & loose. A generalized first-order signature morphism between
(S S,F,P) and (S, S}, F1,Pr1) isasimple signature morphism between (S,F,P) and (S, F1 +
Tr,,P1), i.e. constants can be mapped to terms. The sentences are the universal constrained
first-order sentences of the form (VX)e, where X is afinite set of variables of constrained sorts
and eisaformulaformed over atoms by applying Boolean connectives and quantifications over
variables of loose sorts. Models are the usual first-order structures and satisfaction is the usual
first-order satisfaction. Note that GFOL isa D ©-universal institution over itsrestriction to first-
order sentences built over the atoms by applying Boolean connectives and quantifications over
variables of loose sorts, where D€ is the class of signature extensions with finite number of
constants of constrained sorts.

GFOL o,  istheinfinitary extension of GFOL obtained by allowing for a sentence (vVX)e
countable disjunctionsfor the construction of the first-order part e. In case of GFOL (), , we do
not allow quantifications over infinite sets of variables. GFOL ,, , isaD-universal institution
over its restriction to infinitary first-order sentences built over the atoms by applying Boolean
connectives and quantifications over finite sets of variables of loose sorts, where D€ is the
subcategory of signature morphisms which consists of signature extensions with finite number
of constants of constrained sorts.

Example 27 (Generalized universal first-order logic (GUFOL)). Thisistherestriction of GFOL
to universal sentences of the form (VX)(VY)p, where X is afinite set of constrained variables,
Y isafinite set of loose variables, and p isaquantifier-free sentence. GUFOL isaD ®-universal
institution over the restriction of GFOL to universal sentences (VY )p with'Y afinite set of loose
variables, and p a quantifier-free sentence, where D€ isthe same as in the case of GFOL .

GUFOL.. istheinfinitary extension of GUFOL obtained by allowing:

- thesets X and Y of variables of a sentence (VX) (VY )p to beinfinite, and

- infinitary digunctionsfor the construction of the quantifier-free part p.

Note that GUFOL .. is also a DC-universal ingtitution over its restriction to infinitary uni-
versal sentences (VY )p with Y a set of loose variables (possible infinite) and p a quantifier-free
sentence, where D€ consists of signature extensions with constants (possible infinite) of con-
strained sorts.

Example 28 (Generalized Horn clause logic (GHCL)). This is the sub-institution of GFOL
obtained by restricting the sentencesto universal Horn sentences of the form (VX)(VY) AH =
C, where X is a finite set of variables of constrained sorts, Y is a finite set of variables of
loose sorts, H isafinite set of (relational or equational) atoms, C isa (relational or equational)
atom, AH is the conjunction of the set of sentencesin H, and AH =- C is the implication of
C by AH. GHCL isaDC%universal institution over the restriction of GFOL to the quantifier-
free sentences, where D€ consists of signature extensions with finite number of constants of
constrained sorts.

GHCL.. istheinfinitary extension of GHCL obtained by allowinginfinitary universal Horn
sentences (VX)(VY) AH = C wherethe sets X, Y and H may beinfinite. GHCL .. isalso aD*®-
universal institution, but this time D ¢ consists of signature extensions with constants (possible
infinite) of constrained sorts.

By considering the case of empty sets of relational symbols, we obtain the generalized
conditional equational logic, GCEQL, and itsinfinitary version GCEQL ..

By allowing constants to be mapped into terms, and distinguishing a subset of constrained
sortsfor each signature, we obtain the generalizations of
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1. order-sorted algebraa GOSA, GUOSA, GHOSA, and aso their infinitary versions such
as GOSA, », GUOSA.., GHOSA.,

2. preorder adgebraa GPOA, GUPOA, GHPOA, and also their infinitary versions such as
GPOA ), », GUPOA.., GHPOA..

3. partial algebrac GPA, GUPA, GHPA, and also their infinitary versionsGPA ), , GUPA..,
GHPA..

8.2 Institution Independent Notions

Reasoning at the institutional level is an attempt to reason generically about the properties of
the logics. In order to obtain non-trivial results about classes of logics we define abstractly the
properties of these logics together with the explanations in concrete examples.

8.2.1 Soundnessand Completeness - revisited

Recall that a weak entailment system (abbreviated WES) is defined as an entailment system
without the Translation property.

Definition 8.2.1. Assume aninstitution | = (Sig, Sen,Mod, =) and a family of classes of mod-
esM = {Ms}scigq- AWESE = (Sig,Sen, ) of the ingtitution | is sound (resp. complete)
with respect to M when E - eimpliesM |= (AE =€) (resp. M = (AE = e) impliesE - ¢) 1
for all sets of sentences E C Sen(X), sentences e € Sen(X) and modelsM € My.

Remark 8.2.2. Note that the entailment system E is sound (resp. complete) when My =
|Mod(X)| for all signaturesX.

Let | = (Sig,Sen,Mod, =) beaningtitution, and M = {Ms }5¢|gq afamily of classes of mod-
els. We say that arule
{Eity, E/ |ied}
ErsE/

of a system of rules R = (Sig,Sen,RI) is sound with respect to M whenever M = (AE =
AE/), for al models M € M and indexes i € J impliesM = (AE = AE’) for al models
M e M. We say that R is sound with respect to M whenever each rule in Rl is sound with
respect toM .

Proposition 8.2.3. An entailment systemE = (Sig, Sen, ) of aninstitution | = (Sig, Sen, Mod,
=) is sound with respect to a family M of classes of models whenever is generated by a system
of rules sound with respect to M .

Proof. The proof is straightforward by induction in the definition of . (Q.E.D)

M E (AE =€) iff M = E impliesM = e
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8.2.2 Basc sentences

A set of sentences E C Sen(X) is called basic [20] if there exists a Z-model Mg such that, for
al Z-modelsM, M = E iff there exists a morphism Mg — M.

Lemma 8.2.4. Any set of atomic sentencesin FOL, OSA, POA, and PA isbasic.

Proof. In FOL the basic model Mg for a set E of atomic (S F, P)-sentences is constructed
as follows: on the quotient (Tg) /= of theterm model Te by the congruence generated by the
equational atomsof E, weinterpret each relation symbol t € Pby (Mg)r = {(t1/=¢, - -,tn/=¢) |
n(ty,...,th) € E}. A similar argument as the preceding holds for POA and OSA.

In PA for a set of atomic sentences E we define S to be the set of sub-terms appearing in
E. Notethat Sc isapartia algebra. The basic model Mg will be the quotient of this algebra by
the partial congruence induced by the equalitiesfrom E. (Q.E.D)

Basic sentences were introduced in [64] under the name of “ground positive elementary
sentences’. We prefered to use the terminology from [20].

8.2.3 Reachable models

As implied by the definition of signature morphisms of the generalized institutions defined in
this chapter, we are going to treat the substitutions as signature morphisms.

Definition 8.2.5. Consider two signature morphisms 1 : £ — X1 and x2 : £ — X, of an insti-
tution. A signature morphisms6 : X1 — X such that x1;0 = 2 is called a substitution between

y1 and xz.
A more general treatment of substitutions can be found in Chapter 10.

Definition 8.2.6. Let D be a broad subcategory of signature morphisms of an institution. e

say that a X-model M is D-reachable if for each span of signature morphisms =1 < 3 % ¥
in D, each y1-expansion M of M [ determines a substitution © : 1 — x such that M [g= M.

Proposition 8.2.7. In GFOL, GOSA, GPOA and GPA, assume that D is the class of signa-
ture extensions with (possibly infinite number of) constants. A model M is D-reachable iff its
elements are exactly the interpretations of terms.

Proof. We treat each case separately.

GFOL : For every incluson X — %(Z) inD, whereX = (S S°,F,P) and £(Z) = (S, S°,FUZ,P),
the X(Z)-models can be represented as pairs (A,a), where AisaX-model anda: Z — A
isafunction.

Let X = (S S, F,P) be asignature and assume a X-model M which is D-reachable. We
provethat Tr — M issurjective, i.e. for every me M thereexistst € T such that My = m.
Let m € Mg be an arbitrary element of M. Consider a variable x of sort sand let N be an
expansion of M along X — X(x) (where X(x) = (S S°, F U {x}, P)) which interprets the
constant symbol x as m. Since M is D-reachable there exists a substitution 8 : {x} — T¢
suchthat M [g= N. Taket = 6(x) and we have M = Mg(x) = (M [g)x = Nx =m.

For the converse implication let X = (S S°,F,P) be a signature, X and Y two digjoint
sets of constants with elements which are different from the symbolsin Z, and (M, h) a

59



GPA:

Z(Y)-model with elements which are interpretation of terms, i.e. the unique extension
h: T=(Y) — M of h to a -morphism is surjective. Then for every X(X)-model (M, Q)
there existsafunction 6 : X — Tg(Y) such that 8;h = g.

=l

M

We straightforwardly extend 6 to asignature morphism 6’ : (S §¢,F UX,P) — (S §,F U
Y,P) suchthat 6’ is

— equal to6 on X, and
— theidentity on (S, S°, F,P).

Note that for any x € X we have ((M,h) [¢)x = h(8(x)) = g(X) = (M,g)x. Hence,
(M,h) [¢= (M, Q). The cases of GOSA and GPOA can be treated similarly as GFOL .

For every inclusion £ — %(Z) in D, where X = (S §¢,F) and £(Z2) = (S $,FUZ), the
¥(Z)-models can be represented as pairs (A, a) where AisaX-model anda: Z' — Aisa
function such that Z' C Z isthe set of variables which are defined.

Consider a(S S, F)-model M whichis D-reachable. Let Ty C Tr be the maximal subset
of termssuch that M = def (t) for al t € Tyy. Notethat Ty isapartial algebrainterpreting
each partial operation symbol ¢ € Fs, _s,—.s asfollows:

— (Tw)o(t,- . tn) = o(ts, ..., tn) if o(ty,...,ty) € Tw, and
— (Tm)s(t1, .- ., tn) is undefined, otherwise,

wheret; € (Tm)s for al i € {1,...,n}. We prove that the unique morphism Tyy — M is
surjective. Let m € Mg be an arbitrary element of M. Consider a variable x of sort s and
let N be an expansion of M along X — Z({x}) which interprets the constant symbol x as
m. Since M is D-reachable there exists a substitution 6 : {x} — Tr such that M [¢= N.
Taket = 0(x) and we have Mt = Mgy = (M [g)x = Ny = m.

For the converse implication let £ = (S S°,F) be asignature, X and Y two digjoint sets
of constants with elements which are different from the symbolsin %, and M” a Z(Y)-
model, with elements which are interpretation of terms, i.e. the unique X(Y)-morphism
h: Ty» — M is surjective, where Tyy» C Try is the maximal algebra of terms such that
M” = def(t) for all t € Ty». For every (X)-expansion M’ of M” |5, where M’ = (M” |z
,0), 9: X' — M” and X’ C X, since h is surjective, there exists a function 0 : X’ — Ty
such that 6;h = g.

h

Y.

X/
We straightforwardly extend 6 to asignature morphism 6’ : (S,S°,FUX) — (S S,FUY)
such that

TM "

M//

— ¢ istheidentity on (S, S°,F),
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— itisequal to 6 on X', and
—8(x) = Lforal xe (X—X).

Note that for every
— xe X' wehave: (M [¢/)x = Mg,(x) = Mg(x) =h(6(x)) = g(x) = M}, and
— x€ (X=X') wehave: (M" [g)x = Mg,y =M =M’ =M.
Hence M” [¢= M’.
(QE.D))

Remark 8.2.8. For each set E of atomic sentences in GFOL, GOSA, GPOA, and GPA, the
model Mg defining E as basic set of sentencesis reachable.

Definition 8.2.9. Given an ingtitution (Sig,Sen, Mod, |=), we say that a signature morphism
> 2% 5/ e Sigisfinitary if it is finitely presented in the category =/Sig.

In concrete institutions, such as GFOL, GPOA, GOSA, and GPA, the extension of signa-
tures with finitely numbers of symbols are finitary.

Definition 8.2.10. Let D¢ and D' be two broad subcategories of signature morphisms. We
say that that a =-model M is (D¢ D')-reachable if for every signature morphismy : £ — %/
in D¢ and each -expansion M’ of M there exists a signature morphism¢ : £ — >” in D!, a
substitution 6 : ¢y — ¢ and a X”-model M” such that M” [g= M’.

The two notions of reachability, apparently different, are closely related.

Proposition 8.2.11. Let D¢, D' and D be three broad subcategories of signature morphisms
suchthat D¢,D' € D. AZ-model M is (D¢, D'")-reachableif there exists a signature morphism

> % 5" € D and a g-expansion M’ of M such that
1. M’ is D-reachable, and
2. either

(@ D' or
(b) every signature morphismin D€ isfinitary and ¢ isthe vertex of a directed co-limit

(¢i — )iy of a directed diagram (; IR ®j)(i<j)e@.<) INZ/Sig, and ¢; € D' for
alli e J.

Proof. The case when ¢ € D' is straightforward. We focus on the second condition. Assume
asignature morphism (y : £ — Xq) € D¢ and ax-expansion N of M. Since M’ is D-reachable,
there exists a substitution 8 : x — ¢ such that M’ [¢= N. Because y is finitely presented in the
category X/Sig, thereexistsi € J and 6; : x — @i such that 6;;u; = 6. Notethat M; =M’ |, isa
@i-expansion of M such that M; [g,= N. (Q.E.D)
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The above proposition comes in two variants: infinitary and finitary. The infinitary variant
corresponds to the first condition (¢ € D') and is applicable to infinitary institutions, such as
GUFOL.., or GHCL .. whilethe finitary variant is applicable to GFOL . Throughout this paper
we implicitly assume that D represents the broad subcategory of signature morphisms which
consists of signature extensions with constants; D ¢ represents the broad subcategory of signa-
ture morphisms which consists of signature extensions with constants of constrained sorts; D!
represents the subcategory of signature morphisms which consists of signature extensions with
constants of loose sorts. In the finitary cases, such as GFOL, we assume that the signature
morphismsin D€ and D' arefinitary.

Thefollowing isa corollary of Proposition 8.2.11.

Corollary 8.2.12. In GFOL, a X-model M, where = = (S,S%,F,P), is (D¢ D')-reachable iff
there exists a set of loose variablesY and a function f : Y — M such that for every constrained
sort se S thefunction fg: (TE(Y))s — Msissurjective, where f isthe unique extension of f to
a (S F,P)-morphism.

Proof. The implication from right to left is a direct consequence of Proposition 8.2.11. Let

IR 2(Y) (where X = (S, S°,F,P) and £ = (S §°,F UY,P)) be the vertex of the directed co-

limit (£ <2 £(¥)) & (= <% £(Y)))yevfinte Of the directed diagram ((= % £(¥)) <2 (= &%

Z(Y,)))YCYJ cYfinite- By Proposition 8.2.11 M isreachable.

For the converse implication we define the set of (loose) variablesY as follows: Ys = 0 for
dl se S and Ys isarenaming of the elements Ms for all se S such that YsN Yy whenever s# <.
So, there exists a surjective function f : Y — M. We prove that for every constraint sort s’ € §°
and element m € My there existsatermt € Tg(Y) such that f(t) = m, where f is the unique
extension of f to a Z-morphism. Let me My withs' € S. Let x be avariable and (M, g) be a
2({x})-algebrasuch that g(x) = m. By hypothesisthere exists afinite set Z of loose variables, a
¥(Z)-algebra (M, h) and asubstitution 8 : {x} — T¢(Z) such that 8;h = g, where histhe unique
extension of h to a -morphism.

\/
/\

Lett’' =0(x) andt =t'(z1 < y1,...,Zn < Yn), Wheret’(zy < y1,...,Z, < Yn) isthe term
obtained by substituting the variablesy; for z, andy; € f~1(h (7)), for aII i €{1,...,n}. Note
EféatEf[(); Mo (F(Y2).-... f(yn)) = My(h(za) ... h(zs)) = h(t) = h(8(x) = g(x) = m. 2

Since GFOL (), (, allows quantification over finite number of variables, we let the subcate-
gories of signature morphisms D, D¢ and D! to be the same as in the case of GFOL . Because
D, D¢and D arefixed in concreteinstitutions, we will refer to D -reachable model (s) as ground
reachable model (s), and to (D¢, D')-reachable model(s) as reachable model(s) [7].

2 For every termt € (Te({z1:s1,-..,Zm > }))s wedenoteby M : Mg, %, ..., xMs, — Ms the derived operation
defined by My (my, ..., my) = a(t), wherea: {zi:81,...,Zm: s} — M, a(z) =m foraliec {1,...,n}, and a*is
the unique extension of a to a morphism.
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8.3 Universal Completeness

We provide proof rulesfor the constructor-based institutions and we prove acompl eteness result
using institution-independent techniques. The results below come both in afinite and an infinite
variant, the finite one being obtained by adding (to the hypotheses of the infinite one) all the
finiteness hypotheses marked in the brackets.

The reachabl e universal weak entailment system (RUWES) devel oped in this section consists
of four layers: the “atomic” layer which in abstract settings is assumed but is developed in
concrete examples, the layer of the weak entailment system with implications (IWES), the layer
of the generic universal weak entailment system (GUWES) and the upmost layer of the RUWES
of |. The soundness and the completeness at each layer is obtained relatively to the soundness
and completeness of the layer immediately below.

Reachable universal weak entailment systems (RUWES). Let us assume a D ®-universal
institution I = (Sig, Sen,Mod, =) over I, = (Sig,Senp,Mod, =) such that I, has D'-quant-
ifications for a subcategory D' C Sig of signature morphisms.

We define the following proof rules, for the WES of | .

- " —_ .
(Substitutivity) V0P 2 (79)0(p) for al Z-sentences (Vy )p and any substitution6: x — ¢

{TFs (v9)0(p) [ D', 8:x — ¢}
I'ts (Y)p
(Vx)p isaZ-sentence with = % 5/ € D€ and p € Seny ().

INnGHCL, assumeaset I' of X-sentences and a X-sentence (x)p such that x is a constrained
variable. In this case, Case splitting saysthat if for any termt formed with loose variables and
operation symbolsfrom X, we haveI' - (VY )p(x < t), where Y are all (loose) variables which
occur int, then we have proved I' = (VX)p. In most of the cases the set of termst formed with
loose variables and operation symbols from a given signature 3 is infinite which implies that
the premises of Case splitting are infinite, and thus, the corresponding entailment system is not
compact.

Given a compact WES E, = (Sig, Sen,, F?) for I, the RUWES of | consists of the least
WES over E, closed under Substitutivity and Case splitting. Thisisthe finitary version of the
RUWES, and is applicable to GFOL , GFOL ,, , GUFOL and GHCL. Note that the resulting
entailment system is not compact (even if E» is compact) since Case splitting is an infinitary
rule. Theinfinitary variant is obtained by dropping the compactness condition, and by consid-
ering the infinitary WES for |, and is applicable to GUFOL .. and GHCL ...

Proposition 8.3.1. The RUWES of | is sound with respect to all (D¢,D')-reachable models if
the WES of | is sound with respect to all (D¢, D')-reachable models.

(Case splitting)

where I" is any set of Z-sentences and

Proof. By Proposition 8.2.3 it suffices to prove the soundness of the rules of Case splitting and
Substitutivity.

We prove that Case splitting is sound with respect to al (D ¢,D')-reachable models. Let T
be a set of X-sentences and (Vy)p aZ-sentence, where X X3/ € D¢, and assume that for every
(D¢, D'")-reachable model M we have M |= (AT = (Vo)0(p)), for all substitutions 6 : x — ¢
with ¢ € D'. Let M be a (D¢ D')-reachable =-model such that M |= T and let M’ be an -

expansionof M. SinceM is (D¢, D')-reachable there exists a signature morphism £ 23D,
asubstitution 6 : x — ¢, and an @-expansion M” of M suchthat M” o= M’. Wehave M” |=6(p)
and by the satisfaction condition M’ = p.

3We consider terms modulo renaming variables.
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We prove that Substitutivity is sound with respect to all models. Let M be a X-model such
that M = (Vy)p. Assume a substitution 6 : x — ¢ such that (Vo)p € Sen(X), and let M, be any
@-expansion of M. Because My [ is a-expansion of M (since (M2 [¢) [,= M2 [¢) which by
hypothesis satisfies (V) p, we have that M2 [¢|= p. By the satisfaction condition, we obtain that
M2 |= 6(p). Since M, was an arbitrary expansion of M, we have thus proved M |= (Y¢)0(p).

(Q.E.D.)

Theorem 8.3.2 (Reachable universal completeness). The RUWES of | is complete with respect
toall (D¢ D'")-reachable modelsif

1. the WES of |, is complete with respect to all (D¢, D')-reachable models (and compact),
and

2. for each set of sentences E C Seny(X) and each sentence e € Seny(X), we have E =
e iff M = (AE = e) for all (D¢,D")-reachable models M.

Proof. Assumethat for al (D¢ D')-reachable modelsM we haveM = (AT = (Vy)€), where
> X 5" e D¢ Wewant T (Vy)€. Suppose towards a contradiction that T'¥ ()€’ Then there

existsasignature morphism £ > =" in D! and a substitution 6 : y — ¢ such that T ¥ (V¢)8(¢).

We define the set of Z-sentencesT2 = {p € Senx(Z) | T+ p}.

We show that T 2 (V)0(€). Assume that T', -2 (Vo)6(€). For the infinitary case take
I =T',. For thefinitary case, since the WES of |, iscompact, there existsafiniteI” C I', such
that T 2 (V)0 (&) which impliesT’ - (V¢)0(€/). SinceT'Fp for al p € T we have T T,
Hence, T+ (Vo)6(€') which is a contradiction with our assumption.

We have T2 2 (V¢)0(€), and by completenessof |, weobtain T, [~ (Vo)0(€). Thereexists
a (D¢ D')-reachable model such that M |= T and M = (Vo)8(¢). Notethat M [~ (V)6 (€)
implies M £ (Vx)€. If we have proved that M = T" we have reached a contradiction with
A= (AT = (Vy)€) for al (D¢ D'")-reachable models A.

Let (Vx1)er € T, where LE %1 € D€ and let N be any y1-expansion of M. Since M is

(D¢, D')-reachable there exists asignature morphism = % 7 in D', asubstitution y : 1 — 1,
and a 1-expansion N’ of M such that N’ [o= N. By Substitutivity (Vo1)y(e1) € T'> which im-
pliesM = (Vo1)w(er). Since N’ is ¢1-expansion of M we have N’ = y(e;) and by satisfaction
conditionN’ [y= N = ey. (Q.E.D.)

Generic universal weak entailment systems (GUWES). Let us assume a D'-universal
ingtitution | = (Sig, Sen,Mod, |=) over I, with Sen; the sub-functor of Sen.

Given a compact WES E; = (Sig,Seny, F1) for 11, the GUWES of | consists of the least
WES with universal quantifications over E;, closed under Substitutivity. This is the finitary
version of the GUWES, and is applicable to the restriction of GHCL to the sentences quantified
over finite sets of variables of loose sorts. Its infinitary variant is obtained by dropping the
compactness condition, and by considering the infinitary WES of |; it is applicable to the
restriction of GHCL .. to the sentences quantified over sets (possible infinite) of variables of
loose sorts.

Proposition 8.3.3. The GUWESof | is sound (and compact) whenever the WESof |1 is sound
(and compact).

Proof. By Proposition 8.2.3 and Corollary 3.3.11 it is suffices to prove the soundness of Sub-
stitutivity which may be found in the proof of Proposition 8.3.1.
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For the compactness of the GUWES of | consider the compact sub-WES E ¢ = (Sig, Sen,
-¢) of E = (Sig,Sen,t). It contains E1 because E; is compact. Note that E© satisfies Substi-
tutivity because the rules of Substitutivity are finitely generated. If we prove that E° satisfies
Generalization then because E is the least WES over E; satisfying the rules of Substitutivity
and Generalizationwe obtain E¢ = E.

If T F¢ (V)€ then there exists T C T finite such that T - (Vop)€/. By Generalization
o(T") € which means ¢(I') F¢ €. Now if ¢(T') ¢ € then there isT” C T finite such that
o(I") F €. Using the Generalization again we get T - (V)€ which means T ¢ (Vo)€.
(Q.E.D.))

Theorem 8.3.4 (Generic universal completeness). Let D be a broad subcategory of signature
morphisms such that D' C D. Assume that

1. the WESof |, is complete, and

2. for each set of sentences E C Sen;(X) and each sentence e € Sen;(X), we have E =5
e iff M =5 (A E = e) for all D-reachable models M.

Then we have

1. the GUWESOof | iscomplete (and compact), and

2. T ks (Vo)e, where = % 5/ € D!, iff M =y (A @(T) = &) for all D-reachable models
M.

Proof. 1. Assumethat I’ =5 (V)€ where £ % 3/ € D. We want T 5 (V)€ Suppose
towards a contradiction that T" t/5 (Vo)€.

We define the set of ¥'-sentences T'] = {p’ € Seny () [T 5 (Vo)p'}.

Suppose I'? 1, €. For theinfinitary case wetake I = T'J. For thefinitary case, since the
WES of 11 is compact, there exists afinite T” C '} such that T’ -1 €. By Generalization
o(T) Fy p’ for al p’ € T, which implies ¢(T') -y T’. Since T{ L, € impliesT? Fy €,
we obtain ¢(I') Fy € and again by Generalization I -5 (Vo)€/, which contradicts our
assumption. Hence, I'J 1/, €.

By completeness of |1 I'{ £ €. There exists a D-reachable model M such that M |=T']
but M b~ €. This implies M [}~ (Vo)€. If we proved that M [o= I" we reached a
contradiction with I" |= (V¢)€'. We will therefore focus on proving that M [ o= T

Let (Vo1)ep € T, where X % %1 € D, andlet N be any ¢;-expansion of M [,. We show
that N = e1. Since M is D-reachable there exists a substitution 6 : @1 — ¢ such that
M o= N. By Substitutivity we obtain T - (V¢)8(e1) which implies 8(e;) € T]. Since
M [=T{ we have M |= 8(p) and by the satisfaction condition M [g= N |= €.

2. The non-trivial implication is from right to left. Assume that T [£5 (Vo)€, where = 2,
>’ € D!, then by soundness of the WES of | we have T" ¥ (Vo)€. Using the first part of
the proof we get a D-reachable ¥'-model M such that M = () and M [~ €. Therefore
there exists a D -reachable model M such that M (£ (A o(T') = €).

(Q.E.D.)

The following remark addresses the second condition of Theorem 8.3.2.
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Remark 8.3.5. Under the assumption of Theorem 8.3.4, for any subcategory D¢ C D of sig-
nature morphisms, we have T =5 (Vo)€ iff M =5 (AT = (Vo)€) for all (D¢,D')-reachable
models M.

Weak entailment systems with implications (IWES). Assume an institution | = (Sig,
Sen,Mod, =), a sub-functor Seng : Sig — Set of Sen such that

e (AH =C) € Sen(X), for al (finite) sets of sentences H C Senp(X) and any sentence
C € Seng(%), and

e any sentencein | isof theform (AH = C) asabove.

We denote the institution (Sig, Seng, Mod, =) by lo.

Given a compact WES Eq = (Sig, Seng, F0) for I, the IWES of | consists of the least WES
over Ep, closed under the rules of Implications. Thisis the finitary version of the IWES for
I, and is applicable to the restriction of GHCL to the quantifier-free sentences. Its infinitary
variant is obtained by dropping the compactness condition and by considering the infinitary
WESfor |; it isapplicable to the restriction of GHCL .. to the quantifier-free sentences.

Proposition 8.3.6. The WESof | issound (and compact) whenever the WESof | is sound (and
compact).

Proof. The soundness of the WES of | islifted to the soundness of | using Corollary 3.3.9.
In the finitary case the WES of |lg is compact. By Proposition 3.3.8 the IWES of | is
compact. (Q.E.D)

Theorem 8.3.7. Let us assume that
1. the WESof | iscomplete,
2. every set of sentencesin lg isbasic, and

3. there exits a broad subcategory D C Sig such that for each set B C Seng(X) there is a
D -reachable model Mg defining B as basic set of sentences.

Then we have
1. the IWESof | issound, complete (and compact), and
2. T Epiff M (AT = p) for all D-reachable models M.
Proof. 1. Because the entailment system of | has Implicationsit is enough to prove that
I'=pimpliesTFp

for each I C Seny (%) and each p € Senp(X). Let Mr, be the model defining the set of
sentences I'p = {e € Seng(I")|T" - e} as basic. We use the following couple of lemmas.

Lemma8.3.8. M, |= eiff I' - efor all sentencese € Seng(X).

Lemma8.3.9. Mr, =T.

If T |= p then by Lemma 8.3.9 we have that M, = p. Now by Lemma 8.3.8 we obtain
I' p. By Proposition 3.3.8 the WES of | is compact.
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Lemma 8.3.8. The implication from right to left holds by the definition of I"g. For the
other implication let us consider a sentence e such that M, (= e. For any model M such
that M |=T'o, because I'g is basic there exists a model homomorphism M, — M. Since
Mr, = e and e is basic, there exists another model homomorphism Me — Mr,. These
give a model homomorphism Me — M which means M = e. We have thus shown that
T ): e.

By the completeness of | we obtainthat T'g - e. For theinfinitary caselet ustake T, = I'o.
For thefinitary case, sincethe WES of |y is compact, there existsI'yy C T finite such that
Iy F e. By the definition of I'o we obtain that T"t- I'y hence T' - e, (Q.E.D)

Lemma 8.3.9. Let us consider that we have a | -sentence AH = C € T" and |et us assume
that Mr, = H. By Lemma 8.3.8 we have that I' = H and because AH = C € T" and
the WES of | has Implications we obtain that I' - C. By Lemma 8.3.8 again we deduce

Mr, = C. (QED)

2. Letp=(AH = C) withH C Seng(X) and C € Seng(X). Consider the model M ),
defining (TUH )o = {e € Seng(X)|TUH |= e} asbasic set of sentences. By Lemma8.3.9
we have that M), = TUH. By the hypothesis this implies M(rn), = AH = C.
Because Mrun), = H too, it follows that M), = C. Since C is basc there exists a
homomorphlsm MC — MEUH),-

Now let M be any model such that M =T"UH. By Lemma 8.3.8 we obtain that M |=
(TUH)o. Because (I'UH)g is basic, there exists a homomorphism M ), — M. We
obtain thus a homomorphism Mc — M, which meansM = C.

(QE.D)
The following is a consequence of Theorems 8.3.2, 8.3.4 and 8.3.7.

Theorem 8.3.10. Consider an ingtitution | = (Sig, Sen,Mod, =) with three broad subcate-
goriesD, D¢ and D! of signatures morphisms, where D¢ C D and D' C D, and a sub-functor
Seng of Sen (lo = (Sig, Seng, Mod, )) such that

e (Vx)(Yo)(AH = C) € Sen(X) for all signature morphismsE % 5/ € D¢, 5 % 57 € D!,
all (finite) setsH C Seng(X”) and any sentence C € Seng(X”), and

e all sentences are of the form (V) (Vo) AH =- C asin the item above.

If Eo = (Sig,Seno, F°) is a WESfor | then the free WES of | over Eq with Implications and
universal quantifications, and satisfying Case splitting and Substitutivity is sound and complete
with respect to all (D¢, D')-reachable models whenever

1. the WESof | is sound, complete (and compact),
2. every set of sentencesin lg isbasic, and

3. for each set B C Seng(X) there is a D-reachable model Mg defining B as basic set of
sentences.

Atomic weak entailment systems (AWES). In order to develop concrete sound and com-
plete universal WES we need to define sound and complete WES for the “atomic” layer of the
institutions.
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GFOL :

GOSA:

Proposition 8.3.11. Let GHCL ¢ be the restriction of GHCL to the atomic sentences.
The WES of GHCL o generated by the rules bellow is sound, complete and compact.
(Reflexivity) 0 -t =t, wheret isaterm.

(Symmetry) t =t' -t =t , wheret,t’ areterms.

(Transitivity) {t =t t' =t"} -t =t”, wheret,t’,t” areterms.

(Congruence) {ti =t/|1 <i <n}Fo(ty,....tnh) = o(t], ....t},), where tj,t/ € Tr areterms
and ¢ is an operation symbol.

(PCongruence) {tj =t{|1 <i<n}U{m(ts,....tn)} F 7(ty,....t;,), wheret;,t/ aretermsand
T is a predicate symbol.

Proof. Soundness follows by simple routine check and compactness by applying Propo-
sition 3.2.6 after noting that all the rules are finitely generated. For proving the complete-
ness, for any set E of atomsfor asignature (S, F, P) we define

== {(t,t)|Ert=t"}

By Reflexivity, Symmetry, Transitivity and Congruence thisis a congruence on Tg. Then
we define amodel Mg asfollows:

— the (S F)-algebra part of Mg is defined as the quotient of the initial algebra (term
algebra) Tr by =g, and

— for each relation symbol © € P, we define (Mg)r = {X/=c|E - nt(x)}

The definition of (Mg) is correct because of the rule PCongruence. Now we note that
for each (S F,P)-atom p we have E |- p iff Mg = p. Now if E |= p then Mg = p which
meansE  p. (Q.E.D.)

Definition 8.3.12. Acongruencerelation=ona (S, <,F)-model M isa (S F)-congruence
relation == (=s)sessuchthatif s< s'in (S <)anda,a € Msthena=s4d iffa=y &.

Proposition 8.3.13. Let GOSA( betherestriction of GOSA to the atomic sentences. The
WES of GOSA( generated by the rules bellow is sound, complete and compact.
(Reflexivity) 0 -t =t, wheret isaterm.

(Symmetry)t =t'+t' =t , wheret,t’ areterms.

(Transitivity) {t =t t' =t"} -t =t”, wheret,t’,t” areterms.

(Congruence) {tj =t/|1 <i <n}+F o(ty,....tn) = o(t], ....t},), where tj,t/ € Tr areterms
and ¢ is an operation symbol.

Proof. Soundness follows by simple routine check and compactness by applying Propo-
sition 3.2.6 after noting that all the rules are finitely generated. For proving the complete-
ness, for any set E of equationsfor asignature (S, <,F) we define

=e={(t,t)|[Ert=t"}
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GPOA:

GPA:

Since the signature (S, <,F) isregular the term algebra Tr istheinitial (S <,F)-algebra
inMod(S, <,F). By (Reflexivity), (Symmetry), (Transitivity) and (Congruence) thisisan
F-congruence on Tr. =g isalso an order-sorted congruence on Tg, because the definition
of =g doesnot depend upon asort. Sincethe signature (S, <,F) islocaly filtered we may
define amodel Mg as the quotient of the initial algebra (term algebra) T by order-sorted
congruence =g.

Noticethat for each (S <,F)-equationt =t', E-t=t"iff Me =t =t". Nowif E =t =t
then Mg =t =t whichmeansE -t =t'. (Q.ED)

Definition 8.3.14. A (preorder) congruence relation on a (S, F)-preorder algebraM isa
pair (=,C) where=isa (S F)-congruencerelation and C isa preorder on M which

— preserve the preorder structure of M, i.e. m< m' impliesmC ' for all elements
m,m € M,

— is compatible with operationsin F, i.e. m < m’ implies Mg(m) < Mg(nY) for all
operationsc € Fys and all elementsm,m’ € My, and

— Is compatible with the congruence =, i.e. my = mp, Mp = Mg and mg = my implies
my C my for all elements my, mp, mg, my € M.

Proposition 8.3.15. Let GPOA betherestriction of GPOA to the atomic sentences. The
WES of GPOA generated by the rules bellow is sound, complete and compact.
Reflexivity) 0 -t =t for each termt

Symmetry) t =t’ +t' =t for any termst, t’

Transitivity) {t =t’,t' =t"} -t =t" for any termst,t’,t”

Congruence) {ti =t/|1 <i<n}Fo(ty,....,tn) = o(t3, ...t} foranyc € F
Reflexivity')0 -t <t for each termt

Transitivity){t <t’ t’' <t”} -t <t” for any termst,t’,t”

Congruence ) {ti <t/|1 <i<n}Fo(ty,....tn) < o(ty,....t,) foranyc € F

ET) {t1 =to, to <t3, t3=1a} Ft1 <t4for any termsty,tp,t3,ta

P Py

Proof. Soundness follows by simple routine check and compactness by applying Propo-
sition 3.2.6 after noting that all the rules are finitely generated. For proving the complete-
ness, for any set E of atomsfor asignature (S, P) we define the congruence (=g, Cg)

— == {(tL,t)|EFt =t}
— Ce={(tL,t)|EFt <t}

By the above rules of GPOA( the pair (=g,Cg) is a preorder congruence on the term
algebra Tr. Then we define the preorder algebra Mg as the quotient of the term algebra
by (=g,Cg). We note that for each equational or transitional (S F)-atom p

Et+pifandonlyif Mg E=p

Now if E |= p then Mg = p which meansE + p. (Q.E.D)
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Definition 8.3.16. A congruence relation = on a (S F)-model M is a S-sorted equiva-
lence relation == (=s)scs such that for every operation symbol ¢ € F and elements m,
m € M with m= ' if both Mg(m) and Mg () are defined then Mg(m) = Mg ().

Proposition 8.3.17. Let GPA( be the restriction of GPA to the atomic sentences. The
WES of GPA( generated by the rules bellow is sound, complete and compact.
(Symmetry) t =t +t' =t for any termst, t’

(Transitivity) {t =t', t’ =t”} -t = t” for any termst, t’,t"

(Congruence) {t; =t/, def (a(ty,...,tn)), def(o(t],...,tA)} F

o(ty,...,th) = o(t],....t}) foranyc € F

(Subterm) def (o(ty,...,tn)) - {def(tj) |i € 1,n} for anyc € F

Proof. Soundness follows by simple routine check and compactness by applying Propo-
sition 3.2.6 after noting that all the rules are finitely generated. For proving the complete-
ness, for any set E of atomsfor asignature (S, TF, PF) we define

== {(t,tEFt 2t}

Note that For every set of existence equations E C Sen(S F) we have that E I- def (t) if
andonly if t € Tg, where Tg isthe partial algebrahaving the carrier the set of all sub-terms
appearing in E.

Firstly we prove that =g is a congruence relation on Tg. The reflexivity of =g is given
by the above remark. The first two rules ensure the symmetry and the transitivity of =g.
By therule (C) we have that =g is a congruence relation on Tg.

For each existence equationt =t wehave E -t £t/ «= t=gt/ <= Tg/— =t =t
IfE=t<t/ thenTe /o =t =t whichimpliesEHt =t (QED)

Thefollowing isacorollary of Theorem 8.3.10.

Corollary 8.3.18. [ Completeness of the GHCL] The RUWES of GHCL generated by therules
of Case splitting, Substitutivity, Generalization, Implications, Reflexivity, Symmetry, Tran-
sitivity, Congruence and PCongruence is sound and complete with respect to all reachable
models.

Similar completeness results hold for GHOSA, GHPOA, GHPA and also their infinitary

variants GHCL .., GHOSA.., GHPOA.., GHPA...

8.4 Borrowing Completeness

Let I’ = (Sig,Sen’,Mod’, =") and | = (Sig, Sen,Mod, =) be two institutions. An institution
morphism (¢, 0, B) : 1" — | consistsof

e afunctor ¢ : Sig’ — Sig, and

e two natural transformations o : ¢;Sen = Sen’ and B : Mod’ = ¢°P;Mod such that the
following satisfaction condition for institution morphisms holds:

M =y o (€) iff By (M) gz €
for every signature ¥’ € Sig/, each ¥’-model M’, and any ¢(%')-sentence e.
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Definition 8.4.1. We say that a WESE = (Sig,Sen, ) of aninstitution | = (Sig, Sen, Mod, )
is Q-complete, where Q = (Qs)sc sig| IS a family of sets of sentences (s C P (Sen(X)) for all
signaturesY) iff T’ =x eimpliesT Fy efor all T € Qy and e € Sen(X).

Remark 8.4.2. Let (,0,B): 1" — | bean institution morphism, where | = (Sig, Sen, Mod, =)

and I’ = (Sid’,Sen’,Mod’,|="). Every WES E = (Sig,Sen,+) for | generates freely a WES

E’ = (Sig,Sen’,+’) for I, where E’ isthe least WES closed under therules - :
OCZ/(F) l_Z’ OLZI(E)

whereT" 45y E isadeductionin E.
Theorem 8.4.3. Consider

1. an institution morphism (¢,0,,B) : I’ — | (where I’ = (Sig’,Sen’,Mod', =) and | =
(Sig, Sen,Mod, =)) such that oy is surjective for all ' € [Sid/|,

2. aclass of models M = (Mg)scsig (in 1) such that By ([Mod'(Z')]) € My for all
signatures ¥’ € |Sig|, and

3. aWESE = (Sig,Sen,+) for | which issound and complete with respect to M .
Then the entailment system E’ = (Sig’,SerY,+’) of |’ determined by E is
1. sound, and

2. Q-complete

where for every signature X’ € |Sig'| we have I € Qg iff T = ocg,l(l“’ ) has the following prop-
erty: M =4z T impliesM € By (|Mod' (X)), for any M € My(s).

Proof. Since oy is surjective, for all signatures X' € [Sig'|, E’ = (Sid/,Sen',') with t-3,=
oy (Fosry), for al signatures X' € [Sig'|, is the WES of |’ determined by the institution mor-
phism (¢, o, B).

1. Suppose that T -5, E" and let M’ be aX'-model such that M’ =" T". By the definition of
E’ there existsT" -4y E such that o (T') = T and oy (E) = E’. By the satisfaction condition
for the ingtitution morphisms we have Bs/(M’) |=4x) T'. Since E is sound with respect to M
we have M |=¢s) (T' = E) for al models M € My(y). Because By/(M’) € M5y we have
that Bs/(M’) =4z (I = E) which implies Bs/(M’) |=4(x) E. By the satisfaction condition for
institution morphismswe get M’ =5, o/ (E). Hence M’ =5, E'.

2. Assume I =y E/, where I € Q, and let T = o} (I”) and E = o' (E’). Note that
M= (I'= E) for dl M € My. Indeed for any M € My we have: M =4 T implies M €
By ([Mod'(X')|); so, there exists aX’-model M’ such that Bs/(M’) = M and by satisfaction con-
dition for institution morphisms M’ =’ T” which implies M’ |=’ E’; applying again satisfaction
condition we obtain M = E. Since | is complete with respect to M we have I - E which
impliesT" - E’. (QE.D)

In order to develop sound and complete WES for the constructor-based institutions we need
to set the parameters of Theorem 8.4.3. We define the institution morphism AycL = (6,0, B) :
CHCL — GHCL such that

1. thefunctor ¢ maps

- every CHCL signature (S F,F¢ P) to a GHCL signature (S, S, F,P), where S is the
set of constrained sorts determined by F¢, and

- every CHCL signature morphism (¢%'t, ¢°P, ¢P'®) to the GHCL signature morphism
(9%, P, pPred);

71



2. o is the identity natural transformation (recall that Sen(S F,F¢ P) = Sen(S, S, F,P),
where S° isathe set of constrained sorts determined by the constructorsin F°), for every
CHCL signature (S, F, FC, P) we have O(sFFep) = 1Sen(SF,F°,P);

3. B isthe inclusion natura transformation (note that every (S F,F¢ P)-model M is aso
a (S S, F,P)-model; indeed if there exists a set of loose variablesY and a function f :
Y — M such that for every constrained sort s € S° the function fZ : (Tre(Y))s — Msisa
surjection, where f# isthe unique extension of f to a (S F¢, P)-morphism, then for every
constrained sort s € S° the function f: (T (Y))s — Msisasurjection too, where f isthe
unique extension of f to a (S F, P)-morphism), for every CHCL signature (S F,F¢ P)
thefunctor B(sr re p) : Mod(S F,F¢, P) — Mod(S S°,F,P) isdefined by B(sr re p) (M) =
M for al models M € [Mod(S F,F¢ P)| and s e p)(h) = h for al morphism h €
Mod(S F,F¢,P).

Notation. Recall that for every GHCL signature (S S, F,P) we let FS to denote the set of
operations with constrained resulting sorts {c € Fy_s | s€ S°}.

Remark 8.4.4. A (S,S,F,P)-model M in GHCL is reachable iff there exists a set of loose
variablesY and afunction f : Y — M such that for every constrained sort s€ S° thefunction f:
(Tess(Y))s — Mg issurjective, where f isthe unique extension of f toa (S, FS’, P)-morphism.

Proof. Almost identic with the proof of Remark 5.1.2. (Q.E.D)

Definition 8.4.5. A basic specification (X,T") in CHCL is sufficient-complete, where the sig-
nature X is (S F,F¢, P), if for every termt formed with symbols from FS and loose variables
fromY there exists a termt’ formed with constructors and loose variables from'Y such that

I'Eisep) (VY)t=t"
Thefollowing isacorollary of Theorem 8.4.3.

Corollary 8.4.6. The WES of CHCL generated by the proof rules for GHCL is sound and
Q-complete, where I' € Qs re p) iff (S F,F€,P),T) isa sufficient-compl ete specification.

Proof. We set the parameters of Theorem 8.4.3. Theinstitution | is CHCL and theinstitution
| is GHCL. The ingtitution morphism is Ayc. and the entailment system E of GHCL is
the least entailment system closed under the rules enumerated in Corollary 8.3.18. M is the
class of all reachable models. We need to prove that for every sufficient-compl ete specification
((SF,F¢ P),T") and any reachable (S, S, F,P)-model M (where S° is the set constrained sorts
determined by F°) we have: M =T impliesM € |[Mod(S,F,F¢,P)|. Because M is reachable
by Remark 8.4.4 there exists a function f : Y — M, where Y is a set of loose variables, such
that for every constrained sort s € S° the function f#: (Tes(Y))s — Mg isasurjection, where f#
is the unique extension of f to an (S,FS’, P)-morphism. Because ((S, %, F,P),T) is sufficient-
complete, for every constrained sort s € S° the function @ (Tre(Y))s — Ms isasurjection too,
where f isthe unique extension of f to a (S F¢,P)-morphism. (QED.)

Similar results as Corollary 10.4.14 can be formulated for GHCL ...

In general, the proof rules given here for the constructor-based institutions are not compl ete.
Recall Example 19: thesignature (S,F,F¢ P) inCHCL, where S= {s}, F_s={a,b}, F¢={a}
and P = 0. It iseasy to notice that = a = b but thereisno way to prove 0 - a=b.
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Structural Induction. In the constructor-based institutions presented here the elements of
models consist of interpretations of terms formed with constructors and elements of |oose sort.

Thus, Case Splitting can be rephrased as follows:
{CFsErep) (VY)p(x—1) | Y —loosevariables, t € Tre(Y)}
I'Hskrep) (VX)p
set of sentences, and (Vx)p a sentence such that x is a variable of constrained sort.
In order to prove the premises of Case splitting, in many cases, we use induction on the
structure of terms. For any t formed with constructorsin F ¢ and loose variables we have
(Structural induction) T' = (g pe p) (WW)p (X ) if

Case splitting where T isa

1. Induction basefor al cons€ FC g, T' gk e p) p(X < CONS),

2. Induction step for al 6 € Fg ¢ s, TU{p(X X)) | X € X} F(sFucFep) P(X — o(Cy,
.,Cn)), Where

(@ C = {c1,...,cn} isaset of new variables such that ¢; has the sort s, for all i €
{1,...,n},and

(b) X C Cisthe set of variableswith the sort s.
whereV are al (loose) variablesint.
Proposition 8.4.7. The entailment system of CHCL satisfiesthe rules of Structural induction.
Proof. Almost identical with the proof of Proposition 5.3.1. (Q.ED)

We define the infinitary rules of Case splitting and show that the WES of CHCL is sound
and complete. Asin case of CCEQL we have defined the rules of Sructural induction to deal
with infinitary premises of Case spliting but the infinitary rules can not be replaced with the
finitary ones in order to obtain a complete and compact WES because the class of sentences
true of aclass of modelsfor agiven constructor-based specification isnot in general recursively
enumerable (it would be a contradiction with Godel’s famous incompl eteness theorem).

Similar completeness results hold also for CHOSA, CHPOA, CHPA and their infinitary
variants CHCL .., CHOSA.., CHPOA.., CHPA.. or variations of these institutions. The results
here are due to [28]. If D€ isthe broad subcategory consisting of identity morphisms then all
models are reachable and we may obtain the result in [16] concerning Horn institutions. In
the next chapter we investigate the applicability of Theorem 8.3.2 to GFOL by adapting the
completeness of first-order institutionsdevelopedin [29]. Then it isstraightforward to construct
an institution morphism CFOL — GFOL and obtain an entailment system sound and compl ete
(relatively to afamily of sufficient-complete sets of sentences) for CFOL.
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Chapter 9

Forcing and First-order Institutions

In this chapter we introduce the forcing technique in institutional model theory, apply it to
prove afirst-order completeness result, and points out some particular cases. The formalization
of forcing in abstract model theory constitutes one of the most important contribution of our
research, and it provides an efficient tool for obtaining new results showing also the significance
of the top-down approach towards model theory. Forcing isatechnique invented by Paul Cohen,
for proving consistency and independence results in set theory [17, 18]. A. Robinson [60]
devel oped an anal ogoustheory of forcing in model theory, and Barwise [ 4] extended Robinson’s
theory to infinitary logic and used it to give anew proof of Omitting Types Theorem. A general
treatment of the Omitting Types Theorem may be found in [44]. The forcing technique in
classical model theory is presented also in [41].

We emphasi ze the results obtained for the infinitary logics, but we will also obtain complete-
ness for the finitary logics. However the results for the finitary case is weaker than the known
completeness results for the (finitary) first-order logic [39] asit requires a countable number of
symbolsin asignature. A paper with similar objectives dedicated to finitary logics that captures
the case of uncountable signaturesis[57].

9.1 Institution-independent Notions

Definition 9.1.1. A signature morphismy : £ — X’ is non-void if there exists a substitution
0: X — 1s.

In FOL the non-void quantification translates into accepting extensions of signatures with
constants of non-empty sorts. If we accept only signatures with non-empty sorts (for each sort
there exists at least one term), signatures which are sensible [42], then all the extensions of
signatures with constants are non-void.

Definition 9.1.2. Inany institution a X-sentence p isfinitary iff it can bewritten as ¢(p 1) where
¢ : Xf — X isasignature morphismsuch that X isafinitely presented signatureand p s isa X¢
sentence. An institution has finitary sentences when all its sentences are finitary.

In concrete institutions this condition usually means that the sentences contain only afinite
number of symbols. This is the case of FOL, POA, OSA, PA, and also their generalized
versions.
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9.2 Forcing and Generic Models

Forcing is a method of construction models satisfying some properties. In this paper we intro-
duce the notion of forcing in institution model theory and we study completeness of various
“first-order” logics. For this we assume an institution | = (Sig,Sen,Mod, |=) with a broad
subcategory D' C Sig of signature morphisms and a sub-functor Seng C Sen.

Definition 9.2.1 (First order fragments). By a D'-first-order =-fragment we mean an extension
L of Seng(X) (Seno(X) C L) such that

1. every sentence of L is constructed from the sentences of Seng(X) by means of negations,
(infinitary) disunctions and existential quantifications over the signature morphismsin
D!, and

2. L hasthe following properties:

(@) L isclosedtonegations,i.e. ifec L then—ec L.

(b) L isclosed tothe“ sub-sentence” relation, i.e.
-if-ee L thenee L,
-if\/EeL thenec L forallec E, and
-if (Iy)€ e L,wherey € D', and6:x — 15z then 6(¢) € L.

Note that the closure of L to “sub-sentence” relation enable us to apply induction on the
structure of the sentences. Our definition of fragmentsis dightly different from the onein [44].
We do not assume the closure of L to

e digunctions,i.e. e, & € L impliese;Vv, e L, or

e existentia quantifications, i.e. 8(€') € L implies (3x)€ € L in case there exists a substi-
tution6 : x — 1s.

Definition 9.2.2. A forcing property for asignatureX isatuple P = (P, <, f) such that:
1. (P, <) isapartially ordered set with a least element 0.
2. f isafunction which associateswith each p € P a set f(p) of sentencesin Seng(X).
3. Whenever p < q, f(p) C f(q).

4. For each set of sentences E C Senp(X) and any sentence e € Seng(X) if E C f(p) and
E = ethenthereisq > p suchthat e e f(q).

The elements of P are called conditions of P. We will define the forcing relation IFC P x L
associated to aforcing property P = (P, f, <).

Definition 9.2.3. Let P = (P, f, <) be a forcing property for a signature X and L a X-fragment.
Therelation pI-ein P, read p forces g, is defined by inductionon e, for pc Pandec L, as
follows:

e Forec Seny(X). plkeifee f(p).

e For—ec L. pl-—eifthereisnoq> psuchthat ql- e.
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e For\VEeL.plFVEifpl-efor someec E.
e For (Ix)ec L. plk (Ix)eif pI-6(e) for some substitution 6 : x — 1s.

We say that p weakly forces e, in symbols p IF% g, iff pI- ——e. The above definition is a
generalization of the forcing studied in [60], [4] and [44].

Lemma9.24. Let P = (P, f, <) be aforcing property for a signature X, L a X-fragment and e
asentenceinL.

1. plFWeiff for each q > p thereisaconditionr > g suchthatr I- e.
2. Ifp<qgandpl-ethenqlFe.

3. If plrethenplFY¥e.

4. \We can not have both pI-eand p I+ —e.

Proof. 1. plFYeiff pl- ——eiff for each g > p, q¥ —eiff for each g > p, there existsr > q
suchthat r It e.
2. By inductionone.
For e € Seng(X). The conclusion followsfrom f(p) C f(q).

For —e € L. We have pI- —e. Suppose towards a contradiction g —e, then by definition
of forcing thereis > qsuchthat o I e. Thereforethereisq > p suchthat o IF e, thus
p ¥ —e, which is acontradiction.

For \VE € L. pl-efor somee € E. By induction gl ewhich impliesq - \/ E.

For (3y)ec L. Since pIF (Ix)e then p I+ 6(e) for some substitution 6 : x — 1. By
induction g - 6(e), and by the definition of forcing relation q I- (3y)e.

3. It followseasily from 1 and 2.

4. Obvious.
(Q.E.D))

By Lemma9.2.4 (4), we may introduce plf* false, for all conditions p € P, in the Definition
9.2.3 and nothing will be changed in the future devel opments.

Definition 9.2.5. Let P = (P, f, <) be aforcing property for a signature %, and L a X-fragment.
A subset G C P issaid to be a generic (relatively to the fragment L) iff

1. peGandg< pimpliesqe G.

2. p,g€ Gimpliesthat thereexistsr e Gwithp<randq<r.

3. for each sentence e € L there exists a condition p € G such that either pl-eor pl- —e.
Lemma9.2.6. If L is countablethen every p belongsto a generic set.

Proof. The proof of thislemmaissimilar totheonein[44]. SinceL iscountablelet {e,|n< o}
be an enumeration of L. We form a chain of conditions pp < p; < ... in P asfollows. Let
Po = p. If pnl- —en, let pnr1 = pn, otherwise choose pn1 > pn such that ppog I €,. The set
G={geP|q< pnforsomen< w} isgeneric and contains p. (Q.ED)
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Definition 9.2.7. Let P = (P, <, f) bea forcing property for a signature X and L a X-fragment.

1. Misamodel for G C P if for every sentenceec L

M eiffGIFe

2. Misageneric model for p € Pifthereisagenericset GC Psuchthat pe GandM isa
model for G.

Proposition 9.2.8. Assume that
1. every set of sentencesin Seng(X) isbasic,
2. there exists a subcategory D of signature mor phisms such that

(@) D'c D, and
(b) for each E C Seng(X) there exists a basic model Mg that is D-reachable,

3. the semantic entailment system (Sig, Seng, =) of 1 is compact.
Then thereis a D -reachable model for every generic set G.

Proof. Let T be the set of all sentences of L which are forced by G. Let B = Seng(X)NT. We
prove that for eachec L Mg = eiff e T by induction on e.

For e € Senp(X). Suppose Mg = e then we have B |= e and by the hypothesisthereisB’' C B
finite such that B’ =e. Since G is generic there exists p € G such that B’ C f(p). Suppose
towards a contradiction that e ¢ T which because G is generic leadsto —e € T. Then there is
g € G such that g /- —e. Since G isgeneric thereisr € Gsuchthatr > pandr > g. We have
B’ C f(r) and using Lemma 9.2.4(2) we obtain r I —e. By the definition of forcing property
r’ I e for somer’ > r and and by Lemma 9.2.4(2) r’ I —e which is a contradiction. If e T
thenee Band Mg = e.

For —e € L. Exactly oneof e, —eisin T. Since G is generic thereis p € G such that either
pl-eor pl-—e. Thereforeec T or —e € T. Suppose towards a contradiction that e ,—ec T,
then there exists p,q € G such that pI- e and ql- —e. By the definition of generic setsthereis
reGsuchthatr > pandr > g. By Lemmal1(2) r I eandr I —ewhich is a contradiction.

Let -ec T. Supposethat Mg |= e, then by inductionwe havee € T, whichisacontradiction.
Therefore Mg = —e. Now if Mg |= —e, theneisnotin T, therefore —e € T.

For VEeL.If Mg =V E then Mg = efor someec E. By inductionee T. Wehavepl-e
for some p € Gandweobtain pl-\/E. Thus, VE € T. Nowif /E €T thenee T, for some
e c E. Therefore, by induction, Mg = e and thus Mg = V E.

For (3x)e€ L. Assumethat Mg = (3y)ewherey : £ — X', There exists ax-expansion N
of Mg such that N |= e. Because Mg is D -reachable there exists a substitution 6 : y — 1x such
that Mg [¢= N. By the satisfaction condition Mg = N |, |= 8(e). By induction 6(e) € T which
implies (3x)e € T. For the converse implication assume that p I (3y)e for some p € G. We
have that p I 6(e) for some substitution 8 : y — 1s. By induction Mg = 6(e) which implies
Mg fe): e. Since (MB fe) fX: Mg we obtain Mg ): (Hx)e. (Q.EED.)

Theorem 9.2.9. (Generic model theorem) Under the conditions of Proposition 9.2.8, if L is
countable then there is a generic D -reachable model for each condition p € P.

77



Proof. By Lemma 9.2.6 there is a set generic set G C P such that p € G and by Proposition
9.2.8 thereisa D -reachable model M for G. (Q.E.D)

Thefollowing isacorollary of the generic model theorem.

Corollary 9.2.10. Under the condition Theorem 9.2.9 for every condition p € P and any sen-
tencee € L we havethat pI-Y eiff M = e for each generic D-reachable model M for p.

Proof. Suppose p I e and M is a generic D -reachable model for p. We have p I ——e which
impliesM = ——e and M = e. Now for the converse implication suppose that p ¥ e. There
isql- —efor some q > p. By Proposition 9.2.8 there is a generic D -reachable model M for q
which impliesM = —e. But M is also a generic model for p. (Q.E.D)

9.3 First-order Institutionsand Entailment Systems

As in case of universal ingtitutions the results concerning the first-order entailment systems
come both in a finite and an infinite variant, the finite one being obtained by adding (to the
hypotheses of the infinite one) all the finiteness hypotheses marked in the brackets.

Let | = (Sig,Sen,Mod, =) be an institution and

e |et Seng be a sub-functor of Sen (i.e. Seng : Sig — Set such that Seng(X) C Sen(X) and
o(Senp(X)) C Senp(X') for each signature morphism¢ : £ — '), and

e D' CSigisabroad subcategory of signature morphisms.

We say that | isa D'-first-order institution over 1o, where lo = (Sig, Sen,Mod, |=), when for
every signature X the set Sen(X) isa D' -first-order fragment.

Let AFOL betherestriction of FOL to the atomic sentences. FOL isafirst-order institution
over AFOL, where the quantification class D! of signature morphismsis the class of all signa-
ture extensions with a finite number of constants. Similarly, the infinitary version FOL , , is
an example of first-order institution.

Let us assume a D'-first-order ingtitution | = (Sig,Sen,Mod, |=) over g with Seng the
sub-functor of Sen. We define the following proof rules for the entailment system of | :

(Substitutivity’) (39)0(p) + (I )p for al Z-sentences (Fx)p and (F¢9)6(p), whered : y — ¢
is asubstitution.

In this chapter we consider the following version of Generalization:

(Generalization) T Fy —(3y)p’ iff x(T) s —p’ for al sets of X-sentences I' and al =-
sentences —(3yx)p’, wherey : £ — Y.

Given a compact entailment system Eq = (Sig, Sen, -9) for o, the first-order entailment of
| (abbreviated FOES) consists of the least entailment system over Eq with digunctions, false,
negations, existential quantifications, and closed under Substitutivity’.

Note that these rules are given for both finitary and infinitary case. In the finitary case the
digunction \/ E occurring in the Digunction introduction and Digunction elimination property
isfinitary, i.e. E isafinite set of sentences. Generally speaking, if one of the first-order con-
structor for sentencesis missing then the corresponding properties are disregarded. For example
in case of QfFOL, the restriction of FOL to quantifier-free sentences, Substitutivity and Gen-
eralization are omitted. However, if false is missing then the definitions of Red and False may
be rephrased using {p, —p} instead of false, where p is any sentence.

We call aset E of sentencesinconsistent when E + false, or alternatively EFp andEF —p
for some sentence p.
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Proposition 9.3.1. The FOESof | is sound (and compact) whenever the entailment system of
lp issound (and compact).

Proof. The soundness of Substitutivity' is similar to the one for Substitutivity. By Corollaries
3.3.2 and 3.3.7 we obtain the soundness for the FOES of | .

For the the compactness of the entailment system of | consider the compact entail ment sub-
system E© = (Sig,Sen,°) of the FOES E = (Sig,Sen,+) of |. Since the entailment system
Eo = (Sig,Seng,F°) of g is compact, E¢ satisfies all the rules in Ep. Using an argument
similar asin the proof of Propositions 3.3.1, 3.3.5 and 3.3.3 the entailment E ¢ has disjunctions,
negations and false. Since the rules of Substitutivity’ are finitely generated E © satisfies the rules
of Substitutivity’. By Proposition 3.3.10 E € satisfies Generalization and because E is the least
FOES over Eq with disjunctions,negations and false, and satisfying the rules of Substitutivity’
and Generalizationwe obtain E€ = E. (Q.E.D.)

We also assume another mild condition, namely that the sentences of |y are not obtained
by applying the first-order constructors. An immediate consequence of this definition is the
following.

Remark 9.3.2. Let ¢ : £ — X' be a signature morphism, e € Sen(X) and € € Sen(X') two sen-
tences such that ¢(e) = €. Then

e ec Senyg(2) iff € € Seng(Y'),

e e is obtained by applying Boolean connectives iff € is obtained by applying Boolean
connectives, and

e eisan existential quantified sentenceiff € isa existential quantified sentence.

9.3.1 First-order Completeness

Completeness of thefirst-order entailment systemsis significantly more difficult than soundness
and therefore requires more conceptual infrastructure. Thefirst-order completeness result bel ow
isapplicableto institutionswith “countable” signatures, i.e. signatures X with card(Seng(X)) <
.

Definition 9.3.3. Let D C Sig be a subcategory of signature morphismssuch that D! € D. We
saythats % 3 € D isa (D,D")-extension of X if

1. x isnon-void, and

2. itisthevertex of adirected co-limit (x; ﬂx)iej of adirected diagram (; %y Xi)(i<j)e(3,<)
inz/D' (=X 5 e D' foralieJands 2 5 € D' for all (i, j) € (J,<)) such that for

all signature morphisms X; ¥, ¥/ € D! there exists a substitution ; %) ¢i,j € (Xi/Sig)
which is non-void.

Throughout this section we assume that the institution | has the following properties
1. every signature morphismin D' is non-void and finitary,
2. there exists a subcategory D C Sig of signature morphisms such that every signature

hasa (D,D')-extension, and

79



3. every sentence of g isfinitary.

The (D,D')-extension property is easily fulfilled in concrete examples. Take for example
GFOL and assume that D is the class of al signature extensions with arbitrary number of
constants of any sort, and D' isthe class of signature extensionswith finite number of constants
of non-void loose sorts (s € S with (Tr) # 0). For every signature X consider a set C of new
constant symbols (C does not contain any symbol from X) such that

e Csisaninfinite set for all non-void sortsse S, and

e CsNCy forall loosesortss, s € S.

Theinclusion = &% 2(C) € D isnon-void, and it is the vertex of the directed co-limit ((Z &,

2(G)) % (2 % 2(C)))cccrinie Of the directed diagram (i - j)g cc,cvfinite in D' /Sig.
Since C is infinite, for every signature extension y; : (Cj) — X%i(CUY), where Y is afinite
set of new constants of non-void loose sorts, there exists an injective mapping yi j : GGUY — C;
such that the restriction i j |¢,: G — Cj istheinclusion.

In case of first-order institutionswith sentences formed without quantifiers we may consider
D the broad subcategory of Sig with D (Z,%) = 1y and D(X,Y') = 0 for al signatures = # ¥'.
Notethat in this case, we may take D! = D and any signature = hasa (D, D')-extensiony = 15.

Canonical Forcing Properties. Lety : X — X' bea(D,D')-extension of X asin Definition
9.3.3. We have the following consequence of the finiteness of the “atomic” sentences.

Lemma 9.3.4. Seng(X') = | ¢i(Seno(Zi))

ied

Proof. We show Seng(X') C | J ¢i(Seno(Zi)). Let e € Seny(X'). Since e is finitary it can be
ied
written asv(ef) wherev: ¢ — ¥’ isa signature morphism such that X+ isfinitely presented in
the category Sig. By finiteness of X; there exists a signature morphismv; : s — %; such that
Vi; oi = V. We have that e = @;(Vi(er)). Therefore Seng(X') = | J ¢i(Seno(Zi)). (QED)
ied
We denote by Ly the set of sentences U ¢i(Sen(%;)) and we have the following conse-
ied

quence of Remark 9.3.2 and the finiteness of signature morphismsin D'.

Lemma9.3.5. Ly isafirst-order fragment.

Proof. By Lemma 9.3.4 we have that Seng(X) C Ly.

The closure properties of Ly, are consequences of Remark 9.3.2 and the finiteness of sig-
nature morphismsin D. The most interesting case is the closure of Ly to substitutions. The
remaining cases are straightforward. Let (3y)e € Ly (where y : ¥’ — X)) and a substitution
0 :y — ly. By thedefinition of Ly and Remark 9.3.2 we have (3y) g, (&) = ok((Fwik)ex) for
some (Jyk) e € Sen(Xy), where

Pk
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isapushout of signature morphismswith y € D'. Sincey isfinitary and (@, LN Ok) (k<i)e(3,<)
isadirected co-limit in the category Zi/Sig, there exists 0y : Wk — @k k', where k < k' such that
ek; P = (pll(, 0.

T e >3/
vk 7 Eek V le
v
2k Py 2 (% z 1z 2
Therefore 6(e) = 0(g}(6)) = Pu(8k(8) € Ly (QED)

Now, let L be an arbitrary ¥'-fragment. We define the canonical forcing property P =
(P, f,<) (relatively to the fragment L).

o P={oi(p) | pi SSen(Zi), @i(pi) € L and ¢i(pi) is consistent},
e f(p)=pnSeny(X) foral p € P, and
e < istheinclusionrelation C.

Proposition 9.3.6. P = (P, <, f) isaforcing property.

Proof. All the conditions of the forcing property, except the last one, obviously hold for P.
Assume a condition p € P and a set of sentenceskE C f(p) such that E = ewhere e € Seng(X).
We provethat pu {e} € P.

By the completeness of the proof rulesfor | we get E i~ e and moreover p - ewhichimplies
pU{e} consistent. By the definition of P the condition p € P may be written as p = ¢;(p;) for
somei € J and pj € Sen(Z;). Since eis asentence in Seng(X') it may be written ase = ¢j(e;)
for some j € J and g € Seng(Zj). Let (i <k) e (J,<) and (j < k) € (J,<). We have that
puU{e} = ox(oik(pi) U{p;k(ej)}) isconsistent. Therefore pu {e} € P. (QE.D.)

Lemma 9.3.7. P hasthe following properties.
1. ifpePand \VE € pthen pu{e} € P for someec E.

2. if pe Pand (y)e c p (where y : X' — X)) there exists a substitution 8 : y — 15 such
that pu{6(e)} € P.

Proof. 1. Suppose towardsa contradictionthat pu {e} ¢ Pforal ec E.
If ec E then pU{e} € L. By Remark 9.3.2 there exists \/ E; € p; such that ¢;(E;) = E.
Since pu{e} =¢i(piU{a}) forsomeeg € E;, pu{e} CL and pu{e} ¢ Pweget pU{e}
not consistent.

Because p+ \/ E and for every e € E we have pU {e} inconsistent by Digjunction elimi-
nation property we get p inconsistent which is a contradiction.

2. There exists p; C Sen(X;) such that ¢;(pi) = p. By Remark 9.3.2 there is a sentence
(3yi)e € p;i and a pushout
o

Zi/ ........... . 2&
A
i T\v
E' —/
Zi Pi )
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such that @i ((Fvi)e) = (3y)ei(e) and e = ¢(e). By Definition 9.3.3 there exists (i <

j) € (J,<) and asubstitution ;i j : yi — @i j with y; j non-void as a signature morphism.
o

D2/ L -3

A
“w Y

- Y

Because {x & 5 2 3/ v ¥ 5, & 5/} is a pushout and vi; (Wi j;9j) = ¢i; 1y there
exists 0 : X7 — X' such that ¢f;0 = (yi j; 9j) and y; 6 = 1y.

/

/ @i /
42i .............................. -3}
v V 0
Sy v

. F /
i gL 1L z

We show that yi(pi) U{e} is consistent. Suppose towards a contradiction that y;(p;) U
{g} isinconsistent. We havethat yi(pi) - —& and by Generalizationweget p; - —(3vi) g
which is a contradiction with the consistency of p;.

Since y; j is non-void and ;i (pi) U {&} is consistent we have that i j(yi(pi)U{&}) is
consistent. Since ¢; is non-void, we obtain that ¢;(yi j(yi(pi)U{&})) = pub(e) is
consistent. Therefore pu{6(e)} € P.

(Q.E.D)

Proposition 9.3.8. If L C Ly then for each sentence e € L and each condition p € P
thereexistsq > p suchthat q - eiff pu{e} € P

Proof. For e Seng(Y). If thereisq> psuchthat ql- ethenec gwhichimpliespu{e} Cq. q
isconsistent and any subset of g is consistent too which implies pu {e} is consistent. Therefore
pU{e} € P. For the converse implication take g = puU {e}.

For —e. By the induction hypothesis, applied to e, for each q € P we have

foreachr > q,r¥e < qu{e} ¢P
which impliesthat for each g € P we have
qlF-e <= qu{e} ¢P
We need to prove
thereexistsq > psuchthatqu{e} ¢ P «<— pu{—-e} €P
Assume that thereisq > p such that qU {e} ¢ P. Then qU {e} inconsistent which implies
gk —e. We obtain quU {—e} consistent (suppose qU {—e} is inconsistent we obtain g+ ——e,

a contradiction with the consistency of g). Since pu {—-e} C qU {—e}, we have puU {—e}
consistent. Therefore pu {—e} € P. For the converse implication, take g = pu {—e}.
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For \VE. If thereis q> p such that gl \/E, then there is e € E such that g I~ e. By
the induction hypothesis, pu{e} € P. If pu{e} consistent implies pu{\/ E} consistent then
pU{VE} € P. Suppose towards a contradiction that pu {\/E} is not consistent, then pu
{e,VE} is not consistent. Because pU {e} - \VE (by Digunction introduction) we obtain
pU{e} inconsistent which is a contradiction.

For the converse implication assume that pu{\VE} € P. By Lemma 9.3.7 (1) there is
e € E such that pu{\/ E,e} € P. By induction hypothesis applied to e we have q I e for some
g> pU{VE}. Hencethereexistsq > p such that q I \/ E.

For (Jy)e. Assume that thereis q > p such that g I (Jy)e. By the definition of forcing
relation there exists a substitution 6 : y — 15 such that q I 6(e). By induction pu{6(e)} € P.
By Substitutivity' puU {6(e)} - (3y)e which implies pU {6(e), (Jy)e} consistent. Because
pU{(Fy)e} C pu{6(e),(Iy)e} weget pu {(Jy)e} consistent. Therefore pu {(Iy)e} € P.

For the converse implication assume that pu {(Jy)e} € P wherey : ¥’ — X. By Lemma
9.3.7 (2) there exists a substitution 6 : v — 1y such that pu {(Jy)e, 6(e)} € P. Applying the
induction hypothesisto 6(e) we obtain g > pU {(3y)e} such that ql- 6(e). Therefore, by the
definition of forcing relation g+ (3y)e. (Q.E.D)

We have the following consequence of the above proposition.

Corollary 9.3.9. If L C Ly then for each condition p € P, any generic model M for p satisfies
p.

Proof. Let G C P be the generic set such that p € G and M isamodel for G. We prove that
M = efor all ec p.

Let e be an arbitrary sentencein p. Since G C P isageneric set there existsq € G such that
either qI- eor g - —e. Suppose that I+ —-ethenthereisr € Gsuchthatr > pandr > q. By
Lemma9.2.4 (2) r I- —e. By Proposition 9.3.8 since e € r there existsr’ > r such that r’ I- e.
Using Lemma9.2.4 (2) again we get r’ I —e which isacontradiction. Therefore ql- e and since
M isamodel for G we havethat M |~ e. (Q.E.D)

Existence of generic sets. Corollary 9.3.9 does not state that for each condition thereis a
generic set which includesit. Therefore we need to prove that generic sets actually exists. For
thiswe will consider only signatures that have a countable set of symbols.

Definition 9.3.10. We say that a signature X is countable if it has a countable set of “ atomic”
sentences, i.e. card(Senp(X)) < w.

Lemma 9.3.11. Assumethat all the signaturesof | are countable and let
e ¢ :X — Y beaanextension of X asin Definition 9.3.3, and
e [ be a countable set of X-sentences.

If L istheleast first-order fragment which containsy (T") then every condition p € P belongsto
a generic set.

Proof. Since the signature X is countable we have that L is countable. By Lemma 9.2.6 every
condition p belongsto a generic set. (QED.)

In case the sentences of | are formed without quantifiers, the countable condition is not
needed.
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Lemma 9.3.12. If all the sentences of | are formed without quantifiers then for any condition
p there exists a generic set G such that p € G.

Proof. Note that in this case the extension y is the identity 1x. Let {e |i < card(L)} be an
enumeration of L. We form a chain of conditions pp < p1 < ... in P asfollows: let po = p.
If pi IF—g, let pi.1 = p;, otherwise choose pj.1 > p; such that piy1 IF ; for any limit ordinal
o< card(L) let po, = Uicq Pi- Theset G={qe P|q< p; for somei < card(L)} is generic
and contains p. (Q.E.D)

Theorem 9.3.13 (First-order completeness). Consider a D'-first-order institution 1 = (Sig,
Sen,Mod, =) over 1o = (Sig,Seng,Mod, |=) and a broad subcategory D C Sig of signature
morphisms, where D! € D and such that

1. ether

(a) the sentences of | are formed without quantifiers (in this case we assume that D' is
the broad subcategory of signature mor phisms which consists of identities only), or

(b) all the signatures are countable and digunctions are applied only to countable sets
of sentences,

every signature X hasa (D, D')-extension,
every signature morphismin D! is non-void and finitary,
the semantic entailment system (Sig, Seno, |=) of lg is compact,

every sentence of lg isfinitary, and

o o & w D

for every E C Seng(X) there exists a D-reachable model Mg defining E as basic set of
sentences.

If the entailment system of | is complete then we have

1. T |=5 p impliesT 5 p, and moreover

2. T =5 piff for every (D, D')-extension (£ % =) € D of £ and each D-reachable >'-model
M’ we have M’ [, = (AT = p),

whereI" isa countable set of Z-sentences and p is any X-sentence.

Proof. We consider the case al the signatures of T are countable. The case when | admits
sentences without quantifiersis similar.

1. Assume that T 5 p, where T is a countable set of sentences. Let £ % 5/ bea (D,D")-
extension of X asin Definition 9.3.3. We define L astheleast '-fragment which includes
x(T).

Because  is non-void we have x(T") ¥y x(p). We have that x(I"U {—p}) is consistent.
If x(TU{=p}) isnot consistent then "'U {—p} is not consistent which impliesT" = ——p
and by Double negation elimination we obtain " - p which is a contradiction with our
assumption. By thefirst hypothesisof the theorem and Lemma 9.3.11 (when the sentences
of | are formed without quantifiers we apply Lemma 9.3.12) the condition x(T'U{—p})
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(of the canonical forcing property P = (P, <, f)) belongs to a generic set. By Theorem
9.2.9 there exists a generic D -reachable ¥’-model M’ for the condition x(T'U{—p}). By
Corollary 9.3.9 M’ |= x(T'U{—p}) and by satisfaction condition M’ |, |=T'U{-p} which
impliesT"~ p.

2. The implication from left to right is obvious. Therefore we will focus on the converse
implication. Assume that T" |45 p. By completeness of FOES of | we have T t/5 p and
by the first part of the proof for any (D,D')-extension y : £ — X' of T there exists a
D-reachable model M’ such that M’ |= ¢ (T"U{—p}) whichimpliesM’ [, }~= (T = p).

(Q.ED.)

9.3.2 Working Examples
Let FOL' be the institution which restricts FOL to
1. signatureswith a countable number of symbols, and
2. sentences which allows quantifications over variables of non-void sorts.

Let FOLy, , betheinfinitary extension of FOL’ which allows disjunctions of countable sets of
sentences. The followings are Corollaries of Theorem 9.3.13.

Corollary 9.3.14. The FOESof FOL' is complete.
Proof. Inthiscase

e D' istheclass of dl signature extensions with a finite number of constants of non-void
sorts,

e D istheclass of signature extensions with constants of any sort, and
¢ the atomic entailment system is the one defined in Proposition 8.3.11.

Since the set of sentences of any given signature is countable, by Theorem 9.3.13 the FOES of
FOL' iscomplete. (Q.ED)

Corollary 9.3.15. InFOL,, ,, we have

I'=spimpliesTFxp
for all countable sets " of sentences and any sentence p.
Proof. Asinthe case of FOL'

e D! isthe class of all signature extensions with a finite number of constants of non-void
sorts,

e D istheclassof signature extensions with constants of any sort, and
e the atomic entailment systemis similar to the one defined in Proposition 8.3.11.

The result follows directly from Theorem 9.3.13 by considering the first subcase of the first
hypothesis. (Q.E.D)
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Thefollowing isacorollary of Theorems 8.3.4 and 9.3.13.
Corollary 9.3.16. The GUWESof UFOL iscomplete.

Proof. By Theorem 9.3.13 we obtain the compl eteness of the FOES for therestriction of UFOL
to the sentences formed without quantifiers. By Theorem 8.3.4 we lift it to the completeness of
the GUWES of UFOL. (Q.E.D))

Corollary 9.3.17. The GUWESof UFOL .. iscomplete.

Proof. Similarly to the proof of Corollary 9.3.16 (Q.E.D)
Let CFOL' be the ingtitution which restricts CFOL to
1. signatures with a countable number of symbols, and

2. sentences (VX)p, where X isafinite set of variables of constrained sorts, and p isformed
over the atoms by applying Boolean connectives and quantifications over variables of
loose sorts that are non-void.

The followings are consequences of Theorems 8.3.2, 9.3.13 and 8.4.3.

Corollary 9.3.18. The WESwith (universal and existential) quantifiers, disunctions, negations
and false generated by the rules of Reflexivity, Trangitivity, Congruence, PCongruence, Sub-
gtitutivity and Case splitting is Q-complete for CFOL’, where I" C Qg iff (Z,T) is a sufficient
compl ete specification.

Proof. Firstly, we define GFOL’ asthe restriction of GFOL to
1. signatures with a countable number of symbols, and

2. sentences (VX)p, where X is a set of variables of constrained sorts, and p isformed over
the atoms by applying Boolean connectives and quantifications over variables of loose
sorts that are non-void.

We prove that RUWES of GFOL' is Q-complete. Assume that

e DCistheclassof al signature extensions with afinite number of constants of constrained
sorts,

e D'istheclassof al signature extensions with a finite number of constants of |oose sorts
that are non-void,

e D istheclass of signature extensions with constants of any sort, and
¢ the atomic entailment system is the one defined in Proposition 8.3.11.

By Theorem 9.3.13 we obtain that the FOES of the restriction of GFOL' to the “first-order”
sentences formed without quantifications over variables of constrained sorts is complete. By
Theorem 8.3.2 we lift the completeness of the FOES to the Q-completeness of the RUWES of
GFOL’ whichisrelativeto the class of all reachable models.

Secondly we define an ingtitution morphism Ago, : GFOL’ — CFOL’, similarly as Apcy :
GHCL — CHCL defined in the previous chapter, and by Theorem 8.4.3 we obtain the Q-
completeness of CFOL’. (QED)
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Thefollowing isacorollary of Theorems 8.3.2, 8.3.4, 9.3.13, and 8.4.3.

Corollary 9.3.19. The WES of CUFOL is Q-complete, where I" C Qs iff (Z,T") is a sufficient
compl ete specification.

Proof. Similar to the proof of Corollary 9.3.18. (Q.ED))

We have introduced the forcing technique in institution model theory; using this we have
proved the completeness of the first-order entailment systemsin the abstract institutional setting
and then we applied the result to

e FOL’ and FOL therestrictions of FOL and FOL (,, , to

- signatures with a countable number of symbols, and

/
01,7

- sentences formed with quantifications over variables of non-empty sorts;
e UFOL and UFOL...

The presentation given in this chapter in dlightly different from [29], and it alows usto link the
first-order completeness results to the onesin [ 28] presented also in the previous chapter. Thus,
the results for the institutions CFOL’ and CUFOL are developed for the first time here. We
instantiate our results only to first-order logic but one may easily formulate similar corollaries
for order-sorted, preorder, and partial algebras, and also to combinations of these logics; thus,
we obtain that the proof rulesfor CUOSAP given in Chapter 7 are sound and compl ete.
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Chapter 10

Partial First-order Logic

Note that all the examples of institutions given contain either total or partial operation symbols.
In this chapter we extend the previousinstitutional framework and results regarding the univer-
sal ingtitutions for the class of logics which have both partial and total operation symbols and
guantifications over total constant/variable symbols such as partial first-order logic (PFOL).
This institution underlies CASL language [2] which have been designed for the specification
and development of modular software systems.

Example 29 (Theinstitution of partial first-order logic (PFOL) [13, 51]). A signaturein PFOL
isatuple (S TF,PF) such that (STF UPF) is an algebraic signature. TF is the set of tota
operations and PF is the set of partial operations. PFOL do not contain the distinguished
(partial) constant L. A morphism of PFOL signatureso : (STF,PF) — (S, TF/,PF’) isjusta
morphism of algebraic signatures (STF UPF) — (S, TF'UPF’) such that ¢(TF) C TF’ and
o(PF) C PF’.

A partial algebra M for a PFOL signature (S TF,PF) isjust like an ordinary algebra but
interpreting the operations of PF as partial functions, which means that M s might be undefined
for some arguments. A partial algebrahomomorphismh: M — N isafamily of (total) functions
{hs: Ms— Ns}scsindexed by the set of sorts Sof the signature such that hy,(Mg(a)) = Ns(hs(a))
for each operation symbol ¢ : w — s and each string of arguments a € M,y for which Ms(a) is
defined.

The sentences have three kinds of atoms: definedness def (), strong equality = and ex-
istence equality =. The definedness def(t) of atermt holdsin a partial algebra M when the
interpretation M; of t isdefined. The strong equality t; = t, holdswhen both terms are undefined
or both of them are defined and are equal. The existence equality t1 < t, holds when both terms
are defined and are equal. The sentences are formed from these atoms by means of Boolean
connectives and quantification over total (first-order) variables. Notice that each definedness
atom def (t) is semantically equivalent witht = t and any strong equality t; = t, is semantically
equivalent with (def (t1) v def (tp)) = t; = to.

By restricting the sentences to universal sentences and universal Horn sentences formed
over the existential equalities, we obtain UPFOL and HPFOL, respectively. Their infinitary
versions are obtained by allowing infinitary universal sentences.

Notations. Let £ = (S, TF,PF) beasignaturein PFOL and M a X~-model.

1. We denote by Ty the -model with the carrier sets {t € Treupr | M |= def(t)} and inter-
preting each operation symbol ¢ € TF UPF asa(partial) function (Ty)s : (Tm)s, X ... X
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(TM)S'] — (Tw)s defined by (Ty)s(t1,-..,th) = o(ts,...,th) when M = def (o(ty, .. .,tn)),
and undefined otherwise. If 6 € TFs,_s,.sandti € (Tu)s foralie {1,...,n} then (Tm)o
istotaly defined. Note that there exists an unique morphism Tyy — M given by the unique
interpretations of termsin Ty into the model M.

2. If X isaset of new total constant symbols, then an interpretation for X isjust a (many-
sorted total) function f : X — M. Asin FOL a (S TF,PF)-algebra M and a function
f : X — M giveaninterpretationin M of X(X), where Z(X) = (S TF UX,PF), alowing
the pair (M, f) to be seen asa X(X)-algebra

Example 30 (Constructor-based partial first-order logic (CPFOL)). The signatures of con-
structor-based partial first-order logic (S, TF, TF¢ PF,PFC) consist of a partial first-order sig-
nature (S, TF,PF), and a distinguished set of both total constructors TF¢ C TF and partial
constructors PF C PFC. The constructors determine the set of constrained sortsS* C S s &
iff there existsa constructor 6 € TR s or 6 € PRy_,s with the result sort s, and the set of loose
sortsS = S— &

The (S F,F¢)-sentences are the universal constrained first-order sentences of the form
(VX)p where X isafinite set of variables of constrained sorts, and p is aformulawith quantifi-
cations over variables of loose sorts only.

The (S TF, TF¢, PF,PF®)-modelsare the usua partial (S, TF, PF)-agebras M with the car-
rier setsfor the constrained sorts consisting of interpretations of termsformed with constructors
and elements of loose sorts, i.e. there exists

1. asetY = (Ys)ses Of total variables of loose sorts, and
2. afunctionf : Y — M
such that for every constrained sort s € S° the function f#: (Tom,1))s — Msisasurjection, where

1. Tim,f) € Trreupre(Y) isthe maximal partial (S TFCUY, PF¢)-algebraof terms such that
(M, f) |=def(t) foral t € Ty 1), and

2. f#: Tm, 1) — (M, f) isthe unique (S, TF°UY, PF®)-morphism.
A constructor-based first-order signature morphisms
¢0: (STF,TF® PF,PF®) — (S, TR, TFL, PR, PFY)
isaPFOL-signature morphism¢ : (S TF,PF) — (S, TFy, PFy) such that

1. constructors are preserved along signature morphisms: if 6 € TF¢UPFC then ¢(o) €
TFFUPFE, and

2. no “new” constructors are introduced for “old” constrained sorts: if 61 € (TF{)w,—s, U
(PF{)w,—s, and s € ¢(S°) then there exists 6 € TFCUPFC such that ¢(c) = 61.

CPFOL , o istheinfinitary extension of CPFOL obtained by allowing countable disjunc-
tions for construction of the first-order part of sentences, i.e. the CPFOL ,, (, Sentences (VX)p
are CPFOL sentences such that the first-order part p which contains quantifications over (to-
tal) variables of loose sorts only, may be formed by applying disjunctions to countable sets of
sentences. CPFOL (), (, isa DC-universal institution over its restriction to infinitary first-order
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sentences built over the atoms by applying digunctions to countable sets of sentences, nega-
tions, false, and quantifications over finite sets of (total) variables of loose sorts, where D€
is the subcategory of signature morphisms which consists of signature extensions with finite
number of total constants of constrained sorts.

CUPFOL, CHPFOL are defined by restricting the sentences of CPFOL asin the previous
cases. Their infinitary variants are obtained by allowing infinitary universal sentences.

Example 31 (Generaized partia first-order logic (GPFOL)). The signatures (S, S°, TF, PF)
consist of afirst-order signature (S, TF, PF) and a distinguished set of sorts S° C S We call the
set of sorts S constrained and S = S— S loose. A generalized partial first-order signature
mor phism between (S, S°,F,P) and (S, S}, F1,P1) is a simple signature morphism (we do not
allow mappings of constantsinto termsasin the previous cases). The sentencesarethe universal
constrained first-order sentences of the form (¥X)e, where X isafinite set of total variables of
constrained sorts and e is a formula formed over atoms by applying Boolean connectives and
guantifications over total variables of loose sorts. Models are the usual PFOL -models and the
satisfaction is inherited from PFOL. Note that GPFOL is a D ®-universal ingtitution over its
restriction to first-order sentences built over the atoms by applying Boolean connectives and
quantifications over total variables of loose sorts, where D € is the class of signature extensions
with finite number of total constants of constrained sorts.
The variants of GPFOL are defined similarly as in the previous cases.

10.1 PFOL-Substitutions

Given a PFOL signature (S, TF,PF) and two sets of new total constants X and Y, a first-
order (S, TF,PF)-substitution from X to Y consists of a mapping 6 : X — Treupe(Y) of the
variables X with (TF UPF)-termsover Y. Let def (0) to denote the set {def(6(x)) | x € X} of
(S TFUY, PF)-sentences.

On the semantics side, each (S, TF, PF)-substitution 8 : X — Trrupr (Y) determines afunc-
tor Mod(0) : Mod((S TFUY,PF),def(6)) — Mod(S F U X, P) defined by

e Mod(6)(M)x = My for each sort x € S, or operation symbol x € TF UPF, and

e Mod(0)(M)x = Mgy, i.e. the evaluation of the term 6(x) in M, for each x € X. Notice
that since M = def(8) the term 6(x) which may contain partial operation symbols is
evaluated in the model M.

On the syntax side, 6 determines a sentence translation function Sen(6) : Sen(S TFUX,PF) —
Sen(S, TFUY, PF) which in essence replaces all symbolsfrom X with the corresponding (TF U
Y UPF)-terms according to 6

o Sen(8)(ty = tp) is defined as (t) = B(t') for each (S TF UX, PF)-existence equation
t1 =tz, where 0 : Trrupr (X) — Treupe (Y) isthe unique extension of 6 toan (TF UPF)-
homomorphism (6 is replacing variables x € X with 6(x) in each (TF UX U PF)-term
t).

e Sen(0)(p1V p2) is defined as Sen(0)(p1) vV Sen(8)(p2) for each disjunction py V p2 of
(S TF UX,PF)-sentences, and similarly for the case of any other Boolean connectives.
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e Sen(0)((VZ)p) is defined as (VZ)Sen(6z)(p) for each (S, TF U X U Z, PF)-sentence p,
where 87 isthetrivial extension of 8 toa (S, TF UZ, PF)-substitution *.

The satisfaction condition is given by the proposition bellow.

Proposition 10.1.1 (Satisfaction condition for PFOL -substitutions). For each PFOL signature
and each (S, TF, PF)-substitution
0: X — Trrupe(Y)

Mod(8)(M) |= p iff M = Sen(6) (p)
for each (S TF UY, PF)-model M which satisfiesdef (6) and each (S, TF U X, PF)-sentence p.

Proof. By induction on the structure of the sentence p and by noticing that Mod(8) (M) = Ma o)
for each (TF UX UPF)-termt. (QED.)

10.2 General Substitutions

The satisfaction condition property expressed above permits the definition of a general concept
of substitution by abstracting

e PFOL signatures (S TF, PF) to signatures X in arbitrary institutions, and

o setsof first order variables X for (S TF, PF) to signature morphisms X — X.

For any signature X of an institution, and each span {Z1 Lyz ¥,} of signature morphisms,
aX-substitution [21] 6 : 1 — x2 consists of apair (Sen(6),Mod(6)) , where

1. Sen(®) : Sen(X1) — Sen(Zp) isafunction and
2. Mod(6) : Mod(X2) — Mod(X,) isafunctor,

such that both of them preserve %, i.e. the following diagrams commute:

n(®) Sen(Z)  Mod(Zy) Hod(®) Mod(X»)

Sen(Z,)
S;m /:2 Mm ;mdxz
Sen

Mod(Z

and such that the following Satisfaction Condition holds:
Mod(6)(My) = p1 if and only if M2 = Sen(p1)

for each Z-model M, and each Z;-sentence p;.
We sometimes let _ [¢ denote the functor Mod(6) and 6 denote the sentence translation
Sen(6). In PFOL, given a (S, TF, PF)-substitution 6 : X — Treupe (Y) we may consider

1 x1: (STF,PF) < (STFUX,PF) and 2 : (STF,PF) < ((S TFUY,PF),def(8))
2. Sen(8) : Sen(S, TF UX,PF) — Sen((S, TF UY, PF), def (8)), and

Lwithout loss of generality we may assume that variablesin Z are distinct from variablesin Y
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3. Mod(6) : Mod((S TF,cupY,PF),def(6)) — Mod(S TF UX,PF)

with the definition given in the previous section which is actually a substitutionin the institution
of presentations PFOL P'®, In fact in PFOL the expansion of a model with the carrier sets con-
sisting of interpretations of terms along a signature extension with (total) constants determines
asubstitution in PFOL P' rather than PFOL which makes impossible to apply the framework
developed in the Chapters 8 and 9 to partial first-order logic.

10.3 Reachability - revisited

We give the definition of reachable models parameterized by aclassS of substitutions. Consider
aningtitution | = (Sig, Sen,Mod, |=) with a broad subcategory of signature morphisms D, and
a sub-functor Sen, C Sen. We say that a substitution 6 ; (£ % /) — (£ % (2”,B)) in | P isa
(D, Seny)-substitution when x, ¢ € D and B C Seny(X”).

Definition 10.3.1. Let | = (Sig,Sen,Mod, |=) be an institution and S a class of (D, Seny)-
substitutions for 1. A =-model M is S-reachable if for each span £1 & T 5 = of signature

morphismsin D, each y-expansion N of M [, generates a substitution 6 : (Zg X 1) — (2o 2
(£,B)) inS suchthat M =B and M [¢= N.

In the previous definition of reachability the parameters Sen, and S were fixed. For each
signature X we had Senp(X) = 0 and S consisted of morphismsin comma category of signature
morphisms. We fix the parameters for PFOL :

1. D to consists of signature extension with total constant symboals,
2. Seny(S,TF,PF) = {def(t) |t € Trrupr }, and

3. S to consists of substitutions defined above 6 : X — Treupr(Y), where (STF,PF) isa
PFOL signature.

Proposition 10.3.2. In PFOL a model M is S-reachable iff it consists of interpretations of
terms.

Proof. Let X = (S TF,PF) be asignature and assume a Z-model M which is S-reachable. We
prove that Ty — M is surjective, where Ty = {t € Trrupr | M = def(t)}. We show that for
every me M there existst € Trrupr such that M; = m. Consider a total constant x of sort s
and let N be an expansion of M along £ — Z({x}) (where Z({x}) = (S TF U{x},PF)) which
interprets the constant symbol x as m. Since M is S-reachable there exists a substitution 0 :
{x} — Trrupr suchthat M [g= N. Taket = 6(x) and we have M; = Mo (x) = (M Tg)x =Nx=m.

For the converse implication let X = (S TF,PF) be asignature, X and Y two digoint sets
of total constants with elements which are different from the symbolsin Z, and (M, h) aZ(Y)-
model with elements which are interpretation of terms, i.e. the unique morphism h¥ : Tmny —
(M, h) isasurjection. For each X(X)-model (M, g) there existsafunction 8’ : X — Ty py such
that 8; (h* |s) = g.

h#
Tmn = >

V

X

M
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Note that Tm ) [£C TrrupF (Y). We define the substitution 6 : X — Trrupr (Y) by 6(x) = 6/(X)
for al x € X, and we have (M, h) [o= (M, 0';h [5) = (M, Q). (QED.)

Definition 10.3.3. Let | = (Sig,Sen,Mod, |=) be an ingtitution and S a class of (D, Seny)-
substitutions for 1. Let D¢, D' C D be two broad subcategories of signature morphisms. e
say that X-model M is (S,D¢ D')-reachable if for every signature morphism = X 5 in D¢
and each y-expansion M’ of M there exists a signature morphism X 2 5"in D!, a substitution
0:=L5)— (=2 (x,B))inS anda (X, B)-model M” such that M” [o= M.

Proposition 10.3.4. In GPFOL, a X-model M is (S,D¢, D')-reachable, where the signature
¥ is (S, S, TF,PF), iff there exists a set Y of total constants of loose sorts and a function
h:Y — M such that for every constrained sort s € S° the function hZ : (Tompy)s — (M, h)sis

surjective, where h¥ : Timpn — (M, h) isthe unique X(Y)-morphism.

Proof. For the direct implication we define the set of (loose) variablesY as follows: Ys = 0 for
dl se S and Ys isarenaming of the elements Ms for all se S such that YsN Yy whenever s# <.
S0, there exists a S-sorted function h: Y — M surjective on loose components, i.e. hs: Ys — Mg
issurjective for all se S. We prove that for every constraint sort ' € & and element m € My
there exists a term t € Ty ) such that h*(t) = m, where h* : Tpy ;) — (M, h) is the unique
2(Y)-morphism.

Let me Mg with s € . Let x be a variable and (M, g) be a £({x})-algebra such that
g(x) = m. By hypothesis there exists afinite set Z of total constant symbols of loose sorts, a
X(Z)-agebra (M, f) and asubstitution 0 : {x} — Trrupr(Z) such that (M, f) [o= (M, Q).

Assume that t = 0(x) and let {z1,...,z,} all the variablesin t. We define the Z(Y)-term
t' =t(z « h™1(f(z0)),...,z1 — h™1(f(z))) and the substitution 6’ : {x} — Trrupr(Y) by
0'(x) =t

Wehavem= (M. )= (M. ) fe)x= (M. gy =Mi(f(@) ... f(z0)) =My ({0 (20).....
h(h~1f(zy))) = (M, h)y 2.

For the converse implication let Y be a set of total variables of loose sorts, andh:Y — M
a function such that for every constrained sort s € S the function hf : (Timny)s — (M, h)s is
surjective, where h : Timn — (M, h) isthe unique X(Y)-morphisms. Assume afinite set X of
total constant symbolsand (M, g) aZ(X)-expansion of M. Reasoning similarly asin Proposition
10.3.2 there exists a substitution 6 : X — Tireypr) (Y) such that (M, h) [o= (M, g). Now let
Y’ C Y betheleast subset such that 6(x) € Trrupr (Y’) for al x € X. Since X isfinite we have

2Foreverytermte(TT,:UpF({zl S1,...,Zm Sn}))s the derived partial operation My : Mg, X, ..., xMg, — Ms
isdefined by M;(my,...,my) = ()whenteT(Ma and undefined otherwise, wherea: {z1:s1,...,Zn: S} — M,

a(z)=mforalic{1,...,n}, and a" :Tima) — (M, a) istheunique X({z; : 1, ... ,2Zm : S })-morphism.
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that Y’ isfinite.

(Q.ED.)

Let .Y — M betherestrictionof h:Y — M toY'. Note also that (M, h) [5yn= (M,h)
and (M,h) [¢= (M, h) [¢= (M, Q).

As in the previous cases of institutions since the parameters D, D¢, D!, Sen, and S are
fixed, we call

1. S-reachable models ground reachable, and
2. (S,D¢,D")-reachable models reachable models.

Lemma 10.3.5. In PFOL, for each set E of existence equations is basic and moreover there
exists a ground reachable model Mg defining E as basic set of sentences.

Proof. In PFOL, for aset E of existence (S TF, PF)-equations we let S to be the set of sub-
terms of the terms which appear in the existence equationsin E. We also define T1g (Sg) asthe
partial algebra generated by the set of terms Sc. The basic model Mg will be the quotient of
this algebra by the partial congruence induced by the existence equations in E. By Proposition
10.3.2 the model Mg is ground reachable. (QED.)

10.4 Universal Completeness- revisited

The reachable universal weak entailment system devel oped in this section consistsof four layers
but the proof rules are adapted for institutionswith both partial and total operation symbols and
having quantifications over total constant symbols.

Reachable univer sal weak entailment system(RUWEYS). Assume

1. a DC-universa institution | = (Sig, Sen,Mod, =) over I, = (Sig, Senp, Mod, =) such
that 1, has D'-quantifications for a subcategory D' C Sig of signature morphisms,

2. a sub-functor Seny, C Sen,, a subcategory D C Sig of signature morphisms such that
D¢c D andD' C D,andaclassS of (D, Seny)-substitutions.

3. for each (finite) set of sentences B C Sen,(X) and any sentence p € Sen(X) there existsa
sentence in Sen(X) semantically equivalent with A B = p.

For the finitary case we assume that for every substitution 6 : (X X X)) — (2 2 (22,B))
the set B of sentences isfinite whenever y € D€ or x € D'. Thisassumption is connected to the

last condition above: for any substitution 6 : (X X %) — (2 2 (22,B)) and any X1-sentence p
there exists a X-sentence semantically equivalent with A B = 06(p).
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Remark 10.4.1. Assume a D-universal institution | = (Sig, Sen, Mod, =) over the institution
I, = (Sig,Sen;,Mod, =), and a sub-functor Sen, C Sen;. For every set B of Z-sentences in
Senp (%) and any Z-sentence (Vo)p € Sen(X) we have

1. AB= (Vo)p issemantically equivalent with (Vo) A ¢(B) = p 3, and

2. ifp=/AH=Cthen AB= (Vo) AH = Cissemantically equivalent with (Vo) A (¢(B)U
H)=p.

Proof. Straightforward by using the standard interpretations of logical symbols. (Q.E.D)

We define the genera variants of the proof rules presented in Chapter 8:

Substltutlwty) (Vx)p Fx (Vo) AB=-8(p), where(Vy)p isany X-sentenceand 6 : (£ X %) —

(

(=% (2,,B)) isasubstitutionin S.

(Casesplitting) I' -5 (Vx)p if ' (Vo) AB=-6(p) for al substitutions 6 : (X X, %) — (2 2,
(

¥5,B)) inS suchthat ¢ € D!, where T C Sen(X) and (v )p € Sen(Z) with £ % 5/ € D¢ and
p € Seny(X).

Given a compact WES E; = (Sig, Seny,-?) for I,, the RUWES of | consists of the least
WES over Ej, closed under Substitutivity and Case splitting. Thisis the finitary version of the
RUWES and is applicable to GHPFOL. Itsinfinitary variant is obtained by dropping the com-
pactness condition, and by considering the infinitary WES of | ; it is applicable to GHPFOL ...

Proposition 10.4.2. The RUWESof | issound with respect to all (D¢, D')-reachable modelsiif
the WES of | is sound with respect to all (D¢, D')-reachable models.

Proof. By Proposition 8.2.3 it suffices to prove the soundness of the rules of Case splitting and
Substitutivity.

We provethat Case splittingissound with respectto al (S,D ¢, D')-reachable models. Let T
be aset of I-sentences and (v )p a E-sentence, where X % 5/ € D¢, and assume that for every
(S,D¢ D')-reachable model M we have M = AT = (Vo)(A\B = 8(p)) for al substitutions
0:(2535)— (=2 (2,,B))inS suchthat € D'. Let M bea(S, D¢, D')-reachable =-model
such that M =T, and let M’ be an arbitrary y-expansion of M. We want M’ = p. Since M
is (S,D¢, D')-reachable there exists a substitution 6 : (£ % %1) — (£ > (52,B)), and an ¢-
expansion M” of M which satisfies B such that M” o= M’. M =T impliesM = (Vo) AB =
8(p) and M” =BimpliesM” |= 6(p) and by the satisfaction condition for substitutionsM’ |= p.

We prove that Substitutivity is sound with respect to all models. Let M be a Z-model such
that M = (Vx)p. Consider a substitution 6 : (X X, ¥)— (2 2 (22,B)) and let M, be any ¢-
expansion of M. We want Mz = A B = 06(p). Assuming that M, = B we have that M [¢= M1
isay-expansion of M (since (M2 [g) [, = M2 [¢) Which by hypothesis satisfies (Vy )p; we obtain
M2 [o[= p and by the satisfaction condition for substitutionsM2 = 6(p). (QED.)

Theorem 10.4.3 (Reachable universal completeness). The RUWESof | iscomplete with respect
toall (S,D¢ D')-reachable modelsif

1. the WESof I, iscompletewith respect toall (S, D¢, D')-reachable models (and compact),
and

SAB = (Vo)p and (Vo) A ¢(B) = p are sentences in the meta-language; in concrete ingtitutions A ¢(B) = p
will be replaced by a semantically equivalent sentence which belongs to the underlying institution.
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2. for each set of sentences E C Seny(X) and each sentence e € Seny(X), we have E =
e iff M = (AE = e) for all (S,D¢,D')-reachable models M.

Proof. Assumethat for all (S,D¢,D'")-reachable modelsM we haveM = AT = ()€, where
> % 5 e D¢ Wewant T+ () €. Suppose towardsa contradiction that ' ¥ (Vy)€. Then there
exists a substitution 8 : (£ % /) — (2% (£”,B)) in S with ¢ € D' suchthat T ¥ (Vo) AB =
0(¢€).

We define the set of X-sentencesT'; = {p € Semnp(X) | T+ p}.

We show that T, 2 (V) A B = 8(€). Assumethat I'; F2 (Vo) AB = 6(€). For the infini-
tary casetakeI'" = I',. For thefinitary case, sincethe WES of |, is compact, there exists afinite
I" C T, such that T -2 (Vo) AB = 6(€) which impliesT” - (Vo) AB = 0(€/). SinceT' - p
foral peI" wehave T HT". Hence, T+ (Vo) A B = 6(€') which is a contradiction with our
assumption.

We have I'2 #2 (Vo) \ B = 0(€), and by the hypothesisthere existsa (S, D¢, D')-reachable
model M suchthat M =Tz and M |~ (Vo) AB = 0(€). Notethat M |~ (Vo)B = 8(€') implies
M £ (Vx)€. If we have proved that M |=T" we have reached a contradiction with T |= (V) €.

Let (Vy1)er €T, whereX n ¥ € D¢ andlet N beany y1-expansion of M. Weshow N = e.
SinceM is(S, D¢, D')-reachable there exists asubstitution y : (£ 5 51) — (£ % (,,B")), and
a@i-expansion N’ of M which satisfies B” such that N’ [¢= N. By Substitutivity (V1) AB” =
y(er) € T, which impliesM = (V1) AB” = y(e1). Since N is a ¢1-expansion of M which
satisfies B” we have N’ = y(e1) and by satisfaction condition N’ [,= N = e1. (Q.EED)

Generic universal weak entailment systems (GUWES). Let us assume

1. a D'-universal ingtitution | = (Sig,Sen,Mod, |=) over I1 with Sen; the sub-functor of
Sen,

2. a sub-functor Sen, C Sen;, a subcategory D C Sig of signature morphisms such that
D' € D,andaclassS of (D, Seny)-substitutions.

3. for each (finite) set of sentences B C Seny(X) and any X-sentence p there exists a X-
sentence semantically equivalent with A B = p.

For the finitary case we assume that for every substitution 8 : (£ % %1) — (£ % (55, B)) the set
B of sentencesis finite whenever y € D'\

Given a compact WES E; = (Sig,Seny, 1) for 11, the GUWES of | consists of the least
WES with universal quantifications over E;, closed under Substitutivity. This is the finitary
version of the GUWES, and is applicable to

1. HPFOL, and

2. therestriction of GHPFOL to the sentences quantified over finite sets of total variables
of loose sorts.

Itsinfinitary variant is obtained by dropping the compactness condition, and by considering the
infinitary WES for | ; it isapplicable to

1. HPFOL.., and

2. the restriction of GHPFOL .. to the sentences quantified over sets (possible infinite) of
total variables of |oose sorts.

96



Proposition 10.4.4. The GUWESOf | is sound (and compact) whenever the WESof |1 is sound
(and compact).

Proof. By Proposition 8.2.3 and Corollary 3.3.11 it is suffices to prove the soundness of Sub-
stitutivity which may be found in the proof of Proposition 8.3.1.

For the compactness of the GUWES of | consider the compact sub-WESE © = (Sig, Sen, -°)
of E = (Sig, Sen,I-). It contains E; because E1 is compact. Since the rules of Substitutivity are
finitely generated we havethat E © satisfies Substitutivity. Asin the proof of Proposition 8.3.3we
can prove E° satisfies Generalization and then, because E isthe least WES over E; satisfying
the rules of Substitutivity and Generalization, we obtain E€ = E. (Q.E.D)

Theorem 10.4.5 (Generic universal completeness). Assume that
1. the WESof |, iscomplete, and

2. for each set of sentences E C Sen;(X) and each sentence e € Sen;(X), we have E =5
e iff M =5 (A E = e) for all D-reachable models M.

Then we have

1. the GUWESOf | iscomplete, and

2. T ks (Vo)e, where = % 5/ € D!, iff M =y (A @(T) = €) for all D-reachable models
M.

Proof. 1. Assumethat T =5 (V)€ where = 5 5/ € D. We want to show that T -5 (V)€
Suppose towards a contradiction that Tty (Vo)€'.

We define the set of ¥'-sentences T'{ = {p’ € Seny () [T 5 (Vo)p'}.

Suppose 1“‘1p I—%, €. For theinfinitary case wetake I’ = 1“‘1". For thefinitary case, sincethe
WES of |, iscompact, there exists afinite I C 1“‘1p such that T -1 €. By Generalization
o(T) by p’ for al p’ € I, which implies ¢(I') by T, TT 3, € implies '] Fy €, and
we obtain ¢(T') -y € and again by Generalization ' 5 (V)€ which contradicts our
assumption. Hence, I'J /4, €.

By completeness of 1 T] = €. There exists a D -reachable model M such that M = T7
but M f~ €. This implies M [}~ (Vo)€. If we proved that M [o= I" we reached a
contradiction with " |= (V¢)€'. We will therefore focus on proving that M [ o= T

Let (Vo1)er € T, where X ¥1 € D!, and let N be any ¢i-expansion of M lo. We
have to show that N =5, e1. Since M is S-reachable there exists a substitution 8 : (X #
%1) — (£ 5 (¥,B)) in’S such that M =y B and M o= N. By Substitutivity we obtain
Tk (Vo) AB=0(e1) whichimplies A\B=>6(e1) € T]. M =y T impliesM =5 AB=
0(e1) andsinceM =y BweobtainM = 6(p); by the satisfaction conditionM [¢=N = €.

2. The non-trivial implication is from right to left. Assume that T j£5 (Vo)€, where = 2,
> ¢ D', then by soundness of the WES of | we have T" ¥ (Vo)€. Using the first part of
the proof we get a S-reachable X’-model M such that M = @(T") and M £ €. Therefore
there existsa S-reachable model M such that M [~ A\ o(T') = €.

(Q.ED.)
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The following remark addresses the second condition of Theorem 10.4.3.

Remark 10.4.6. Under the assumption of Theorem 10.4.5, for any subcategory D¢ C D of
signaturemorphisms, we haveT =5 (Vo)€ iff M =5 (I = (Vo)€) for all (S,D¢ D')-reachable
models M.

Proof. Almost identical with the proof of Remark 8.3.5. (Q.E.D)
Weak entailment systemswith implications (IWES). Assume

1. aninstitution | = (Sig, Sen, Mlod, =), a sub-functor Seng : Sig — Set of Sen such that

e | admitsall sentences of the form (A H =- C), where H isa(finite) set of sentences
in lg and C isasentencein |, and

e any sentencein | isof theform (A H = C) asabove;
we denote the institution (Sig, Seng, Mod, =) by lo;

2. aclassS of (D, Seny)-substitutions such that Sen, C Seng.

Given a compact WES Eq = (Sig, Seng,-°) for o, the IWES of | consists of the least WES
over Eg, closed under the rules of Implications. Thisis the finitary version of the IWES for |,
and is applicable to the restrictions of HPFOL and GHPFOL to the quantifier-free sentences.
Itsinfinitary variant is obtained by dropping the compactness condition and by considering the
infinitary WES for | ; it is applicable to the restrictions of HPFOL .. and GHPFOL .. to the
guantifier-free sentences.

Proposition 10.4.7. The WES of | is sound (and compact) whenever the WES of | is sound
(and compact).

Proof. See the proof of Proposition 8.3.6. (Q.E.D)
Theorem 10.4.8. Let us assume that

1. the WESof | iscomplete,

2. every set of sentencesin lg isbasic, and

3. for each set B C Seng(X) there is a S-reachable model Mg defining B as basic set of
sentences.

Then we have
1. the IWESof | iscomplete, and
2. TEpiffM = (T = p) for all S-reachable models M.
Proof. Similar with the proof of Theorem 8.3.7. (Q.E.D)

When we apply our results to PFOL and GPFOL we use Lemma 10.3.5 to adress to the
second and third condition of Theorem 10.4.8 above.

Atomic weak entailment systems (AWES). In order to devel op sound and complete univer-
sal WESfor PFOL, GPFOL and their infinitary variants we need to define sound and complete
WES for the’atomic’ layer of these institutions.
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Proposition 10.4.9. Let PFOL ¢ be the restriction of PFOL to the atomic sentences. The WES
of PFOL o generated by the rules bellow is sound, complete and compact.

o (Symmetry)t =t'+t’ =t for any termst,t’
e (Trangitivity) {t =t/, ' £t”} -t = t” for any termst, t’,t”

e (Congruence) {ti =t/, def (o(ty,...,t)), def (o(t],...,t})} Fo(ty, ..., tn) = o (t], ..., t})
foranyc € TFUPF

o (Totality) {def(t;) |i = 1,n} I def(oi(ty,...,tn)) for anyo; € TF
o (Subterm) def (o(ty,...,tn)) - {def(tj) | i € 1,n} for anyc € TF UPF

Proof. Soundness follows by simple routine check and compactness by applying Proposition
3.2.6 after noting that all the rules are finitely generated. For proving the completeness, for any
set E of atomsfor asignature (S TF, PF) we define

== {(t,t|EFt =t}
We use the following Lemma (which we prove later).

Lemma 10.4.10. For every set of existence equations E C Sen(S, TF, PF) we have that E -
def(t) ifand only if t € Mget (E)-

Firstly we prove that =g isacongruence relation on Mget ). Thereflexivity of =g isgiven
by the above Lemma. The first two rules ensure the symmetry and the transitivity of =g. By
Congruence we have that =g isa congruence relation on Mget g)-

For each existence equationt =t' wehave E -t St/ <= t =gt’ <= Mger(g)/= Ft=t'.
If E =t =t/ then Mger(g)/=¢ =t =t' whichimpliesE -t = t'.

of Lemma 10.4.10. "the only if part” one can easily prove by induction in the definition of
that E -t = t’ impliest,t’ € Mges(g).-

"the if part” We prove this by induction on the structure of the term t. Let o(t4,...,tn)
be a term such that tj € Mges(g), for al i € {1,...,n}. By the hypothesis induction we have
Edef(t), foraliec{1,...,n}.

- if o € TF then by Totality rule we obtain E + def (o (t1,...,t))

- if o € PF then by the definition of Myef(g) We have o(ty, ..., tn) € Se. By the definition of
S there exists an existence equation tg = to € E suchthatt € §1§t2. Without loss of generality

weassumethat t € Sget ;). Wehave E - t; = toand E Fto = t; which impliesE + def (t1). By
Subterm, def (t1) - def (t). So E I def (t). (Q.E.D.)

(Q.ED.)

Similarly, we may define GPFOL g and prove that proof rules of PFOL g are sound and
complete for GPFOL g too. The following isacorollary of Theorem 8.3.10.

Corollary 10.4.11. [ Completeness of GHPFOL] The RUWES of GHPFOL generated by the
rules Case splitting, Substitutivity, Generalization, Implications, Reflexivity, Symmetry, Tran-
sitivity, Congruence and Totality are sound and complete with respect to all reachable models.
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Constructor-based universal completeness.

As in the previous cases the completeness for CPFOL is obtained by borrowing the entail-
ment system of GPFOL through an institution morphism, according to Theorem 8.4.3.

We define the institution morphism AyproL = (¢, ., B) : CHPFOL — GHPFOL such that

1. thefunctor ¢ maps

- every CHPFOL signature (S TF, TF®, PF, PF°) toaGHPFOL signature (S, S°, TF, PF),
where S° isthe set of constrained sorts determined by TF©U PF€, and

- every CHPFOL signature morphism ¢ to aGHPFOL signature morphism which works
the same as ¢ on sorts and operation symbols;

2. aistheidentity natural transformation, for every CHPFOL signature (S TF, F ¢, PF, PF°)
we have osTr TFePF.PFe) = Lsen(STF.TFe,PFPFO);

3. Bistheinclusion natural transformation, for every CHPFOL signature (S, TF, TF €, PF, PF°)
the functor B(str e prpre) : Mod(S, TF, TFC, PF,PF®) — Mod(S S, TF,PF) is de-
fined by B(STF,TFC,PF,PFC)(M> = M for al models M € ‘MOd(S)TF,TFC, PF, PFC>’ and
B(STF,TFC,PF,PFC)(h) = hfor al morphismh € MOd(S,TF,TFC, PF, PFC)

Notation. For every GHPFOL -signature (S,S°, TF, PF) we let

1. TFS to denote the set of total operations with constrained resulting sorts {c € TFy_.s |
se §}, and

2. PFS to denote the set of total operations with constrained resulting sorts {c € PFy_s |
se S,

Remark 10.4.12. A (S,S°,TF,PF)-model M in GPFOL is reachable iff there exists a set of
total variables Y of loose sorts and a function f : Y — N, where N = M [ grps ppss) sUch
that for every constrained sort s € S the function f# : (Tin,1))s — (N, f)s is surjective, where
f#: Tivpy — (N, f) isthe unique (S TFS UY, PFS)-morphism,

Definition 10.4.13. A basic specification (X,T") in CHPFOL is sufficient complete, where X =
(S, TF,TFC, PF,PF®), if for every term t formed with symbols from TFS UPFS and loose
variables fromY there exists a termt’ formed with constructors and loose variables from Y
suchthat T }:(STEPF) (W)def (t) =1 g t/.

Thefollowing isacorollary of Theorem 8.4.3.

Corollary 10.4.14. The WES of GHPFOL generated by the proof rulesfor CHPFOL is sound
and Q-complete, where I" € Qs 1 Tre pr pre) iff the specification ((S TF, TF®,PF,PF®), T') is
sufficient complete.

Proof. We set the parameters of Theorem 8.4.3. The ingtitution |’ is CHPFOL and the in-
stitution | is GHPFOL. The institution morphism is AyproL and the entailment system E
of GHPFOL is the least entailment system closed under the rules enumerated in Corollary
10.4.11. M istheclassof all reachable models. We need to prove that for every sufficient com-
plete specification (X,T), where X = (S TF, TF¢,PF,PF¢) and any reachable (S, S, TF, PF)-
model M (where S° isthe set constrained sorts determined by TF €U PF¢) we have: M =T im-
pliesM € |Mod(X)|. Because M isreachable by Remark 8.4.4 there existsafunction f : Y — N,
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whereN =M [(gg 1rs prsey and Y isa set of total variables of loose sorts, such that for every
constrained sort s € S° the function £ : (T 1))s — (N, f)sisasurjection, where f#: Ty ) —
(N, f) istheunique (S TFS UY,PFS)-morphism. Let N’ = N [(sg TFc pre). Because (,T) is
sufficient complete, for every constrained sort s € S° the function fq: (Tin 1))s — (N, f)sisa
surjection too, where f : Ty ) — (N, f) isthe unique (S, TFCUY, PF¢)-morphism. (Q.E.D.)

Structural induction. Assumewewant I' -5, (VX)p whereX = (S TF, TF¢, PF, PF€) and x
isof sort s. By Case Splitting we need to prove (W )def (t) = p(x < t) for all termst formed
with constructors and loose variables, where V are al the loose variables which occur int. We
define the following rules

(Sructural induction) T Fx (WW)def (t) = p(X < t) if

1. (Induction base) for all conse (TFCUPF®)_s, T'U{def(cons)} Fx p(x < cons),

2. (Induction step) for al 6 € (TFCUPF®)s s we have TU {p(x — X) | X € X} U
{def(o(cy, ...,¢n))} Fx(c) p(X+o(cy, ..., Cn)), Where

-C={c1,...,Cn} isaset of new total variables such that ¢; has the sort s, for al i €
{1,...,n},and

- X C Cisthe set of variables with the sort s.

wheret is any term formed with constructors and variables of loose sorts, and V are al (loose)
variableswhich occur int.

Proposition 10.4.15. The entailment system of CHPFOL satisfiesthe rules of Structural induc-
tion.

Proof. By induction on the depth of theterm .

1. Assumethat t hasthe depth O, i.e. isaconstant. This case follows easily from I nduction
base.

2. Assumethatt = o(ty,...,tn). Let Z; be the set of al variablesint; for ali € {1,...,n}
and J C {1,...,n} such that t; has the sort s. By induction hypothesis we have I" U
{def(tj)} Fxz) p(xt;) foral j € JwhichimpliesI"U {def (tj)} Fzz) p(x < t;) for

i<n _
al jeJ, whereZ=|JZ'. Sincedef(o(ty,...,tn)) Fxz) def(t) for alie {1,....n}
i=1
we obtain T"U {def (o(ty,...,tn))} Fxz) {p(X < tj) | j € J}. By Induction step we
have U {p(x —t;j) | j € J}u{def(o(ty,...,tn))} Fxz) p(X = o(ty,...,tn)) and we get
ru{def(o(ts,...,ta))} Fxz) p(X = o(ty,...,ta)). Findly T3z def(o(ty, ..., tn)) =
p(X<— o(t1,...,tn)) whichimpliesT 5 (VZ)def (o(t1,...,tn)) = p(X— o(ty,...,tn)).

(Q.E.D.)

This Chapter generalizes the previous one on universal completenessand it isapplicableto a
wider classof logicswith both partial and total operations symbolsand with quantifications over
total variables. We defined the rules of Sructural induction which can be derived, according to
Proposition 10.4.15, from the entailment system of CHPFOL . By using the results in Chapter
9 one can easily define an entailment system for CUPFOL.
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Chapter 11

Conclusions

The pattern of institution-independent reasoning is to find categorical definitions of the con-
ditions that are sufficient to prove the desired results. In this thesis we have studied layered
entaillment systems for reasoning about the logical consequences of the basic specificationsin
arbitrary ingtitutions. The small and natural set of conditionsthat we identify for the underlying
institution to ensure completeness helps in understanding at an abstract level “why” alogicis
complete.

11.1 Summary

Our study distinguishes clearly the specific aspects of the logics from the general ones. Note
that each institution comes with a class of atomic sentences which are the starting blocks for
building sentences. We identify proof rules for the atomic sentences and prove their soundness
for each logic. In the abstract setting for an ingtitution | = (Sig, Sen,Mod, =) we assume a
sub-functor Seng which associates to each signature a set of “atomic” sentences, and a system
of sound proof rules for 1o = (Sig,Seng, Mod, =). By Proposition 3.2.7 the entailment system
generated by the rules for the “atomic” sentencesis sound.

Completeness is significantly more difficult then soundness, and it is closely related to
the structure of the sentences. Take for example CCEQL with the sentences of the form
(VX)(VY) AH = C, where X is a set of constrained variables, Y is a set of loose variables,
H is a set of atoms, C is an atom. The completeness of the restriction of CCEQL to the
atomic sentences is lifted to the completeness of CCEQL by firstly adding the rules which
deal with the logical implications and then with the universal quantifications over loose and
constrained sorts, respectively. Note that a sentence may have more than one representation.
Take for example a Z-sentence (VX)(VY) AH = Cin CCEQL. This sentence may be written
as (YXUY)AH = C, or even as (Vix)(ty) AH = C, using the institution denotation, where
1 X— X(X)andi : X — X(Y) are extensions of X with constantsfrom X and Y, respectively.
This perspective lead to the abstraction: assume an institution | = (Sig,Sen,Mod, |=), a sub-
functor Seng C Sen, and two broad subcategories D¢, D' C Sig of signature morphisms such
that all the sentences are of theform (V) (Vo) AH = C where x isasignature morphismin D¢,
¢ isasignature morphismin D', H isaset of “atomic” sentencesin lg = (Sig, Seng, Mod, =),
Cisasentencein lp. The entailment system of | is constructed gradually as follows:

1. the “atomic” entailment system (AES) is specific to each logic. Therefore, in abstract
settingsis assumed, and it is developed in concrete examples,
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Figure11.1: RUES

2. the entailment system for the restriction of | to the sentences formed without quantifiers,
also called the entailment system with implications (IES), is obtained by adding the rules
of Implications,

3. the entailment system for the restriction of | to the sentences formed without D ©-quanti-
fications, also called the generic universal entailment system (GUES), is obtain by adding
the rules of Subgtitutivity and Generalization;

4. the reachable universal entailment system for | (RUES), is obtain by adding the rules of
Case splitting.

Remark 11.1.1. Due sometechnical reasons, in Chapter 8 we used weak entail ment systems, but
since we have proved the soundness and completeness for those systems, the weak entail ment
systems are actually entailment systems.

The completeness for each layer is obtained relatively to the completeness of the layer im-
mediately below. When we instantiate GUES with IES, and IES with AES we obtain com-
plete entailment systemsfor HCL, HOSA, HPOA and HPA. When we instantiate RUES with
GUES, GUESwith IES, and IES with AES we obtain entailment systemsfor CHCL, CHOSA,
CHPOA and CHPA which are complete relatively to the class of sufficient complete basic
specifications.

Recall that we have defined FOL’ as the restriction of FOL to

e the signatures with a countable number of symbols, and
e sentences formed with quantifications over variables of sorts which are non-void 1.

Similarly we define OSA’, POA’, and PA’. The sentences of these ingtitutions are formed over
the equational and relational atoms by applying Boolean connectives and quantifications. In the
abstract setting we consider an ingtitution | = (Sig, Sen,Mod, =), a sub-functor Senp C Sen
which gives the “atomic” sentences, and a broad sub-category of signature morphisms D! used
for quantifications, such that all that for each signature X the set Sen(Z) is a D'-first-order =-
fragment (see Definition 9.2.1). Note that this condition is more general than if we assumed
that the sentences of | are formed over the “atomic” sentences in Iy by means of Boolean
connectives and D'-quantifications.

Given afirst-order signature (S, F,P) asort sis non-void iff (Tg)s # 0.
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Figure 11.2: RUES-FOES

Assuming asystem of proof rulesfor 1o = (Sig, Seng, Mod, |=) which generatesthe “ atomic”
entailment system (AES) of |, thefirst-order entailment (FOES) of | isthe obtained by adding
the rules which deals with the Boolean connectives and (existential) quantifications. One im-
portant particular case is when the sub-category D' consists of identities only. We will call the
corresponding entailment system (generated by the rules which deal with Boolean connectives)
the Bool entailment system (BES).

Asinthe previous case the completeness of AES islifted to the completeness of FOES. The
FOES may be applied to FOL’, OSA’,POA’, and PA’. Again our general approach allows to
instantiate the GUES with BES and RUES with FOES asin Fig. 11.2.

By instantiating GUES with BES, and BES with AES we obtain the completeness of UFOL,
UOSA, UPOA and UPA. By instantiating RUES with GUES, GUES with BES, and BES
with AES we obtain the completeness of CUFOL, CUOSA, CUPOA and CUPA relatively
the class of sufficient complete basic specifications. By instantiating RUES with FOES, and
FOES with AES we obtain the completeness of CFOL’, COSA’, CPOA’ and CPA’ wich is
relative to the class of sufficient complete basic specifications. Recall that each of entailment
system comes with an infinitary variant and following the figure 11.2, one can easily obtain
the completeness of the infinitary logics defined in this paper. In chapter 10 we generalize
the results concerning universal institutions to the class of logics with both partial and total
operations and with quantifications over total variables.

11.2 Related Work

The fundamental assumption underlying the algebraic specifications is that programs are mod-
eled as algebraic structures consisting of a collection of sets of data values together with func-
tions over those sets. The theoretical foundations of algebraic specification are model-oriented,
largely in terms of constructions on algebraic models. Theorem proving is syntactic manipu-
lation used to demonstrate the truth. We justify our proof measure on sematic grounds. This
approach isin contrast with Martin-Lofsintuitionistic type theory [ 47] and Coquand’s Calculus
of Constructions [19] where the emphasisis amost entirely on syntax and the system of rules,
and semanticsis absent or identified with the syntax. What we are calling soundness reappear
in this context as consistency problems and is significantly more difficult to justify.

Institutions has been introduced by Goguen and Burstall in aseminal paper [ 33] with goal of
providing uniform logical support for the algebraic specification languages. Meseguer extended
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institutions with entailment systems [ 48], arriving at the notion of logic. These are the main in-
gredients for expressing and proving soundness and completeness in the abstract institutional
framework. The completeness for single-sorted conditional equational logic was first proved
in [10], which inaugurated the subject called “universal algebra’. The first completeness result
for many-sorted conditional was given by [5] in the categorical approach. The first satisfac-
tory solution to many-sorted equational deduction is given in [ 35] where the proof rules deals
explicitly with universal quantifications. Other categorical approaches to equational deduction
may befound in[38], wherethe result isinstantiated to partial agebras, and [62] based on satis-
faction by injectivity. Here we present the first institutional approach to Birkhoff completeness
organized on three layers, closely connected to the structure of the sentences.

The first institution-independent completeness result for finitary first-order institutions is
due to [57] where the Henkin’s method is generalized to arbitrary institutions. The complete-
ness of infinitary logic L, «, Was proved by Carol Karp [43]. Here we express and prove a
completeness result for first-order institutions with signatures consisting of countable number
of symbols which captures uniformly both finitary and infinitary cases. The technique used is
forcing, a powerful method for constructing models introduced by Robinson in classical model
theory [60] and studied by Keisler [44] and Barwise [4]. Paul Cohen invented the method of
forcing to prove the independence of both the axiom of choice and the continuum hypothesis
from Zermelo-Fraenkel set theory [17, 18]. This method has had profound effects on a number
of branches of mathematical logic such as set theory and model theory as we mentioned above,
recursion theory [45], and computational complexity [ 3].

Reachability concepts focus on the specification of generation principles usually presented
by a set of constructors. Most algebraic specification languages incorporate features to express
reachability like, for instance, CafeOBJ [25], CASL [2] and Maude [15]. Constructor-based
logics has been studied in [ 7] and [8]. Institutions with both partial and total operation symbols
have been studied in [13, 2], and detailed descriptions can be found in [9].

11.3 FutureWork

One can easily define a constructor-based institution on top of some base institution | = (Sig,
Sen,Mod, |=) in the abstract setting by defining the constructor-based signatures as signature

morphisms in the base institution, and models for a constructor based-signature X g ye Sig
asmodelsM € |Mod(X)| in the base institution such that M [, is (D¢, D')-reachable. Thiscon-
struction may be useful when lifting the interpolation and amalgamation properties (necessary
for modularization) from the base institution.

Consider the signature (S,F,F¢) in CCEQL such that F = F¢. We have S = 0 which
impliesthat the carrier sets of every (S F, F¢)-algebraconsist of interpretations of terms. Every
set T of conditional (S F,F°¢)-equations admits an initial model Or, i.e. for every (S F,F¢)-
algebra M which satisfies T there exists an unique morphism Or — M. Let T" C Sen(S,F, F°)
be an arbitrary set of conditional equations. Since all algebras consists of interpretations of
termswe have that every (S, F,F¢)-morphism Or — M isasurjection, and surjective morphism
preservethe satisfaction, i.e. Or = p impliesM = p for al (S F, F¢)-agebrasM and conditional
equations p € Sen(S F,F¢). We obtain T = p iff Or = p for al p € Sen(SF,F®). Since
CCEQL is complete we obtain that the proof rulesfor the signature (S F, F€) are complete for
the initial model Or. We have defined the rules of Sructural induction to deal with infinitary
premises of Case spliting but the infinitary rules can not be replaced with the finitary ones
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in order to obtain a complete and compact entailment system; we would obtain complete and
compact entailment relations to reason with the logical consequences of the initial models of
the specifications. Godel incompleteness theorem shows that thisis not possible even for the
initial model of the specification of natural numbers.

We have introduced the forcing technique in institution-independent model theory and we
have proved a completeness result for the first-order logics. We have linked the universal com-
pleteness results to the first-order completeness and demonstrate their applicability by specify-
ing and verifying a mutual exclusion protocol. Future research aim for extending the area of
applicationsin software engineering.

Forcing is a powerful method for constructing models which has been successfully ap-
plied in classical model theory. We believe that it may bring great benefit to the institution-
independent model theory too. It is to investigate the applicability of our results to other insti-
tutions such as higher-order logic [ 14, 40], and membership algebra [50].
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