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A Method of Signal Extraction from Noisy Signal
based on Auditory Scene Analysis

Masashi UNOKI and Masato AKAGI

School of Information Science, JAIST
Japan Advanced Institute of Science and Technology
1-1 Asahidai, Tatsunokuchi, Ishikawa 923-12 Japan

Abstract

This paper presents a method of extracting the desired signal from a noisy signal
by using physical constraints as a model of acoustic source segregation. Using phys-
ical constraints, which are related to the four regularities proposed by Bregman, the
proposed method can solve the problem of segregating two acoustic sources. The
physical constraints are obtained from the regularities by translating from qual-
itative to quantitative conditions. Three simulations were carried out using the
following signals: (a) a noise-added AM complex tone, (b) a mixed AM complex
tones, and (c) noisy synthesized vowel. The performance of the proposed method
was evaluated using two measures: precision, that is, likely SNR, and spectrum dis-
tortion (SD). We found that using signals (a) and (b), it could extract the desired
AM complex tone from a noise-added AM complex tone or mixed AM complex
tones, in which signal and noise exist in the same frequency region. In particular,
the average of the reduced SD was about 20 dB. Moreover, using signal (c), it could
also extract the desired speech signal from noisy speech.

Key words: auditory scene analysis, two acoustic source segregation, gammatone
filter, wavelet filterbank

1 Introduction

Recently, the term “Auditory Scene Analysis (ASA)” has become widely known due to
Bregman’s book [Bregman, 1990 |. ASA means understanding a real environment by using
acoustic events. Although the real environment that we experience everyday consists of
speech, noise and reflection simultaneously, it seems that the human auditory system can
easily solve the problem of ASA. However, using acoustic signals received from the same
environment, it is not possible to derive a unique solution to ASA without constraints on
both acoustic sources and the real environment.

Bregman reported that to perform the problem of ASA the human auditory system
uses four psychoacoustically heuristic regularities related to acoustic events: (i) common
onset and offset, (ii) gradualness of change, (iii) harmonicity, and (iv) changes occurring
in the acoustic event [Bregman, 1993 |.

We think that by translating these heuristic regularities into physical constraints and
using them it should be possible to solve the problem of computational auditory scene



analysis. As the first step, if it is possible to solve an acoustic source segregation problem,
where the sounds required by the listener are extracted selectively while other sounds are
rejected, this solution can be used not only to construct a preprocessor for a robust speech
recognition system but also to simulate cocktail party effects. Moreover, the solution
should be a computational model of auditory phenomena, such as Co-modulation Masking
Release (CMR).

There are two main types of models of auditory segregation using some of the four
regularities, based on either bottom-up or top-down processes. An example of the former
type is Brown and Cooke’s segregation model based on acoustic events [Brown, 1992
, Cooke, 1993 ]. And examples of the latter type include Ellis’ segregation model based
on psychoacoustic grouping rules [Ellis, 1994 | and Nakatani et al’s stream segregation
agents [Nakatani et al., 1994 |. All these segregation models use regularities (i) and
(iii), and the amplitude (or power) spectrum as the acoustic feature. Thus they cannot
completely extract the desired signal from a noisy signal if the signal and noise exist in
the same frequency region. Moreover, as the power of the background noise increases, the
precision with which these proposed models can extract the desired signal decreases.

In contrast, we have discussed the need to use not only the amplitude spectrum but
also the phase spectrum in order to completely extract the desired signal from a noisy
signal in which signal and noise exist in the same frequency region [Unoki et al., 1997a
, Unoki et al., 1997b |. We have proposed a method for segregating a sinusoidal signal
from a noisy signal, using physical constraints related to regularities (ii) and (iv), and
have demonstrated its ability to do this by computer simulations. If the parameters of
this model are set to the human auditory characteristics, it can act as a computational
model for Co-modulation Masking Release [Unoki et al., 1997a |.

In this paper, we present a method of extracting the desired signal from a noisy signal
by using physical constraints related to regularities (i) — (iv), as an auditory segregation
model. In particular, we consider the problem of extracting the desired signal from the
following signals: (a) a noise-added AM complex tone, (b) mixed AM complex tones, and
(c) a noisy synthesized vowel.

2 Auditory segregation model

The auditory segregation model shown in Fig. 1 consists of three blocks: (a) auditory
filterbank, (b) a separation block, and (c) a grouping block. The auditory filterbank is
constructed using a gammatone filter as an “analyzing wavelet”. The separation block
uses physical constraints related to heuristic regularities (ii) and (iv). The grouping
block uses physical constraints related to heuristic regularities (i) and (iii), and signal
reconstruction in the grouping block is done with the inverse wavelet transform. In this
model, the separation block follows the formulation of the problem of segregating two
acoustic sources.

2.1 Auditory filterbank

First, we describe the wavelet transform and the inverse wavelet transform to design an
auditory filterbank.



If ¢ € L*(R) satisfies the “admissibility” condition:

Dy = /_o:o |¢|(:j|)|2dw < 00, (1)

where zﬁ is the Fourier transform of 1, then ¢ is called a “basic wavelet”. Relative to
every basic wavelet 1, the integral wavelet transform on L?(R) is defined by

flat) = [ st (50)ar 2)

where a is the “scale parameter”, b is the “shift parameter”, and a,b € R with a # 0.
Moreover, under this additional assumption, it follows that i is a continuous function, so
that the finiteness of Dy in Eq. (1) implies 1;(0) = 0, or equivalently, [*_(t)dt = 0.

If 4(t) is a basic wavelet, then for all t there exists the following inverse wavelet trans-

form:
10 =5 [ ftaww () @

Moreover, if we let 1(t) be a complex basic wavelet, then the integral wavelet transform
can be represented by

f(a,b) = | f(a, b)|e? & F (@), (4)

where |f(a,b)| is the amplitude spectrum and arg(f(a, b)) is the phase spectrum.
Second, to construct an auditory filterbank, we use the gammatone filter as an analyzing
wavelet. The gammatone filter is an auditory filter designed by Patterson [Patterson et
al., 1994 |, and it simulates the response of the basilar membrane. Its impulse response
is given by
gt(t) = AtV e 5 cos (2 fot), t >0, (5)

where AtY le=27bt ig the amplitude term represented by the Gamma distribution and f,

is the center frequency. In addition, amplitude characteristics of the gammatone filter are
represented approximately by
. -N
GT(f)z[l—l—](fbiffo)] , 0< f < oo, (6)
where GT'(f) is the Fourier transform of gt(t). The characteristics of the gammatone filter

are shown in Fig. 2. To determine phase information, we extend its impulse response,
which is a basic wavelet. This basic wavelet is represented by

w(t) — AtN_leﬂ”fot_%bft, (7)

using the Hilbert transform. This analyzing wavelet satisfies the admissibility condition
approximately, because GT'(0) = 0.

Finally, an auditory filterbank is designed with a center frequency f, of 600 Hz, a band-
pass region from 60 Hz to 6000 Hz, and 128 filters. This auditory filterbank is implemented
on computer, using a discrete wavelet transform with the following conditions: sampling
frequency f, = 20 kHz, the scale parameter a = of, ~K/2 < p < K/2,a = 10X, and
the shift parameter b = ¢/ f,, where p,q € Z and K is the number of filters. Frequency
characteristics of the wavelet filterbank are shown in Fig. 3.
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2.2 Formulation of the problem of segregating two acoustic
sources

In this paper, we define the problem of segregating two acoustic sources as “segregating
a mixed signal into original signal components, where mixed signal is composed of two
signals generated by any two acoustic sources”. This is formulated as follows.

First, we can observe only the signal f(t):

f(t) = fi(t) + f2(2), (8)

where fi(t) is the desired signal and f5(t) is a noise. The observed signal f(t) is decom-
posed into its frequency components by an auditory filterbank. Second, outputs of the
k-th channel, which correspond to fi(t) and f>(t), are assumed to be

f1(t) = A(t) sin(wgt + 014(¢)) (9)

and
fa(t) @ Br(t) sin(wgt + 024 (2)). (10)
Here, wy, is a center frequency of the auditory filter and 614(¢) and 64;(t) are input phases

of f1(t) and f»(t), respectively. Since the output of the k-th channel Xj(¢) is represented
by

where
= \/A2(t) + 2A,(t) Bi(t) cos 04 (t) + B(t) (12)
and
[ Ar(t)sin 015 (t) + By(t) sin 05 (t)
i (t) = tan (Ak(t) cos 011 (t) + By(t) cos Hgk(t)) (13)
the amplitude envelopes of the two signals Ax(t) and By (t) can be determined by
Ag(t) = Sk(t)sins(iizzl(c()) or(t)) (14)
and
By(t) = Sk(t) sin(pr(t) — 61x(t)) (15)

sin O () ’

where 0;(t) = O21(t) — 01x(t) and 0x(t) # nm,n € Z. Since the amplitude envelope Si(t)
and the output phase ¢ (t) are observable, and if the input phases 04 (t) and 62 (t) are
determined, then Ag(t) and Bi(t) can be determined by the above equations. Finally,
f1(t) and f(t) can be reconstructed by using the grouping constraints. f;(t) and fa(t)
are the reconstructed fi(t) and f»(t), respectively.

In the above formulation, it is difficult to determine the input phases 61x(t) and 62 (1)
uniquely. However, it can be considered that each frequency component of the signal
closes to the center frequency of auditory filter if the bandwidth of the auditory filter is
narrow and the number of channels is large. Therefore, in this paper, we assume 0y;(t) = 0

and 6 (t) = 1 (t). Moreover, we consider the problem of segregating two acoustic sources
in which the localized fy(t) is added to f5(t).



3 Calculation of the four physical parameters

3.1 Calculation of Si(t) and ¢x(t)

The amplitude envelope Si(t) and the output phase ¢4 (t) represented by Egs. (12) and
(13) can be calculated using the following lemma.

Lemma 1 The amplitude envelope Sk(t) is calculated by

Sk(t) = | f(a* % 1)), (16)

where |f(a, b)| is the amplitude spectrum defined by the complex wavelet transform. The
output phase ¢i(t) is calculated by

or(t) = / <c;lt arg (f(a"’*%,t)) — wk) dt, (17)

where arg(f(a,b)) is the phase spectrum defined by the complex wavelet transform.

Proof. See appendix in [Unoki et al., 1997a |. O

3.2 Calculation of 61;(t) and 6(t)

In this paper, we assume 01,(t) = 0. Therefore, since 0;(t) = 6ax(t) — O1x(t), we must
find the input phase 6i(¢). The input phase 0;(t) can be determined by applying three
physical constraints derived from regularities (ii) and (iv) as follows.

First, we use regularity (ii), which is the gradualness of change. This regularity means
that “a single sound tends to change its properties smoothly and slowly”. We consider
this regularity as the following physical constraint, in order to apply it to the amplitude
envelope A(t).

Physical constraint 1 Temporal differentiation of the amplitude envelope Ax(t) must
be represented by an R-th-order differentiable polynomial Cy gr(t) as follows:

dAL(?)
dt

= Cy,r(2). (18)

d

A general solution of the input phase 62 () is determined by solving the linear differ-
ential equation obtained by applying Physical constraint 1 to Eq. (14).

Lemma 2 A general solution of the input phase x(t) is determined by

Sk(t) sin (f)k(t)
Sk(t) COS gbk(t) + Ck(t)) ’ (19)

where Ci(t) = — [ Cy r(t)dt + Cko. The Ci(t) is called the “unknown function”. O

Oox(t) = arctan (

Therefore, if Cy(t) is determined, then 6,4(t) is uniquely determined by Eq. (19). In
this paper, we estimate Cj(t) using the Kalman filter.
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3.2.1 Estimation of Cj(t) using the Kalman filter

Let us formulate the problem of estimating Cy(t) by using the Kalman filter.
A complex representation of the output of the kth channel X(t) represented by Eq.
(11) is the wavelet transform given by Eq. (2) as follows.

Xi(t) = Si(t)e/rttot)

= f(a,b), a= ak_%,b:tm, (20)

where t,, = m/f;,m = 0,1,---, M. From Eq. (8), this is expressed as the sum of the
wavelet transforms of f;(¢) and f»(t). Hence,

f(ak_ ,tm) = fl(ak_ﬁ,tm) + f2(ak_ 2 ,tm), (21)

where - K j
Fu(0F % 1) = Ag(t)elertmtOms(t) (22)

and - X :
Fo( @7 % 1) = By(ty,)eliertm+02(®), (23)

On the other hand, from Eqgs. (18) and (19), we obtain the following relationship.
Cr(t) = —Ag(t). (24)
Suppose that a displacement of Ci(t) in discrete time t,, is represented by
Cr(tms1) = Cr(tm)ACk + Wp, (25)

where

Cr(tm) — Cr(tm-1)
Ck(tm) ) fs

That is, Ck(tm+1) is represented by C(t,,) times AC%, and represented-error w,, follows
a white Gaussian probability process with average 0 and variance o,,.

In this paper, the problem is to estimate unknown function Cy(t) from the observed
information X (t).

It is necessary to represent a probability system composed of the state equation deter-
mined by Eq. (21) and the observation equation, in order to apply the Kalman filter to

AC, =1+ (26)

the estimation. If the observed signal is y,, = f(ozk_g, tm), state variable is x,, = —Cy(t),
observed noise is v,, = fg(ak_%,tm), and system noise is W,, = w,,, then Egs. (25) and
(21) can be represented by the following complex probability system.

Xma1 = FmXm + Gw, (state) (27)
Ym = HpXm + Vi, (Observation), (28)

where state transition matrix F,, = AC}, observation matrix H,, = ¢/“**= and driving
matrix G,, = —1. These equations are called the “basic system” and are shown in Fig.
4. A complex Kalman filter is represented by the following equations, and is applied to
the estimation problem shown in Fig. 5.



1. Filtering equation

}Acm|m = f(m|m—1 + Km(Ym - Hm}/\(m|m—1) (29)
)zm+1|m = me(m\m (30)
2. Kalman gain

2111 — H*T

K, = orimiHn (31)
Hm2m|m—1H:g + Evm

3. Covariance equation for the estimated-error
Z\:'m|'rn = ZA:m\m—l - KmHmﬁ:m\m—l (32)
z/\Jm-}-l\m = szm\mF:g + szwm G:;? (33)

Initial values of parameters are as follows: X _; = 0, 2()'_1 = Sk(to), f)wm = 0.01, and
ﬁ]vm is the covariance of fg(ak’g,tm). We remark that ﬁ]vm is given by the variance of
Xk(tm) for the duration in which only f>(t) exists.

In this manner, the minimum value of the estimation Cy(t) and the estimated-error
Py(t) are determined by

A

Cr(t) = —[Xmjm| (34)

and A
Pu(t) =[Sl (35)

Although a unique solution for 4 (t) is obtained with the estimated Cy(t), Ax(t) obtained
by the estimated 6o () does not necessarily satisfy the “smoothness” of Ag(t). Therefore,
we define the smoothness of Ag(t) using the following physical constraint.

3.2.2 Definition of the smoothness using spline interpolation

Suppose that Ag(t) is the amplitude envelope of fi(t) given by any unknown function
Ck(t), and t1,t,- -, t; are within the opened-duration (¢,, ), where t, <t <--- <t; <
tp. In addition, suppose that flkﬂ- = flk(tt) is the value of the amplitude envelope at time
t;. Determining the smoothest interpolation function Ag(t;) = Ak,i,i =1,2,---,I means
determining the interpolation function such that integral o = [ [Ag)(t)]zdt is the small-
est, where Ag(t) is defined in the closed-duration [t,, %] and is 7-th-order differentiable.

We consider the smoothness in regularity (ii) as the following physical constraint, in
order to define the smoothness of the amplitude envelope Ag(t).

Physical constraint 2 Suppose that the amplitude envelope Ax(t) is defined in the closed-
duration [t,,ts] and satisfies Physical constraint 1. If Ag(t) is as smooth as possible, then
the following integral must be minimized:

1
o :/L[AgcRH)(t)]zdt = min. (36)
ta

O



According to Physical constraint 2, the smoothest interpolation function is the (2R +
1)th-order spline function. This spline function is unique.

By considering the relationship between Ay (t) and Ci(t) from Eqs. (14) and (19), we
can interpret Physical constraint 2 in order to determine C%(t), which is interpolated by
using the spline function within the estimated-error region:

Ciu(t) — Pe(t) < Cr(t) < Clt) + Pi(t). (37)

Therefore, by calculating the candidates of Cy(t) interpolated using the spline function
within the estimated error, and by calculating a correct solution from the candidates of
Cx(t), we can determine the smoothest Ax(t) uniquely. For example, C(t) as interpolated
by the spline interpolation function in time ¢; is shown in Fig. 6. In this figure, each
candidate of C(t) is determined by fixing Ck(t1),- -, Cr(ti—1) for tq1,---,t;_1, and by
interpolating Cy(t) for changes in Cy(t;), where C’k(tz) — Pr(t;) < Ci(ty) < C’k(tz) + Pr(t;).

In this paper, we use the cubic spline function (R = 1). The interpolated duration At

is 15/(fo - o 72).

3.2.3 Determination of Cj(t) using correlation between the amplitude en-
velopes

Finally, we use regularity (iv) to narrow down the candidates for Cj(t), which is inter-
polated by spline function. Regularity (iv) means that “many changes take place in an
acoustic event that affect all the components of the resulting sound in the same way and at
the same time” [Bregman, 1993 |. Therefore, we consider this regularity as the following
physical constraint.

Physical constraint 3 The normalized amplitude envelope of the output of the k-th
channel must approximate that of the £-th channel as follows:

Ar(t) Al(?)
A~ 1Al

k# €. (38)

O

To select an optimal function C(t) when the correlation between Ag(t) and A,(t) is

maximum at any C(t) within the estimated-error, we interpret Physical constraint 3 as
follows:

Ay, A
max < Ak Ak > (39)

Cu-Pe<CL=Cut Pe || Ay[|| Axl]

where Aj(t) is the amplitude envelope given by interpolated Cy(t), and A(t) is the

amplitude envelope in other channel. We explain the amplitude envelope flk(t) in the
next section.
Hence, 0;(t) is uniquely determined using the optimized C(t) from Eq. (19).



4 Segregation and Grouping

In this section, we describe the grouping constraints. The aim of grouping constraints is
to extract the desired signal from the noise-added signal using Bregman’s regularities (i)
and (iii). Therefore, the grouping block applies the solution of the problem of segregating
two acoustic sources not to all X¢(t) but to only the X;(¢) in which two acoustic signals
exist in the same time region. In other words, if either of the two physical constraints is
satisfied, it applies the solution to X (t) as follows.

4.1 Estimation for the fundamental frequency

In this paper, the fundamental frequency of the complex tones is estimated using TEMPO
(Time-domain Excitation extraction based on a minimum perturbation operator) [Kawa-
hara, 1997 | proposed by Kawahara. The TEMPO procedure is to estimate the output
of the analysis-filter including the fundamental component from outputs of the constant
Q filterbank. Therefore, this procedure can be implemented in the proposed auditory
filterbank.

In general, since the fundamental frequency varies temporally, a procedure dealing with
temporal variation must be applied when the separation block is done using the group-
ing constraints. The procedure corresponding to temporal variation of the fundamental
frequency is given below.

Let Fo(t) be the fundamental frequency estimated using TEMPO. If we use regularity
(ii) for the fundamental frequency again, it can be interpreted that Fy(t) tends to vary
smoothly and slowly. In order to use regularity (ii) for Fy(t), we regard it as the following
physical constraint.

Physical constraint 4 Temporal variation of the fundamental frequency in a small seg-
ment s constant:

dF(t)
dt

~0. (40)
O

In each small segment, it can be interpreted that the small segment has a constant
duration for which the temporal variation of Fy(t) has the same variance of Fy(t). The
small segment can be determined as follows:

1 /th
th —th—1 Jtns

where the length of the small segment is t; — t;_; and AF} is the variance of Fy(t).
The relationship between Fy(t) and the small segments using Physical constraint 4 is
shown in Fig. 7. For Fy(t), as shown by dotted line in Fig. 7, segregated duration (Fy(t)
duration) is applied to small segments from Eq. (41).
The next section presents the grouping constraints for the fundamental frequency Fy(t).

Folt) — Fo(t)| dt < AR, (41)

4.2 Grouping constraints

As the first regularity, we use regularity (iii). This regularity means that “when a body
vibrates with a repetitive period, its vibrations give rise to an acoustic pattern in which



the frequency components are multiples of a common fundamental”’. In order to use
regularity (iii), we regard it as the following physical constraint.

Physical constraint 5 Suppose that fi(t) is a complex tone, Fy(t) is the estimated fun-
damental frequency by Eq. (41), and Ng, is the order of harmonics. If the harmonic
component exists in X,(t), then the channel number £ must satisfy

K 1 - Fo(t
b=—— Og(n O( )/fO) , n= 1,27"'7NF07 (42)
2 log o
where « is the scale parameter. O

As the second regularity, we use regularity (i). This regularity means that “unrelated
sounds seldom start or stop at exactly the same time”. Therefore, we regard this regularity
as the following physical constraint.

Physical constraint 6 Let fi(t) be a complex tone. Suppose that Ts = tp_1 and Tg =ty
are the onset and offset of the fundamental component determined using Physical con-
straint 4, which is generated by one acoustic source. If an acoustic event obtained by a
channel is a harmonic component of fi(t), then onset Ty on and offset Ty o5 determined
for the same channel must satisfy

|Ts — Tkon| < 50 ms (43)

and
|TE - Tk’off| S 100 ms. (44)
O

In this paper, onset T}, and offset Tj .4 of the harmonic component in X(t) are
determined as follows:

1. Onset T} oy is determined by the nearest maximum point of |%t(t)| (within 25 ms)
dSi(t) |

to the maximum point of | =%

2. Offset T} of is determined by the nearest maximum point of |%t(t)| (within 25 ms)
dSk(t)|

to the minimum point of | =¥

Moreover, the amplitude envelope flk(t) in Physical constraint 3 is determined by

Aa(t) = L3 Ad)
Nry o1, | Al

(45)

where L is the set of £ satisfying Eq. (42).

Here, in the two grouping constraints, physical constraint 5 works by segregating har-
monic components of fi(¢) and physical constraint 6 works by segregating non-harmonic
components of fi(¢). The algorithm for solving the problem of segregating two acoustic
sources using physical constraints related to the four regularities is shown in Fig. 8.
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5 Simulations

We carried out three simulations on segregating two acoustic sources using noise-added
signal f(t), to show that the proposed method can extract the desired signal fi(¢) from
it. These simulations were composed as follows:

1. Extracting an AM complex tone from a noise-added AM complex tone.
2. Extracting one AM complex tone from mixed AM complex tones.
3. Extracting a speech signal (vowel) from a noisy speech.

In simulations 1 and 2 the fundamental frequency did not vary temporally, while in
simulation 3 it did.

We use two types of measures to evaluate the segregation performance of the proposed
method.

One was the power ratio in terms of the amplitude envelope Ag(t), i.e., likely SNR.
The aim of using this measure was to evaluate the segregation in terms of the amplitude
envelope where signal and noise exist in the same frequency region. This measure is called
“Precision”, and is defined by

Jo Aq(t)dt

S (Ak(t) — Ag(t))2dt’ (46)

Precision(k) := 10log;,

where Ay(t) is the amplitude envelope of original signal fi(t), and Ag(t) is the amplitude
envelope of the segregated signal fl(t).

The other measure was the spectrum distortion (SD). The aim of using this measure
was to evaluate the extraction of the desired signal fi(t) from noise-added signal f(t).
This measure is defined by

w

SD := %Z (2010g10 fl(“’)) : (47)

w

where Fi(w) and Fy(w) are the amplitude spectrum of fi(t) and fi(t), respectively. In

the above equation, the frame length is 51.2 ms, the frame shift is 25.6 ms, W is the

analyzable bandwidth of filterbank (about 6 kHz), and the window function is Hamming.
The reduced SD of fy(t) is the SD difference between f(t) and fi(t).

5.1 Simulation 1

This simulation assumed that f;(¢) was an AM complex tone as shown in Fig. 9, where
Fy =200 Hz, Ny, = 10, and whose amplitude envelope was sinusoidal (10 Hz), and f5(t)
was a bandpassed pink noise, where the bandwidth was about 6 kHz. Five types of f(t)
were used as simulation stimuli, where the SNRs of f(t) were from 0 to 20 dB in 5-dB
steps.

For example, when the SNR of f(¢) was 10 dB, as shown in Fig. 10, the proposed
method could segregate Ay(t) with high precision and could extract f;(t), shown in Fig.
11, from the f(¢). In this case, the precision for Ag(t) is shown in Fig. 12. In addition,
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for five simulations, the average SDs of fi(t) and f(t) are shown in Fig. 13. It was
possible to reduce the SD by about 15 dB as noise reduction, using the proposed method.
Hence, the proposed model could extract with high precision the amplitude information
of signal f;(¢) from a noise-added signal f(¢) in which signal and noise existed in the same
frequency region.

5.2 Simulation 2

This simulation assumed that f;(t) was an AM complex tone the same as Fig. 9 and that
f2(t) was another AM complex tone, where Fy = 300 Hz, Np, = 10, and whose amplitude
envelope was sinusoidal (15 Hz). Therefore, harmonics of fi(t) and f(t) in multiples of
600 Hz (for example, the third harmonic of fi(t) and second harmonic of f5(t)) exist in
the same frequency region. Five types of f(t) were used as simulation stimuli, where the
SNRs of f(t) were from 0 to 20 dB in 5-dB steps.

For example, when the SNR of f(¢) was 10 dB, as shown in Fig. 14, the proposed
method could segregate Ax(t) with high precision and could extract fi(t), shown in Fig.
15, from the f(t), even when two components of the signals existed in the same frequency
region (e.g. the number of channel was 65, i.e. 600 Hz. In this case, the precision for A(t)
is shown in Fig. 16. In addition, for five simulations, the average SDs of fi(t) and f(t)
are shown in Fig. 17. It was possible to reduce the SD by about 20 dB as noise reduction,
using the proposed method. Hence, just like the results of the previous simulations, the
proposed model could also extract with high precision the amplitude information of signal
f1(t) from a noise-added signal f(t) in which two AM complex tones existed in the same
frequency region.

5.3 Simulation 3

This simulation assumed that f;(¢) was a vowel /a/ synthesized by the LAM as shown
in Fig. 18, where averaged Fy(t) = 125 Hz, dynamic range was 5 Hz (from 123 to 128
Hz), and f»(t) was a bandpassed pink noise, where the bandwidth was about 6 kHz. Five
types of f(t) were used as simulation stimuli, where the SNRs of f(t) were from 0 to 20
dB in 5-dB steps.

For example, when the SNR of f(¢) was 10 dB as shown in Fig. 19, the proposed
method could segregate Ag(t) with high precision and could extract fl(t), shown in Fig.
20, from f(t¢). In this case, the precision for A(t) is shown in Fig. 21. In addition, for
five simulations, the average SDs of f(t) and f(t) are shown in Fig. 22. It was possible to
reduce the SD by about 15 dB as noise reduction, using the proposed method. Hence, the
proposed model could also extract with high precision the amplitude information of speech
f1(t) from a noisy speech f(t) in which speech and noise existed in the same frequency
region. Here, comparing the amplitude spectrum of original signal f;(¢) with that of fi (1)
or f(t), the proposed method could clearly reduce the noise-component from the observed
amplitude spectrum, as shown in Fig. 23. Hence, this method can be applied in cases
where a speech signal is to be extracted from noisy speech.

Finally, the noise-reduction characteristics of the three simulations of the proposed
method are shown in Fig. 24.
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6 Conclusion

In this paper, we proposed a method of extracting the desired signal from a noisy signal,
using physical constraints related to the four regularities proposed by Bregman, and by
solving the problem of segregating two acoustic sources. We carried out three simula-
tions on segregating two acoustic sources using noise-added signal f(t) to show that the
proposed method can extract the desired signal fi(¢) from it. These simulations were:

1. Extracting an AM complex tone from a noise-added AM complex tone.
2. Extracting one AM complex tone from mixed AM complex tones.
3. Extracting a speech signal from a noisy speech.

The results of simulations 1 and 2 showed that the proposed method could extract with
high precision the AM complex tone not only from a noise-added AM complex tone
but also from mixed AM complex tones, in which signal and noise existed in the same
frequency region. In particular, it was possible to reduce the SD by about 20 dB as noise
reduction, using the proposed method. Moreover, the results of simulation 3 showed that
the proposed method could also extract the speech signal from a noisy speech.
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Figure 1: Auditory segregation model.
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Figure 2: Impulse response and amplitude characteristics of the gammatone filter (fo =
600 Hz, N = 4, by = 22.99).
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Figure 3: Frequency characteristics of the wavelet filterbank.
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Figure 4: Basic system of the Kalman filter.
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Figure 5: Algorithm for the Kalman filter. “EST.” and “PRE.” denote “estimation” and
“prediction”, respectively.
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Figure 6: Candidates for C(t) interpolated by the spline function.
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decompose f(¢) into its frequency components using the
wavelet filterbank (wavelet transform) as Eq. (11);
determine the fundamental frequency Fy(t) using TEMPO;
let H be the number of dulations from Eq. (40);
for £k :=1to K do
Hlk(t) = 0;
determine Sk(t) and ¢ (t) from Lemma 1;
for h:=2 to H do
Ts =tnp—1 and T = tp;
the segregated duration is t5_1 <t < tp;
determine onset T} on and offset T} of;
if Physical constraint 5 or 6 is satisfied then
estimate C(¢) using the Kalman filter;
determine the interpolated duration;
let I be the number of interpolated samples;
fori=1to I do
determine the candidates for C'(t), which are
interpolated by the spline function within
Cr(ti) — Pr(t;) < Cr(ti) < Cr(ts) + Pe(ts);
determine ézk(t) from Eq. (19);
determine Aj(t) from Eq. (14);
determine Aj(t) from Eq. (45);
(

determine Corr(Ay(t), Ak(t)) from Eq. (39);
end

determine C(t) when Corr(/ik(t),ﬁk (1))

becomes a maximum within the estimated

-error;
determine 024 (¢) from Eq. (19);
else
set Ak(t) = 0, Bk(t) = Sk(t) and 92k(t) = ¢k(t);
end
determine A (t) and By(t) from Eqgs. (14) and (15);
end

determine each frequency component of f;(¢) and
f2(t) from Egs. (9) and (10);
end
reconstruct f; (t) and f (t) using the wavelet filterbank
(inverse wavelet transform) from Eqgs. (14) and (15);

Figure 8: Segregation algorithm.
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Figure 9: AM complex tone fi(t).
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Figure 10: Mixed signals f(t) (SNR= 10 dB).
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Figure 11: Extracted signal f;(t) (SNR= 10 dB).
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Figure 12: Precision for Ai(t) (SNR= 10 dB).
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Figure 13: SD for the extracted signal fi(t).
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Figure 14: Mixed signals f(¢) (SNR= 10 dB).
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Figure 15: Extracted signal f;(t) (SNR= 10 dB).
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Figure 16: Precision for Ax(t) (SNR= 10 dB).
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Figure 17: SD for the extracted signal f;(t).

25



(t)
o

0
o

x 10

Figure 20: Extracted vowel /a/ fi(t) (SNR= 10 dB).
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Figure 19: Mixed speech f(t) (SNR= 10 dB).
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Figure 22: SD for the extracted signal f;(t).
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Figure 24: Characteristics of the reduced SD for the three simulations.
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