
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
The tool that support highly reliable component-

based software development

Author(s) Matsumoto, Michihiro; Futatsugi, Kokichi

Citation

Research report (School of Information Science,

Japan Advanced Institute of Science and

Technology), IS-RR-2000-018: 1-8

Issue Date 2000-06-22

Type Technical Report

Text version publisher

URL http://hdl.handle.net/10119/8388

Rights

Description
リサーチレポート（北陸先端科学技術大学院大学情報

科学研究科）

The Tool that supports Highly Reliable

Component-Based Software Development

Michihiro Matsumoto ft and Kokichi Futatsugi t
 June 22, 2000

 IS-RR-2000-18

f Graduate School of Information Science,
Japan Advanced Institute of Science and Technology

$ NCS Division, PFU Limited.

 (C) M. Matsumoto and K. Futatsugi, 2000

 ISSN 0918-7553

The Tool that supports Highly Reliable

 Development

Component-Based Software

 Michihiro Matsumoto* and Kokichi Futatsugi

 Graduate School of Information Science,

Japan Advanced Institute of Science and Technology

1-1 Asahidai, Tatsunokuchi, Ishikawa 923-1292, JAPAN

 { mit ihiro, koki chi } @ j aist .ac. j p

Abstract

 We discuss the support tool for highly reliable
component-based software development. The advan-
tages of the tool are automated refinement verification
and automated connector generation. As software ar-
chitecture of component-based software, we select tree
architecture, in which components are represented by
projection-style behavioral specification. The input of
the tool is (a) a requirement specification of target soft-
ware, (b) a refined specification specifying how to com-
bine components, and (c) the components. (a) and
(b) are projection-style behavioral specifications. (c) is
JavaBeans. The output of the tool is JavaBeans that
is given by combining (c) and connectors. The tool as-
sures high reliability of the output by verifying refine-
ment and generates the connectors of (c).

1. Introduction

 Component-based software development has gained

in popularity. In the development, firstly by selecting

components from a component library, and then by

combining them, component-based software is devel-

oped. Many software engineers use component tech-

nologies, for example, JavaBeans, COM, EJB, and

CORBA. The reason for the popularity is that it can

increase software productivity.

 In this paper, we discuss the support tool for highly
reliable component-based software development. The

*On leave from NCS Division , PFU Limited.
PFU Limited developed this tool in cooperation with JAIST.

This project was supported in part by grant Support program for
young software researchers 99-004 from Information-technology
Promotion Agency and Research Institute of Software Engineer-
ing. The first author was the project leader of this project.

advantages of the support tool are automated refine-

ment verification and automated connector generation.

 To increase software productivity, components must

be reused. But components cannot be combined with
components which have different software architecture,

because there is the architectural mismatch problem

[6] . So, to reuse components, we must select software
architecture.

 In component-based software development, we deal
not with software but a software family. One of the
most promising software architectures for a software
family is product line architecture [1, 4, 14, 16], whose
idea at least dates back to [15]. In this paper, as soft-
ware architecture, we select one kind of product line
architecture called tree architecture [13].

 Recently, even component-based enterprise systems
have been developed. So, the importance of the tech-
nology how to develop highly reliable component-based
software has increased. Component-based software is
constructed from components that provide basic func-
tionality and connectors that combine components.
Because components are reused again and again, the
costs of reliability are recovered from the software fam-
ily that may use the components. But because connec-
tors are not reused, t the costs of reliability must be
recovered from the software that use the connectors.
So, the costs of reliability should be low.

 In tree architecture, a requirement specification of
target software and a refined specification specifying
how to combine components can be represented by
projection-style behavioral specification [8, 11, 12, 13] .
Refinement verification is the verification whether the
refined specification satisfies the requirement specifica-
tion. We assure high reliability of target software by

tThe reusability of connectors depends on software architec-
ture. For layered architecture [1, 4, 14, 16], there are some works
[14, 16] about reusable connectors. About a comparison between
layered architecture and tree architecture, see Section 6.

observationll /action
Component

Figure 1. A component

I/observation/action
 \ .~ / 1 \projection

Figure 2. A composite component

verifying refinement. We developed the method how to
automate refinement verification of projection-style be-
havioral specification. Also, we developed the method
how to automate connector generation from a given re-
fined specification. In the support tool, we implement
these methods. By using the support tool, we can re-
duce the costs of reliability of the connectors.

 In [13], we discussed the software development
method that the support tool can support if compo-
nents are JavaBeans components and its theoretical
foundation. So, contributions of this paper are Sub-
section 2.3, Section 3, Section 4, and Section 5.

 The input of the support tool is (a) a requirement
specification of target software, (b) a refined specifica-
tion specifying how to combine components, and (c)
the components. (a) and (b) are projection-style be-
havioral specifications. (c) is JavaBeans. The output
of the support tool is JavaBeans that is given by com-
bining (c) and connectors. The support tool assures
high reliability of the output by verifying refinement
and generates the connectors of (c).

2. Tree architecture

 In this paper, we select tree architecture [13] as soft-
ware architecture of component-based software. For
tree architecture and the relationship between tree
architecture and projection-style behavioral specifica-
tion, see [13] in detail.

2.1. Tree architecture

 In tree architecture, we fix a target software fam-
ily [15] and prepare a component library that is

Connector of PUT

FTPftp INFO-A

PUT-A

Connector of GET

FTPftp INFO-8

GET-B

Group

FTP

INFC

Component

FTPftp,FTPcopy

INFO-A,INFO-B

Component library

Figure 3. A software family and a component li-

brary

divided by behavior of the components. Component-
based software is developed by firstly selecting compo-
nents from the component library, and then by combin-
ing them. So, tree architecture is one kind of product
line architecture [1, 4, 14, 16].

 In tree architecture, a component (Fig. 1) is an
object such that:

1. it has a state,

2. it has two kinds of operations observations used

 for observing the state and actions used for

 changing the state,

3. information about the state is only gotten by using

 observations, and

4. the state is only changed by using actions.

We can regard an object constructed from some com-

ponents as a component, too. We call an object satisfy-
ing the following conditions a composite component

(Fig. 2):

1. for each observation of it, there exists a construct-

 ing component and a corresponding observation of

 the constructing component,

2. for each action of it, for each constructing com-

 ponent, there exists a corresponding action of the
 constructing component or all action of the con-

 structing component do not correspond to the ac-

 tion, and

3. for each constructing component, there exists a

 projection from the state of it to the state of the
 constructing component.

We call the part of a composite component that com-

bines constructing components connector.

Example 1 Consider a software family of file transfer

programs (Fig. 3). The software family includes PUT-
A that transfers A's files on the local machine to a re-
mote machine and GET-B that transfers B's files on a
remote machine to the local machine. The component
library is divided into FTP group that transfers files
and INFO group that manages personal information,
like user names and passwords. FTPftp and FTPcopy

provide file transfer functions using FTP protocol and
using copy command of OS, respectively. FTPftp and
FTPcopy belong to FTP group. INFO-A and INFO-
B provide management functions of A's personal in-

formation and B's personal information, respectively.
INFO-A and INFO-B belong to INFO group. PUT-A is
constructed from FTPftp, INFO-A, and the connector
of PUT. GET-B is constructed from FTPftp, INFO-B,
and the connector of GET.

2.2. Tree architecture and projection-style
behavioral specification

Pro jection-style behavioral specifications can be
used for specifying behavior of components of tree ar-
chitecture and specifying how to combine components
to make composite components. Projection-style be-
havioral specification is constructed from component
specification used for specifying behavior of compo-
nents and connector specification used for specifying
how to combine components to make composite compo-
nents. For the formal definitions related to projection-
style behavioral specification, see [8, 11, 12, 13] . In
this paper, projection-style behavioral specifications
are written by using specification language CafeOBJ
. For CafeOBJ , see [5] in detail.

2.2.1 Component specification

In component specifications, we specify the effects of

actions on states through observations by using equa-

tions.

Example 2 Consider PUT of Example 1.
nent specification of PUT group component
A is as follows:

mod*

bop

bop

bop

bop

bop

 var

 var

 eq

PUT {

getremote
isinlocal

isinremote

 setremote

put
P : Put

M : Machine

isinlocal(I

 pr (BO OL

The compo-

, like PUT-

 [Put]

Put -> Machine

File Put -> Bool

File Machine Put -> Bool

Machine Put -> Put
File Put -> Put

vars I J : File

put(J, P))=isinlocal(I, P) .

ceq isinremote(I, M, put(J, P)) = t
if (I == J) and (getremote(P) == M) .

[The remained codes are omitted.]

In CafeOBJ , bop, var(s), and (c)eq declare obser-
vations and actions, variables, and (conditional) equa-
tions, respectively. Put surrounded by *[and] * is a
hidden sort (type), that is the set of PUT group compo-
nent's states. getremote, isinlocal, and isinremote
are observations used for getting the current target re-
mote machine's name, observing whether the specified
file is in the local machine, and observing the speci-
fied file is in the specified remote machine, respectively.
setremote and put are actions used for setting target
remote machine and transferring the specified file to the
target remote machine. The first equation specifies the
effect of put on states through isinlocal, i.e. put does
not add or does not delete files on the local machine.
The second equation specifies the effect of put on states
through isinremote, i.e. put transfers the specified file
to the target remote machine.

2.2.2 Connector specification

In connector specifications, we specify correspondences

between observations and actions of a composite com-

ponent and those of constructing components.

Example 3 Consider PUT of Example 1. The con-
nector specification of PUT group component that spec-
ifies how to combine FTP group component and INFO
group component is as follows:

mod*

bop

bop

bop

bop

bop

op

op

eq

eq

PUT { pr(BOOL+MACHINE+FILE)

pr (FTP

getremote
 isinlocal

 isinremote

setremote

put
ftp

info

getremote (P)

]*
Put -> Machine

File Put -> Bool

File Machine Put ->

Machine Put -> Put

File Put -> Put

Put -> Ftp

Put -> Info
= getmachine(info(P))

Bool

'))

_ ~tmachine (info (P)) ,
name(getmachine(info(P))),
passwd(getmachine(info(P))),
ftp (P)) .

eq info(put(I, P)) = info(P) .

[The remained codes are omitted.]

pr(FTP+INFO) declares that component specifica-
tions of FTP group component and INFO group com-
ponent are imported. ftp and info are projections

 obs property

 press event
8unction?'

bean
obs event

Interface
bean

Figure 4. A function bean and an interface bean

Figure 5. Input and output interfaces of an inter-

face bean

to the states of FTP group component and of INFO

group component, respectively. The first equation spec-
ifies that an observation getremote corresponds to an
observation getmachine of INFO group component.
The second and the third equations specify that an ac-
tion put corresponds to an action put on FTP group
component and it does not influence the state of INFO

group component.

2.3. Tree architecture and JavaBeans

JavaBeans has the following interfaces:

1. events used for reporting change of the states of

 JavaBeans,

2. properties used for observing the states, and

3. methods used for calling inner functions of Jav-

 aBeans.

We implement a component of tree architecture by us-
ing the following a function bean and an interface
bean (Fig. 4):

 1. for each observation or action of the component,
 an interface bean has a corresponding input and

 output interface, like comboboxes for selecting val-
 ues of arguments, an execution button, and a label

 for displaying an observational result (Fig. 5),

 2. for each observation or action, a function bean has
 a corresponding press event,

 3. for each observation, an interface bean has a cor-
 responding obs event,

Press

getremote
execution

 Button

(1)getremote PEOR

!getremote PE
al getremote

(3:)getremote

PEPR.

OEOR

getremote OE

(4)getremote OEPR

Press
 setremote

 execution
 Button

(1)setremote PEOR

setremote PE

f2:):aetsemotec.:.P15PR :

1 Interface beans
nFunction beans

Figure 6. Event sequences of getremote and se-

tremote of PUT group component

4. for each observation, a function bean has a corre-
 sponding obs property that returns the observa-

 tional result,

5. for each observation or action, (1) an interface
 bean has a corresponding press event occurring

 routine that occurs the press event when the ex-
 ecution button is pressed and (2) a function bean

 has a corresponding press event process rou-
 tine that executes the procedure corresponding to

 the press event, and

6. for each observation, (1) a function bean has a cor-
 responding obs event occurring routine that is

 called from the press event process routine when
 the observational result is generated and occurs

 the obs event and (2) an interface bean has a cor-
 responding obs event process routine that dis-
 plays the observational result on the output inter-

 face.

Example 4 Fig. 5 shows input and output interfaces
of the interface bean of PUT group component in Ex-
ample 1. Comboboxes displaying fuel or syphon are
used for selecting arguments. getremote button, isin-
local button, isinremote button, setremote button,
and put button are execution buttons. Labels display-
ing syphon or false are used for display the obser-
vational results when the corresponding execution but-
tons are pressed. Fig. 6 shows event sequences of ge-
tremote and setremote of PUT group component.
PEOR, PE, PEPR, OEOR, OE, and OEPR are ab-
breviations of a press event occurring routine, a press
event, a press event process routine, an obs event oc-
curring routine, an obs event, and an obs event process
routine, respectively.

Because a composite component is a component, a
composite component can be implemented by using
a function bean and an interface bean. The function
bean of the composite component is implemented as
follows:

r~.

 Press

 getremote
execution

 Button

(1)getremote PEOR

lgetremote PE
(2)getremote PEPR

~call
(.31getremote OEOR

getremote OE

(4)getremote OEPR

call

PUT group component

result

(1)getmachine

 property

INFO group component

Press

put
execution
 Button

(1)put PEOR

!put PE
(2)put PEPR

put PE

PUT group component

(1)put PEPR

group component

INFO group component

Figure 7. Event sequences of getremote and put

of PUT composite component

1. for each observation, the obs property returns the

 value of the corresponding obs property of the con-

 structing component,

2. for each observation, the obs event occurring rou-

 tine occurs the obs event with the value of the cor-

 responding obs property of the constructing com-

 ponent, and

 3. for each action, for each constructing component,
 the press event occurring routine occurs the corre-

 sponding press event if it exists and as the result
 of the occurrence, the corresponding press event

 process routine starts.

Note that these correspondences are described in the
connector specification.

Example 5 Fig. 7 shows event sequences of ge-
tremote and put of PUT composite component in
Example 3.

3. Automated refinement verification

 The verification for assuring high reliability of
component-based software is refinement verification.
We prepare (1) a component specification specified re-
quirements of target software and (2) a connector spec-
ification specified how to combine components to make
the target software. Refinement verification is the ver-
ification whether all equations of the component spec-
ification is deduced from equations of the connector
specification.
 For behavioral specification [2, 7], there is no deduc-
tion system that can deduce any equation of any behav-
ioral specification [3] . But, projection-style behavioral
specification, a special class of behavioral specification,

has a good property Property 1 [13]. The support tool
automates refinement verification by using Property 1.

 We call symbol sequences constructed from opera-
tors, variables, "(" , ")" , and "," terms. We can regard
equations as rewrite rules from the left hand sides
to the right hand sides. We call systems that calcu-
late terms by applying rewrite rules (equations) term
rewriting systems (TRSs) [9]. Consider a term. We
call a term that is gotten by applying rewrite rules zero
or some times to the term and cannot be applied any
more a normal form of the term.

Property 1 Given a component specification and a
connector specification of the target software. And
given a (conditional) equation ceq of the component
specification. Moreover, given an appropriate set of
cases about conditions of constructing components'
states. Let E be a TRS constructed from the equations
of the connector specification, equations that represent
a case, and the equation between the normal forms of
the both sides of conditions of ceq. Calculate normal
foi-rras of the both sides of the main part of ceq by us-
ing E for each case. Then, ceq holds in the connector
specification if and only if the normal forms are equal
for each case.

In our research, moreover, we found the procedure
that finds an appropriate set of cases.

 For CafeOBJ , there is a CafeOBJ verification system
[5] which executes calculations of TRSs. The CafeOBJ
verification system has a script language that can de-
scribe adding equations and has a command comparing
the normal forms of both sides of an equation. The sup-
port tool automates refinement verification by generat-
ing a verification script based on Property 1 and the
above procedure, and by executing it on the CafeOBJ
verification system.

Example 6 The verification script for verifying
whether the second (conditional) equation of the compo-
nent specification in Example 2 holds in the connector
specification in Example 3 is as follows:

open .

eq I = J .

 eq getmachine(info(P)) = M .

 red isinremote(I, M, put(J, P)) == t .

close

getmachine(info(P)) is a normal form of ge-
tremote(P). red command compares the normal
forms of the both sides, like isinremote(I, M, put(J,
P)) and t. For this example, case analysis is unneces-
sary.

I I7:::I--------I
 t Connector

action \ observation
(p

ent)\(obs property) ev

I-----------I I I
Function beans of

Constructing components

A requirement

specification

(CafeOBJ)

A refined

specification
(CafeOBJ)

1\

I /
I I

The
support

tool

jTarget --Isoftware

:(JavaBeans)

j Components
 (JavaBeans)

Figure 8. The structure of the connector imple-

mentation
Figure 9. Input and output of the support tool

4. Automated connector generation

 As we discussed in Subsection 2.3, a component of
tree architecture is constructed from a function bean
and an interface bean. Especially, a composite compo-
nent is constructed from these JavaBeans. As we dis-
cussed in Subsection 2.3, the function bean of the com-
posite component can be implemented by using only
information described in the connector specification.

 But to implement the interface bean, some informa-
tion is necessary. The input and output interface needs
information about what input interfaces for setting ar-
guments are necessary and what an output interface
for displaying the observational result is necessary. The
obs event process routine needs information about how
to display the observational result.

 The support tool prepares default interfaces and a
default obs event process routine. For setting argu-
ments, textfields are used. For displaying the obser-
vational result, a label is used. The default obs event
process routine display the observational result on the
label.
 The connector corresponds to the function bean and
the interface bean of the composite component (Fig.
8). The support tool automatically generates the con-
nector, i.e. these beans by using information described
in the connector specification, default interfaces, and a
default routine.

 As an optional function, the support tool supports
a function that selects an input and output interface
and an obs event process routine. In fact, the input
interfaces of Fig. 5 are comboboxes selected by using
this function.

5. The support tool

 The input of the tool is (a) a requirement speci-
fication of target software, (b) a refined specification
specifying how to combine components, and (c) the
components (Fig. 9). (a) and (b) are projection-style

Refr.nement
verzfier

Connector

generator

Interface

generator

Software

generator

Figure 10. The structure of the support tool

behavioral specifications described by using CafeOBJ .
(c) is JavaBeans. The output of the tool is JavaBeans
that is given by combining (c) and connectors (Fig. 9).
The tool assures high reliability of the output by veri-
fying refinement and generates the connectors of (c).

5.1. The structure of the support tool

 The support tool is constructed from refinement ver-
ifier, connector generator, interface generator, and soft-
ware generator (Fig. 10).

 Refinement verifier generates verification scripts,
like the script in Example 6 by using Property 1 and
then, sends those scripts to CafeOBJ verification sys-
tem and gets the results.

 Connector generator generates the function bean
of the composite component by using the method dis-
cussed in Section 4.

 Interface generator generates the interface bean
of the composite component by using the method dis-
cussed in Section 4.

 Software generator generates the target software
by combining (1) the function bean and the interface
bean of the composite component and (2) the function
beans of the constructing components.

5.2. The manipulations of the support tool

 Fig. 11 is an outlook of the support tool. When the
support tool starts, the textarea shows parameters of
the support tool, like TmpDir and SpecDir (Fig. 11).

 TmpDir directory is the directory in which Jav-
aBeans are stored. So, in TmpDir directory, compo-
nents of the component library are stored. Moreover,

 III

I.'-i4dsa.- :9. 0 .40 [`€ is :ci l+
jig. r: D: Yte4Ylest
SeecDi r: D: Hti se19991,e>mYOUt
CaruePoa: C:YcoewM.coe
1ServerAdd: sypm.i ai et

The server is run ins.

Figure 11. An outlook of the support tool

the output of the support tool is stored in TmpDir di-
rectory.
 SpecDir directory is the directory in which
CafeOBJ specifications are stored. So, component
specifications and connector specifications are selected
from these CafeOBJ specifications.

 When Add Spec button is pressed, a dialog is dis-

played. By using this dialog, component specifications
and connector specifications are selected.

 When Verify button is pressed, the refinement ver-
ifier executes refinement verification. If refinement ver-
ification fails, the textarea shows unsatisfied equations.

 The support tool supports manual refinement ver-
ification. When the textarea shows unsatisfied equa-
tions, Add Spec button is changed to Eq Verify
button. Writing a verification script for an unsatis-
fied equation on the textarea and then pressing Eq
Verify button, the refinement verifier executes verifi-
cation whether this script succeed. By iterating this

process for all equations, we can execute manual re-
finement verification. By using this manual refinement
verification, we found the idea of Property 1.

 Constructing components of composite components
may be composite components. This means compos-
ite components may have hierarchical structures. The
support tool supports stepwise refinement to deal with
the hierarchical structures. A component specification
imported to a connector specification may have a corre-
sponding connector specification. The process of step-
wise refinement is as follows: In a stage, the former
connector specification is input by using Add Spec
button and then by pressing Verify button, refinement
verification is executed. In the next stage, the latter
connector specification is input by using Add Spec
button and then by pressing Verify button, refinement
verification between the component specification and
the latter connector specification is executed.

 When Add Comp button is pressed, a dialog is
displayed. By using this dialog, the correspondences
between (1) the component specifications input by us-

CarBody

Manual

Gasoline

Category

CarBody

Transmission

Engine

Components

CarBody

Automatic,Manual

Gasoline,Electric

Figure 12.

Component library

Layered architecture

ing the dialog of Add Spec button and (2) components
in the component library are input. The software gen-
erator uses these correspondences.

 When Gene Comp button is pressed, the connec-
tor generator and the interface generator generate the
function beans and the interface beans, respectively.

 When Gene App button is pressed, the software

generator generates the target software.
 If Chg Data Comp button is pressed before Gene

Comp button is pressed, a dialog is displayed. By using
this dialog, other input and output interfaces and other
obs event process routines are selected as we discussed
in Section 4.

6. Related work

 One of the most popular product line architecture
is layered architecture [1, 4, 14, 16] .

 In layered architecture, component categories corre-
sponding to component specifications can be arranged
into a hierarchy of layers, where each layer represents a
category and the categories that most other categories
depend on are moved the bottom of the hierarchy (Fig.
12).
 The components of each layer other than the bottom
layer called connectors. But, components and connec-
tors of layered architecture correspond to components
of tree architecture. Note that the combination types
are fixed in layered architecture, but those are not fixed
in tree architecture. In tree architecture, selecting a
connector is selecting a combination type.

 Connectors of layered architecture are represented
by parameterized specification. The advantage of
parameterized specification is that it can represent
reusable connectors, because it can represent patterns
[14] .
 For connector generation, in layered architecture,
generative programming is proposed [4]. But, it does
not verify refinement.

7. Future work

 Our goal is to produce (a) a component-based soft-
ware development methodology that uses formal meth-

 IUML editor
UML spec /

OafeOBJ
translator

\UML spec

Domain

analyzer

CafeOBj spec 1/feedback ;Changing
 ++contents

The support tool

in this paper
Component
library

component

Figure 13. The support tool of the methodology

ods without users consciousness and (b) a support tool
of the methodology. So, one direction of future work
is developing the methodology and the support tool
of the methodology. We assume that users can use
UML, which is one of the most popular modeling lan-
guage. In our plan, the support tool is constructed
from (a) UML editor used for specifying software of
target software family, (b) CafeOBJ translator used
for translating UML specifications to projection-style
behavioral specifications, (c) domain analyzer used for
domain analysis, (d) component library, and (e) the
support tool in this paper (Fig. 13).

 Another area of future work is making component
libraries for some domains.

8. Conclusion

 We have studied verification methods of behavioral
specification [8, 10, 11, 12, 13] . In this paper, we dis-
cussed the application of the verification methods to
component-based software development.

 In this paper, we discussed the support tool for
highly reliable component-based software development.
The advantages of the support tool are automated re-
finement verification and automated connector gener-
ation. By using the support tool, we can reduce the
costs of reliability of the connectors.

 Our goal is to produce (1) a component-based soft-
ware development methodology that uses formal meth-
ods without users consciousness and (2) a support tool
of the methodology. The support tool automates re-
finement verification and connector generation. So,
this work is one step towards the goal.

References

[1] D. Batory and S. O'Malley. The design and implemen-
 tation of hierarchical software systems with reusable

 components. ACM Transaction on Software Engineer-
 ing and Methodology, 1(4):355-398, 1992.

 [2] M. Bidoit and R. Hennicker. Behavioural theories and
 the proof of behavioural properties. Theoretical Com-

 puter Science, 165:3-55, 1996.
 [3] S. Buss and G. Rosu. Incompleteness of behavioral

 logics. In Proceedings of the Third Workshop on Coal-
 gebraic Methods in Computer Science (CMCS'2000),

 volume 33 of Electronic Notes in Theoretical Computer
 Science. Elsevier Science, 2000.

 [4] K. Czarnecki and U. W. Eisenecker. Components and
 generative programming (in ESEC/FSE'99). Software

 Engineering Notes, 24(6):2-19, 1999.
 [5] R. Diaconescu and K. Futatsugi. CafeOBJ Report.

 AMAST Series in Computing 6. World Scientific,
 1998.

[6] D. Garlan, R. Allen, and J. Ockerbloom. Architec-
 tural mismatch: Why reuse is so hard. IEEE Software,
 12(6):17-26, 1994.

[7] J. A. Goguen and G. Malcolm. A hidden agenda. Tech-
 nical Report CS97-538, UCSD Technical Report, 1997.

[8] S. Iida, M. Matsumoto, R. Diaconescu, K. Futat-
 sugi, and D. Lucanu. Concurrent object composi-

 tion in CafeOBJ. Technical Report IS-RR-98-0009S,
 Japan Advanced Institute of Science and Technology

 (JAIST), 1998.
[9] J. Kiop. Term rewriting systems. In Background:

 Computational Structures, volume 2 of Handbook of
 Logic in Computer Science, pages 1-116. Oxford Sci-

 ence Publications, 1992.
[10] M. Matsumoto and K. Futatsugi. Test set coinduc-

 tion — toward automated verification of behavioural
 properties . In Proceedings of Second International

 Workshop on Rewriting Logic and It's applications,
 volume 15 of Electronic Notes in Theoretical Computer

 Science. Elsevier Science, 1998.
[11] M. Matsumoto and K. Futatsugi. Object composition

 and refinement by using non-observable projection op-
 erators: A case study of the automated teller machine

 system. In OBJ/CafeOBJ/Maude at Formal Methods
 '99, pages 133-157. THETA, 1999.

[12] M. Matsumoto and K. Futatsugi. Simply observable
 behavioral specification. In Proceedings of Asia-Pacific

 Software Engineering Conference'99, pages 460-467.
 IEEE, 1999.

[13] M. Matsumoto and K. Futatsugi. High-reliable
 component-based software development by using al-

 gebraic behavioral specification. In Proceedings of
 Third International Conference on Formal Engineer-

 ing Methods. IEEE, to appear.
[14] M. Mezini and K. Lieberherr. Adaptive plug-and-play

 components for evolutionary software development (in
 OOPSLA'98). ACM SIGPLAN Notices, 33(10):97-

 116, 1998.
[15] D. L. Parnas. On the design and development of pro-

 gram families. IEEE Transactions on software engi-
 neering, 2(1):1-9, 1976.

[16] Y. Smaragdakis and D. Batory. Implementing layered
 designs with mixin layers. In European Conference

 on Object-Oriented Programming'98, number 1445 in
 LNCS, pages 550-570. Springer-Verlag, 1998.

