
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
A scenario-based object-oriented modeling method

with algebraic specification techniques

Author(s) Nakajima, Shin; Futatsugi, Kokichi

Citation

Research report (School of Information Science,

Japan Advanced Institute of Science and

Technology), IS-RR-2001-016: 1-41

Issue Date 2001-07-31

Type Technical Report

Text version publisher

URL http://hdl.handle.net/10119/8389

Rights

Description
リサーチレポート（北陸先端科学技術大学院大学情報

科学研究科）

 A Scenario-based Object-Oriented Modeling

Method with Algebraic Specification Techniques
 Shin NAKAJIMA

 NEC Corporation

 and

 Kokichi FUTATSUGI

 Japan Advanced Institute of Science and Technology

 July.31.2001

IS-RR-2001-016

^

A Scenario-based

Method with Algeb

Object-Oriented Modeling

raic Specification Techniques

 Shin NAKAJIMA*

 NEC Corporation

 and

 Kokichi FUTATSUGIt

Japan Advanced Institute of Science and Technology

Abstract

 A new scenario-based object-oriented modeling method is proposed.
It incorporates a semi-formal intermediate design notation GILO (Generic
Interaction Language for Objects) that provides essential ingredients
to represent scenario. GILO, being influenced by algebraic specifica-
tion techniques, has well-defined syntax and semantics, and the mod-
eling method is more rational than existing scenario-based modeling
methods. Further, GILO descriptions can be translated into modules
written in CafeOBJ, an algebraic logic language. CafeOBJ has clear
semantics based on hidden order-sorted rewriting logic and descrip-
tions can be executable. In order to show how the proposed modeling
method is applied, a concrete case study on a standard design bench-
mark problem (the SAKE Warehouse problem) is presented. The resul-
tant design artifact, which confirms to scenario-based object-oriented
modeling method, is executable and validated in a rapid-prototyping
manner with CafeOBJ.
Keywords: method integration, rapid prototyping, algebraic logic
language, object-oriented modeling, collective behavior

1 Introduction

Object-oriented modeling method has been widely accepted in the industry
as an established technology for improving the quality of software from early

*nakajimaC ccm.cl.nec.co.jp
t kokichi @ j aist . ac. jp

1

stages of the development. Since Booch's seminal paper [4], many methods
have been proposed on object-oriented design [23]. It is followed by efforts
to produce a unified method [5] and then UML [27][39], that can be used as
a standard modeling notation. The variety of methods fall into two broad

categories [42][48]: data-driven and responsibility-driven modeling methods.
The latter is sometimes called scenario-based one [7], and examples include
Jacobson's OOSE [24], CRC [2], RDD [49], and Fusion [9]. Scenario is a
representation of partial functional requirements of the system in an abstract
manner, and is a modeling tool to help validate the functional behavior of
the design artifact. Since the concept of scenario becomes important in
object-oriented modeling methods, UML also provides such a concept as
one of the core modeling notations.

 Scenario in the current modeling methods, however, is somewhat intu-
itive and is not so rigorous that the quality of design artifacts solely relies on
design review by experienced human engineers. By elaborating the concept
of scenario to be rigorous enough to be amenable to mechanical checking,
one can expect to greatly reduce the cost of design review. It needs a thor-
ough understanding of the scenario concept and to find a way to "method
integration," in which one employs the scenario-based modeling method to
analyze the problem at hand, and then uses a formal specification language
to have rigorous design artifacts.

 We propose a new scenario-based object-oriented modeling method with
GILO (Generic Interaction Language for Objects) [35]. GILO is a semi-
formal intermediate design notation that provides essential ingredients to
represent scenario. It is an outcome of a critical analysis of existing scenario-
based methods and authors' experience in development of several object-
oriented systems [3][46][47]. Further, we employ the algebraic specification
technique to be the formal basis of GILO, which realizes the method integra-
tion. Our method is dependent on concurrent rewriting logic that is suitable
for modeling state changes in the algebraic logic tradition [31]. Particularly,
we use CafeOBJ [1O][11][15], a new algebraic logic language of the OBJ
family [14][18]. CafeOBJ has clear semantics based on hidden order-sorted
rewriting logic that subsumes order-sorted equational logic and a subset of
concurrent rewriting logic. CafeOBJ has executable semantics, and thus
the language can serve as the basis for a rapid prototyping tool in the early
stages of software development.

 The present paper is organized as follows: the second section presents
scenario-based object-oriented modeling method, the third section proposes
a new modeling method with an emphasis on the intermediate design no-

2

User CheckIn

1: Download Reg

iterate

Pathlnfo

2: SetUp

8: Ack

3: Initialize

Path

 4: ChecklnReq

 5: Getlnfo,

6: SetUp

NE

iterat 7: Ack

Figure 1: Event Trace Diagram

tation GILO, the fourth section illustrates a way of method integration

with CafeOBJ and shows a case in which the proposed modeling method

is used for a problem of medium size, the fifth section compares our work

with related ones, the sixth section summarizes discussions on the proposed

approach and then concludes the paper. The appendix includes a brief in-

troduction of CafeOBJ.

2 Object-Oriented Modeling Methods

Object-oriented modeling method generally has two roles; (1) it provides
basic notations to represent various aspects of objects, and (2) it provides
further notations and guidelines to help derive object definitions. Different
modeling methods assume different guidelines but fall into two broad cat-
egories [42][48]: data-driven modeling and responsibility-driven modeling
methods. The latter is sometimes called scenario-based modeling method
[7]. In data-driven modeling method such as OMT [41], structural aspects
of objects and relationships between objects are the main concern at early
stages of development; functional aspects of objects are left until later. De-
sign validation is therefore concentrated with structural aspects of object
diagrams, such as inheritance relationships between classes or multiplicity
constraints on object attributes.

3

 In scenario-based modeling method, such as that of OOSE [24], CRC [2]
or RDD [49], an object is an entity that is responsible for a particular part
of functionality that the whole system provides. Identifying objects requires
analysis of functional behavior of the system and involves separating out the
functional coupling between objects. Thus, the method puts emphasis on
validating the functional behavior of more than one object in early stages of
the development. It implies that rapid-prototyping of a specification com-
prising many objects is inevitable for obtaining high quality design artifact.
The approach has been successful in the user interface design and now be-
comes popular in the world of object-oriented modeling [7]. As summarized
in a famous statement [2][22],

No object is an island,

collective behavior of objects [34] is essential in the design of any signifi-
cant object-oriented software system. This observation also supports the
importance of scenario-based object-oriented modeling methods.

 A scenario is actually a prototypical history of an execution and consists
of a sequence of messages exchanged among participant objects. Figure 1
is an example representation of scenario used in object-oriented modeling.
The horizontal arrow refers to a message sending event, and the numbers in
the diagram specify the order of events where an event is a message to some
object. The diagram is called a message sequence chart (MSC) or an event
trace diagram.

 While the usage and abstraction level of the notations differ in each
method [24][49], the essence of a scenario is to have two notions:

 1. the information about participant objects,

 2. the information about the sequence of their interactions.

 The scenario concept in general, however, has two drawbacks to be
used as a basic modeling tool. First scenario is just an execution history,
and is not a complete specification. One must combine a lot of related

(sub)scenarios to obtain a consistent specification. Second, scenario in the
current modeling methods is intuitive. As Figure 1 shows, the representation
is simple and easy to understand, but needs intuition to reason about the
meaning. In a word, the reasoning is dependent on engineer's experience.
Therefore, rationalized notation for the scenario-based object-oriented de-
sign specification is called for. It is desirable at the same time to be rigorous
enough to be amenable to mechanical checking.

4

Algebraic
Specification

Vocabulary

Transition
System

message

return value

 Pre-/Post-
Condition

Collaboration
Description

Participant
Description

Figure 2: GILO Model

3 Scenario-based Modeling with GILO

3.1 GILO : Intermediate Design Notation

We propose a scenario-based modeling method that uses an intermediate

design notation GILO (Generic Interaction Language for Objects) [34][35].
As described in Section 2, a scenario needs to make two aspects of the
specification components explicit: the behavior of participant objects and
behavior of global interaction between them. Further, the interaction should
not be an instance of execution history, but a complete specification to
describe dynamic or reactive aspect of the specificand completely.

 GILO employs two basic abstraction viewpoints as specification compo-
nent: class for the behavior of participant object and collaboration for the
interaction specification. Since the two aspects are quite divergent computa-
tional entities, it is difficult to encode both characteristics in one specification
model. We use a multiparadigm specification approach [53] and define re-
lationships between the components precisely. Figure 2 illustrates the basic
idea of GILO, which provides three kinds of specification components: (1)
Collaboration, (2) Class, and (3) Common Vocabulary.

5

3.1.1 Collaboration

Since collaboration is responsible for the way participant objects exchange
messages, dynamic reactiveness is essential. For collaboration, we have
adopted a transition system, which can be considered an abstract computa-
tional model of the Message Sequence Chart (MSC) shown, for example, in
Figure 1. The model also allows conditional branching and iteration, both
of which a MSC cannot express, and thus is more general. Conversely a
MSC is a record of an execution history generated by the transition system.
Since a message is sent to some of the participant objects in the course of
state transition, the transition system can be considered to explicitly de-
scribe how the global interaction of the objects proceeds. Collaboration also
includes declarations of participant objects.

 A few words on the relationship between Collaboration of GILO and
UML Collaboration [39] are needed here. UML Collaboration uses diagram
notations to illustrate structural relationships among the participant objects
in order to put emphasis on the role of each participant in the overall struc-
ture. UML Collaboration can also be accompanied with dynamic aspects
describing a sequence of messages. The description is an execution trace
that is essentially identical to a MSC. In GILO, collaboration is a transi-
tion system that manages message-flows among the participant objects in
a centralized viewpoint. That collaboration is a reactive entity is the most
important point.

3.1.2 Class

In regard to the definition of participant objects, methods of the classes for
the objects provide behavioral aspects. Since an object has internal states
and method invocation often results in changes in those states, it is natural
to model the method behavior in terms of state-oriented specification or a
combination of the pre- and post-conditions. In addition, a method may
return some value as its result. We allow to use the introduction of return
variables for this purpose. That is, the method can update a predefined
variable ret to return some value to its caller.

 Although we call "class", it is more like "role" in the oocam method [40].
It is because our primary concern here is to show how the entity (either class
or role) behaves in relation to other participant entities, and not to show how
the entities are related from a viewpoint of their structural aspects such as
inheritance or link relationship. UML Collaboration [39] also uses a notion

6

of role to be a basis for describing global flow of controls.

3.1.3 Common Vocabulary

In describing the definition of collaboration or class, we often use auxiliary
symbols to which we assign some particular meanings. The third component

provides a set of common vocabularies that are employed to interpret each
symbol in collaboration or class. We have adopted an abstract datatype
technique for this component of GILO specification.

 In object-oriented modeling method such as Catalysis, class and com-
mon vocabulary is not distinct. Both are user-defined entities introduced
as types. Type in Catalysis is the same as class in UML and is usually
introduced in class diagrams. We, however, see the distinction is important
because class is an entity participating in collaborations while common vo-
cabulary is a set of entities that contribute to provide class with application
semantics.
 This idea is inspired by the Larch family of specification languages [20],
in which the shared language component defines common vocabulary and

the interface language uses the vocabulary to describe the behavioral spec-

ifications of procedures or functions. The common vocabulary of GILO

corresponds to the shared language of Larch.

3.2 GILO by Examples

Next presents the three kinds of GILO components by using concrete exam-

ples.

3.2.1 Collaboration Description

Collaboration has two components: (1) declaration of participant objects,
and (2) state-machine to represent dynamic behavior. Figure 3 shows an
example, Collaboration SimpleExample. This has three participant objects;
user is an object of Class User, dir is an object of Class Directory, and nodes
is all object of Class NodeList that is a list of Node object. A dir object
maintains the directory information that establishes a mapping between the
access key and the nodes. The example collaboration describes a flow that
(1) obtaining nodes object by looking up the dir, (2) sending a turn-on
message to each node object in the nodes, which forms an iterative loop,
and (3) sending a notification to user when the process completes.

7

Collaboration SimpleExample

user : User

 dir : Directory

nodes : NodeList

ql

dir find-key: #local/[true]

 q2

 Cif
 nodes

 nodes end?/[trucJ

 q4

 ret turn-on/[true]

nodes set: ret/[true]

 user notify: "complcte"/[ret=Yes]

 nodes next/[ret=No]
 0

----- q5 l

 Figure 3: Collaboration Example

ret=Yes
 (user notify: "complete", v)

r 9 ------------------

 true (nodes end?, v) ~ 111
 (tau, v)ret=No t

rue

0(nodes next, v)

 mom v vq5 truev

(dir find-key: #local,v (Yv)

 0 true
(nodes set: ret, v) (ret turn-on, v)

 Figure 4: Equivalent CPN Description

 8

 A diagram-based labeled transition system is used to represent dynamic
behavior of collaboration. Figure 3 is an example, which has 7 states that
correspond to a default initial state, five states from q1 to q5, and a final
state denoted by 0. And each transition arc has a label denoting a message
to one of participant objects and a condition to fire the transition. For
example, the expression attached to the arc from q4 to q5 specifies that a
next message is sent to the object denoted by the variable nodes when a
return value of the previous message (ret) equals to No:

nodes next/[ret=No].

 In order to express an operational interpretation of the transition system,
Coloured PetriNet (CPN) [26] is used. Figure 4 is a CPN representation
equivalent to the transition system in Figure 3. Colour of a token v carries
an environment to manage status of participant objects.

3.2.2 Class Description

Class also has two components: (1) attributes constituting internal structure
of objects, and (2) definitions of method body. Method is invoked when an
object receives appropriate messages.

 Figure 5 shows an example, Class NodeList, whose object is one of the
participant of Collaboration SimpleExample. Class uses a box notation
as a concrete syntax, which is similar to the Z notation [43]. A small box
named Statel has a set of attribute declarations. In the example, a NodeList
object has an attribute ptr of sort List of Oki. The other three are method
definitions. For example, the method next has a precondition (assumes:)
of -1 (null ptr) and a postcondition (ensures:) specifying an update in
the attribute ptr with a return value (ret). And A(ptr) shows that this
method updates only the ptr attribute in the course of the method execution.
Similarly, the end? method shows by using E(ptr) that it does not change
value of ptr.

3.2.3 Common Vocabulary

Collaboration SimpleExample above uses two constants yes and no. Class

NodeList assumes List-related functions such as head or nuIl. These auxil-

iary symbols should be defined somewhere.

lA reserved word .

9

Class NodeList---------

use LIST [OID], YESNO

State

ptr : List of OM

ptr)
 List of OM

ensures : ptr' =

set

E-2(ptr)
 YesNo

ensures : if

end?

null ptr then ret = yes else ret = no

A(ptr)
OId

assumes :

ensures :

next

 (null ptr)
ptr' = tail ptr A ret = head ptr

Figure 5 : Class Example

 10

Module YES'NO

[YesNo]
 YesNo ::= yes I no

Module LIST [X :: TRIV] _
protecting NAT
[Elem < NeList < List]

 List ::= nil I
NeList ::= _ _

 head _ : NeList -i Elem

 tail _ : NeList y List

 null _ : List Bool

_ : List -+ Nat

E : Elem

L : List

List

 List

head E L = E
tail E L = L
null nil = true
null E L = false
I nil I = 0
IEL1=1+ILI

Figure 6: Common Vocabulary Example

11

Problem
Description

Scenario-based
Object-Oriented Design

(diagram-based
- object diagram
- MSC)

Design Notation
GILO

(semi-formal)

CafeOBJ
Specification

(formal)

Figure 7: Overview of Development Steps

 GILO provides the third component to define such common vocabulary

by using order-sorted algebra. Figure 6 shows definitions for YESNO and

LIST. As seen from the examples, common vocabulary is introduced as an

abstract datatype definition.

4 Method Integration with CafeOBJ

 This section presents our approach to a method integration of GILO and
CafeOBJ. We assume a development process as one illustrated in Figure 7
for the method integration. The approach is basically to provide a set of
translation rules from GILO description to CafeOBJ counterpart. In a word,
the translation is simply a matter of encoding of the operational semantics
of GILO in CafeOBJ. The resultant CafeOBJ description consists of a set
of modules which faithfully reflect the analyzed structure of the problem.
Descriptions in GILO are supposed to reflect the result of problem analysis.
The appendix describes a brief introduction of CafeOBJ from specifier's
viewpoint for readers not familiar with the language.

4.1 Translation to CafeOBJ

12

User-defined
Common Vocabulary

Object System
Kernel

User-defined
Class

Collaboration

System Kernel

User-defined
Collaboration

Figure 8 : Module Relationship Overview

 The section discusses how to derive CafeOBJ descriptions from GILO
representations. Figure 8 illustrates several groups of CafeOBJ modules.
They constitute runtime modules to represent the CafeOBJ modules derived
from GILO [38].

 Object System Kernel is a set of CafeOBJ modules to encode the ob-
ject model. It is basically an encoding of the Maude concurrent object
model, and includes the definitions of concurrent object, message, and con-
figuration that manages the former two components. Collaboration System
Kernel provides a machinery to encode collaboration. The idea is to define
a special class of concurrent object for representing CPN. The implemen-
tation makes use of Object System Kernel. User-defined modules are cat-
egorized into Common Vocabulary, Class, and Collaboration. User-defined
Class uses Object System Kernel, and User-defined Collaboration is based
on Collaboration System Kernel. Each of the user-defined module has a
direct counterpart in the GILO description.

4.1.1 Collaboration System

Collaboration System Kernel provides a basic machinery for executable user-
defined collaboration. It makes use of the object system and defines a con-
current object to represent a CPN interpretation of the labeled transition
system used in the collaboration.

13

 In order to simulate markings in CPN, module MARKING is introduced to

represent execution snapshots of a state-machine.

mod! MARKING
 extending

 [State,
 [State <

 {
(ATTR-VALUE)
Marking]
Marking < AttrValue]

si gnature
op empty
op (_,_)

{
-> Marking

Marking Marking -> Marking {assoc comm id: empty}

}

}

 The CafeOBJ representation of collaboration is an object belonging to
Class Machine, that is implemented by the module MACHINE. A Machine
object has two attributes; marking refers to the snapshot mentioned above,
and participants denote a list of object identifiers (OIds), each one being
a participant of the collaboration. Further, a Machine object can respond
to two messages, fire and on, to proceed state transitions. Every CafeOBJ
module for user-defined collaboration imports the module MACHINE to be-
come powered for execution.

mod! MACHINE

 extending

 protecting

{
(ROOT)
(MACHINE-MESSAGE)

MachineTerm,

MachineTerm

CldMachine]
< ObjectTerm, CldMachine < CId]

signature {
 op <(_:_)I_>

 op Machine : ->

 op make-machine

}

OId CldMachine

CldMachine

: OId Marking

Attributes

OIds

-> MachineTerm

-> MachineTerm

axioms {
 var 0 : OId var M : Marking var L : OIds

eq

}

make-machine(0,
<(0 : Machine)!

M,L)

 (marking = M), (participants = L)> .

}

14

Last, following two auxiliary modules are necessary to complete the defini-

tion.

mod! MACHINE-ATTR-VALUE {
 extending (AID)

 extending (BASIC-VALUE)

 using (COLLECTION[OID] * { sort Collection -> Olds })
 [OIds < AttrValue]

 signature {

 op marking : -> AId
 op participants : -> AId

}
}

mod! MACHINE-MESSAGE {
 extending (ROOT)

 protecting (MACHINE-ATTR-VALUE)
 protecting (MARKING)
 signature {

 op on : OId -> Message
 op fire : OId -> Message

}
}

4.1.2 Translation Example

Below shows the CafeOBJ modules for the example GILO descriptions (Fig-
ures 3, 5 and 6). The modules are obtained by manual translation.

 A CafeOBJ module SIMPLE-EXAMPLE is a translation of Collaboration
SimpleExample. Apart from the ROOT, it imports two modules. SIMPLE-EXAMPLE-STATES
provides constant definitions for the necessary states (q0-q5, and of).
SIMPLE-EXAMPLE-PARTICIPANTS contains all the definitions of objects that
are participant of the collaboration. The rewriting rules together simulate
the transitions specified in the collaboration. For example, the third rule
in SIMPLE-EXAMPLE has two messages on (0) and return (D , V) in order to
express that the rule is fired only after the message return (0 , V) is gener-
ated. Here the message return (0 ,V) is a result of a previous invocation
of a participant object method. In the case of the third rule, the message
return (O,V) is generated as a result of find-key(dir,' local, 0) appeared
in the RHS of the second rule. It is a message sent to dir object requesting
a NodeList object that is indexed with ' local.

15

mod! SIMPLE-EXAMPLE {
 extending (MACHINE)

 protecting (SIMPLE-EXAMPLE-STATES)
 protecting (SIMPLE-EXAMPLE-PARTICIPANTS)
 axioms {

 var 0 : OId var M : Marking var P : Olds

trans fire(0)
 <(0 : Machine)I(marking

_> <(0 : Machine)I(marking

on(0) .

= (q0, M)),
= (q1, M)) ,

var REST

(participants
(participants

: Attributes

P)
P)

(REST)>
(REST)>

trans on(0)
 <(0 : Machine)I(marking

=> <(0 : Machine)I(marking

 find-key(dir, 'local,0)

trans on(0) return(0,V)
 <(0 : Machine)I(marking

=> <(0 : Machine)I(marking

 set(nodes, V,O) on(0) .

= (ql, M)),
= (q2, M)),

on(0) .

= (q2, M)),
= (q3 , M)),

(participants
(participants

(participants
(participants

P)
P)

P)
P)

(REST)>
(REST)>

(REST)>

(REST)>

trans on(0) void(0)
 <(0 : Machine)I(marking

_> <(0 : Machine)I(marking

 end?(nodes, 0) on(0) .

ctrans on(0) return(0,V)
 <(0 : Machine)I(marking

=> <(0 : Machine)I(marking

 notify(user, 'complete,

ctrans on(0) return(0,V)
 <(0 : Machine)I(marking

_> <(0 : Machine)I(marking

 next(nodes, 0) on(0) if

= (q3, M)),

= (q4, M)),

= (q4, M)),
= (qf, M)),

0) on(0) if

= (q4, M)),
= (q5, M)) ,
V==No .

(participants
(participants

(participants

(participants
V == Yes .

(participants
(participants

P)
P)

P)
P)

P)
P)

(REST)>
(REST)>

(REST)>
(REST)>

(REST)>
(REST)>

trans on(0) return(0,V)
 <(0 : Machine)I(marking

_> <(0 : Machine)I(marking

 turn-on(V, 0) on(0) .

= (q5, M)),
= (q3 , M)),

(participants

(participants

P)
P)

(REST)>

(REST)>

}
}

16

The next CafeOBJ module is a translation of Class NodeList (Figure 5).
Rewriting rules (trans, ctrans) corresponds to the three methods.

mod! CLASS-NODE-LIST {
 extending (ROOT)

 protecting (NODE-LIST-MSG)
 [NodeListTerm, CldNodeList]

[NodeListTerm < ObjectTerm, CldNodeList < CId]
 signature {

 op <(_:_)I_> : OId CldNodeList Attributes -> NodeListTerm
 op NodeList : -> CldNodeList

}
 axioms {

 vars 0 R : OId vars L L' : List var REST : Attributes

 trans set(O,L,R) <(0 : NodeList)I(ptr = L'), (REST)>
 <(0 : NodeList)I(ptr = L), (REST)> void(R) .

 ctrans end?(O,R) <(0 : NodeList)I(ptr = L), (REST)>
_> return(R, Yes) <(0 : NodeList)I(ptr = L), (REST)> if null(L) .

 ctrans end?(O,R) <(0 : NodeList)I(ptr = L), (REST)>
=> return(R, No) <(0 : NodeList)I(ptr = L), (REST)> if not null(L) .

 ctrans next(0,R) <(0 : NodeList)I(ptr = L), (REST)>
 return(R, head(L)) <(0 : NodeList)I(ptr = tail(L)), (REST)>

 if not null(L) .
}

}

Common vocabulary of GILO is just a syntax-suger of CafeOBJ module. A
translation to CafeOBJ is straightforward.

4.1.3 Multithreaded Collaboration

 Although it is not covered in the previous sections, multithreaded col-
laboration is easily encoded in CafeOBJ. As the primitives of multithreaded
collaboration, we consider fork and join.

 A transition in the whole system is encoded in a rewriting rule that
changes the marking data, where the marking is a multiset of state markers
and each marker represents an execution snapshot of one thread of execution

(Section 4.1.1). Figure 9 shows a CPN version and the following CafeOBJ
descriptions simulate the same transition. For the fork, marking on the

17

 q1 q4 q5

q2 q3 q6

Figure 9: Fork and Join

RHS contains all the states that the execution forks to (q2 and q3). For the
join, all the states that should be synchronized are specified explicitly in the
marking on the LHS.

var REST : Marking .
trans on(0) <O:Machine
=> <O:Machine I marking =

marking = (qi,

(g2,g3,REST)>

REST)>

ctrans on(0) <O:Machine I
=> <O:Machine I marking =

marking =

(g6,REST)

(g4,g5,
> .

REST) >

Simple diagram representation sush as one in Figure 3 is not available, how-

ever, the above rules illustrate that multithreaded collaboration is easily

encoded in CafeOBJ.

4.2 A Case Study

This section presents a modeling case in which CafeOBJ specifications are
derived by following the proposed development steps (Figure 7). Key points
of the steps are (1) to construct scenarios by identifying participant objects
and their interactions, and (2) to construct GILO descriptions. The case
illustrates the role of three GILO components in the overall specification.

4.2.1 SAKE Warehouse Problem

The SAKE Warehouse problem is a standard common problem [52]. Since
its first appearance in the literature, it has been used as a standard bench-
mark problem for comparing various design methodologies in the software

18

engineering community in Japan [45][52]. The problem is compact but has
essential features commonly found in a lot of business application software.
The following is an English translation of the SAKE Warehouse Problem
[45].

 A warehouse of X Sake Retailing Company accepts several
 containers everyday. Each container contains sake bottles, pos-

 sibly of multiple brands. The number of brands that can be
 mixed in one container is up to ten. The total number of brands

 to be treated is about 200.
 A warehouse keeper stores each container carried into the

 warehouse without any rearrangement and sends a container
 contents notice to a clerk. He also ships out sake bottles by

 the shipment direction forwarded from the clerk. Stored bottles
 are never repacked into another container, nor kept in another

 place. An emptied container is immediately carried out of the
 warehouse.

 container contents notice:
 container number (5 digits)

 carried-in time (hour/day, month/year)
 brand, quantity (repeat)

 The clerk receives dozens of shipment orders per day and
 sends a shipment direction to the keeper for each order. An
 order comes by an order form or by telephone and each order

 must designate just one brand. If the brand is out of stock or
 in short for the ordered quantity, the clerk will tell it to the

 customer and adds the order to the waiting list. And when the
 designated brand is supplied to meet the order, the clerk will
 issue a shipment direction.

 In a shipment direction, containers that will become empty
 are notified.

 Develop a system that supports the work of the clerk (noti-
 fying out of stock status, issuing shipment direction forms and

 listing the outstanding orders).
 shipment direction form:

19

 order number

 customer number

 container number

 brand, quantity

 empty mark

waiting list:

 customer name

 brand, quantity

• No loss of sake will occur either during the transportation

 or during the storage.

• As some part of the problem description may not be realis-

 tic, sophisticated functions such as exception handling can

 be minimal.

 • Ambiguities may be resolved by appropriate interpretation.

4.2.2 Identifying Scenarios

 The modeling step starts with the scenario construction. Analysis of

the problem description results in identification of two main scenarios, Or-

der Arrival from Customer and Container Arrival. Scenario in general has

more than one subscenarios: one for a main flow and others for handling

exceptional cases. For example, the main flow of the Order ArrivaI from

Customer scenario is to deliver requested bottles of sake, while the order is

added in a waiting list when enough stock is not available.

 Figure 10 shows two subscenarios for the Order Arrival from Customer

by using Message Sequence Charts (MSC); (a) the retailing company has
enough stock to fulfill the order, and (b) the order is added to the pending
order database because the stock is insufficient. In the normal case (a), the
arriving order initiates the subscenario (step al). This step is followed by
a check of whether there is enough stock to fulfill the order (step a2). If
so, the stock database is updated (step a3). After empty containers are
collected (step a4), a shipping direction to the warehouse keeper is created
(step a5). In the case (b), on the other hand, the order is added to the
pending order database (step b4) and a notification is issued that the order
is in the waiting list (step b5).

 In the process of constructing the above MSCs, the responsibility or
abstract functionality of each participant object is identified. Of the six

20

Customer Clerk Stock_DB Pending_DB

 1: Order

 2: CheckRequest

 yes

 3: UpdateStock
.i

 4: VacantContainer
.a-

 5: CreateDirection
 --0' 6: ShippingDirection

 8: Sake

Warehouse Gate

7: Container°

 (a) In Stock

Customer ClerkStock_DB Pending_DB

 1: Order

 2: CheckRequest
 no

 3: CurrentOrder
ci

 4: AddPendingOrder
 5: Notice

 (b) Out of Order

 Figure 10: Order Arrival from

 21

u

Warehouse

Customer

Gate

participants, the two key objects in the subscenarios are the Stock Database
and the Pending Order Database. Other objects may be considered auxiliary
and constitute the environment in which the whole scenarios are described
completely. Constructing another scenario, Container Arrival, also helps
elaborate the definitions of two database objects.

4.2.3 GILO Descriptions

The second step involves construction of the GILO specification. Since GILO
has three components, division of labor between them is a key aspect of
the specification construction. First, since collaboration is responsible for
the global flow of messages between participant objects, it is constructed
by combining MSCs of subscenarios that together constitute one scenario.
Second, since an object has states and is modeled in terms of state changes,
writing GILO class involves to find attribute data that a participant object
maintains internally and methods that operate on the data. Third, common
vocabulary modules are introduced. The modules provide interpretation of
symbols used in object methods and are purely functional (no side-effect).

 First, Figure 11 is a GILO description of Collaboration OrderArrival. It
is constructed by combining the two MSCs in Figure 10 with an introduc-
tion of appropriate conditional branching at the state q2. The transition
sequence from q2 to q5 corresponds to the normal case shown in Figure 10
(a) while the sequence from q2 to q7 corresponds to Figure 10 (b).

 In formalizing GILO model of collaboration, arguments of message are
also identified so that all the information necessary to define object interfaces
is determined. Note that a collaboration does not explicitly specify the
initiator object (an object that sends a message) but shows only the sequence
of message events. Collaboration is, therefore, somewhat more abstract than
a MSC that explicitly specifies the message sender as well as the receiver.

 Figure 12 is a partial description of Class StockDatabase. It defines the
interface specification of the class that is in accordance with the collabora-
tion. In identifying the interface specification of Class StockDatabase, we
have taken into account Collaboration ContainerArrival as well as Collabo-
ration OrderArrival, although the current discussion presents the latter one
only. Of the seven method in the definition, addNewStock and selectPendin-
gOrders come from Collaboration ContainerArrival.

 The next step is to elaborate the internal structure of the class and
the functional specification of each method (Figures 13 and 14). The Stock-
Database consists of several attributes that constitute the object states. The

22

Collaboration OrderArrival _

order : SakeOrder
 stock : StockDatabase

 pending : PendingDatabase
 wh : Warehouse

•

Iorder getRequest

q 1 j q2 i In
stock checkRequest: ret

 stock currentOrder/[ret=No]

 q6

 pending addPendingOrder: ret

order noticeq7

 •

stock updateStock/[ret=Yes]

 q3

 stock vacantContainer

 q4 stock createDirection

 q5

 wh shippingDirection: ret

O

Figure 11: Collaboration OrderArrival

23

Class StockDatabase

 addNewStock :

 checkRequest

updateStock : void

vacantContaine

 createDirection

selectPendingOr

 currentOrder

 List of Stock —; List of Stock
Request YesNo
oid --> void

void void
d —> ShippingDirection
: List of Request —> List of

 void Request
Request

Figure 12: Interface Specification

attribute contents maintains the content of the database, and stock_number
keeps track of a value that gives a unique identification number to each stock
that the database has. Three other attributes are used to store values that
are processed in the course of executing the collaboration.

 Class StockDatabase also declares that it uses the common vocabular-
ies, STOCK_DB, YESNO, and NAT, to describe its own behavioral speci-
fication. The module STOCK (Figure 15) defines an abstract datatype to
represent stock, and provides a constructor stock and other functions such
as container.
 The module STOCK_DB (Figure 16) defines functions to realize the main

functionality of Class StockDatabase. The module STOCK_DB is basically

a parameterized DB module that has STOCK as the actual parameter. The

DB module is a basic one common to both STOCK_DB and PENDING_DB,

the latter of which provides vocabulary for Class PendingDatabase. The

module STOCK_DB adds further auxiliary functions to the module DB so

that Class StockDatabase is defined in a compact manner.

4.2.4 CafeOBJ Descriptions

 The final step of the modeling process is simply to translate the GILO
descriptions into the CafeOBJ modules. One can validate the functional
behavior of the design artifact, such as the scenarios shown in Figure 10, by
test execution. As a result, one can enjoy rapid-prototyping of the GILO
design artifact by making use of CafeOBJ.

 The resultant CafeOBJ descriptions for the Sake Warehouse Problem

24

Class StockDatabase
use STOCK _DB,

State-----------------

ESNO , NAT

stock_number : NzNat
order_number : NzNat
contents : StockDB
match : List of Stock
vacant : List of Container
current : Request

Init

State'

ensures : stock_number' = 1
 A order_number' = 1

 A contents' = nilDB
 A match' = nilLS

stock_number)
of Stock

ensures : contents' = add_DB(contents, ls, stock_number)
 A stock_number' = stock_number+ is

 A ret = Is

addNewStock

A(contents, s.

checkRequest

A(match, cur
;(contents)
req : Request
ret : YesNo

rent)

assumes : -, (contents == nilDB)
ensures : match' = check(contents, brand(req), quantity(req))

 A current' = req

 A (if match' == nil then ret. = No else ret = Yes)

assumes : contents == nilDB

ensures : ret = No

Figure 13: Class StockDatabase

25

Class

 _ updateStock

E (match)

Database(cont.)

 vacant)
E (match)

assumes : (match == nil)
ensures : contents' = update(contents, match)

 A vacant' = nil

vacantContainer

I(vacant)
E(contents)

assumes :vacant

ensures :vacant'

== nil A (contents ==
= collect_vacant(contents)

nil)

vacant, order_number)

irection

assumes(current == nil)
ensures :

 ret = create_direction(order_number, client(current), match, vacant)
 A match' = nil

 A vacant' = nil
 A order_number' = order_number + 1

createDirection

selectPendingOrders
(contents)

Is : List of Request
ret : List of Request

ensures :ret = first_come first_serve(contents, Is)

currentOrder
E.(current)
ret : Request

ensures :ret = current

Figure 14: Class StockDatabase (cont.)

26

Module STOCK

protecting SAKE_BASICS, NAT
[Stock]
 Stock ::= stock : Container x Brand x Nat x Nat

 container _ : Stock —* Container
 brand _ : Stock —> Brand

 quantity _ : Stock —i Nat
 id _ : Stock Nat

decr_stock_quantity _ : Stock x Nat -* Stock

 C : Container
 B : Brand
 Q Q' I : Nat

container(stock(C, B, Q, I)) = C
brand(stock(C, B, Q, I)) = B
quantity(stock(C, B, Q, I)) = Q
id(stock(C, B, Q, I)) = I
decr_stock_quantity(stock(C, B, Q, I), Q') = stock(C, B, Q — Q', I)

Figure 15: Module STOCK

Table 1: Module Summary

1

2

3

4

5

Category

GILO Mechanism

Common Vocabulary

Class

Collaboration

Main

Total

CafeOBJ

total direct

13

15

15

3

15

12

3

1

47 30

27

Module STOCK_DB
using DB [STOCK]
using LIST[STOCK]*(sort List to ListStock, op nil to nilLS)
using LIST[REQUEST]*(sort List to ListRequest, op nil to nilRQ)
using LIST[CONTAINER]*(sort List to ListContainer, op nil to nilC)

 add_DB _ : Database x ListStock x Nat —4 Database
stock_to_DB _ : ListStock x Nat —4 Database

 check _ : Database x Brand x Nat —i ListStock
collect_brand _ : Database x Brand x ListStock ListStock

 check_quantity _ : Database x Nat x ListStock —j ListStock
 update _ : Database x ListStock —* Database

update_aux _ : Database x ListStock x Database --> Database
collect_vacant _ : Database —+ ListContainer
first_come first_serve _ : Database x ListRequest —; ListRequest

 D : Database
LS : ListStock
IJQ:Nat
 C : Container
B : Brand

add_DB(D, LS, I) = (stock_to_DB(LS, I) D)
stock_to_DB(nilLS, I) = nilLS
stock_to_DB(stock(C, B, Q, J)LS, I) = (stock(C, B, Q, I) stock_to_DB(LS, I + 1))

 D : Database
 B : Brand
 X : Stock
 LS LS' : ListStock

 I Q:Nat

check(D, B, Q) = check_quantity(collect_brand(D, B, nilSL), Q, nilLS)
collect_brand(nilDB, B, LS) = LS
collect_brand((X D), B, LS)

 = if (brand(X) == B) then collect_brand(D, B, (X LS))
 else collect_brand(D, B, LS)

check_qauntity(nilLS, Q, LS) = if Q < 0 then nilLS else LS
 check_quantity((S LS'), I, LS) = check_stock((S LS'), I — quantity(S), LS)

... (omitted) .. .

... (omitted) ..

Figure 16: Module STOCK_DB

28

consist of 47 modules that have some 1,100 lines of CafeOBJ code. Table 1
summarizes the figures.

 The entry GILO Mechanism includes both Object System Kernel and
Collaboration System Kernel that basically defines the module MACHINE (sec-
tion 4.1). Of fifteen Common Vocabulary modules, four are general-purpose
such as YES-NO and DB, while the rest eleven modules are specific to the
present problem. The latter includes STOCK and STOCK-DB and can be con-
sidered as domain-specific vocabulary.

 The specified class and collaboration for the case is four and one respec-
tively. For describing a GILO class, three CafeOBJ modules (a mod! module
for the class body, two mod* modules for the names of attributes and mes-
sages) are introduced according to the guideline in Section A.2. Thus, of
the fifteen modules in the category Class, twelve (12 = 3 x 4) have direct
correspondence with GILO descriptions. The rest three are mod! modules to
provide concrete representation for the attribute names, the attribute value
type, and the message terms. A GILO collaboration, in turn, needs three
CafeOBJ modules. It implies that the traceability of the collaboration is
quite clear.

5 Related Work

This section discusses comparison with related works. Comparison is made
in two areas: (1) scenario-based object-oriented modeling methods, (2)
method integration.

OOSE [24] and RDD [49] are two pioneers that adopt scenario-based
object-oriented modeling method. Booch and Rumbaugh's unified method
[5] and UML [39] also support the scenario concept. The interaction diagram
of OOSE and the event trace diagram correspond to the collaboration of
GILO. They, however, can describe typical execution traces only, and are
diagram-based notations having less rigorous semantics.

 In order to express collaboration, Fusion [9] uses the object interaction
graph, which is basically the same as the event trace diagram of OMT. In
addition, Fusion promotes the use of an operation model and a life-cycle
model. The former corresponds to method behavior of the GILO class and
the latter to the GILO collaboration. The life-cycle model uses a regular
expression whose alphabet represents a set of events. The operation model
offers guidelines for representing behavioral aspects of a method or an oper-
ation in terms of the pre- and post-conditions. Unfortunately the conditions

29

are described informally in natural language. No rigorous relationship be-
tween the life-cycle and operation models is established.

 Catalysis [12] is a new modeling method that focuses on the object inter-
actions and formal description techniques. The key idea is to treat objects
and actions equally, and thus to provide interaction between objects as a
first-class modeling tool. Catalysis introduces a joint action, which is a series
of related actions, as a common modeling tool for use-cases and collabora-
tions, which is in accordance with the idea of GILO. As for expressing the
pre- and post-conditions or other forms of behavior description, Catalysis
uses semi-formal notations OCL (Object Constraint Language) of UML [39].
Although activities on formalizing OCL is underway, OCL of Catalysis itself
is not based on rigorous semantics. Catalysis, however, has an important
notion of refinement, which provides a systematic guideline to transform an
abstract design artifact into concrete ones in a stepwise fashion. Unfortu-
nately, GILO does not provide any guideline for the refinement.

 The second area is on the integration of the informal object-oriented
modeling methods and formal specification languages. One approach is to
have object-oriented extension of existing specification languages [1][6][17][28][29][44].
Most of the works, however, has concentrated on incorporating basic object-
oriented concepts such as state encapsulation, property inheritance, and
polymorphism into the respective host specification language. The issue on
modeling collective behavior (Collaboration) is out of scope.

 Larch [20] is a two-tiered specification language, in which the algebraic
specification provides common vocabulary. An interface language compo-

nent uses the vocabulary to describe behavioral aspects of functions or pro-

cedures. Larch/C++ [30] is one of the Larch family languages. It is pri-
marily intended to be used for writing the interface specifications of C++
member functions in the state-oriented style, and thus it does not provide
collaboration.
 Giovanni and Iachini [16] and Hall [21] use object-oriented modeling

method as a guideline for finding objects in the analysis phase and then
obtain descriptions in the Z notation. Descriptions in the Z notation is
hardly mechanically analyzable. Recently, Jackson [25] proposes Alloy as
a rational reformulation of the Z notation and UML class notation, and
that descriptions in Alloy can be mechanically reasoned about by the model
checking technique. Their primary concern is the structural aspect and does
not consider scenario in which dynamic aspect is essential.

 NASA has conducted several case studies on the lightweight use of formal
methods in the requirement modeling [13], which includes an integration of

30

 r-

OMT and PVS. The OMT diagram descriptions are manually translated into

specification fragments that can be fed into PVS. Then, properties that the

OMT description must hold are reasoned about by using PVS. Meyer and

Souquieres [32] proposes a set of templates that translate OMT descriptions
into specifications written in the B method. Since OMT is a data-driven
modeling method, the emphasis is put on consistency checking of structural
aspects of the model such as multiplicity of association links. Thanks to
the B method tool, most of the checking can be done automatically. Both
[13] and [32] concentrate on structural aspects and pay less attention to
collective behavior of objects. Further, it requires to construct and conduct
manual proof for application specific properties.

 Wirsing [50] proposes a formal object-oriented design based on Jacob-
son's OOSE [24] and in which a Maude-based formal object model is encoded
in an algebraic specification language Spectrum. The emphasis is put on the
importance of the stepwise refinement with discussions on the role of proof
checking in the refinement process. Since the development process uses the
interaction diagram (a scenario) as a guiding tool just for obtaining object
specifications, scenario diagrams do not have rigorous semantics. Later,
Wirising and Knapp [51] use process algebra to give formal accounts of the
dynamic aspects by extending Maude with process expression. Process ex-
pression controls how messages are sent to particular objects. Thus, the
process expression corresponds to GILO collaboration. We use transition
system that also has diagram representation to represent the control aspect.

 As for integrating the proposed GILO method with the stepwise refine-
ment, one may integrate Catalysis with GILO/CafeOBJ for a start. It needs
an algebraic formulation of Catalysis, which involves establishing a rigorous
semantic basis for UML and OCL in an algebraic manner. And then, the
stepwise refinement process may adopt the techniques reported in [51].

6 Discussion and Conclusion

By a careful study on existing scenario-based object-oriented modeling meth-
ods, we came up with a semi-formal intermediate design notation GILO.
We first enumerated two of essential aspects to describe scenarios: (1) the
information about participant objects, and (2) the information about the
sequence of their interactions. Then we elaborated the concepts to crystal-

ize rationalized design notation that was rigorous enough to be amenable

to mechanical checking. In some sense, we showed that GILO was rigorous

31

by giving a set of rules translating GILO descriptions into CafeOBJ coun-
terparts. The resultant CafeOBJ description are executable and consists
of a set of modules which faithfully reflect the analyzed structure of the
problem. Thus, rapid prototyping at early stages of software development is
achieved. One drawback is that we cannot translate CafeOBJ descriptions
back to GILO. This hinders us from seamless debugging activities to point
out deficiencies in GILO descriptions from the execution trace of CafeOBJ
counterparts.

 In order to effectively use formal specification languages such as CafeOBJ,
one generally has to prescribe a development process and the role of the lan-
guage in the overall process. Our use of CafeOBJ in this paper is a tool for
rapid-prototyping in early stages of the development as shown in Figure 7,
and executability is a key feature. However, one has to be very careful to
obtain executable CafeOBJ modules of abstract datatype specification since
it requires that the module should have initial algebra. From a viewpoint of
specification writer, a rule of thumb is that one first introduces a basic data
structure as a recursively defined term, and second provides utility functions
to follow the recursive structure2. It is similar to a functional programming
style as in, for example, Standard ML [33]. Further CafeOBJ has a rewriting
engine based on a subset of concurrent rewriting logic, which enables one
to write executable specifications. Actually, Maude aims to be a language
for describing various symbolic processing systems, which have clear logical
semantics [8].

 We have some experience in using ML-like notation in the specification of
object-oriented design [36][37], which shows that the notation can compactly
describe algorithmic aspects of the design. The experience also includes
that every description in the pseudo ML can be encoded in CafeOBJ with a
suitable interpretation so that the descriptions are executable. It is partly
because we can encode various computational entities as suitable algebras
thanks to the property-oriented style of specification writing. We observe
that CafeOBJ, algebraic specification languages in general, is an adequate
tool for rapid prototyping.

 One thing to note is that the GILO notation is multiparadigm. The
whole GILO specification has a global state consisting of (1) the states in
collaboration and (2) the states in all the participant objects. One might
argue that both components are state-based and thus the multiparadigm

element is minimal. Although both class and collaboration are state-based,

 2The appendix A .1 presents examples to follow such a specification writing style.

32

the roles of states are different in each component. More importantly, each
has its own syntax that expresses the essential aspects of the computational
model in a very concise manner. Thus GILO can be thought of being mul-
tiparadigm from the viewpoint of the notational suitability.

 Last, the idea of scenario-based object-oriented modeling method with
GILO has been successfully adapted in the development of several dis-
tributed object-oriented software systems [3][46][47]. Thus, the effectiveness
of the modeling method can be said confirmed.

A Specifier's Introduction to CafeOBJ

CafeOBJ is a new algebraic logic language of the OBJ family, and has clear
semantics based on hidden order-sorted rewriting logic [10][11]. The logic
subsumes equational logic, on which OBJ has its semantic basis [14][18]. By
incorporating (a subset of) rewriting rules of Maude [31], CafeOBJ makes
the algebraic specification language expressive enough to provide a clear
model for state changes.

 From the specifier's viewpoint, CafeOBJ has two kinds of axioms3 to
describe functional behavior. An equational axiom (eq) is based on equa-
tional logic and thus is suitable for representing static relationships and
purely functional behavior. A rewriting axiom (trans) is based on a subset
of concurrent rewriting logic and is suitable for modeling state changes.

A.1 Abstract Datatype

Here is a simple example, a CafeOBJ specification of LIST. The module LIST
defines a generic abstract datatype List. _ _ (juxtaposing two data of the
specified sorts) is a List constructor. Two accessor or observer functions
hd and tl are the standard ones. I_ I returns the length of the operand list
data and is a recursive function over the structure of the list.

• mod ! LIST CX :: TRIV] {
NeList, List] E Elt < NeList < List]

 protecting (NAT)
 signature {

 op nil : -> List
 op __ : List List -> List {assoc id: nil}

 op __ NeList List -> NeList

3Iiidden algebra [10][11][19] is not considered .

33

 op --
 op hd :

 op tl .

 op I_I

}
axioms {

 var X :

NeList NeList -> NeList

NeList -> Elt

NeList -> List

: List -> Nat

Elt var L : List

 eq hd (X L) = X .
 eq tl (X L) = L .

 eq I nil I = 0 .
egIX I=1.
eq I X L I= 1+ I L I.

}
}

The module N-LIST imports the module LIST and adds definitions of some
utility functions such as n-hd and n-tl. The function n-hd returns the
specified number (N) of elements from the head of the list, and n-tl discards
N elements.

mod! N-LIST[X :: TRIV] {

 protecting (LIST[X])
 signature {

 op n-hd : Nat NeList -> List
 op n-tl : Nat NeList -> List
 op rev : List -> List

 op nhd-aux : Nat NeList NeList -> NeList
 op rev-aux : List List -> List

}
 axioms {

 var N : Nat vars L L' : List var X : Elt

eq n-hd (N, L) = nhd-aux (N, L, nil) .
ceq nhd-aux (N, L, L') = rev(L') if N == 0 .
ceq nhd-aux (N, (X L), L') = nhd-aux ((N - 1), L, (X L')) if N > 0 .

ceq n-tl (N, L) = L if N == 0 .
ceq n-tl (N, (X L)) = n-tl ((N - 1), L) if N > 0 .

eq rev L = rev-aux(L,nil) .
eq rev-aux(nii,L') = L' .
eq rev-aux((X L), L') = rev-aux(L, (X L')) .

34

1
 }

 The above examples also show a typical use of modules in a structured

way. (1) The module LIST defines a basic data structure (List) by providing
constructors and observers. (2) Another module N-LIST introduces further
utility functions with importing the LIST module. Such utility modules are

expected to constitute a reusable library.

A.2 Concurrent Object

Representing object follows a style of Maude [31]. The core part of the
Maude concurrent object can easily be encoded in CafeOBJ [38]. The Maude
model relies on Configuration data and rewriting rules based on concurrent
rewriting logic. Configuration is a snapshot of global states consisting of
objects and messages at some particular time. Object computation (sending
messages to objects) proceeds as rewriting on Configuration. In addition,
Maude has a concise syntax to represent the object term (<(_:_)1_>) and
some encoding techniques to simulate inheritance. The Maude model can
be considered as a standard encoding for concurrent objects in algebraic
specification languages [35][50][51].

 Below is an example of object definition. The module ITERATOR defines
an Iterator object, which maintains a list of data and returns the specified
number of data when requested by a next-n message.

mod! ITERATOR[X :: TH-ITERATOR-AID, Y :: TH-ITERATOR-MSGJ {
 extending (ROOT)

 protecting (ITERATOR-VALUE)
[IteratorTerm < ObjectTerm

 [Cldlterator < CId J
 signature {

 op <(_:_)I_> : OId Cldlterator Attributes -> IteratorTerm
 op Iterator : -> Cldlterator

}
 axioms {

 vars 0 R : OId var L : List var N : NzNat
 var REST : Attributes

ctrans next-n (O,N,R) <(0 : Iterator)I(body = L), (REST)>
=> <(0 : Iterator)I(body = n-tl(N,L)), (REST)>

 return(R,true) outArgs(R,n-hd(N,L)) if N <= ILI .

35

ctrans next-n (O,N,R) <(0
_> <(0 : Iterator)I(body

: Iterator)I(body = L), (REST)>
= L) , (REST)> return(R,false) if N > ILI .

trans destroy(0,R) <(0 : Iterator)I(REST)> _> void(R) .

}
}

The ITERATOR is a parameterized module. Both TH-ITERATOR-AID and
TH-ITERATOR-MSG provide specification of the parameter module. The for-
mer introduces the attribute name that an Iterator object has, and the latter
defines all the messages that the object can respond to.

mod* TH-ITERATOR-AID {
 extending (AID)

 signature { op body : -> AId
}

}

mod* TH-ITERATOR-MSG {
 extending (MESSAGE)

 signature {

 op next-n : OId NzNat OId -> Message
 op destroy : OId OId -> Message

}
}

 The module ITERATOR imports two other modules ROOT and ITERATOR-VALUE.

The module ROOT is a runtime module that provides the symbols necessary

to represent Maude concurrent objects [38]. That is, it provides the follow-
ing sort symbols: Configuration to represent the snapshot, Message for
messages, Obj ectTerm for the body of objects which consists of Attributes

(a collection of attribute name and value pairs), CId for class identifiers, and
Old for identifiers of object instances.

 As shown in the above example, a user-defined class should define a con-
crete representation of the object term (< (_ : _) I _>) in a new sort (IteratorTerm)
and a class identifier constant (Iterator) in another new sort (CldIterator).
The axioms part has a set of rewriting rules (either trans or ctrans), each
of which defines a method body. In writing the method body, one often refers
to symbols defined in other modules such as, for example, the sort List and
the related utility functions. The module ITERATOR-VALUE is supposed to
import all the modules such as N-LIST [NAT] necessary for the ITERATOR.

36

Acknowledgements

We would like to thank Professor Tetsuo TAMAI (The University of Tokyo)
for helpful discussions.

References

[1] Alencar, A. and Goguen, J. : OOZE: An Object Oriented Z Environ-
 ment, Proc. ECOOP'91, pp.180-199 (1991).

[2] Beck, K. and Cunningham, W.: A Laboratory for Teaching Object
 Oriented Thinking, Proc. OOPSLA'89, pp.1-6 (1989).

 [3] Beppu, Y., Nakajima, S., Kumeno, F., Cho, K., Hasegawa, T., and
 Ohsuga, A. : A Directory Server for Mobile Agent Interoperability,

 Proc. IEEE EDOC 2000, pp.144-148 (2000).

 [4] Booch, G. : Object-Oriented Development, IEEE Trans. Soft. Engin.,
 vol. SE-12, no. 2, pp.211-221 (1986).

[5] Booch, G., Rumbaugh, J. and Hopkins, J. : The Evolution of Object
 Methods, Handout, Rational Software Corporation, 1995.

 [6] Carrington, D., Duke, D., Duke, R., King, P., Rose, G., and Smith,
G. : Object-Z : An Object-Oriented Extension to Z, Proc. FORTE'89,

 pp.281-296 (1990).

[7] Carroll, J.M. (ed.) : Scenario-Based Design, John Wiley & Sons 1995.

 [8] Clavel, M., Eker, S., Lincoln, P., and Meseguer, J. : Principles of
 Maude, Proc. 1st Workshop on Rewriting Logic and its Applications

 (1996).

 [9] Coleman, D., Arnold, P., Bodoff, S., Dollin, C., Gilchrist, H., Hayes, F.,
 and Jeremaes, P. : Object-Oriented Development: The Fusion Method,

 Prentice Hall 1994.

[10] Diaconescu, R. and Futatsugi, K. : The CafeOBJ Report, World Sci-
 entific 1998.

37

[11] Diaconescu, R. and Futatsugi, K. : Behavioural Coherence in Object-
 Oriented Algebraic Specification, Journal of Universal Computer Sci-

 ence, vol.6, no.1, pp.74-96, (2000). The first version appeared as a
 JAIST Technical Report IR-RR-98-0017F (June 1998).

[12] D'Souza, D.F. and Wills, A.C.: Objects, Components, and Frameworks
 with UML, Addison-Wesley 1998.

[13] Easterbrook, S., Lutz, R., Kelly, J., Ampo, Y., and Hamilton, D. : Ex-
 periences Using Lightweight Formal Methods for Requirements Model-

 ing, IEEE Trans. Soft. Engin., vol. SE-24, no. 1, pp.4-14 (1998).

[14] Futatsugi, K., Goguen, J., Jouannaud, J-P., and Meseguer, J. : Princi-
 ples of OBJ2, Proc. 12th POPL, pp.52-66 (1985).

[15] Futatsugi, K. and Nakagawa, A.T. : An Overview of CAFE Specifica-
 tion Environment, Proc. 1st IEEE ICFEM (1997).

[16] Giovanni, R. and Iachini, P. : HOOD and Z for the Development of
 Complex Software Systems, Proc. VDM'90, pp.262-289 (1990).

[17] Goguen, J. and Meseguer, J. : Unifying Functional, Object-Oriented
 and Relational Programming in Logical Semantics, in Research Di-

 rections in Object-Oriented Programming (Shriver and Wegner ed.),
pp.417-477, MIT Press 1987.

[18] Goguen, J., Winkler, T., Meseguer, J., Futatsugi, K., and Jouannaud,
 J-P.: Introducing OBJ, in Software Engineering with OBJ (Goguen and

 Malcolm ed.), pp.3-167, Kluwer Academic Publishers 2000. The first
 version appeared as an SRI Technical Report SRI-CSL-92-03 (1992).

[19] Goguen, J. and Malcolm, G.: A Hidden Agenda, Theoretical Computer
 Science, 245 (1), pp.55-101 (2000).

[20] Guttag, J. and Horning, J. : Larch: Languages and Tools for Formal
 Specification, Springer-Verlag 1993.

[21] Hall, J. : Using Z as a Specification Calculus for Object-Oriented Sys-
 tem, Proc. VDM'90, pp.290-318 (1990).

[22] Helm, R., Holland, I., and Gangopadhyay, D. : Contracts: Specifying
 Behavioral Compositions in Object-Oriented Systems, Proc. OOPSLA/
 ECOOP'90, pp.169-180 (1990).

38

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

Hutt, T.F. (ed.) : Object Analysis and Design : description of methods,
John Wiley & Sons 1994.

Jacobson, I., Christerson, M., Jonsson, P., and Overgaard, G.: Object-
Oriented Software Engineering, Addison-Wesley 1992.

Jackson, D. : Alloy: A Lightweight Object Modelling Notation, Tech-
nical Report, MIT (2000).

Jensen, K. : Coloured Petri Nets 1, Springer-Verlag 1992.

Kobryn, C. : UML 2001: A Standardization Odyssey, CACM vol.42,
no.10, pp.29-37 (1999).

Lano, K. and Haughton, H. (ed) : Object-Oriented Specification Case
Studies, Prentice Hall 1994.

Lano, K.: Formal Object-Oriented Development, Springer-Verlag 1995.

Leavens, G. and Cheon, Y. : Preliminary Design of Larch/C++, Proc.
1st Workshop on Larch, pp.159-184 (1993).

Meseguer, J. : A Logical Theory of Concurrent Objects and its Re-
alization in the Maude Language, in Research Directions in Concur-
rent Object-Oriented Programming (Agha, Wegner and Yonezawa ed.),
pp.314-390, MIT Press 1993.

Meyer, E. and Souquieres, J. : A Systematic Approach to Transform
OMT Diagrams to a B Specification, Proc. FME World Congress on
FM'99, pp.875-895 (1999).

Milner, R., Tofte, M., Harper, R., and MacQueen, D. : The Definition
of Standard ML (revised), MIT Press 1997.

Nakajima, S. : Formalizing Object-Oriented Software with Algebraic
Specification Techniques, in Understanding Object-Model Concepts,
Bringham Young University, BYU-CS-93-12 (1993).

Nakajima, S. and Futatsugi, K.: An Object-Oriented Modeling Method
for Algebraic Specifications in CafeOBJ, Proc. ACM/IEEE ICSE'97,
pp.34-44 (1997).

39

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

Nakajima, S. : Using Algebraic Specification Techniques in Develop-
ment of Object-Oriented Frameworks, Proc. FME World Congress on
FM'99, pp.1664-1683 (1999).

Nakajima, S. : Aspect-Centered Design of Object-Oriented Frame-
works, Trans. IPS Japan, Vol.41, No.3, pp.758-766 (2000).

Nakajima, S. : An Algebraic Approach to Object-Oriented Software
Engineering, PhD Thesis, The University of Tokyo (2000).

OMG : UML v1.3 (http://www.oing.org/uml/).

Reenskaug, T, : Working with objects: the oocam software engineering
method, Manning Publications 1996.

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., and Lorensen,
W.: Object-Oriented Modeling and Design, Prentice-Hall 1991.

Sharble, R. and Cohen, S.: The Object-Oriented Brewery : A Compar-
ison of Two Object-Oriented Development Methods, ACM SIGSOFT
Soft. Engin. Notice, vol.18, no.2, pp.60-73 (1993).

Spivey, J. : The Z Notation (2ed edition), Prentice Hall 1992.

Stepney, S, Barden, R. and Cooper, D. (ed) : Object Orientation in Z,
Springer-Verlag 1992.

Tamai, T.: How Modeling Methods Affect the Process of Architectural
Design Decisions: A Comparative Study, Proc. 8th IWSSD, pp.125-134
(1996).

Tomono, M., Yamanaka, A., Tonouchi, T., and Nakajima, S. : An
Implementation of Customizable Services with Java/ORB Integration,
Proc. IEEE -GLOBECOM'97, pp.1719-1723 (1997).

Tonouchi, T., Fukushima, T., Manki, A., and Nakajima, S. : An Im-
plementation of OSI Management Q3 Agent Platform for Subscriber
Networks, Proc. IEEE ICC'97, pp.889-893 (1997).

Wirfs-Brock, R., and Wilkerson, B. : Object-Oriented Design: A
Responsibility-Driven Approach, Proc. 0OPSLA'89, pp.71-75 (1989).

Wirfs-Brock, R., Wilkerson, B., and Wiener, L.: Designing Object-
Oriented Software, Prentice-Hall 1990.

40

[50] W

[51]

irsing, M. : A Formal Approach to Object-Oriented Design,

Wirsing, M. and Knapp, A.
Software Engineering, Proc.
Applications (1996).

1995.

: A Formal Approach to Object-Oriented
1st Workshop on Rewriting Logic and its

[52] Yamasaki, T.: Surveys of Program Design Methods Using a Common
 Example Problem (in Japanese), Journal of IPS Japan, vol. 25, no. 9,

 p.934 (1984).

[53] Zave, P. and Jackson, M. : Conjunction as Composition,
 Soft. Engin. Meth. 2(4), pp.379-411 (1993).

ACM Trans.

41

