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Abstract

  A new scenario-based object-oriented modeling method is proposed. 
It incorporates a semi-formal intermediate design notation GILO (Generic 
Interaction Language for Objects) that provides essential ingredients 
to represent scenario. GILO, being influenced by algebraic specifica-
tion techniques, has well-defined syntax and semantics, and the mod-
eling method is more rational than existing scenario-based modeling 
methods. Further, GILO descriptions can be translated into modules 
written in CafeOBJ, an algebraic logic language. CafeOBJ has clear 
semantics based on hidden order-sorted rewriting logic and descrip-
tions can be executable. In order to show how the proposed modeling 
method is applied, a concrete case study on a standard design bench-
mark problem (the SAKE Warehouse problem) is presented. The resul-
tant design artifact, which confirms to scenario-based object-oriented 
modeling method, is executable and validated in a rapid-prototyping 
manner with CafeOBJ. 
Keywords: method integration, rapid prototyping, algebraic logic 
language, object-oriented modeling, collective behavior

1 Introduction

Object-oriented modeling method has been widely accepted in the industry 
as an established technology for improving the quality of software from early
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stages of the development. Since Booch's seminal paper [4], many methods 
have been proposed on object-oriented design [23]. It is followed by efforts 
to produce a unified method [5] and then UML [27][39], that can be used as 
a standard modeling notation. The variety of methods fall into two broad 

categories  [42][48]: data-driven and responsibility-driven modeling methods. 
The latter is sometimes called scenario-based one [7], and examples include 
Jacobson's OOSE [24], CRC [2], RDD [49], and Fusion [9]. Scenario is a 
representation of partial functional requirements of the system in an abstract 
manner, and is a modeling tool to help validate the functional behavior of 
the design artifact. Since the concept of scenario becomes important in 
object-oriented modeling methods, UML also provides such a concept as 
one of the core modeling notations. 

  Scenario in the current modeling methods, however, is somewhat intu-
itive and is not so rigorous that the quality of design artifacts solely relies on 
design review by experienced human engineers. By elaborating the concept 
of scenario to be rigorous enough to be amenable to mechanical checking, 
one can expect to greatly reduce the cost of design review. It needs a thor-
ough understanding of the scenario concept and to find a way to "method 
integration," in which one employs the scenario-based modeling method to 
analyze the problem at hand, and then uses a formal specification language 
to have rigorous design artifacts. 

  We propose a new scenario-based object-oriented modeling method with 
GILO (Generic Interaction Language for Objects) [35]. GILO is a semi-
formal intermediate design notation that provides essential ingredients to 
represent scenario. It is an outcome of a critical analysis of existing scenario-
based methods and authors' experience in development of several object-
oriented systems [3][46][47]. Further, we employ the algebraic specification 
technique to be the formal basis of GILO, which realizes the method integra-
tion. Our method is dependent on concurrent rewriting logic that is suitable 
for modeling state changes in the algebraic logic tradition [31]. Particularly, 
we use CafeOBJ [1O][11][15], a new algebraic logic language of the OBJ 
family [14][18]. CafeOBJ has clear semantics based on hidden order-sorted 
rewriting logic that subsumes order-sorted equational logic and a subset of 
concurrent rewriting logic. CafeOBJ has executable semantics, and thus 
the language can serve as the basis for a rapid prototyping tool in the early 
stages of software development. 

  The present paper is organized as follows: the second section presents 
scenario-based object-oriented modeling method, the third section proposes 
a new modeling method with an emphasis on the intermediate design no-
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Figure 1: Event Trace Diagram

tation GILO, the fourth section illustrates a way of method integration 

with CafeOBJ and shows a case in which the proposed modeling method 

is used for a problem of medium size, the fifth section compares our work 

with related ones, the sixth section summarizes discussions on the proposed 

approach and then concludes the paper. The appendix includes a brief in-

troduction of CafeOBJ.

2 Object-Oriented Modeling Methods

Object-oriented modeling method generally has two roles; (1) it provides 
basic notations to represent various aspects of objects, and (2) it provides 
further notations and guidelines to help derive object definitions. Different 
modeling methods assume different guidelines but fall into two broad cat-
egories [42][48]: data-driven modeling and responsibility-driven modeling 
methods. The latter is sometimes called scenario-based modeling method 
[7]. In data-driven modeling method such as OMT [41], structural aspects 
of objects and relationships between objects are the main concern at early 
stages of development; functional aspects of objects are left until later. De-
sign validation is therefore concentrated with structural aspects of object 
diagrams, such as inheritance relationships between classes or multiplicity 
constraints on object attributes.
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  In scenario-based modeling method, such as that of  OOSE [24], CRC [2] 
or RDD [49], an object is an entity that is responsible for a particular part 
of functionality that the whole system provides. Identifying objects requires 
analysis of functional behavior of the system and involves separating out the 
functional coupling between objects. Thus, the method puts emphasis on 
validating the functional behavior of more than one object in early stages of 
the development. It implies that rapid-prototyping of a specification com-
prising many objects is inevitable for obtaining high quality design artifact. 
The approach has been successful in the user interface design and now be-
comes popular in the world of object-oriented modeling [7]. As summarized 
in a famous statement [2][22],

No object is an island,

collective behavior of objects [34] is essential in the design of any signifi-
cant object-oriented software system. This observation also supports the 
importance of scenario-based object-oriented modeling methods. 

  A scenario is actually a prototypical history of an execution and consists 
of a sequence of messages exchanged among participant objects. Figure 1 
is an example representation of scenario used in object-oriented modeling. 
The horizontal arrow refers to a message sending event, and the numbers in 
the diagram specify the order of events where an event is a message to some 
object. The diagram is called a message sequence chart (MSC) or an event 
trace diagram. 

  While the usage and abstraction level of the notations differ in each 
method [24][49], the essence of a scenario is to have two notions: 

  1. the information about participant objects, 

  2. the information about the sequence of their interactions. 

  The scenario concept in general, however, has two drawbacks to be 
used as a basic modeling tool. First scenario is just an execution history, 
and is not a complete specification. One must combine a lot of related 

(sub)scenarios to obtain a consistent specification. Second, scenario in the 
current modeling methods is intuitive. As Figure 1 shows, the representation 
is simple and easy to understand, but needs intuition to reason about the 
meaning. In a word, the reasoning is dependent on engineer's experience. 
Therefore, rationalized notation for the scenario-based object-oriented de-
sign specification is called for. It is desirable at the same time to be rigorous 
enough to be amenable to mechanical checking.
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3 Scenario-based Modeling with GILO

3.1 GILO : Intermediate Design Notation 

We propose a scenario-based modeling method that uses an intermediate 

design notation GILO (Generic Interaction Language for Objects) [34][35]. 
As described in Section 2, a scenario needs to make two aspects of the 
specification components explicit: the behavior of participant objects and 
behavior of global interaction between them. Further, the interaction should 
not be an instance of execution history, but a complete specification to 
describe dynamic or reactive aspect of the specificand completely. 

  GILO employs two basic abstraction viewpoints as specification compo-
nent: class for the behavior of participant object and collaboration for the 
interaction specification. Since the two aspects are quite divergent computa-
tional entities, it is difficult to encode both characteristics in one specification 
model. We use a multiparadigm specification approach [53] and define re-
lationships between the components precisely. Figure 2 illustrates the basic 
idea of GILO, which provides three kinds of specification components: (1) 
Collaboration, (2) Class, and (3) Common Vocabulary.
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3.1.1 Collaboration

Since collaboration is responsible for the way participant  objects exchange 
messages, dynamic reactiveness is essential. For collaboration, we have 
adopted a transition system, which can be considered an abstract computa-
tional model of the Message Sequence Chart (MSC) shown, for example, in 
Figure 1. The model also allows conditional branching and iteration, both 
of which a MSC cannot express, and thus is more general. Conversely a 
MSC is a record of an execution history generated by the transition system. 
Since a message is sent to some of the participant objects in the course of 
state transition, the transition system can be considered to explicitly de-
scribe how the global interaction of the objects proceeds. Collaboration also 
includes declarations of participant objects. 

  A few words on the relationship between Collaboration of GILO and 
UML Collaboration [39] are needed here. UML Collaboration uses diagram 
notations to illustrate structural relationships among the participant objects 
in order to put emphasis on the role of each participant in the overall struc-
ture. UML Collaboration can also be accompanied with dynamic aspects 
describing a sequence of messages. The description is an execution trace 
that is essentially identical to a MSC. In GILO, collaboration is a transi-
tion system that manages message-flows among the participant objects in 
a centralized viewpoint. That collaboration is a reactive entity is the most 
important point.

3.1.2 Class

In regard to the definition of participant objects, methods of the classes for 
the objects provide behavioral aspects. Since an object has internal states 
and method invocation often results in changes in those states, it is natural 
to model the method behavior in terms of state-oriented specification or a 
combination of the pre- and post-conditions. In addition, a method may 
return some value as its result. We allow to use the introduction of return 
variables for this purpose. That is, the method can update a predefined 
variable ret to return some value to its caller. 

  Although we call "class", it is more like "role" in the oocam method [40]. 
It is because our primary concern here is to show how the entity (either class 
or role) behaves in relation to other participant entities, and not to show how 
the entities are related from a viewpoint of their structural aspects such as 
inheritance or link relationship. UML Collaboration [39] also uses a notion
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of role to be a basis for describing global flow of controls.

3.1.3 Common Vocabulary 

In describing the definition of collaboration or class, we often use auxiliary 
symbols to which we assign some particular meanings. The third component 

provides a set of common vocabularies that are employed to interpret each 
symbol in collaboration or class. We have adopted an abstract datatype 
technique for this component of GILO specification. 

  In object-oriented modeling method such as Catalysis, class and com-
mon vocabulary is not distinct. Both are user-defined entities introduced 
as types. Type in Catalysis is the same as class in  UML and is usually 
introduced in class diagrams. We, however, see the distinction is important 
because class is an entity participating in collaborations while common vo-
cabulary is a set of entities that contribute to provide class with application 
semantics. 
  This idea is inspired by the Larch family of specification languages [20], 
in which the shared language component defines common vocabulary and 

the interface language uses the vocabulary to describe the behavioral spec-

ifications of procedures or functions. The common vocabulary of GILO 

corresponds to the shared language of Larch.

3.2 GILO by Examples 

Next presents the three kinds of GILO components by using concrete exam-

ples.

3.2.1 Collaboration Description 

Collaboration has two components: (1) declaration of participant objects, 
and (2) state-machine to represent dynamic behavior. Figure 3 shows an 
example, Collaboration SimpleExample. This has three participant objects; 
user is an object of Class User, dir is an object of Class Directory, and nodes 
is all object of Class NodeList that is a list of Node object. A dir object 
maintains the directory information that establishes a mapping between the 
access key and the nodes. The example collaboration describes a flow that 
(1) obtaining nodes object by looking up the dir, (2) sending a turn-on 
message to each node object in the nodes, which forms an iterative loop, 
and (3) sending a notification to user when the process completes.

7



Collaboration  SimpleExample

user : User 

 dir : Directory 

nodes : NodeList 

ql 

dir find-key: #local/[true] 

            q2

 Cif 
 nodes

 nodes end?/[trucJ  

             q4 

           ret turn-on/[true] 

nodes set: ret/[true]

    user notify: "complcte"/[ret=Yes] 

   nodes next/[ret=No] 
          0 

----- q5 l

            Figure 3: Collaboration Example 

ret=Yes 
                                                          (user notify: "complete", v) 

r 9 ------------------ 

             true                (nodes end?, v) ~ 111 
   (tau, v)ret=No                                t

rue 

0(nodes next, v) 

          mom v   vq5    truev 

(dir find-key: #local,v (Yv) 

        0 true 
(nodes set: ret, v) (ret turn-on, v) 

          Figure 4: Equivalent CPN Description 
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  A diagram-based labeled transition system is used to represent dynamic 
behavior of collaboration. Figure 3 is an example, which has 7 states that 
correspond to a default initial state, five states from  q1 to q5, and a final 
state denoted by 0. And each transition arc has a label denoting a message 
to one of participant objects and a condition to fire the transition. For 
example, the expression attached to the arc from q4 to q5 specifies that a 
next message is sent to the object denoted by the variable nodes when a 
return value of the previous message (ret) equals to No:

nodes next/[ret=No].

  In order to express an operational interpretation of the transition system, 
Coloured PetriNet (CPN) [26] is used. Figure 4 is a CPN representation 
equivalent to the transition system in Figure 3. Colour of a token v carries 
an environment to manage status of participant objects.

3.2.2 Class Description

Class also has two components: (1) attributes constituting internal structure 
of objects, and (2) definitions of method body. Method is invoked when an 
object receives appropriate messages. 

  Figure 5 shows an example, Class NodeList, whose object is one of the 
participant of Collaboration SimpleExample. Class uses a box notation 
as a concrete syntax, which is similar to the Z notation [43]. A small box 
named Statel has a set of attribute declarations. In the example, a NodeList 
object has an attribute ptr of sort List of Oki. The other three are method 
definitions. For example, the method next has a precondition (assumes:) 
of -1 (null ptr) and a postcondition (ensures:) specifying an update in 
the attribute ptr with a return value (ret). And A(ptr) shows that this 
method updates only the ptr attribute in the course of the method execution. 
Similarly, the end? method shows by using E(ptr) that it does not change 
value of ptr.

3.2.3 Common Vocabulary

Collaboration SimpleExample above uses two constants yes and no. Class 

NodeList assumes List-related functions such as head or nuIl. These auxil-

iary symbols should be defined somewhere.

lA reserved word .
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Class NodeList--------- 

use  LIST  [OID],  YESNO

State

ptr : List of OM

ptr) 
 List of OM 

ensures : ptr' =

set

E-2(ptr) 
   YesNo 

ensures : if

end?

null ptr then ret = yes else ret = no

A(ptr) 
OId 

assumes : 

ensures :

next

 (null ptr) 
ptr' = tail ptr A ret = head ptr

Figure 5 : Class Example 
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Module  YES'NO 

[YesNo]
 YesNo ::= yes I no

Module LIST [X :: TRIV] _ 
protecting NAT 
[Elem < NeList < List] 

 List ::= nil I 
NeList ::= _ _ 

 head _ : NeList -i Elem 

 tail _ : NeList y List 

 null _ : List Bool 

_ : List -+ Nat 

E : Elem 

L : List

List 

       List

head E L = E 
tail E L = L 
null nil = true 
null E L = false 
I nil I = 0 
IEL1=1+ILI

Figure 6: Common Vocabulary Example
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(diagram-based 
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Design Notation 
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(semi-formal)
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Specification

(formal)

Figure 7: Overview of Development Steps

  GILO provides the third component to define such common vocabulary 

by using order-sorted algebra. Figure 6 shows definitions for YESNO and 

LIST. As seen from the examples, common vocabulary is introduced as an 

abstract datatype definition.

4 Method Integration with CafeOBJ 

  This section presents our approach to a method integration of GILO and 
CafeOBJ. We assume a development process as one illustrated in Figure 7 
for the method integration. The approach is basically to provide a set of 
translation rules from GILO description to CafeOBJ counterpart. In a word, 
the translation is simply a matter of encoding of the operational semantics 
of GILO in CafeOBJ. The resultant CafeOBJ description consists of a set 
of modules which faithfully reflect the analyzed structure of the problem. 
Descriptions in GILO are supposed to reflect the result of problem analysis. 
The appendix describes a brief introduction of CafeOBJ from specifier's 
viewpoint for readers not familiar with the language. 

4.1 Translation to CafeOBJ
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  The section discusses how to derive CafeOBJ descriptions from GILO 
representations. Figure 8 illustrates several groups of CafeOBJ modules. 
They constitute  runtime modules to represent the CafeOBJ modules derived 
from GILO [38]. 

  Object System Kernel is a set of CafeOBJ modules to encode the ob-
ject model. It is basically an encoding of the Maude concurrent object 
model, and includes the definitions of concurrent object, message, and con-
figuration that manages the former two components. Collaboration System 
Kernel provides a machinery to encode collaboration. The idea is to define 
a special class of concurrent object for representing CPN. The implemen-
tation makes use of Object System Kernel. User-defined modules are cat-
egorized into Common Vocabulary, Class, and Collaboration. User-defined 
Class uses Object System Kernel, and User-defined Collaboration is based 
on Collaboration System Kernel. Each of the user-defined module has a 
direct counterpart in the GILO description.

4.1.1 Collaboration System 

Collaboration System Kernel provides a basic machinery for executable user-
defined collaboration. It makes use of the object system and defines a con-
current object to represent a CPN interpretation of the labeled transition 
system used in the collaboration.
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  In order to simulate markings in CPN, module MARKING is introduced to 

represent execution snapshots of a state-machine.

mod! MARKING 
  extending 

  [ State, 
 [ State <

 { 
(ATTR-VALUE) 
Marking ] 
Marking < AttrValue ]

si gnature 
op empty 
op (_,_)

{
-> Marking 

Marking Marking -> Marking {assoc comm id: empty}

}

}

  The CafeOBJ representation of collaboration is an object belonging to 
Class Machine, that is implemented by the module MACHINE. A Machine 
object has two attributes; marking refers to the snapshot mentioned above, 
and participants denote a list of object identifiers (OIds), each one being 
a participant of the collaboration. Further, a Machine object can respond 
to two messages, fire and on, to proceed state transitions. Every CafeOBJ 
module for user-defined collaboration imports the module MACHINE to be-
come powered for execution.

mod! MACHINE 

  extending 

 protecting

{ 
(ROOT) 
(MACHINE-MESSAGE)

MachineTerm, 

MachineTerm

CldMachine ] 
< ObjectTerm, CldMachine < CId ]

signature { 
  op <(_:_)I_> 

  op Machine : -> 

  op make-machine 

}

OId CldMachine 

CldMachine 

: OId Marking

Attributes

OIds

-> MachineTerm

-> MachineTerm

axioms { 
 var 0 : OId var M : Marking var L : OIds

eq 

}

make-machine(0, 
<(0 : Machine)!

M,L) 

 (marking = M), (participants = L)> .

}
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Last, following two auxiliary modules are necessary to complete the defini-

tion.

mod! MACHINE-ATTR-VALUE { 
 extending (AID) 

 extending (BASIC-VALUE) 

 using  (COLLECTION[OID] * { sort Collection -> Olds }) 
  [ OIds < AttrValue ] 

 signature { 

   op marking : -> AId 
   op participants : -> AId 

} 
}

mod! MACHINE-MESSAGE { 
 extending (ROOT) 

 protecting (MACHINE-ATTR-VALUE) 
 protecting (MARKING) 
 signature { 

   op on : OId -> Message 
   op fire : OId -> Message 

} 
}

4.1.2 Translation Example 

Below shows the CafeOBJ modules for the example GILO descriptions (Fig-
ures 3, 5 and 6). The modules are obtained by manual translation. 

  A CafeOBJ module SIMPLE-EXAMPLE is a translation of Collaboration 
SimpleExample. Apart from the ROOT, it imports two modules. SIMPLE-EXAMPLE-STATES 
provides constant definitions for the necessary states (q0-q5, and of). 
SIMPLE-EXAMPLE-PARTICIPANTS contains all the definitions of objects that 
are participant of the collaboration. The rewriting rules together simulate 
the transitions specified in the collaboration. For example, the third rule 
in SIMPLE-EXAMPLE has two messages on (0) and return (D , V) in order to 
express that the rule is fired only after the message return (0 , V) is gener-
ated. Here the message return (0 ,V) is a result of a previous invocation 
of a participant object method. In the case of the third rule, the message 
return (O,V) is generated as a result of find-key(dir,' local, 0) appeared 
in the RHS of the second rule. It is a message sent to dir object requesting 
a NodeList object that is indexed with ' local.
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mod! SIMPLE-EXAMPLE { 
 extending (MACHINE) 

 protecting (SIMPLE-EXAMPLE-STATES) 
 protecting (SIMPLE-EXAMPLE-PARTICIPANTS) 
 axioms { 

  var 0 :  OId var M : Marking var P : Olds

trans fire(0) 
  <(0 : Machine)I(marking 

_> <(0 : Machine)I(marking 

on(0) .

= (q0, M)), 
= (q1, M)) ,

var REST

(participants 
(participants

: Attributes

P) 
P)

(REST)> 
(REST)>

trans on(0) 
  <(0 : Machine)I(marking 

=> <(0 : Machine)I(marking 

  find-key(dir, 'local,0)

trans on(0) return(0,V) 
  <(0 : Machine)I(marking 

=> <(0 : Machine)I(marking 

   set(nodes, V,O) on(0) .

= (ql, M)), 
= (q2, M)), 

on(0) .

= (q2, M)), 
= (q3 , M)),

(participants 
(participants

(participants 
(participants

P) 
P)

P) 
P)

(REST)> 
(REST)>

(REST)> 

(REST)>

trans on(0) void(0) 
  <(0 : Machine)I(marking 

_> <(0 : Machine)I(marking 

  end?(nodes, 0) on(0) .

ctrans on(0) return(0,V) 
  <(0 : Machine)I(marking 

=> <(0 : Machine)I(marking 

   notify(user, 'complete,

ctrans on(0) return(0,V) 
  <(0 : Machine)I(marking 

_> <(0 : Machine)I(marking 

  next(nodes, 0) on(0) if

= (q3, M)), 

= (q4, M)),

= (q4, M)), 
= (qf, M)), 

0) on(0) if

= (q4, M)), 
= (q5, M)) , 
V==No .

(participants 
(participants

(participants 

(participants 
V == Yes .

(participants 
(participants

P) 
P)

P) 
P)

P) 
P)

(REST)> 
(REST)>

(REST)> 
(REST)>

(REST)> 
(REST)>

trans on(0) return(0,V) 
  <(0 : Machine)I(marking 

_> <(0 : Machine)I(marking 

   turn-on(V, 0) on(0) .

= (q5, M)), 
= (q3 , M)),

(participants 

(participants

P) 
P)

(REST)> 

(REST)>

}
}
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The next CafeOBJ module is a translation of Class NodeList (Figure 5). 
Rewriting rules (trans, ctrans) corresponds to the three methods. 

mod! CLASS-NODE-LIST { 
 extending (ROOT) 

 protecting (NODE-LIST-MSG) 
 [ NodeListTerm,  CldNodeList ] 

[ NodeListTerm < ObjectTerm, CldNodeList < CId ] 
 signature { 

   op <(_:_)I_> : OId CldNodeList Attributes -> NodeListTerm 
   op NodeList : -> CldNodeList 

} 
 axioms { 

   vars 0 R : OId vars L L' : List var REST : Attributes

   trans set(O,L,R) <(0 : NodeList)I(ptr = L'), (REST)> 
      <(0 : NodeList)I(ptr = L), (REST)> void(R) . 

   ctrans end?(O,R) <(0 : NodeList)I(ptr = L), (REST)> 
_> return(R, Yes) <(0 : NodeList)I(ptr = L), (REST)> if null(L) . 

   ctrans end?(O,R) <(0 : NodeList)I(ptr = L), (REST)> 
=> return(R, No) <(0 : NodeList)I(ptr = L), (REST)> if not null(L) . 

   ctrans next(0,R) <(0 : NodeList)I(ptr = L), (REST)> 
      return(R, head(L)) <(0 : NodeList)I(ptr = tail(L)), (REST)> 

   if not null(L) . 
} 

} 

Common vocabulary of GILO is just a syntax-suger of CafeOBJ module. A 
translation to CafeOBJ is straightforward.

4.1.3 Multithreaded Collaboration 

  Although it is not covered in the previous sections, multithreaded col-
laboration is easily encoded in CafeOBJ. As the primitives of multithreaded 
collaboration, we consider fork and join. 

  A transition in the whole system is encoded in a rewriting rule that 
changes the marking data, where the marking is a multiset of state markers 
and each marker represents an execution snapshot of one thread of execution 

(Section 4.1.1). Figure 9 shows a CPN version and the following CafeOBJ 
descriptions simulate the same transition. For the fork, marking on the
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 q1 q4 q5

q2 q3 q6

Figure 9: Fork and Join

RHS contains all the states that the execution forks to (q2 and q3). For the 
join, all the states that should be synchronized are specified explicitly in the 
marking on the LHS.

var REST : Marking . 
trans on(0) <O:Machine 
=> <O:Machine I marking =

marking = (qi, 

(g2,g3,REST)>

REST)>

ctrans on(0) <O:Machine I 
=> <O:Machine I marking =

marking = 

(g6,REST)

(g4,g5, 
> .

REST) >

Simple diagram representation sush as one in Figure 3 is not available, how-

ever, the above rules illustrate that multithreaded collaboration is easily 

encoded in CafeOBJ.

4.2 A Case Study 

This section presents a modeling case in which CafeOBJ specifications are 
derived by following the proposed development steps (Figure 7). Key points 
of the steps are (1) to construct scenarios by identifying participant objects 
and their interactions, and (2) to construct GILO descriptions. The case 
illustrates the role of three GILO components in the overall specification.

4.2.1 SAKE Warehouse Problem 

The SAKE Warehouse problem is a standard common problem [52]. Since 
its first appearance in the literature, it has been used as a standard bench-
mark problem for comparing various design methodologies in the software
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engineering community in Japan [45][52]. The problem is compact but has 
essential features commonly found in a lot of business application software. 
The following is an English translation of the SAKE Warehouse Problem 
[45]. 

      A warehouse of X Sake Retailing Company accepts several 
    containers everyday. Each container contains sake bottles, pos-

    sibly of multiple brands. The number of brands that can be 
    mixed in one container is up to ten. The total number of brands 

    to be treated is about 200. 
       A warehouse keeper stores each container carried into the 

    warehouse without any rearrangement and sends a container 
    contents notice to a clerk. He also ships out sake bottles by 

    the shipment direction forwarded from the clerk. Stored bottles 
    are never repacked into another container, nor kept in another 

    place. An  emptied container is immediately carried out of the 
     warehouse. 

       container contents notice: 
         container number (5 digits) 

         carried-in time (hour/day, month/year) 
         brand, quantity (repeat) 

      The clerk receives dozens of shipment orders per day and 
    sends a shipment direction to the keeper for each order. An 
    order comes by an order form or by telephone and each order 

    must designate just one brand. If the brand is out of stock or 
    in short for the ordered quantity, the clerk will tell it to the 

    customer and adds the order to the waiting list. And when the 
    designated brand is supplied to meet the order, the clerk will 
    issue a shipment direction. 

      In a shipment direction, containers that will become empty 
    are notified. 

      Develop a system that supports the work of the clerk (noti-
    fying out of stock status, issuing shipment direction forms and 

    listing the outstanding orders). 
      shipment direction form:
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   order number 

   customer number 

   container number 

   brand, quantity 

   empty mark 

waiting list: 

   customer name 

   brand, quantity 

• No loss of sake will occur either during the transportation 

 or during the storage. 

• As some part of the problem description may not be realis-

 tic, sophisticated functions such as exception handling can 

 be minimal. 

 • Ambiguities may be resolved by appropriate interpretation.

4.2.2 Identifying Scenarios 

  The modeling step starts with the scenario construction. Analysis of 

the problem description results in identification of two main scenarios, Or-

der  Arrival from Customer and Container Arrival. Scenario in general has 

more than one subscenarios: one for a main flow and others for handling 

exceptional cases. For example, the main flow of the Order ArrivaI from 

Customer scenario is to deliver requested bottles of sake, while the order is 

added in a waiting list when enough stock is not available. 

  Figure 10 shows two subscenarios for the Order Arrival from Customer 

by using Message Sequence Charts (MSC); (a) the retailing company has 
enough stock to fulfill the order, and (b) the order is added to the pending 
order database because the stock is insufficient. In the normal case (a), the 
arriving order initiates the subscenario (step al). This step is followed by 
a check of whether there is enough stock to fulfill the order (step a2). If 
so, the stock database is updated (step a3). After empty containers are 
collected (step a4), a shipping direction to the warehouse keeper is created 
(step a5). In the case (b), on the other hand, the order is added to the 
pending order database (step b4) and a notification is issued that the order 
is in the waiting list (step b5). 

  In the process of constructing the above MSCs, the responsibility or 
abstract functionality of each participant object is identified. Of the six
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Customer Clerk Stock_DB Pending_DB 

    1: Order 

              2:  CheckRequest 

            yes  

            3: UpdateStock 
.i  

                           4: VacantContainer 
.a-

       5: CreateDirection 
                     --0' 6: ShippingDirection 

                         8: Sake

Warehouse Gate

7: Container°

                 (a) In Stock 

Customer ClerkStock_DB Pending_DB 

     1: Order 

             2: CheckRequest 
         no  

        3: CurrentOrder 
ci  

                       4: AddPendingOrder 
     5: Notice 

               (b) Out of Order 

         Figure 10: Order Arrival from 
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participants, the two key objects in the subscenarios are the Stock Database 
and the Pending Order Database. Other objects may be considered auxiliary 
and constitute the environment in which the whole scenarios are described 
completely. Constructing another scenario, Container Arrival, also helps 
elaborate the definitions of two database objects.

4.2.3 GILO Descriptions

The second step involves construction of the GILO specification. Since GILO 
has three components, division of labor between them is a key aspect of 
the specification construction. First, since collaboration is responsible for 
the global flow of messages between participant objects, it is constructed 
by combining MSCs of subscenarios that together constitute one scenario. 
Second, since an object has states and is modeled in terms of state changes, 
writing GILO class involves to find attribute data that a participant object 
maintains internally and methods that operate on the data. Third, common 
vocabulary modules are introduced. The modules provide interpretation of 
symbols used in object methods and are purely functional (no side-effect). 

  First, Figure 11 is a GILO description of Collaboration OrderArrival. It 
is constructed by combining the two MSCs in Figure 10 with an introduc-
tion of appropriate conditional branching at the state q2. The transition 
sequence from q2 to q5 corresponds to the normal case shown in Figure 10 
(a) while the sequence from q2 to q7 corresponds to Figure 10 (b). 

  In formalizing GILO model of collaboration, arguments of message are 
also identified so that all the information necessary to define object interfaces 
is determined. Note that a collaboration does not explicitly specify the 
initiator object (an object that sends a message) but shows only the sequence 
of message events. Collaboration is, therefore, somewhat more abstract than 
a MSC that explicitly specifies the message sender as well as the receiver. 

  Figure 12 is a partial description of Class StockDatabase. It defines the 
interface specification of the class that is in accordance with the collabora-
tion. In identifying the interface specification of Class StockDatabase, we 
have taken into account Collaboration ContainerArrival as well as Collabo-
ration OrderArrival, although the current discussion presents the latter one 
only. Of the seven method in the definition, addNewStock and  selectPendin-
gOrders come from Collaboration ContainerArrival. 

  The next step is to elaborate the internal structure of the class and 
the functional specification of each method (Figures 13 and 14). The Stock-
Database consists of several attributes that constitute the object states. The
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Collaboration  OrderArrival  _ 

order : SakeOrder 
 stock : StockDatabase 

 pending : PendingDatabase 
 wh : Warehouse 

• 

Iorder getRequest

q 1 j q2 i   In  
stock checkRequest: ret 

      stock currentOrder/[ret=No] 

               q6 

     pending addPendingOrder: ret 

order noticeq7 

    •

stock updateStock/[ret=Yes] 

 q3 

 stock vacantContainer 

        q4 stock createDirection 

              q5 

       wh shippingDirection: ret 

O

Figure 11: Collaboration OrderArrival
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Class StockDatabase 

 addNewStock  : 

 checkRequest 

updateStock : void 

vacantContaine 

 createDirection 

selectPendingOr 

 currentOrder

            List of Stock —; List of Stock 
Request YesNo 
oid --> void 

void void 
d —> ShippingDirection 
: List of Request —> List of 

            void Request
Request

Figure 12: Interface Specification

attribute contents maintains the content of the database, and stock_number 
keeps track of a value that gives a unique identification number to each stock 
that the database has. Three other attributes are used to store values that 
are processed in the course of executing the collaboration. 

  Class StockDatabase also declares that it uses the common vocabular-
ies, STOCK_DB, YESNO, and NAT, to describe its own behavioral speci-
fication. The module STOCK (Figure 15) defines an abstract datatype to 
represent stock, and provides a constructor stock and other functions such 
as container. 
  The module STOCK_DB (Figure 16) defines functions to realize the main 

functionality of Class StockDatabase. The module STOCK_DB is basically 

a parameterized DB module that has STOCK as the actual parameter. The 

DB module is a basic one common to both STOCK_DB and PENDING_DB, 

the latter of which provides vocabulary for Class PendingDatabase. The 

module STOCK_DB adds further auxiliary functions to the module DB so 

that Class StockDatabase is defined in a compact manner.

4.2.4 CafeOBJ Descriptions 

  The final step of the modeling process is simply to translate the GILO 
descriptions into the CafeOBJ modules. One can validate the functional 
behavior of the design artifact, such as the scenarios shown in Figure 10, by 
test execution. As a result, one can enjoy rapid-prototyping of the GILO 
design artifact by making use of CafeOBJ. 

  The resultant CafeOBJ descriptions for the Sake Warehouse Problem
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Class StockDatabase 
use  STOCK  _DB, 

State-----------------

ESNO , NAT

stock_number : NzNat 
order_number : NzNat 
contents : StockDB 
match : List of Stock 
vacant : List of Container 
current : Request

Init

State'

ensures : stock_number' = 1 
   A order_number' = 1 

   A contents' = nilDB 
   A match' = nilLS

stock_number) 
of Stock 

ensures : contents' = add_DB(contents, ls, stock_number) 
   A stock_number' = stock_number+ is 

   A ret = Is

addNewStock 

A(contents, s.

checkRequest 

A(match, cur 
;(contents) 
req : Request 
ret : YesNo

rent)

assumes : -, (contents == nilDB) 
ensures : match' = check(contents, brand(req), quantity(req)) 

   A current' = req 

   A (if match' == nil then ret. = No else ret = Yes) 

assumes : contents == nilDB 

ensures : ret = No

Figure 13: Class StockDatabase
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Class 

 _  updateStock 

E (match)

Database(cont.)

         vacant) 
E (match) 

assumes : (match == nil) 
ensures : contents' = update(contents, match) 

   A vacant' = nil

vacantContainer 

I(vacant) 
E(contents)

assumes :vacant 

ensures :vacant'

== nil A (contents == 
= collect_vacant(contents)

nil)

vacant, order_number) 

irection 

assumes(current == nil) 
ensures : 

   ret = create_direction(order_number, client(current), match, vacant) 
   A match' = nil 

   A vacant' = nil 
   A order_number' = order_number + 1

createDirection

selectPendingOrders 
( contents) 

Is : List of Request 
ret : List of Request

ensures :ret = first_come first_serve(contents, Is)

currentOrder 
E.(current) 
ret : Request

ensures :ret = current

Figure 14: Class StockDatabase (cont.)
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Module STOCK

protecting SAKE_BASICS, NAT 
[Stock] 
 Stock ::=  stock : Container x Brand x Nat x Nat 

 container _ : Stock —* Container 
 brand _ : Stock —> Brand 

 quantity _ : Stock —i Nat 
 id _ : Stock Nat 

decr_stock_quantity _ : Stock x Nat -* Stock 

 C : Container 
 B : Brand 
 Q Q' I : Nat 

container(stock(C, B, Q, I)) = C 
brand(stock(C, B, Q, I)) = B 
quantity(stock(C, B, Q, I)) = Q 
id(stock(C, B, Q, I)) = I 
decr_stock_quantity(stock(C, B, Q, I), Q') = stock(C, B, Q — Q', I)

Figure 15: Module STOCK

Table 1: Module Summary

1

2 

3 

4

5

Category

GILO Mechanism

Common Vocabulary 

Class 

Collaboration

Main

Total

CafeOBJ

total direct

13

15 

15 

3

15 

12 

3

1

47 30
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Module  STOCK_DB 
using DB [STOCK]
using LIST[STOCK]*(sort List to ListStock, op nil to nilLS) 
using LIST[REQUEST]*(sort List to ListRequest, op nil to nilRQ) 
using LIST[CONTAINER]*(sort List to ListContainer, op nil to nilC) 

 add_DB _ : Database x ListStock x Nat —4 Database 
stock_to_DB _ : ListStock x Nat —4 Database 

 check _ : Database x Brand x Nat —i ListStock 
collect_brand _ : Database x Brand x ListStock ListStock 

 check_quantity _ : Database x Nat x ListStock —j ListStock 
 update _ : Database x ListStock —* Database 

update_aux _ : Database x ListStock x Database --> Database 
collect_vacant _ : Database —+ ListContainer 
first_come first_serve _ : Database x ListRequest —; ListRequest 

 D : Database 
LS : ListStock 
IJQ:Nat 
 C : Container 
B : Brand 

add_DB(D, LS, I) = (stock_to_DB(LS, I) D) 
stock_to_DB(nilLS, I) = nilLS 
stock_to_DB(stock(C, B, Q, J)LS, I) = (stock(C, B, Q, I) stock_to_DB(LS, I + 1)) 

 D : Database 
 B : Brand 
 X : Stock 
 LS LS' : ListStock 

 I Q:Nat 

check(D, B, Q) = check_quantity(collect_brand(D, B, nilSL), Q, nilLS) 
collect_brand(nilDB, B, LS) = LS 
collect_brand((X D), B, LS) 

    = if (brand(X) == B) then collect_brand(D, B, (X LS)) 
          else collect_brand(D, B, LS) 

check_qauntity(nilLS, Q, LS) = if Q < 0 then nilLS else LS 
 check_quantity((S LS'), I, LS) = check_stock((S LS'), I — quantity(S), LS) 

... (omitted) .. . 

... (omitted) ..

Figure 16: Module STOCK_DB
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consist of 47 modules that have some 1,100 lines of CafeOBJ code. Table 1 
summarizes the figures. 

  The entry GILO Mechanism includes both  Object System Kernel and 
Collaboration System Kernel that basically defines the module MACHINE (sec-
tion 4.1). Of fifteen Common Vocabulary modules, four are general-purpose 
such as YES-NO and DB, while the rest eleven modules are specific to the 
present problem. The latter includes STOCK and STOCK-DB and can be con-
sidered as domain-specific vocabulary. 

  The specified class and collaboration for the case is four and one respec-
tively. For describing a GILO class, three CafeOBJ modules (a mod! module 
for the class body, two mod* modules for the names of attributes and mes-
sages) are introduced according to the guideline in Section A.2. Thus, of 
the fifteen modules in the category Class, twelve (12 = 3 x 4) have direct 
correspondence with GILO descriptions. The rest three are mod! modules to 
provide concrete representation for the attribute names, the attribute value 
type, and the message terms. A GILO collaboration, in turn, needs three 
CafeOBJ modules. It implies that the traceability of the collaboration is 
quite clear.

5 Related Work

This section discusses comparison with related works. Comparison is made 
in two areas: (1) scenario-based object-oriented modeling methods, (2) 
method integration. 

OOSE [24] and RDD [49] are two pioneers that adopt scenario-based 
object-oriented modeling method. Booch and Rumbaugh's unified method 
[5] and UML [39] also support the scenario concept. The interaction diagram 
of OOSE and the event trace diagram correspond to the collaboration of 
GILO. They, however, can describe typical execution traces only, and are 
diagram-based notations having less rigorous semantics. 

  In order to express collaboration, Fusion [9] uses the object interaction 
graph, which is basically the same as the event trace diagram of OMT. In 
addition, Fusion promotes the use of an operation model and a life-cycle 
model. The former corresponds to method behavior of the GILO class and 
the latter to the GILO collaboration. The life-cycle model uses a regular 
expression whose alphabet represents a set of events. The operation model 
offers guidelines for representing behavioral aspects of a method or an oper-
ation in terms of the pre- and post-conditions. Unfortunately the conditions
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are described informally in natural language. No rigorous relationship be-
tween the life-cycle and operation models is established. 

  Catalysis [12] is a new modeling method that focuses on the  object inter-
actions and formal description techniques. The key idea is to treat objects 
and actions equally, and thus to provide interaction between objects as a 
first-class modeling tool. Catalysis introduces a joint action, which is a series 
of related actions, as a common modeling tool for use-cases and collabora-
tions, which is in accordance with the idea of GILO. As for expressing the 
pre- and post-conditions or other forms of behavior description, Catalysis 
uses semi-formal notations OCL (Object Constraint Language) of UML [39]. 
Although activities on formalizing OCL is underway, OCL of Catalysis itself 
is not based on rigorous semantics. Catalysis, however, has an important 
notion of refinement, which provides a systematic guideline to transform an 
abstract design artifact into concrete ones in a stepwise fashion. Unfortu-
nately, GILO does not provide any guideline for the refinement. 

  The second area is on the integration of the informal object-oriented 
modeling methods and formal specification languages. One approach is to 
have object-oriented extension of existing specification languages [1][6][17][28][29][44]. 
Most of the works, however, has concentrated on incorporating basic object-
oriented concepts such as state encapsulation, property inheritance, and 
polymorphism into the respective host specification language. The issue on 
modeling collective behavior (Collaboration) is out of scope. 

  Larch [20] is a two-tiered specification language, in which the algebraic 
specification provides common vocabulary. An interface language compo-

nent uses the vocabulary to describe behavioral aspects of functions or pro-

cedures. Larch/C++ [30] is one of the Larch family languages. It is pri-
marily intended to be used for writing the interface specifications of C++ 
member functions in the state-oriented style, and thus it does not provide 
collaboration. 
  Giovanni and Iachini [16] and Hall [21] use object-oriented modeling 

method as a guideline for finding objects in the analysis phase and then 
obtain descriptions in the Z notation. Descriptions in the Z notation is 
hardly mechanically analyzable. Recently, Jackson [25] proposes Alloy as 
a rational reformulation of the Z notation and UML class notation, and 
that descriptions in Alloy can be mechanically reasoned about by the model 
checking technique. Their primary concern is the structural aspect and does 
not consider scenario in which dynamic aspect is essential. 

  NASA has conducted several case studies on the lightweight use of formal 
methods in the requirement modeling [13], which includes an integration of
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OMT  and  PVS.  The  OMT  diagram  descriptions  are  manually  translated  into 

specification fragments that can be fed into PVS. Then, properties that the 

OMT description must hold are reasoned about by using PVS. Meyer and 

Souquieres [32] proposes a set of templates that translate OMT descriptions 
into specifications written in the B method. Since OMT is a data-driven 
modeling method, the emphasis is put on consistency checking of structural 
aspects of the model such as multiplicity of association links. Thanks to 
the B method tool, most of the checking can be done automatically. Both 
[13] and [32] concentrate on structural aspects and pay less attention to 
collective behavior of objects. Further, it requires to construct and conduct 
manual proof for application specific properties. 

  Wirsing [50] proposes a formal object-oriented design based on Jacob-
son's OOSE [24] and in which a Maude-based formal object model is encoded 
in an algebraic specification language Spectrum. The emphasis is put on the 
importance of the stepwise refinement with discussions on the role of proof 
checking in the refinement process. Since the development process uses the 
interaction diagram (a scenario) as a guiding tool just for obtaining object 
specifications, scenario diagrams do not have rigorous semantics. Later, 
Wirising and Knapp [51] use process algebra to give formal accounts of the 
dynamic aspects by extending Maude with process expression. Process ex-
pression controls how messages are sent to particular objects. Thus, the 
process expression corresponds to GILO collaboration. We use transition 
system that also has diagram representation to represent the control aspect. 

  As for integrating the proposed GILO method with the stepwise refine-
ment, one may integrate Catalysis with GILO/CafeOBJ for a start. It needs 
an algebraic formulation of Catalysis, which involves establishing a rigorous 
semantic basis for UML and OCL in an algebraic manner. And then, the 
stepwise refinement process may adopt the techniques reported in [51].

6 Discussion and Conclusion

By a careful study on existing scenario-based object-oriented modeling meth-
ods, we came up with a semi-formal intermediate design notation GILO. 
We first enumerated two of essential aspects to describe scenarios: (1) the 
information about participant objects, and (2) the information about the 
sequence of their interactions. Then we elaborated the concepts to crystal-

ize rationalized design notation that was rigorous enough to be amenable 

to mechanical checking. In some sense, we showed that GILO was rigorous
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by giving a set of rules translating GILO descriptions into CafeOBJ coun-
terparts. The resultant CafeOBJ description are executable and consists 
of a set of modules which faithfully reflect the analyzed structure of the 
problem. Thus, rapid prototyping at early stages of software development is 
achieved. One drawback is that we cannot translate CafeOBJ descriptions 
back to GILO. This hinders us from seamless debugging activities to point 
out deficiencies in GILO descriptions from the execution trace of CafeOBJ 
counterparts. 

  In order to effectively use formal specification languages such as CafeOBJ, 
one generally has to prescribe a development process and the role of the lan-
guage in the overall process. Our use of CafeOBJ in this paper is a tool for 
rapid-prototyping in early stages of the development as shown in Figure 7, 
and executability is a key feature. However, one has to be very careful to 
obtain executable CafeOBJ modules of abstract datatype specification since 
it requires that the module should have initial algebra. From a viewpoint of 
specification writer, a rule of thumb is that one first introduces a basic data 
structure as a recursively defined term, and second provides utility functions 
to follow the recursive structure2. It is similar to a functional programming 
style as in, for example, Standard ML [33]. Further CafeOBJ has a rewriting 
engine based on a subset of concurrent rewriting logic, which enables one 
to write executable specifications. Actually, Maude  aims to be a language 
for describing various symbolic processing systems, which have clear logical 
semantics [8]. 

   We have some experience in using ML-like notation in the specification of 
object-oriented design [36][37], which shows that the notation can compactly 
describe algorithmic aspects of the design. The experience also includes 
that every description in the pseudo ML can be encoded in CafeOBJ with a 
suitable interpretation so that the descriptions are executable. It is partly 
because we can encode various computational entities as suitable algebras 
thanks to the property-oriented style of specification writing. We observe 
that CafeOBJ, algebraic specification languages in general, is an adequate 
tool for rapid prototyping. 

  One thing to note is that the GILO notation is multiparadigm. The 
whole GILO specification has a global state consisting of (1) the states in 
collaboration and (2) the states in all the participant objects. One might 
argue that both components are state-based and thus the multiparadigm 

element is minimal. Although both class and collaboration are state-based, 

  2The appendix A .1 presents examples to follow such a specification writing style.
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the roles of states are different in each component. More importantly, each 
has its own syntax that expresses the essential aspects of the computational 
model in a very concise manner. Thus GILO can be thought of being mul-
tiparadigm from the viewpoint of the notational suitability. 

  Last, the idea of scenario-based object-oriented modeling method with 
GILO has been successfully adapted in the development of several dis-
tributed object-oriented software systems [3][46][47]. Thus, the effectiveness 
of the modeling method can be said confirmed.

A Specifier's Introduction to CafeOBJ 

CafeOBJ is a new algebraic logic language of the OBJ family, and has clear 
semantics based on hidden order-sorted rewriting logic  [10][11]. The logic 
subsumes equational logic, on which OBJ has its semantic basis [14][18]. By 
incorporating (a subset of) rewriting rules of Maude [31], CafeOBJ makes 
the algebraic specification language expressive enough to provide a clear 
model for state changes. 

  From the specifier's viewpoint, CafeOBJ has two kinds of axioms3 to 
describe functional behavior. An equational axiom (eq) is based on equa-
tional logic and thus is suitable for representing static relationships and 
purely functional behavior. A rewriting axiom (trans) is based on a subset 
of concurrent rewriting logic and is suitable for modeling state changes.

A.1 Abstract Datatype 

Here is a simple example, a CafeOBJ specification of LIST. The module LIST 
defines a generic abstract datatype List. _ _ (juxtaposing two data of the 
specified sorts) is a List constructor. Two accessor or observer functions 
hd and tl are the standard ones. I_ I returns the length of the operand list 
data and is a recursive function over the structure of the list. 

• mod ! LIST CX :: TRIV] { 
NeList, List ] E Elt < NeList < List ] 

 protecting (NAT) 
  signature { 

   op nil : -> List 
   op __ : List List -> List {assoc id: nil} 

    op __ NeList List -> NeList 

3Iiidden algebra [10][11][19] is not considered .
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  op  --
 op hd : 

 op tl . 

 op I_I 

} 
axioms { 

 var X :

NeList NeList -> NeList 

NeList -> Elt 

NeList -> List 

: List -> Nat

Elt var L : List

   eq hd (X L) = X . 
   eq tl (X L) = L . 

   eq I nil I = 0 . 
egIX I=1. 
eq I X L I= 1+ I L I. 

} 
} 

The module N-LIST imports the module LIST and adds definitions of some 
utility functions such as n-hd and n-tl. The function n-hd returns the 
specified number (N) of elements from the head of the list, and n-tl discards 
N elements. 

mod! N-LIST[X :: TRIV] { 

 protecting (LIST[X]) 
  signature { 

    op n-hd : Nat NeList -> List 
    op n-tl : Nat NeList -> List 
    op rev : List -> List 

    op nhd-aux : Nat NeList NeList -> NeList 
    op rev-aux : List List -> List 

} 
  axioms { 

   var N : Nat vars L L' : List var X : Elt

eq n-hd (N, L) = nhd-aux (N, L, nil) . 
ceq nhd-aux (N, L, L') = rev(L') if N == 0 . 
ceq nhd-aux (N, (X L), L') = nhd-aux ((N - 1), L, (X L')) if N > 0 . 

ceq n-tl (N, L) = L if N == 0 . 
ceq n-tl (N, (X L)) = n-tl ((N - 1), L) if N > 0 . 

eq rev L = rev-aux(L,nil) . 
eq rev-aux(nii,L') = L' . 
eq rev-aux((X L), L') = rev-aux(L, (X L')) .
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1
 }

  The above examples also show a typical use of modules in a structured 

way. (1) The module LIST defines a basic data structure (List) by providing 
constructors and observers. (2) Another module N-LIST introduces further 
utility functions with importing the LIST module. Such utility modules are 

expected to constitute a reusable library.

A.2 Concurrent Object 

Representing object follows a style of Maude [31]. The core part of the 
Maude concurrent object can easily be encoded in CafeOBJ [38]. The Maude 
model relies on  Configuration data and rewriting rules based on concurrent 
rewriting logic. Configuration is a snapshot of global states consisting of 
objects and messages at some particular time. Object computation (sending 
messages to objects) proceeds as rewriting on Configuration. In addition, 
Maude has a concise syntax to represent the object term (<(_:_)1_>) and 
some encoding techniques to simulate inheritance. The Maude model can 
be considered as a standard encoding for concurrent objects in algebraic 
specification languages [35][50][51]. 

  Below is an example of object definition. The module ITERATOR defines 
an Iterator object, which maintains a list of data and returns the specified 
number of data when requested by a next-n message.

mod! ITERATOR[X :: TH-ITERATOR-AID, Y :: TH-ITERATOR-MSGJ { 
 extending (ROOT) 

 protecting (ITERATOR-VALUE) 
[ IteratorTerm < ObjectTerm 

  [ Cldlterator < CId J 
 signature { 

    op <(_:_)I_> : OId Cldlterator Attributes -> IteratorTerm 
   op Iterator : -> Cldlterator 

} 
 axioms { 

   vars 0 R : OId var L : List var N : NzNat 
   var REST : Attributes

ctrans next-n (O,N,R) <(0 : Iterator)I(body = L), (REST)> 
=> <(0 : Iterator)I(body = n-tl(N,L)), (REST)> 

   return(R,true) outArgs(R,n-hd(N,L)) if N <= ILI .
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ctrans next-n  (O,N,R) <(0 
_> <(0 : Iterator)I(body

: Iterator)I(body = L), (REST)> 
= L) , (REST)> return(R,false) if N > ILI .

trans destroy(0,R) <(0 : Iterator)I(REST)> _> void(R) . 

}
}

The ITERATOR is a parameterized module. Both TH-ITERATOR-AID and 
TH-ITERATOR-MSG provide specification of the parameter module. The for-
mer introduces the attribute name that an Iterator object has, and the latter 
defines all the messages that the object can respond to.

mod* TH-ITERATOR-AID { 
 extending (AID) 

  signature { op body : -> AId 
}

}

mod* TH-ITERATOR-MSG { 
 extending (MESSAGE) 

  signature { 

    op next-n : OId NzNat OId -> Message 
    op destroy : OId OId -> Message 

} 
}

  The module ITERATOR imports two other modules ROOT and ITERATOR-VALUE. 

The module ROOT is a runtime module that provides the symbols necessary 

to represent Maude concurrent objects [38]. That is, it provides the follow-
ing sort symbols: Configuration to represent the snapshot, Message for 
messages, Obj ectTerm for the body of objects which consists of Attributes 

(a collection of attribute name and value pairs), CId for class identifiers, and 
Old for identifiers of object instances. 

  As shown in the above example, a user-defined class should define a con-
crete representation of the object term (< (_ : _) I _>) in a new sort (IteratorTerm) 
and a class identifier constant (Iterator) in another new sort (CldIterator). 
The axioms part has a set of rewriting rules (either trans or ctrans), each 
of which defines a method body. In writing the method body, one often refers 
to symbols defined in other modules such as, for example, the sort List and 
the related utility functions. The module ITERATOR-VALUE is supposed to 
import all the modules such as N-LIST [NAT] necessary for the ITERATOR.
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