
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title

Performance comparison of a rotating coordinator

and a leader based consensus algorithm (extended

version)

Author(s)
Urban, Peter; Hayashibara, Naohiro; Schiper,

Andre; Katayama, Takuya

Citation

Research report (School of Information Science,

Japan Advanced Institute of Science and

Technology), IS-RR-2004-016: 1-29

Issue Date 2004-08-04

Type Technical Report

Text version publisher

URL http://hdl.handle.net/10119/8403

Rights

Description
リサーチレポート（北陸先端科学技術大学院大学情報

科学研究科）

Performance Comparison of a Rotating Coordinator
 and a Leader Based Consensus Algorithm

 Peter Urbanl, Naohiro Hayashibaral,
Andre Schiper2, and Takuya Katayama1

'School of Information Science, Japan Advanced Institute of Science and Technology 2Swiss Federal Institute of Technology in Lausanne (EPFL)

 August 4, 2004
IS-RR-2004-016

Research Report

JAIST

 School of Information Science

Japan Advanced Institute of Science and Technology

ISSN 0918-7553

Performance Comparison of a Rotating Coordinator and a Leader Based
 Consensus Algorithm (extended version)*

Peter Urbant Naohiro Hayashibarat Andre Schipert Takuya Katayamat

tJapan Advanced Institute of Science and Technology

1-1 Asahidai, Tatsunokuchi, Nomi, Ishikawa 923-1292, Japan

Email: {urban,nao-haya,katayama}@jaist.ac jp
 tEcole Polytechnique Federale de Lausanne (EPFL)

 CH-1015 Lausanne, Switzerland
 Email: andre.schiper@epfl.ch

Abstract 1. Introduction

 Protocols that solve agreement problems are essential
building blocks for fault tolerant distributed systems. While
many protocols have been published, little has been done
to analyze their performance, especially the performance
of their fault tolerance mechanisms. In this paper, we com-
pare two well-known asynchronous consensus algorithms.
In both algorithms, a leader process tries to impose a de-
cision, and another leader retries if the leader fails doing
so. The algorithms elect leaders differently: the Chandra-
Toueg algorithm has a rotating leader, whereas processes
in the Paxos algorithm elect leaders directly. We investigate
the performance implications of this difference.

 In the system under study, processes send atomic broad-
casts to each other. Consensus is used to decide the delivery
order of messages. We evaluate the steady state latency in

(1) runs with neither crashes nor suspicions, (2) runs with
crashes and (3) runs with no crashes in which correct pro-
cesses are wrongly suspected to have crashed, as well as the
transient latency after (4) one crash, (5) multiple simultane-
ous crashes and (6) multiple sequenced crashes. The results
show that the Paxos algorithm tolerates frequent wrong sus-

picions (3) and correlated crashes that occur within a short
time (5) better, while the performance is comparable in all
other scenarios.
Keywords: simulation, consensus, atomic broadcast, rotat-
ing coordinator, leader, asynchronous, failure detector

* Research supported by the Japan Society for the Promotion of Sci-

 ence, a Grant-in-Aid for JSPS Fellows from the Japanese Ministry of
 Education, Culture, Sports, Science and Technology, the Swiss Na-

 tional Science Foundation, and the CSEM Swiss Center for Electron-

 ics and Microtechnology, Inc., Neuchatel.

 Agreement problems — such as consensus, atomic
broadcast or atomic commitment — are essential build-
ing blocks for fault tolerant distributed applications, in-
cluding transactional and time critical applications. These
agreement problems have been extensively studied in vari-
ous system models, and many protocols solving these prob-
lems have been published [2,10], offering different levels of

guarantees. However, these protocols have mostly been an-
alyzed from the point of view of their safety and liveness
properties, and very little has been done to analyze their per-
formance. Also, most papers focus on analyzing failure
free runs, thus neglecting the performance aspects of fail-
ure handling. In our view, the limited understanding of

performance aspects, in both failure free scenarios and sce-
narios with failure handling, is an obstacle for adopting
such protocols in practice. This paper presents a perfor-
mance study focusing on consensus, a problem related to
most other agreement problems [15], in scenarios that in-
volve failure handling.

The two algorithms. We present a study comparing the per-
formance of two consensus algorithms: the Chandra-Toueg
[5] and Paxos [18, 21] algorithms. These well-known algo-
rithms are representative of consensus algorithms designed
for the asynchronous system model (with minimal exten-
sions necessary to solve consensus). They are important be-
cause of their robustness: regardless of their execution en-
vironment, they never violate their safety properties. Also,
they have the highest possible resiliency in such a system:
they tolerate f < n/2 crashes in a system with n processes.
Moreover, there is an ongoing informal debate in the com-
munity about their relative performance. We hope that our
comparison will bring some objective arguments to this de-
bate.

 The algorithms follow a common pattern by structuring
their execution into rounds. In each round, a process called

 leaderl tries to impose a decision. A round may fail be-
cause of failures or uncertainty about failures. The algo-
rithms differ in how they choose a leader for the next round:

processes in the Chandra-Toueg algorithm rotate the leader
role among all processes, whereas processes in the Paxos al-

gorithm elect leaders directly in an uncoordinated manner.
These two approaches are often referred to as rotating coor-
dinator paradigm and leader based paradigm, respectively.
In this paper, we investigate the performance implications
of this difference.

Elements of the performance study. The two consensus al-

gorithms are analyzed in a system in which processes send
atomic broadcasts to each other. Since the atomic broad-
cast algorithm that we use [5] leads to the execution of a se-
quence of consensus to decide the delivery order of mes-
sages, evaluating the performance of atomic broadcast is
a good way of evaluating the performance of the underly-
ing consensus algorithm in a realistic usage scenario. In our
study, the atomic broadcast algorithm uses either of the two
consensus algorithms. We study the system using simula-
tion, which allows us to compare the algorithms in a variety
of different environments. We model message exchange by
taking into account contention on the network and the hosts,
using the metrics described in [29, 30]. We model failure de-
tectors in an abstract way, using the quality of service (QoS)
metrics proposed by Chen et al. [6]. We compare the algo-
rithms using the benchmarks proposed in [29, 33] (which
are stated in terms of the system under study, i.e., atomic
broadcast). Our main performance metric for atomic broad-
cast is early latency, the time that elapses between the send-
ing of a message m and the earliest delivery of m. We use
symmetric workloads. We evaluate the steady state latency
in (1) runs with neither crashes nor suspicions, (2) runs with
crashes and (3) runs with no crashes in which correct pro-
cesses are wrongly suspected to have crashed, as well as the
transient latency after (4) one crash, (5) multiple simultane-
ous crashes and (6) multiple sequenced crashes.

The results. Our main finding is that, although the two algo-
rithms have comparable performance in scenarios (1), (2),

(4) and (6), the Paxos algorithm performs significantly bet-
ter in scenarios 3 and 5. With multiple correlated crashes
that occur within a short time, the reason is that the Paxos
algorithm elects a correct leader immediately after detect-
ing the crashes. We found the largest difference when wrong
failure suspicions were frequent and/or long lasting wrong
failure suspicions. The reason is that the Paxos algorithm

generates less contention: its leader election mechanism
makes sure that only a small subset of all processes start

1 Ref. [5] uses the term coordinator. We stick to leader throughout the

 paper.

2

concurrent rounds, whereas the rotating leader scheme in

the Chandra-Toueg algorithm results in nearly all processes

starting concurrent rounds. Therefore the leader based ap-

proach seems more suited to environments in which the fail-
ure detection service makes mistakes often.

Structure. The rest of the paper is structured as follows.

Section 2 presents related work. Section 3 defines the sys-
tem model and the agreement problems used in this pa-

per. We introduce the algorithms in Section 4. Section 5
describes the benchmarks we used, followed by our sim-

ulation model for the network and the failure detector and
leader oracles in Section 6. Our results are presented in Sec-

tion 7, and the paper concludes with a discussion in Sec-
tion 8.

2. Related work

 Most of the time, consensus algorithms are evaluated us-
ing simple metrics like time complexity (number of com-
munication steps) and message complexity (number of mes-

sages). This gives, however, little information on the real

performance of those algorithms. A few papers provide a
more detailed performance analysis: Ref. [27] compares
the impact of different implementations of failure detectors
on the Chandra-Toueg consensus algorithm, and Ref. [8]
and [24] analyze the latency of the same algorithm, con-
centrating mostly on the effect of wrong failure suspicions.
All these papers consider only isolated consensus execu-
tions, which are a special case of our workloads, corre-
sponding to a very low setting for the throughput. Other

papers [31, 33] consider a consensus algorithm embedded
in an atomic broadcast algorithm, but they do not aim at
comparing consensus algorithms. Note also that the perfor-
mance of atomic broadcast algorithms is studied more ex-
tensively in the literature than the performance of consen-
sus algorithms (see [29] for a summary).

 Most papers on the performance of agreement algo-
rithms only consider failure free executions (our normal-
steady faultload), which only gives a partial and incom-

plete understanding of the behavior of the algorithms. We
only note a few interesting exceptions here. The transient ef-
fects of a crash are studied in [22, 27, 33], but the faultload
in [22, 27] is different from our crash-transient faultload.
Ref. [27] assumes that the crash occurs at the worst possi-
ble moment during execution, leading to the worst case la-
tency. In contrast to our faultload, this faultload requires a
detailed knowledge of the execution, which is only avail-
able if one considers very simple workloads (isolated ex-
ecutions of consensus in [27]) in an analytical or simula-
tion model. The other paper [22] measures the latency of
the group membership service used by the algorithm to tol-
erate crash failures.2 This way of considering the transient

effects of a crash is less general compared to our faultload,

as it is stated in terms of an implementation detail of the al-

gorithm under study.
 The assumptions and/or the algorithms used in all the

studies listed are too different to allow a meaningful com-

parison of the results with those in this paper. Our previous
work [17] would be an exception: it compares the same al-

gorithms using measurements rather than simulation, and
with fewer faultloads. However, bugs discovered and fixed
since its publication invalidate the results presented there.

3. Definitions

3.1. System model

 We consider a widely accepted system model. It consists
of n processes pl, ... , pn that communicate only by mes-
sage passing. The system is asynchronous, i.e., we make
no assumptions on its timing behavior: there are no bounds
on the message transmission delays and the relative pro-
cessing speed of processes. The network is quasi-reliable: it
does not lose, alter nor duplicate messages (messages whose
sender or recipient crashes might be lost). In practice, this
is easily achieved by retransmitting lost messages. We con-
sider that processes only fail by crashing. Crashed processes
do not send any further messages. Process crashes are rare,
and process recovery is slow: both the time between crashes
and time to repair are much greater than the latency of the
algorithms investigated.

 The consensus algorithms used in this paper use ora-
cles to tolerate process crashes: the Chandra-Toueg algo-
rithm (CT) uses failure detector oracles and the Paxos al-

gorithm (Paxos) uses leader oracles. A failure detector or-
acle outputs a list of processes it suspects to have crashed.
It might make mistakes: it might suspect correct processes
and it might not suspect crashed processes immediately. A
leader oracle outputs a single leader process that it trusts to
be alive. All leader oracles in the system strive to output the
same leader process. This oracle might make mistakes as
well: it might elect crashed processes as leader, and differ-
ent oracles might elect different leaders. To make sure that
the consensus algorithms terminate, we need some assump-
tions on the behavior of the oracles: OS for CT [5] and C2
for Paxos [4]. These assumptions are rather weak: they can
usually be fulfilled in real systems by tuning implementa-
tion parameters of the oracles [11, 31]. Also, they are equiv-
alent: one can solve the same set of problems when using
the asynchronous model with oracles fulfilling either of OS
and 52 [4].

2 Certain kinds of Byzantine failures are also injected.

3.2. Agreement problems

 We next give informal definitions of the agreement prob-
lems needed for understanding this paper; see [5, 16] for
more formal definitions.

 In the consensus problem, each process proposes an ini-
tial value. Uniform consensus (considered here) ensures
that no two processes decide differently, and that the de-
cision value is one (any one) of the proposals.

 Atomic broadcast is defined in terms of two primitives
called A-broadcast(m) and A-deliver(m), where m is some
message. Uniform atomic broadcast (considered here) guar-
antees that (1) if a message is A-broadcast by a correct pro-
cess, then all correct processes eventually A-deliver it, (2)
if a process A-delivers a message, then all correct processes
eventually A-deliver it, and (3) all processes A-deliver mes-
sages in the same order.

 The algorithms in this study use (non-uniform) reliable
broadcast, which guarantees that if a message is broadcast
or delivered by a correct process, then all correct processes
eventually deliver it (even if the sender crashes).

4. Algorithms

 This section sketches the two consensus algorithms, con-

centrating on their common points and their differences. We

then introduce the atomic broadcast algorithm built on top
of consensus.

4.1. The consensus algorithms

 For solving consensus, we use the Chandra-Toueg OS al-

gorithm [5] and the single-decree Synod algorithm from the
Paxos paper [18, 21]. Henceforth, we shall refer to the algo-
rithms as CT algorithm and Paxos algorithm, respectively.
We also use these names to refer to the atomic broadcast al-

gorithm used with the corresponding consensus algorithm
if no confusion arises from doing so.

4.1.1. Common points The algorithms share a lot of as-
sumptions and characteristics, which makes them ideal can-
didates for a performance comparison. In particular, both
algorithms are designed for the asynchronous model with
equally strong oracles: OS failure detectors (CT algorithm;
see Section 3.1) and 1-2 leader oracles (Paxos algorithm).
Both tolerate f < n/2 crash failures. In both algorithms,
processes execute a sequence of asynchronous rounds (i.e.,
not all processes necessarily execute the same round at a
given time t). Each round has a leader (called coordina-
tor in [5]), whose role is to try to impose a decision value
on all processes. If it succeeds, the consensus algorithm ter-
minates; if it fails, some additional rounds are executed with

possibly a different leader. Moreover, leaders execute a very

3

similar protocol in each round,3 discussed in detail in Sec-
tion 4.1.3.

4.1.2. Electing a leader The main difference between the
algorithms is how the leaders are chosen. A new leader is
necessary whenever the current round is not successful. A
round may not be successful if one or more processes want
a different leader, usually because they suspect the current
leader to have crashed.

 The CT algorithm is based on the rotating coordinator

paradigm. Whenever the current leader is suspected, the
leader is chosen to be the next process, in a round-robin
fashion. In other words, each process executes a sequence
of rounds 1, 2, ..., and there is a priori agreement on the
identity of the leader: process pi is leader for rounds kn + i.

 There is no such a priori agreement in the Paxos algo-
rithm. A process pi considers itself leader (and starts a new
round) when its leader oracle outputs pi. Other processes
only start participating in this round when they receive a
message from the leader. Leaders always choose unique in-
creasing round numbers: process pi is leader for rounds
kn + i, just like in the CT algorithm. However, unlike in
the CT algorithm, a given process hardly ever executes all
of the rounds 1, 2, ...: there are usually gaps in the sequence
of rounds.

4.1.3. Execution of a round We now sketch the execu-
tion of one round in each of the two algorithms, illustrated
in Fig. 1. Further details of the execution are not necessary
for understanding the rest of the paper.

Read phase. Throughout the execution, processes maintain
their current estimate of the decision value. Both algorithms
start the round with a read phase whose purpose is to update
the leader's estimate with a recent estimate. In the Paxos al-

gorithm, the leader sends a read message to all processes,
and all processes reply with their estimate (estimate mes-
sages). In the CT algorithm, the read message is not nec-
essary, as all processes execute every round. In each of the
two algorithms, the leader only waits for an estimate from
a majority of all processes, and then updates its own esti-
mate.

Write phase. In this phase, the leader sends its estimate to
all, proposing its acceptance (proposal messages). A pro-
cess accepts this estimate if it has not seen messages from a
later round (in the case of the Paxos algorithm) or if it does
not suspect the leader (CT algorithm).

 When a process accepts a proposal, it updates its own es-
timate and sends back an ack message; otherwise, it sends
back a nack message (not shown in Fig. 1). In the case of
the CT algorithm, the nack message is sent before receiv-
ing the proposal.

3 This is why we chose the CT algorithm over other algorithms written
 for the same system model (e.g., [25] and [20]).

 The leader waits for messages from a majority of all pro-
cesses, and decides if it has received a majority of ack mes-
sages. In this case, it also sends a decision message to all
using reliable broadcast. Upon receiving this message, the
other processes decide as well. If the leader receives one
nack message before deciding (this is not shown in Fig. 1)
it finishes executing the round without deciding.

pl .

read phase write phase
 leader

Figure 1. Example of a round in the CT and
Paxos algorithms (CT does not send the read
message)

4.2. Optimizations to the consensus algorithms

 The consensus algorithms implemented contain several
optimizations with respect to the published versions [5, 18,
21]. The goal of the optimizations is to reduce the number
of messages in the most common scenario: when no process
is suspected (CT algorithm) or when the leader is the same

process (pi) throughout the execution (Paxos algorithm).

 • The read phase is not necessary in the first round, in
 either of the two algorithms. This is why its messages

 are gray in Fig. 1.

 • In the original CT algorithm, the non-leader processes
 start the next round immediately after sending the

 ack message. This generates estimate messages which
 are not needed in the most common scenario. These
 messages degrade performance. To prevent this, non-
 leader processes wait for an abort message before

 starting the new round .4 The abort message is sent by
 the leader if it receives nack messages.

 • In the write phase, the leader stops the current round
 after receiving the first nack message, because it is

 known at this point already that the round has failed.
 The original algorithms always wait for (ack and nack)
 messages from a majority of processes.

4 The non-leader processes also start a new round if they start suspect-

 ing the leader.

4

• In both algorithms, the decision message must be sent
 using reliable broadcast (see Section 3.2). We use an

 efficient algorithm inspired by [13] that requires only
 one broadcast message if the sender is not suspected.

• The CT algorithm always starts with the same leader

Pi - If P1 crashes, this affects steady-state performance
 negatively. We fix this problem by having the consen-

 sus decide on the first leader of the next consensus

 (beside the order of messages) [9]. Processes propose
 the first process that their failure detector trusts as first

 leader. This choice makes sure that, eventually, crashed

 processes do not ever become first leaders.

4.3. The Chandra-Toueg atomic broadcast algo-

 rithm

 In the Chandra-Toueg atomic broadcast algorithm [5],
a process executes A-broadcast by sending a message to
all processes.5 When a process receives such a message, it
buffers it until the delivery order is decided. The delivery or-
der is decided by a sequence of consensus numbered 1, 2,
etc. The value proposed initially and the decision value of
each consensus are sets of message identifiers. Let msgk be
the set of message IDs decided by consensus # k. The mes-
sages denoted by msgk are A-delivered before the messages
denoted by msgk+1, and the messages denoted by msgk are
A-delivered according to a deterministic function, e.g., ac-
cording to an order relation defined on their IDs.

 The algorithm inherits the system model and any fault
tolerance guarantees from the underlying consensus algo-
rithm. We use this atomic broadcast algorithm with both the
CT and Paxos consensus algorithms.

 The performance of the algorithms can be improved by
packing messages from subsequent consensus executions
into one message. For the sake of simplicity, we did not per-
form such optimizations [1, 3, 12]. This decision affects the
two algorithms in the same way, hence we introduce no bias
in the performance study.

5.1. Performance metrics and workloads

 Our main performance metric is the early latency of
atomic broadcast. Early latency L is defined for a single
atomic broadcast as follows. Let A-broadcast(m) occur at
time to, and A-deliver(m) on pi at time ti, for each i =
1, ... , n. Then latency is defined as the time that elapses un-

til the first A-delivery of m, i.e., L def (mini—l,...01 ti) — to.
In our study, we compute the mean for L over a lot of mes-
sages and several executions.

 This performance metric makes sense in practice. Con-
sider a service replicated for fault tolerance using active
replication [26]. Clients of this service send their requests
to the server replicas using Atomic Broadcast. Once a re-
quest is delivered, the server replica processes the client re-
quest, and sends back a reply. The client waits for the first
reply, and discards the other ones (identical to the first one).
If we assume that the time to service a request is the same
on all replicas, and the time to send the response from a
server to the client is the same for all servers, then the first
response received by the client is the response sent by the
server to which the request was delivered first. Thus there
is a direct link between the response time of the replicated
server and the latency L.

 Beside the early latency, we also compute the late la-
tency, the time that elapses until the last A-delivery of a

def
message m: Liate = (maxi_i ... n ti) — to.

 Latency is always measured under a certain work-
load. We chose simple workloads: (1) all destination pro-
cesses send atomic broadcast messages at the same constant
rate, and (2) the A-broadcast events come from a Pois-
son stochastic process. We call the overall rate of atomic
broadcast messages throughput, denoted by T. In gen-
eral, we determine how the latency L depends on the
throughput T.

 The system can only reach a steady state if the through-
put is under some maximal throughput Tmax. Beyond this
throughput, some processes are left behind. We detect if the
system reaches steady state by observing if the late latency
stabilizes over time.

5. Benchmarks

 This section describes our benchmarks, consisting of

performance metrics, workloads and faultloads. In order to
get meaningful results, we state the benchmarks in terms
of the system under study (processes sending atomic broad-
casts) rather than in terms of the component under study

(consensus). Previous versions of the benchmarks are pub-
lished in [29, 33].

5 This message is sent using reliable broadcast. We use the efficient al-

 gorithm mentioned Section 4.2.

5.2. Faultloads

 The faultload is the part of the workload that describes
failure-related events that occur during an experiment [19].
We concentrate on (1) crash failures of processes, and (2)
the behavior of unreliable failure detectors. We evaluate
the performance of the algorithms with four different fault-
loads. We now describe each of them in detail, mentioning
which parameters influence latency with each faultload.

Normal-steady faultload. With this faultload, we have nei-
ther crashes nor wrong suspicions in the experiment. We
measure latency after the system reaches its steady state (a

5

sufficiently long time after startup). Parameters that influ-
ence latency under this faultload are the algorithm (A), the
number of processes (n) and the throughput (T).

Crash-steady faultload. One or more crashes occur be-
fore the experiment. We measure latency after the system
reaches its steady state: a sufficiently long time after startup
and any crashes. Beside A, n and T, an additional parame-
ter is the set of crashed processes. In the steady state of the
system, all failure detectors in the system permanently sus-

pect all crashed processes at this point, and all leader ora-
cles have elected the same correct process. No wrong sus-
picions occur, and the leader no longer changes.

Crash-transient faultload. With this faultload, we inject
one or more crashes at some point in time after the system
reached a steady state. Multiple crashes represent correlated
failures. We model both simultaneous multiple crashes and
crashes that happen in a sequenced manner, spaced apart by
the crash interval TC .

 After the crashes, we can expect a halt or a significant
slowdown of the system for a short period. We would like
to capture how the latency changes in atomic broadcasts di-
rectly affected by the crashes. Our faultload definition rep-
resents the simplest possible choice: we determine the la-
tency of an atomic broadcast sent when the crashes start (by
a process that does not crash). Of course, the latency of this
atomic broadcast may depend on the choice for the sender
and the crashing processes. In order to reduce the number of
parameters, we consider the worst case, i.e., the case that in-
creases latency the most.

 The precise definition for the faultload is the follow-
ing. Consider that a list of c processes C crashes at times
t, t + Tc, ... , t + (c — 1) - Tc, respectively, where Tc > 0
(no other crashes nor wrong suspicions occur). Let process
p (p C) execute A-brvadcast(m) at t. Let L(p, C) be the
mean latency of m, averaged over a lot of executions. Then

Lcrash def maxp,c L(p, C), i.e., we choose the sender and
the crashing processes such that latency increases the most.

 Beside A, n, T, c and Tc, an additional parameter de-
scribes how fast failure detectors and leader oracles detect
the crashes. This parameter is discussed in Section 6.2.

Suspicion-steady faultload. No crashes occur, but failure
detectors generate wrong suspicions, and leader oracles
change their mind about the leader. This causes the algo-
rithms to take extra steps and thus increase latency. Beside
A, n and T, additional parameters include how often wrong
suspicions occur and how long they last. These parameters
are discussed in Section 6.2.

6. Simulation models

 Our approach to performance evaluation is simulation,

which allowed for more general results as would have been

6

feasible to obtain with measurements in a real system (we
can use a parameter in our network model to simulate a va-
riety of different environments). We used the Neko proto-
typing and simulation framework [32] to conduct our ex-

periments. We used the same models for our previous work
[29, 33].

6.1. Modeling the execution environment

 We now describe how we modeled the transmission of
messages. We use a model inspired from simple models of
Ethernet networks [28], and validated in [29]. The key point
in the model is that it accounts for resource contention. This

point is important as resource contention is often a limiting
factor for the performance of distributed algorithms. Both a
host and the network itself can be a bottleneck. These two
kinds of resources appear in the model (see Fig. 2): the net-
work resource (shared among all processes) represents the
transmission medium, and the CPU resources (one per pro-
cess) represent the processing performed by the network
controllers and the layers of the networking stack, during
the emission and the reception of a message (the cost of
running the algorithm is negligible). A message m trans-
mitted for process pi to process p; uses the resources (1)
CPUi, (2) network, and (3) CPU;, in this order. Message
m is put in a waiting queue before each stage if the corre-
sponding resource is busy. The time spent on the network
resource is one time unit. The time spent on each CPU re-
source is A time units; the underlying assumption is that
sending and receiving a message has a roughly equal cost.

Process pi send

10

receive Q

'Zi
CPU i

(a time units)

Process p;

CPU;
(X time units) •

5-

Network (1 time unit)

Figure 2. Transmission

network model.

of a message in our

 The A parameter (0 < A) shows the relative speed of

processing a message on a host compared to transmitting it
over the network. Different values model different network-
ing environments. We conducted experiments with a variety
of settings for A.

 We model network-level multicasts: a message sent to
several destinations is only processed once on the sending

 CPU resource and on the network resource.
 Crashes are modeled as follows. If a process pi crashes

at time t, no messages can pass between pi and CPUi af-
ter t; however, the messages on CPUi and the content of
the attached queues are still sent, even after time t. In real
systems, this corresponds to a (software) crash of the ap-

plication process (operating system process), rather than a
(hardware) crash of the host or a kernel panic. We chose to
model software crashes because they are more frequent in
most systems [14].

up

p

trust trust

FD at q suspect

mistake duration
-- D.

TM

mistake recurrence time TMR

suspect
-~ 1

Figure 4. Quality of service metrics describ-
ing wrong suspicions made by failure detec-

tors. Process q monitors process p.

6.2. Modeling failure detectors

 One approach to examine the behavior of a failure detec-
tor is implementing it and using the implementation in the
experiments. However, this approach would restrict the gen-
erality of our performance study: another choice for the al-

gorithm would likely give different results. Also, it is not
justified to model the failure detector in so much detail, as
other components of the system, like the execution environ-
ment, are modeled much more coarsely. We built a more
abstract model instead, using the notion of quality of ser-
vice (QoS) of failure detectors introduced in [6]. The au-
thors consider the failure detector at a process q that moni-
tors another process p, and identify the following three pri-
mary QoS metrics:

 • Detection time TD: The time that elapses from p's
 crash to the time when q starts suspecting p perma-

 nently. The definition is illustrated in Fig. 3.

uppI down
^t

trust

FD at q suspect

trust

detection time TD

suspect

Figure 3. Quality of service metric express-
ing the speed of failure detection. Process q

monitors process p.

• Mistake recurrence time TMR: The time between two
 consecutive mistakes (q wrongly suspecting p), given

 that p did not crash; see Fig. 4.

• Mistake duration TM: The time it takes a failure de-
 tector component to correct a mistake, i.e., to trust p

 again (given that p did not crash); see Fig. 4.

 Not all of these metrics are equally important in each of
our faultloads (see Section 5.2). In the normal-steady fault-
load, the metrics are not relevant. The same holds in the
crash-steady faultload, because we observe the system a
sufficiently long time after all crashes, long enough to have
all failure detectors to suspect the crashed processes per-
manently. In the suspicion-steady faultload no crash occurs,
hence the latency of atomic broadcast only depends on TMR
and TM (shown in Fig. 4). In the crash-transient faultload
no wrong suspicions occur, hence TD is the relevant met-
ric (shown in Fig. 3).

 In [6], the QoS metrics are random variables, defined on
a pair of processes. In our system, where n processes mon-
itor each other, we have thus n(n — 1) failure detectors in
the sense of [6], each characterized with three random vari-
ables (TD, TMR, TM). In order to have an executable model
for the failure detectors, we have to define (1) how these
random variables depend on each other, and (2) how the dis-
tribution of each random variable can be characterized. To
keep our model simple, we assume that all failure detec-
tor modules are independent and the tuples of their random
variables are identically distributed. Moreover, note that we
do not need to model how TMR and TM depend on TD,
as the two former are only relevant in the suspicion-steady
faultload, whereas TD is only relevant in the crash-transient
faultload. As for the distributions of the metrics, we took
the simplest possible choices: TD is a constant, and both
TMR and TM are exponentially distributed with (different)
constant parameters. This choice only represents a starting
point, as we are not aware of any previous work we could
build on (apart from [6] that makes similar assumptions).
We will refine our models as we gain more experience.

 Finally, note that this abstract model for failure detec-
tors neglects that failure detectors and their messages put
a load on system components. This simplification is justi-
fied in a variety of systems, in which a rather good QoS can
be achieved with failure detectors that send messages in-
frequently. This is the case whenever TD and TMR are not
too small. Moreover, if this is not the case, it is fair to as-

7

sume that the overhead of failure detection affects both al-

gorithms, and furthermore, that the overhead affects the al-
gorithm that already has performance problems to a greater
extent. Thus it is unlikely that neglecting the load generated
by failure detectors actually changes which algorithm per-
forms better at any given setting (though it might change the
absolute values of performance metrics).

6.3. Modeling leader oracles

 Our leader oracles for the Paxos algorithm rely on fail-
ure detectors: at any point in time, the leader is the process
with the smallest index of all processes trusted by the failure
detector. We implemented leader oracles with failure detec-
tors because a leader oracle must detect the crash of other

processes.6 The failure detectors underlying the leader ora-
cles are modeled with their quality of service parameters as
described in the previous section.

 Recall from Section 3.1 that the CT algorithm requires a

 OS failure detector and the Paxos algorithm an S2 leader or-
acle. The reader might wonder why the transformation of

OS to S2, described in [7], is not used here. The reason is
that we do not aim at modeling OS or C2; instead, we aim
at modeling the performance characteristics of failure de-
tectors (following [6]).7 One question might be whether our
failure detector model ensures a better coverage of the as-
sumptions of OS or those of f2. However, this question is
not relevant for our study. Oracles satisfying the assump-
tions of OS and 52, respectively, ensure that the algorithms
terminate, but there are runs in which the algorithms termi-
nate, even though the assumptions are not satisfied. More-
over, we can use simulations to obtain coverage data di-
rectly.

7. Results

 We now present our results for all four faultloads and a
variety of network models. We obtained results at a vari-
ety of representative settings for A: 0.1, 1 and 10. The set-
tings A = 0.1 and 10 correspond to systems where com-
munication generates contention mostly on the network (at
A = 0.1) and the hosts (at A = 10), respectively, while
A = 1 is an intermediate setting. For example, in current lo-
cal area networks, the time spent on the hosts is much higher
than the time spent on the wire, and thus A = 10 is prob-
ably the setting that corresponds best to such an environ-
ment.

6 The leader oracle has other potential uses, e.g., it can be used to im-

 plement load balancing among all correct processes (see Section 8).
 We intend to investigate this aspect in the future.

7 Another reason is that our transformation is more efficient ([7] uses
 additional messages).

8

 60

 50

 40

cTi
m 30
is

 20
m

10

 0

lambda = 1

n=3 ------
n=5 --------

x" ~r x

/ X

0 100 200 300 400 500
throughput [1/s]

600 700 800

Figure 5. Latency vs. throughput with the

normal-steady faultload, for both Paxos and
CT.

 90

 80
 70

E 60
cTi 50

is 40

 30

 20
10
 0

n = 7, lambda = 1

no crash --------
 1 crash --------

2 crashes
3 crashes --------

0 100 200 300 400 500
throughput [1/s]

Figure 6. Latency vs.
crash-steady faultload,

CT.

600 700 800

throughput with

for both Paxos

the
and

 Most graphs show the early latency vs. the throughput.
Graphs showing the late latency are presented in the ap-

pendix only. Values of the late latency are slightly higher,
but all other characteristics of the corresponding graphs are
very similar. The reason is that if one process reaches a de-
cision in either of the consensus algorithms, all other pro-
cesses will soon follow, thanks to the decision message (see
Section 4.1.3). The maximal throughput is approximately
the highest throughput value, that is, the x coordinate of the
rightmost point, in all graphs showing the steady-state la-
tency; beyond this throughput, the late latency did not sta-
bilize (see Section 5.1). We set the time unit of the network
simulation model to 1 ms, to make sure that the reader is not
distracted by an unfamiliar presentation of time/frequency
values (one that refers to time units). Any other value could
have been used. The 95% confidence interval is shown for
each point in the graphs.

 The two algorithms were always run with an odd number
of processes. The reason is that the same number of crash
failures k (k = 1, 2, ...) is tolerated if the algorithms are

 35

 30

 25
0

 20

 E 15

 '• 10

5

0

after crash of p1; n = 3; lambda = 0.1

 50

 45

 40
.g• 35

H 30

 25

Po 2°
T 15
0 10

5

after crash of p1; n = 3; lambda = 1

 300

 250

E

p 200

 150

a 100
 50

 0

after crash of p1; n = 3; lambda = 10

CT, TD =100 ms
Paxos, TD = 100 ms -------

0 100 200 300 400 500 600 700 800
 throughput [1/s]

 after crash of p1; n = 7; lambda = 0.1

CT, TD=100ms
Paxos, TD = 100 ms

 90
 80

'41' 70

0 60
50

0 40
'IS 30

c0 0

10

0 100 200 300 400 500 600

 throughput [1/s]

alter crash of p1; n = 7; lambda = 1

700 800

 CT, TD = 1000 ms
Paxos, TD = 1000 ms

 CT, TD = 100 ms ------
Paxos, TD = 100 ms — —

 90

80

 70
60

H ' 50

0 40 m
30

N 0 m
 10

0

 CT, TD = 100 ms
Paxos, TD = 100 ms

A'--

0 100 200 300 400 500 600 700

 throughput [1/s]

 700

 600

f- 500

~ 400

0 300

?' 200

 100

0

0

100 200 300 400

throughput [1/s]

10 20 30 40 50 60
throughput [1/s]

after crash of p1; n = 7; lambda = 10

70

500 600 700

 CT, TD = 1000 ms
Paxos, TD = 1000 ms

0

Figure 7. Latency overhead vs. throughput with the crash-transient faultload

10 20 30 40 50 60 70
 throughput Ills]

I. One process crashes.

run with 2k + 1 and 2k + 2 processes; thus adding a pro-
cess to a system with an odd number of processes does not
increase the resiliency of the system. Also, we always ran
the algorithms with seven or fewer processes. Studying the
scalability of the algorithms did not seem worthwhile, be-
cause neither algorithm is especially scalable: processes of-
ten wait for messages from . n/2 processes, whereas scal-
able algorithms tend to synchronize much fewer processes
(see, e.g, [23]). Also, it is questionable that using algorithms
tolerating n/2 failures makes sense when n is large.

7.1. Normal-steady and crash-steady fault-
 loads (Figures 5 and 6, Appendixes B and

 C)

 With these faultloads, the two algorithms have the same

performance. Each curve thus shows the latency of both al-
gorithms. For the sake of readability, we only present a sub-
set of the results in Fig. 5 (normal-steady faultload) and
Fig. 6 (crash-steady faultload). The full set of results is pre-
sented in Appendixes B and C. The latency increases with
the throughput and with the number of processes. Some-
what surprisingly, the latency decreases with the number of
crashes. The reason is that the crashed processes no longer
load the network with messages.

 The fact that the two algorithms have the same perfor-
mance is not surprising. Their only important difference
is the way of electing a new leader, and no new leader
is elected with these faultloads (such that this influences
the steady-state performance). In fact, we have deliberately
chosen similar algorithms for this study, so that we can con-

centrate on the performance differences observed with the
other faultloads.

7.2. Crash-transient
Appendix D)

faultload (Figures 7 to 10,

 With this faultload and c crashes, we only present the la-
tency after crashing the first c processes (pi, ... , pa), as this
is the case resulting in the highest transient latency (and
the most interesting comparison). The crash of any addi-
tional processes affects the two algorithms in the same way
(slightly decreased latency; cf. Fig. 6).

 We set the failure detection timeout TD to 100 ms at
A = 0.1 or 1, and to 1000 ms at A = 10. This choice mod-
els a reasonable trade-off for the failure detector. On the one
hand, the detection time TD is low enough (comparable to

the latency overhead) to make sure that the failure detec-
tor does not degrade performance catastrophically when a
crash occurs. On the other hand, the detection time is high
enough (it is a high multiple of the roundtrip time at low
loads: 2 + 4A) to avoid that failure detectors suspect cor-
rect processes.8

 All figures show the latency overhead, i.e., the la-
tency minus the detection time TD, rather than the latency.9
Graphs showing the latency overhead are more illus-

8 As we use an abstract model for the failure detectors for the sake of

 generality, this does not appear directly in our simulations. The argu-
 mentation is about a hypothetical implementation. Given that this im-

 plementation can afford spending a high multiple of the roundtrip time
 before generating a suspicion, wrong suspicions will be rare.

9 Actually, Fig. 10 shows a derived quantity.

9

after crash of (p1, p2) and (p1, p2, p3); n = 7; lambda = 0.1

 120

 100

 E
o 80

 so

16 40

 20

0

 CT, 2 crashes, TD = 100 ms -------
CT, 3 crashes, TD = 100 ms -------

Paxos, 2 crashes, TD = 100 ms
Paxos, 3 crashes, TD = 100 ms — —•

0 100 200 300 400 500 600 700
 throughput [1/s]

after crash of (p1, p2) and (p1

 120

 100
E
0 80

 60

T 40
 20

 0

, p2, p3); n = 7; lambda = 1

CT, 2 crashes, TD = 100 ms
 CT, 3 crashes, TD = 100 ms -------
 Paxos, 2 crashes, TD = 100 ms --------

Paxos, 3 crashes, TD = 100 ms —

100 200 300 400

 throughput [1/s]

500 600 700

after crash of (p1, p2) and (p1

600

500

400

300

200

100

 0

, p2, p3); n = 7; lambda = 10

E

0 m

T
O

Figure 8. Latency overhead vs. throughput with

crash simultaneously.

the

 CT, 2 crashes, TD = 1000 ms CT
, 3 crashes, TD = 1000 ms

Paxos, 2 crashes, TD = 1000 ms
Paxos, 3 crashes, TD = 1000 ms

0 10 20 30 40 50
 throughput [1/s]

crash-transient faultload. Multiple

60 70

processes

trative; note that the latency is always greater than the
detection time TD with this faultload, as no atomic broad-
cast can finish until the crash of the first leader is de-
tected.

One crash (Fig. 7). We start by discussing the results for
the case of one crash. The latency overhead of both algo-
rithms is shown at n = 3 (top) and n = 7 (bottom) and a
variety of values for A (0.1, 1 and 10 from left to right).

 The results show that (1) both algorithms perform rather
well (the latency overhead of both algorithms is only a
few times higher than the latency with the normal-steady
faultload; see Fig. 5) and that (2) the algorithms perform
roughly the same. The CT algorithm performs slightly bet-
ter at n = 3, A > 1 and n = 7, A = 10, i.e., with a small
number of processes and a high A meaning a relatively fast
network. The Paxos algorithm performs slightly better at
n = 7, A < 1, i.e., with a lot of processes and a small A
meaning a relatively slow network.

 The differences can be explained by differences in the
execution of the algorithms once the crash of the first leader
is detected. In the CT algorithm, all processes send a nack
message to the first leader. In the Paxos algorithm, the new
leader sends a read message. The rest of the execution (from
the estimate message of the second round) is the same. The
CT algorithm thus uses fewer communication steps, but

generates more contention on the network; moreover, the
increase in network contention is proportional to the num-
ber of processes. This explains why the CT algorithm is fa-
vored by a fast network and a small number of processes.

Multiple simultaneous crashes (Fig. 8). For this case, the
latency overhead of both algorithms is shown at n = 7, for
2 and 3 crashes (the algorithms do not tolerate more than 3
crashes) and a variety of values for A (0.1, 1 and 10 from
left to right).

 The results are different from those obtained with one
crash only: the Paxos algorithm always outperforms the CT
algorithm. The reason is that the CT algorithm takes more
rounds: it rotates over all crashed processes first, whereas

the Paxos algorithm elects a correct leader after the first
round.
 The fact that the CT algorithm rotates over the crashed

processes also explains why its latency increases with the
number of crashes. The latency of the Paxos algorithm,
however, decreases with the number of crashes. The reason
is that fewer correct processes load the system with mes-
sages to a smaller extent (cf. Fig. 6).

Multiple sequenced crashes (Figures 9 and 10). Fi-
nally, we investigated what happens when multiple
non-simultaneous crashes occur. The order in which pro-
cesses crash is p1, ... , pc, so we obtain the highest transient
latency. The time that elapses between two crashes is called
crash interval Tc (thus all values shown in Fig. 8 were ob-
tained at Tc = 0).

 Fig. 9 shows the effect of Tc on the latency overhead.
The curves were obtained with n = 7 processes, c = 3
crashes and a low load (0.1 s-1) at a variety of values
for A (0.1, 1 and 10 from left to right). The characteris-
tics of all other curves are similar (see Appendix D). Up to
Tc TD, the latency of both algorithms increases accord-
ing to (c — 1) - Tc; the reason is that each of the crashes is
not yet detected when the following crash happens. This re-

gion is highlighted in Fig. 10, which plots the latency over-
head minus (c — 1) - Tc rather than the latency overhead.
One can see that the performance advantage of Paxos de-
creases as Tc increases. The reason is that the Paxos algo-
rithm perceives the crashes separately: it cannot elect a cor-
rect leader in one step as at small values of Tc (Fig. 8),
and thus cannot maintain a significant performance advan-
tage over the CT algorithm.

 Except for small Tc values, the relative performance in
this region (Tc below , TD) depends on A; higher values,
i.e., a faster network, favor the CT algorithm. The expla-
nation is the same as in the case of one crash (see above;
Fig. 7): the CT algorithm uses fewer communication steps
but generates more contention on the network.

 As Tc grows beyond TD, both algorithms detect the

10

 w

250

after crash of p1, p2 and p3; n = 7; lambda = 0.1

 200

a
 150

•100

2 50

250

after crash of p1, p2 and p3; n = 7; lambda = 1

2500

after crash of p1, p2 and p3; n = 7; lambda = 10

CT, TD = 100 ms
Paxos, TD = 100 ms s-----

50 100 150

crash interval TC [ms]

200

a 200 E

0
 150

io 100

1 50

0

0

CT, TD=100ms
Paxos, TD = 100 ms -

50 100 150

 crash interval TC [ms]

200

a 2000
E

0
 1500

m 1000

•500

 CT, TD = 1000 ms -----
Paxos, TD = 1000 m

0 500 1000 1500

crash interval TC [ms]

Figure 9. Latency overhead vs. crash interval with the crash-transient faultload

crash in a sequenced manner.

2000

. Multiple processes

30

E 25
0
N 20
a

 15

 10

•i0 ', O5

0

after crash of p1, p2 and p3; n = 7; lambda = 0.1

 35

E 30
•25
N
a 20

•15
m 10

m 5

 0

after crash of p1, p2 and p3; n = 7; lambda = 1

 160

140

 120

 100
a

 80

 60

^40

`ro20
m

0

after crash of p1, p2 and p3; n = 7; lambda = 10

 CT, TD = 100 ms
Paxos, TD = 100 ms

0 50 100 150

crash interval TC [ms]

200

 CT, TD = 100 ms
Paxos, TD = 100 ms

50 100 150

crash interval TC [ms]

Figure 10. Latency overhead minus 2 • Tc vs. crash

Multiple processes crash in a sequenced manner.

200

interval Tc

CT, TD = 1000 ms
 Paxos, TD = 1000 ms -------

0 500 1000 1500

crash interval TC [ms]

2000

with the crash-transient faultload.

first crash before the next ones happen, and can reach a de-
cision. Therefore the transient latency quickly decreases un-
til it is essentially the same as with a single crash (Fig. 7).

7.3. Suspicion-steady faultload (Figures 11 and 12,
Appendix E)

 The occurrence of wrong suspicions are quantified with
the TMR and TM QoS metrics of the failure detectors. As
this faultload does not involve crashes, we expect that the
mistake duration TM is short. In our first set of results

(Fig. 11 for A = 1; the results for A = 0.1 and 10 are
similar and are omitted here for better readability; see Ap-

pendix E for the full set of results) we hence set TM to 0, and
latency is shown as a function of TMR. In each figure, we
have four graphs: the left column shows results with 3 pro-
cesses, the right column those with 7; the top row shows re-
sults at a low load (10 s-1; 1 s-1 if A = 10) and the bottom
row at a moderate load (300 5-1; 30 s-1 if A = 10); the al-

gorithms can take a throughput of about 700 s-1 (70 s-1 if
A = 10) in the absence of suspicions (i.e., with the normal-
steady faultload; see Fig. 5 and Appendix B).

 The results show that the CT algorithm is much more

sensitive to wrong suspicions if these occur frequently. We
illustrate this on Fig. 11: at n = 3 and T = 10 s-1, that is,
the settings at which the CT algorithm tolerates wrong sus-

picions most, the CT algorithm only works if TMR > 5 ms,
whereas the FD algorithm still works at the smallest TMR
value considered (1 ms); the latency of the two algorithms
is only equal at TMR > 100 ms. The CT algorithm breaks
down at higher values of TMR for all other settings, whereas
the Paxos algorithm continues to work even with 1 ms.

 The results can be explained by the difference in the
mechanisms that the algorithms use to elect the next leader.
The CT algorithm always chooses the next process (in a
round-robin manner) as the next leader. Moreover, sus-

picions are likely to abort the current round. Therefore,
if wrong suspicions occur frequently, a lot of rounds are
needed to finish a consensus execution, and all processes be-
come leaders, executing rounds that overlap. In contrast, the
Paxos algorithm is run with a leader oracle that elects the

process with the smallest index among all suspected pro-
cesses. If suspicions are short (TM = 0), the leader ora-
cle will only ever elect pi and p2 as leader. Only these two

processes start overlapping rounds. Moreover, suspicions,
even if they lead to a change in the output of the leader ora-

11

100

n = 3, throughput = 10 1/s, lambda = 1

 80

E >
60

lQ 0
T YV
lC

 20

0

100

n = 7, throughput = 10 1/s, lambda = 1

 CT —
Paxos --

110100 1000
 mistake recurrence time TMR [ms]

 n = 3, throughput = 300 1/s, lambda = 1

 80

E
60

l6 40

m
 20

0

 CT
Paxos

100 100

80

>, 60

 20

0

 10 100 1000
 mistake recurrence time TMR Ems]

n = 7, throughput = 300 1/s, lambda = 1

CT —
Paxos-------

 80

U 60
a % 40

 20

0

 CT
Paxos

Figure 11

1 10 100 1000110 100 1000
 mistake recurrence time TMR Ems]mistake recurrence time TMR [ms]

. Latency vs. TMR with the suspicion-steady faultload, with TM = 0 (A = 1).

cle, do not abort the current round directly; their only effect
is to start other rounds in parallel that might conflict with
the current round. Because of these differences, the CT al-

gorithm generates much more contention on the hosts and
the network: it is likely that n processes run rounds in par-
allel, whereas the Paxos algorithm only has two processes
that run rounds in parallel. The increased contention of CT
is the reason why the Paxos algorithm performs better with
this faultload.

 In the second set of results (Fig. 12 for A = 1; the re-
sults for A = 0.1 and 10 are similar and are omitted here for
better readability; see Appendix E for the full set of results)
TMR is fixed and TM is on the x axis. We chose TMR such
that the latency of the two algorithms is close to equal at
TM = 0. For example, with A = 1 (Fig. 12), (i) TMR = 100
ms for n = 3 and (ii) TMR = 1000 ms for n = 7.

 The results show that the CT algorithm is more sensi-
tive to the mistake duration TM as well, not just the mistake
recurrence time TMR. Once again, the difference can be at-
tributed to the fact that the Paxos algorithm generates less
contention: its leader oracle usually outputs only a small
subset of all processes, hence only a few processes start
rounds concurrently, whereas all processes are likely to do
so in the CT algorithm.

8. Discussion

 We have compared the

Toueg and Paxos consensus

performance of the Chandra-
algorithms. These algorithms

are representative for consensus algorithms designed for the
asynchronous system model (with a minimal extension to
allow us to solve the consensus problem) and f < n/2 pro-
cess crashes (the highest f that the system model allows).
Following a common pattern, the algorithms have a similar
structure: they execute a sequence of rounds whereby each
round has a leader that tries to impose a decision. They dif-
fer in how they tolerate (suspected) failures of the leader:
processes in the Chandra-Toueg algorithm rotate the leader
role among all processes, whereas processes in the Paxos al-

gorithm elect leaders directly in an uncoordinated manner.

 Not surprisingly, the two algorithms have the same
steady-state performance if neither crashes nor wrong sus-
picions occur, or if crashes occur but wrong suspicions do
not. In fact, the algorithms differ only in how they han-
dle suspected crashes, and this difference does not come
into play in these scenarios. This result allows us to
state with confidence that performance differences ob-
served in the other scenarios are due to the differences in
failure handling and not other artifacts of the two algo-
rithms.

 As for the transient performance after one crash or mul-
tiple sequenced crashes, the performance differences are
small, and the relative performance depends on the relative
speed of the network and the hosts, as well as on the num-
ber of processes. The Paxos algorithm has better transient
performance after multiple correlated crashes that happen
simultaneously or within a short time, because its leader or-
acle elects a correct leader immediately after detecting the

12

100

n = 3, throughput = 10 1/s, TMR = 100 ms, lambda = 1

100

n = 7, throughput = 10 1/s, TMR = 1000 ms, lambda = 1

 80

E

U

A 40

lQ

 20

0

 CT ------
Paxos --------

Jil
1 101001000

 mistake duration TM [ms]

n = 3, throughput = 300 1/s, TMR = 100 ms, lambda = 1

 80

E
T 60

m

40

l6
m
 20

0

 CT ------
Paxos --------

100 100

1101001000
 mistake duration TM [ms]

n = 7, throughput = 300 1/s, TMR = 1000 ms, lambda = 1

 80

 60

C m

l6 40

 20

0

 CT ------
Paxos

.1

r

10 100

mistake duration TM Ems]

1000

 80

E
>.

l640

2
 20

0

 CT
Paxos --------

Figure 12. Latency vs. T11,1 with the suspicion-steady faultload

101001000
mistake duration TM [ms]

 with TMR fixed (A = 1).

crashes. This advantage seems to be inherent to the leader-
based approach that the Paxos algorithm follows.

 We found the largest difference in scenarios with fre-

quent or long lasting wrong failure suspicions. In such sce-
narios, the Paxos algorithm performs better. The reason is
that it generates less contention: its leader oracle makes sure
that only a small subset of all processes start concurrent
rounds, whereas the rotating leader scheme in the Chandra-
Toueg algorithm results in nearly all processes starting con-
current rounds. Once again, this advantage in environments
in which the failure detection service makes mistakes of-
ten seems to be inherent to the leader-based approach.

 We have chosen consensus algorithms with a central-
ized communication scheme, with one process coordinat-
ing the others. In the future, we would like to investigate al-

gorithms with a decentralized communication scheme (e.g.,
[25] and [20]) as well. We would also like to investigate
how results change in a load balanced configuration, e.g., in
a configuration in which the first leader of subsequent con-
sensus executions rotates among all processes that are alive.
The coordinated fashion of electing the next leader in the
Chandra-Toueg algorithm might provide performance ben-
efits in such a configuration.

Acknowledgments

 We would like to thank Pierre Metrailler for his help
in implementing the algorithms and performing the simu-

lations, the anonymous referees for their suggestions and

Neeraj Suri for his help in shaping the final version of this

paper.

References

[1] E. Anceaume. A lightweight solution to uniform atomic
 broadcast for asynchronous systems. In Proc. 27th Int'l

 Symp. on Fault-Tolerant Computing (FTCS-27), pages 292-
 301, Seattle, WA, USA, June 1997.

[2] M. Barborak, M. Malek, and A. Dahbura. The consensus
 problem in distributed computing. ACM Computing Surveys,

 25(2):171-220, June 1993.

[3] R. Boichat, P. Dutta, S. Frolund, and R. Guerraoui. Decon-
 structing Paxos. SIGACT News, 34(l):47-67, 2003.

[4] T. D. Chandra, V. Hadzilacos, and S. Toueg. The weakest
 failure detector for solving consensus. Journal of the ACM,

 43(4):685-722, July 1996.

[5] T. D. Chandra and S. Toueg. Unreliable failure detectors for
 reliable distributed systems. Journal of the ACM, 43(2):225-

 267, 1996.

[6] W. Chen, S. Toueg, and M. K. Aguilera. On the quality
 of service of failure detectors. IEEE Trans. on Computers,

 51(2):561-580, May 2002.

[7] F. Chu. Reducing Ci to OW. Information Processing Let-
 ters, 67(6):289-293, Sept. 1998.

[8] A. Coccoli, P. Urban, A. Bondavalli, and A. Schiper. Perfor-
 mance analysis of a consensus algorithm combining Stochas-

 tic Activity Networks and measurements. In Proc. Int'l Per-

 formance and Dependability Symp., pages 551-560, Wash-
 ington, DC, USA, June 2002.

13

[9] X. Defago and A. Schiper. Specification of replication tech-
 niques, semi-passive replication, and lazy consensus. Re-

 search Report KS-RR-2002-001, Japan Advanced Institute
 of Science and Technology, Ishikawa, Japan, Feb. 2002.

[10] X. Defago, A. Schiper, and P. Urban. Total order broad-
 cast and multicast algorithms: Taxonomy and survey. Re-

 search Report IS-RR-2003-009, Japan Advanced Institute of
 Science and Technology, Ishikawa, Japan, Sept. 2003.

[11] C. Fetzer, M. Raynal, and F. Tronel. An adaptive failure de-
 tection protocol. In Proc. 8th IEEE Pacific Rim Symp. on De-

 pendable Computing (PRDC-8), Seoul, Korea, Dec. 2001.
[12] R. Friedman and R. van Renesse. Packing messages as a

 tool for boosting the performance of total ordering protocols.
 TR 95-1527, Dept. of Computer Science, Cornell University,

 Ithaca, NY, USA, July 1995.

[13] S. Frolund and F. Pedone. Revisiting reliable broadcast.
 Technical Report HPL-2001-192, HP Laboratories, Palo

 Alto, CA, USA, Aug. 2001.

[14] J. Gray. Why do computers stop and what can be done about
it ? In Proc. 5th Symp. on Reliablity in Distributed Software

 and Database systems, Jan. 1986.

[15] R. Guerraoui and A. Schiper. The generic consensus ser-
 vice. IEEE Trans. on Software Engineering, 27(1):29-41,

 Jan. 2001.

[16] V. Hadzilacos and S. Toueg. A modular approach to fault-
 tolerant broadcasts and related problems. TR 94-1425, Dept.
 of Computer Science, Cornell University, Ithaca, NY, USA,
 May 1994.

[17] N. Hayashibara, P. Urban, A. Schiper, and T. Katayama.
 Performance comparison between the Paxos and Chandra-

 Toueg consensus algorithms. In Proc. Int'l Arab Conf. on
 Information Technology (ACIT 2002), pages 526-533, Doha,

 Qatar, Dec. 2002.
[18] L. Lamport. The part-time parliament. ACM Trans. on Com-

 puter Systems, 16(2):133-169,1998.
[19] H. Madeira, K. Kanoun, J. Arlat, Y. Crouzet, A. Johansson,

 R. Lindstrom, et al. Preliminarily dependability benchmark
 framework. Project deliverable CF2, Dependability Bench-

 marking project (DBench), EC IST-2000-25425, Aug. 2001.
[20] A. Mostefaoui and M. Raynal. Solving consensus us-

 ing Chandra-Toueg's unreliable failure detectors: A general
 quorum-based approach. In Proc. 13th Int'l Symp. on Dis-

 tributed Computing (DISC), pages 49-63, Bratislava, Slovak
 Republic, Sept. 1999.

[21] R. D. Prisco, B. Lampson, and N. Lynch. Revisiting the
 PAXOS algorithm. Theoretical Computer Science, 243(1-

 2):35-91, July 2000.

[22] H. Ramasamy, P. Pandey, J. Lyons, M. Cukier, and
 W. Sanders. Quantifying the cost of providing intrusion tol-
 erance in group communication systems. In Proc. 2002 Int'l

Conf. on Dependable Systems and Networks (DSN-2002),

 pages 229-238, Washington, DC, USA, June 2002.

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

L. Rodrigues, H. Fonseca, and P. Verissimo. Totally ordered
multicast in large-scale systems. In Proc. 16th Int'l Conf.
on Distributed Computing Systems (ICDCS-16), pages 503-
510, Hong Kong, May 1996.
L. Sampaio, F. V. Brasileiro, W. d. C. Cirne, and
J. de Figueiredo. How bad are wrong suspicious: Towards
adaptive distributed protocols. In Proc. Int'l Conf on De-
pendable Systems and Networks (DSN), San Francisco, CA,
USA, June 2003.
A. Schiper. Early consensus in an asynchronous system with
a weak failure detector. Distributed Computing, 10(3):149-
157, Apr. 1997.
F. B. Schneider. Implementing fault-tolerant services using
the state machine approach: A tutorial. ACM Computing Sur-
veys, 22(4):299-319, Dec. 1990.
N. Sergent, X. Defago, and A. Schiper. Impact of a fail-
ure detection mechanism on the performance of consensus.
In Proc. IEEE Pacific Rim Symp. on Dependable Comput-
ing (PRDC), pages 137-145, Seoul, Korea, Dec. 2001.
K. Tindell, A. Burns, and A. J. Wellings. Analysis of hard
real-time communications. Real-Time Systems, 9(2):147-
171, Sept. 1995.
P. Urban. Evaluating the Performance of Distributed Agree-
ment Algorithms: Tools, Methodology and Case Studies.
PhD thesis, Ecole Polytechnique Federale de Lausanne,
Switzerland, Aug. 2003. Number 2824.
P. Urban, X. Defago, and A. Schiper. Contention-aware met-
rics for distributed algorithms: Comparison of atomic broad-
cast algorithms. In Proc. 9th IEEE Int'l Conf. on Computer
Communications and Networks (IC3N 2000), pages 582-
589, Oct. 2000.
P. Urban, X. Defago, and A. Schiper. Chasing the FLP im-
possibility result in a LAN or how robust can a fault toler-
ant server be? In Proc. 20th IEEE Symp. on Reliable Dis-
tributed Systems (SRDS), pages 190-193, New Orleans, LA,
USA, Oct. 2001.
P. Urban, X. Defago, and A. Schiper. Neko: A single environ-
ment to simulate and prototype distributed algorithms. Jour-
nal of Information Science and Engineering, 18(6):981-997,
Nov. 2002.
P. Urban, I. Shnayderman, and A. Schiper. Comparison of
failure detectors and group membership: Performance study
of two atomic broadcast algorithms. In Proc. Int'l Conf.
on Dependable Systems and Networks, pages 645-654, San
Francisco, CA, USA, June 2003.

14

A. Explanations for the full set of results

For the sake of readability, only a representative subset of our results
appears in the body of the paper. In the appendix, we present the full
set of results. This includes results for all combinations of the fol-
lowing:

 • Performance metrics: early and late latency.

 • Relative contention in the network model (A): 0.1, 1 and 10.

 • Number of processes (n): 3, 5 and 7.

 • Number of crashes: 1 (for n = 3); 1 and 2 (for n = 5); 1, 2 and
3 (for n=7).

B. Full set of results for the normal-steady faultload

B.1. Graphs showing the early latency

 60

 50

E 40

 30

 20

 10

0

n=3
n=5 --------
n=7

~~.-K

X y~--

O 100 200

lambda = 0.1lambda = 1lambda = 10

I I--I II60 ---,, I I I II700
 n=3iE-n=3 X

n=5603 n=5 '-50 - n =7--;'n=7
 /

z.E40X•_ E500

 arx;~-re ° -war'ar300~r' Air—'i.rcw Sir iti2, 203
10 .-100 . --w..

I I I I 1O I 1 1 I I I I0
300 400 500 600 700 8000 100 200 300 400 500 600 7008000 10 20 30 40
throughput [1/s]throughput [1/s]throughput [1/s]

 Figure 13. Latency vs. throughput with the normal-steady faultload.

 .i`

f

50 60 70

B.2. Graphs showing the late latency

 80

 70

 60

 50

 40

T. •30
T6

 10

0

lambda = 0.1

70

60

50

40

30

20

10

0

lambda = 1

n=3 ------
n=5 --------
n=7

~~ ar

••

 X,~[:

,K•

O 100 200 300 400 500

throughput [1/s]

600 700 800

700

600

500

400

300

200

100

 0

lambda = 10

n=3 --------
. n=5

n=7

r x

0 100 200 300 400 500 600 700 800

 throughput [1/s]

U
c

n=3 ------
n=5
n=7

ar- * w-.-w

Air
,.r _.S

•

ft

I

0 10 20 30 40

throughput [1/s]

50 60 70

Figure 14. Latency vs. throughput with the normal-steady faultload.

15

 C.

C.1.

Full set of results for the crash-steady faultload

Graphs showing the early latency

60

50

40

30

20

10

0
0

 n = 3, lambda = 0.1n = 5, lambda = 0.1n = 7, lambda = 0.1

r ii i i i---80 ---iir80
no crash -------no crashno crash ----- 1 crash70 - 1 crashI-70 1 crashjT

 2 crashes-------2 a-ashesI 11
^m 60-: - e 60 3 crashes --------

:
-m 40 -d A - E40#

ifi
or',30 - r:m30J. m

20 _+..+--+:-.- 020v +~ a

 100 200 300 400 500 600 700 8000 100 200 300 400 500 600700 8000 100 200 300 400 500 600 700
 throughput [1/s]throughput [1/s]throughput [1/s]

 Figure 15. Latency vs. throughput with the crash-steady faultload (A = 0.1).

800

E

is

`m
m

BO

70

60

50

40

30

20

10

0

 n = 3, lambda = 1n = 5, lambda = 1n = 7, lambda = 1
 80 ---90

no crash -------no crashno crash ------
1 crash --------- 70 - 1 crash- 80 1 crash

 2 crashes-------702 crashes
60 --3 crashes -------- m E1 I_E60..i j

 T-dT
 0 40:*._050,.,.

 m,~'.ram 40..'......4•A

 2020 ._-* ---
 - 10-10

 100 200 300 400 500 600 700 8000 100 200 300 400 500 600 700 8000 100 200 300 400 500 600 700
 throughput Ills]throughput [1/s]throughput [1/s]

 Figure 16. Latency vs. throughput with the crash-steady faultload (A = 1).

800

CT c

600

500

400

300

200

100

 0

no crash
1 crash

0 10

 n = 3, lambda = 10n = 5, lambda = 10n = 7, lambda = 10
 600 --, , 1 1 .800

_nocrashno crash -------
5001 crash700 1 crash ..-..- 2crashes2 crashes-

 m 'm600 3 crashes --------T E400 -
IiE

m 300_04

30000,-_

- 100-
 100 -

0 ---0
20 30 40 50 60 70 80010 20 30 40 5060 70 80 010 20 30 40 50 60 70

 throughput [1 /s]throughput [1/s]throughput [1/s]

 Figure 17. Latency vs. throughput with the crash-steady faultload (A = 10).

80

16

C.2. Graphs showing the late latency

 E
 8'

60

50

40

30

20

10

0

n = 3, lambda = 0.1n = 5, lambda = 0.1n = 7, lambda = 0.1

 90 --i , i90
no crash -------no crashno crash --------

1 crash80 1 crashI-80 1 crash --------

 70 - 2 crashes-------d702 crashes -

 E80 -- E60 #
 50 -i j - ps 50

s ..4 i

00
100 200 300 400 500 600 700 8000 100 200 300 400 500 600700 8000 100 200 300 400 500 600 700

 throughput [1/s]throughput [1/s]throughput [1/s]

 Figure 18. Latency vs. throughput with the crash-steady faultload (A = 0.1).

800

E

90

80

70

60

50

40

30

20

10

0

no crash —
1 crash

 100 200

n = 3, lambda = 1n = 5, lambda = 1n = 7, lambda = 1
 90 ---100 no crashno crash ------- - 80 - 1 crash1 -so1 crash

70 - 2 crashes--gp 2 crashes ?i3 crashes

 E60-I _E70
 8- 50 -# i - 8" 60i s

 e

 20.--.. _
-10-10

300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700
throughput [1/s]throughput [1/s]throughput [1/s]

Figure 19. Latency vs. throughput with the crash-steady faultload (A = 1).

800

E
6-

_6

700

600

500

400

300

200

100

 0

 no crash
1 crash

0 10

n = 3, lambda = 10n = 5, lambda = 10n = 7, lambda = 10

r l r 11-- 700 ---1,800
 no crashno crash ---------

--•-600 _ 1 crash700 1 crash-
 2 crashes --2 crashes -•-----

 a 500-600 3 crashes ----- r ,-m
 ;' E 500

 - 400 -8
400','. m300I-oat1:

 ,a-e'-m300,..•. m

100- 100

30 40 50 60 70 800 10 20 30 40 50 60 70 800 10 2030 40 50 60 70
throughput [1/s]throughput [1/s]throughput [1/s]

Figure 20. Latency vs. throughput with the crash-steady faultload (A = 10).

20 80

D. Full set of results for the crash-transient faultload

17

1

ｺ一
一

〇
〇

o■
胃

「
一
.

of
(D
y= -

ω
①

一
・
N3 N

C 胃
「■

m9

襲 婁
2 塾 tD a 《 N ■ 芸 0 信 07 .a C陣 ∈

胃

7 一 s cD n 「
9

NZ 占 「
9

5 y コ
ロ

oコ ー 哺
9

C 胃
0

0 ① a ● = 三 自
,

'0 0Φ 眉 a 8 器 く
DN

s aC m S 層
C

け 雪

ea
rl
yl
at
en
cy
-T
D[
ms
] ゴ

NA
AO
oO
OO
OO
OO

け No
凹
ヰ

雪 q霧 コ 0 台
戸

R m孟

0

ea
rl
yl
at
en
cy
-T
D[
ms
]

一
LN
wa
・

σ
tΦ

V◎
oo

OO
OO
OO
OO
OO

0 　 OO N OO w OO A Oo

葱

0 00 0 00 刈 00

町 、

、

、
、

穿 1

＼
》 ,

し 1 } 雫 聯 ココ由
、 コ由

. ・

、 i 其
1

■
コ
「
口

器
器
9臼

ω
「
9ω

Nレ
む

ゆ
ゆ

む

面
aヨ

a
Nい

い
9り

=「
コ
「
=r
=「

mm
mm
い

No
9

ヨ
ー
i-
1-
{

oワ
o

ロ
コ

ロ
e

蓉
§
蓉
蓉

∋
∋

∋
ヨ

切
ψ
oい

、

i

;l
i 、 、

ヨ 00 80

ぎ
§

葺
1§

壁
§

R V§ 区 き
§

R O

㍉ 、 甲 竪曽

r噛 曳
't
'

申 肉 曳
・

繭
ト
ー

亀 亀
犠
覧
r 噺

コ き
。

制 GR ro
m

NN 弱 一1
-1

ワ
v

ll
囹

　
　

00 00 ヨ
ヨ
%M

ii I

量 婁 量 0 仰 巫
3

σ ユ 塾

ea
rl
yl
at
on
cy
-T
D[
ms
] 　

NA
σ
Do
oo
OO
OO
OO

づ NO
隅
津

m「 り a 警 O sゴ 鳥 m 孟 § 艮 尋 言 ご
メ 醇 ヨ
Q

a d 口

ea
rl
yl
at
en
cy
-T
D[
ms
J

　
け

の
　

邸
iL
Φ
o◎

ON
)↓

LΦ
00
00
00
00
0

0 8 80

昏 oc 署
。

c"
'A

ti
t8 ゆ 8 ゆ 8 V 8

"/ 監

巳

■ 旨 ち

= … { ち 尾

、
コ
コ

罷
。
。

1。
。
..

lW
NW
N

ゆ
り

り
ゆ

寓
酪
aδ

a
い
oり

い
の

コ
じ
ニ　

コ
ア
コ
ロ

剤
銘

卵
i-
--
-

～
羅 ヨ

ヨ
ヨ

ヨ
oい

OI
馴
D

、

ロ
リ 漏

= 2= .
"く

「 i i

0 せ O O NO O

s Oo Cm
Aa
o

co 芸 PO
O 00 0 VS

JO

ロ 哩

㍉ t ～ 1 ft ㍉
、

陶
嚇
り
亀
噂
亀
噺

て 畏 O
M→

NN ゆ
ごつ

δ
雨

NN SS 卵 お 馳 S8 蒜 「
i

i

き G 聾 O a 鳶 n 董 d n

ea
rl
yl
at
en
cy
-T
D[
ms
]

08
8g
i3
80
00
00
00

帥
x

Ω 9鵬 コ 勲 9戸 鳥
d

」 a s 」 私
も

W マ コ

ea
rl
yl
at
en
cy
-T
D[
ms
]

　ム
　ム

　
レ

　
レ

ゆ
08
89
89
8

8
0 0 N O

穿
o
wc cm

貢 r.A -o N 一

0 0 0

ρ

L鴨

し、
、

; o 1 土 、
亀・

,

■
=「
口

1器
舞
99

WN
WN

む
ぐつ

ごつ
り
1ヨヨ

へ
1醗

鶴
勝
霧

コレ
コ
ロコ
ダ
コ　

;霧
霧
$9

田
甜

甜

il
=馳

二

88
88
　

ro
0く

ウ

、
・

認
蒜

辱・
.;
1

亀
1 '、

'

■

0 0 N O

ao s 7

A

H

0

『 3m
vo

am e O～
塁

'

、

、 t

i ㍉ し 」 腎 1

;

て 0。 制 §
§

露 岬 88 0
0 33
NH

へ
　

覧 ・
1

ロ
`.
¥1

■

量 aN 蔓 s 尋 マ 契雪 Qa m き

TI 0コ (Q C 「
cD

N - ■ r ① 一
①

3n 《 OC cD 「
z

cD m a 《 N 冒 一 z 「
O

C o 7 ℃ C 一 芝 胃
s

一 7 fD n 「
9

N7 占 「
①

= H ロ
コ

ロ

0 7 一 噛 9 信 胃 0 09 a ■ 07 ① .0 「
O

no N y n 「
①

N7 ①
N

■

穿 Oc 讐 塵 け =

ea
rl
yl
at
en
cy
-T
D[
ms
j

一
n)
嶋

ρ
Aσ

1①
刈

◎
oo

OO
OO
OO
OO
OO

ea
rl
yl
at
en
cy
-T
D[
ms
s

　
れ

　
NA
oo
oo
NA

OO
OO
OO
OO

ea
rl
yl
at
en
cy
-T
D[
ms
]

oq
O茜

NO
NN
…
9叙

O 　 00 § wS A OG
O

豊

ゆ
8

Φ
0

0 V O O

璽

㌔ 1 1 覧

旨 甲 1

!

、

、＼

、

霧
臼

ロ
ロ

ー
i-
→

ワ
o

口
闘

の
い

8S ヨ
ヨ

NP 「 ii

0

■

き
§

、
ヨ nN雨
8

S O…
Sw
O亀

ヨ
δ
OI

ロ
.【

コ
OI

凋
s7
S

,s
Go

3w
o

σ
幽
oa

勉 Rゆ 〇 一

ea
rl
yl
at
en
cy
-T
D[
ms
]

一
LN
wA
σ
1①

Vq
oo

OO
OO
OO
OO
OO

VS go
O

O

1 i 馳

、
、

、
噛
r
噛
隔

ea
rl
yl
at
en
cy
-T
D[
ms
s

0。 網 ov tl
A

OO
OO

ヨ
ヨ

い
N

1 　 i 5

け ξ OG m7 買 に め コ N

O §
d 98 Qo
d

N ニ
Tめ

ゆ
O 」 nS

OO
CD
Cp
GG

d.
NO

ヨ
o

ぴ
ユ

自①
Φ

胴
8

ε

O O ① 0
0

0 　 00 N O O w 8 A8 oO O Φ 00 V8

ノ 、

、 、

1 、 ～ ■

『

、

、
、 、

、

1

、

亀

霧
9

ロ
ロ

→ oワ 閣
II

は
の

00
0
0 N

「 i ロ 1

m ぎ
ε

d Ns O a 」 n 曾 d ヨ
Q

a d ll O 一

0。 韻 ov an 80 33
Nい

1 コ i 「

d 諦
2

4 mい コ 0 9ゴ コ 囮 メ d3 σ ad 囮 一

ea
rl
yl
at
en
cy
-T
D[
ms
]

08
巴

δ
…聖

80
00
00
00
00

0 　 00 N S O
C sA gO
co

童
§ Φ
0

0 VO O ゆ 8

　
　

　
　

　
NA
Of
OD
ON
AO
WO
OO
OO
OO
OO
O

、

噛
＼

軸

喜
。

網 曽 §
蓉

認 　 i ア i I

山
⇒

m ヨ o 「 mN s

ea
rl
yl
at
en
cy
-T
D[
ms
]

0 　 OO N OO

「←
ω

コ
0

co
O

uC
m

ご
L

7A

コ
a8

n N_ 蓄
N§

喜 am n 一

ヨ
8

ゆ 8

oN
Oホ

NO
NN
WO
鴇
AO
畠
0

臥

臥

、 、

、

'申 池 弟
肉

申
聰

ユ 由
覧

ea
rl
yl
at
en
cy
-T
D[
ms
]

0。 網 vv ll
扉

ぜ
　

00 0く
シ

ヨ
ヨ
aの

1! じ

dx m Qd wJ O う 9 ご コ 胴 卸 d ヨ σ
a

d Il 一

08
§

蓉
§

§
§

§
§

§
§

0 0 N O

OW CC m OS

A

匪
。 0 0 V O

',
' 、 、

、

1 1

、 、

、 、

、、

、

ea
rl
yl
at
en
cy
-T
D[
ms
]

コ 塁
◎

ρ
.-
1

お 二
二

§
§

誹
霧

i ユ i 5

　
　し

　コ
　
レ

ゆ

08
88
89
8

0 さ

塁 ro
o

N蔓

穿
vO
c
m8

A貢 1至
き

dO ロ さ

0 0

,"
,'

、
、 、

1

N 学雫

t

0。 網 vv wo OO OO
OO

∋
ヨ

の
σ
9

1 　 1 }

■

、 、

、
、
、 、

、

m ミ
婁

書 誉 轟 ぎ QP
l

e さ

0 0 NO

穿 £
8

豆 歪
き 0 0 0

、

、
、
、隔

、
、

、 、

霞
。

緊 vv an OO
OO

5ヨ
ヨ

い
¢

、

～由 i

、 、 申

i　 i}

、 、

m R 里 書 言 0 薯 am O さ

d 』 ● o 轟 喜 ω の
S

O≦ ..
●

す
q 一 s ce ce w 『
..
.

関 　 " -c
P

昌 A 望 0 話 } 8 a

貫
「

1

一 〇

o¶ ■「
■
髄

go Nf
C

7■
艦
o

　
コ

5「
V

①
w

ea
rl
yl
at
en
cy
-T
D[
ms
J

　ム
　

　
　

N

Oo
go
$o

ea
rl
yl
at
en
cy
-T
D[
ms
s

　
　

　
NA
OI
OD
ON
A

OO
OO
OO
OO

ea
rl
yl
at
en
cy
-T
D[
ms
] 　

　
Nレ

A⑦
9◎

ON
晒

00
00
00
0

0

yr
①
9

無
1:

a< 難
私

-

N OO

0。 鋼 ov ll
lI

　
　

00
00

∋
ヨ

い
N

i 膠 , 1 i 幽 i 1 i 1

量 § s O 3 鳥 d

0 O

s

ac wm
oヨ

nn

V冨ロ
　

い

m 書
§

A 9
NO O

、 、、

、 陵
、
、 、

..
0。 網 vv $g NN

、

コ i 2 旨 i

n 「 41 N s .L
.

三 卑
毒

0 ミ r7 一 7 0 n -十 9 W s 占 「 01 コ y 　
ロ

cD 3一

3

0

dぎ ε VI
α
sO

Oむ ヰ
ヨ

um
N 轟 囮o メ

冨

雪
呂

一

m8 る 一

NO O

00刻 00 nn OO OO ヨ
ヨ
N

ii I 2コ i

ea
rl
yl
at
en
cy
-T
D(
ms
]

　
　
ト
NN

OO
°
oo
$o

3 　

m♂ 6 a N 蔓 書 n 艮 マ 跡 雪 S d と 一

ea
rl
yl
at
en
cy
-T
D[
ms
]

　
の

の
へ⊃

牟
Lo
口
oo
『
9孝

L
OO
OO
OO
OO

ea
rl
yl
at
en
cy
-T
D[
ms
]

　
　

　
NA
OI
OJ
ON
AO
OO
OO
OO
O

0 0

器 箋
塁 蓉

n 3 .巴
の 00 N 8

0。 掴 vv RO OO OO 33 NN

i 1 i 1 匡 聖 鵬 鵬 鵬 i 幽

一
一

「 1

0

山
沖

雲 Qロ 讐
σ
l

o →
o

ヌ
奮

鳥
葺

塁
薯
さ

"里
o辞

一
1

鴛 蓬
蓉

d n

N 8

じ
i

i2 1

.¥
、
、、

、

馨
。

制 vv nn 8S ヨ
∋

い
9り

L 口

0

ロ 蔓 ゆ
酪

σ
1

い
o

コ「
o

o 三
警

d雪 謎
§

コ
n

R V冨
.'

い
『

一
'

ao
d

富
。

三 鵠 o偵 ①
8

a ・
器

=葺 二
壽
蓉

号

蚕
.

否
㌔

an
NV

18 $

0

ea
rl
yl
at
en
cy
-T
D[
ms
]

O OO

一
ト
◎
Nレ

σ
10
σ
1

00
00
00

N8

0。 罰 vv an o°
0

33
NN

■ 1

き a O d a 艮 」 α d ヨ σ
a

田 回 一

ea
rl
yl
at
en
cy
-T
D[
ms
j

　
の

　
N騨

AΦ
oo
oN
A

OO
OO
OO
$o

ea
rl
yl
at
en
cy
-T
D[
ms
]

て 0。ρ
!

ヨ
ヨ

eo 88 00
ヨ
ω

i

塁 G mm O ヌ 穐 雪

　
　

の
NA
TO
DO
NA

Oo
g°

oo
$°

00
0 ゆ 00

m N 謬
一

量
量

§
曽
'-
1

言
n

圏
霧

§
薯

n さ

N O8

コ 塁
。

N ヨ 馳 §
§

認 }1

0

器
ε

aい
o

コ「
0

0臼 od 　
コ
　

m a謬
一

艮
2m
§

コ
ー
1

髄
o

、
s冨

m呂 き
蒙

0

NO 8

コ 畢
。

N-
1

ヨ 馳 88
00

蒜 旨
ξ

塾
m 藝 量 m a 艮 マ N mヨ Qa d O O

鰯
,

i

I i

N O

=コ 信
o

胃
=

59
5

0c
D

N
'ロ

A
-十 〇
ro
9

霧
雪 n

ω
鴨《

nO 蚕
器

N 77 _.
fD

5動 9Ω
・

H∋ 窮 5(oo 巴
l

H

3) 勤 雲
話 ■ n 「
①

H 7 占
.

5- cD 「 《
①

0 筆 胃 S 帥 7 0 n 「 9 H7 占 一十 9 7 N 　
　

cD コ ー 噛
9

信 胃 コ 09 Q ■

2 霧 コ ヨ
'

6z 吐 一
l

n 3N

ea
rl
yl
at
en
cy
-T
D-
2T
C[
ms
]

一
一
N》

N騨
ω

Oσ
10
σ
10
(n
o

O

ea
rl
yl
at
en
cy
-T
D-
1T
C[
ms
]

0 NO ハ 00 　 q O NO O

i ll 十 ll …
…

一
L-
N踵

N

σ
ヤ
Oσ

10
σ
1

ea
rl
yl
at
en
cy
-T
D-
1T
C[
ms
s

0。 射 ワロ ロ
ll

い
　

OO OO ヨ
ヨ

肋
N

0

　
　

の
ゴ

oN
騨

↓
Lo
o◎

ON
レ

」』
o

O

き
§

い コ
rσ

1

00
v

mN

m a w マ
n

V諺 　
　

d §
NO

d n 皇

N O O

3 」 1 1十 li ! …
…

謬
9

ゆ
ロ

ー
1→

oワ 匪
髄

ヨ
　

o$ ヨ
ヨ

ω
肋

Ii コ
i

り
a

讐 三
'婁

d n 3ε

凹 xg q 里
8

書
塞

諜 艮
量

§

マ
ざ

言
豆

馨
蓉

P O

ea
rl
yl
at
en
cy
-T
D-
2T
C[
ms
]

oo
O窃

NO
NW
O誤

N OO

1　 [1 十
i

ii 土

夏
9

　
コ

→
ワ
v

掴
髄

ハ
の

OO OO ヨ
∋

い
い

ト [　 E

d 誹
R

n 鵬 s O ε d a 艮 〒 N d3 § P 一

ea
rl
yl
at
en
cy
-T
D-
1T
C[
ms
]

一
一
ム

「
VN
幽

ω

ov
+o
vi
ou
+o

0 9 　 00 　 ㎝ 0 N8

コ
i

し
i

　 3i

ea
rl
yl
at
en
cy
-T
D-
1T
C[
ms
]

0。 劉 vv ll
臨

　
　

8°
0

∋
ヨ

い
い

iじ i　

0

一
ム

ー
▲
N)

oσ
10
σ
10

0

w 蔓 欝
警

8

m,
a2
c

コ
里
o

鱒
一
{

コ
o

団
冒

メ
N

百「
一

弓
0厨

n

N8

コ
i

　 i十 i }」 Ii

0。 刻 vv nn OO
OO

ヨ
ヨ
NN

器 6a N9 ミ
§ 藩 y3N Nヨ

ー

区
0曽

一

ea
rl
yl
at
en
cy
-T
D-
2T
C[
ms
s

け
　

の
の

NA
・

Φ
o◎

ON
)A
oO
OO
OO
OO
OO

N 8

0。 劉 vv nn OO OO ∋
ヨ
NN

iロ iE

器 aN S O 呈 a 兄 ヨ 晶 仰 d3 区
d

日 一

ea
rl
yl
at
en
cy
-T
D-
1T
C[
ms
[

。
巴
s8
8§

§
碁

蓉
0 §

Qm ms 募
一

垂

§
n 霧

の NO O N O 8

ea
rl
yl
at
en
cy
-T
D-
1T
C[
ms
]

コ

1碁
。

1い
一
i

↓
為
一
!曽

[お
80

i蒜

0

。
8s
8S
§

§
0

m xm 乙 Ns
fn

og

Om m 9'

蓉
W=
O

引
一
i

コ
o

A Vw my 3 ca mO
O

A O

N §

』 1器
9

ト
ロ

十
一
{-
1

i曽 L 圭の
の

OO
OO

OO ∋
ヨ

い
肋

dま δ dN
8

ニア
0

0Q 書
1-

e§ メ
誹

墜
一

一

Sd
§

e O

N §

髭 糎馨

..
ギ

1}

d §
藝

量 d a 尋 0 雪 d と

8
●

1

i

N 一

O「
1

■
艦

一
.

暫
oy

C
7r ω

①
一

・
N

=冒 胃
「願

暫
①

襲 N gr
2 -+ s 巴 《

H
■ 一 7 「

O

C os .D C一 ミ
胃

7 陣 s cD n 「
9

y S 占 「
9

7 y コ
ロ
ロ

fD 7 一 輸 ①
C

胃 コ 0 9Q ■ ヨ 三 =自
,

.0 ロ cD ℃ a 8 器 cD
N

け s OG o 7 口
C

け = へ N

0 の 00 N OO w OO A 8 ゆ S ゆ
S

VO O

la
te
la
te
nc
y-
TD
[m
s]

NA
OO
O

三
、

¥¥

鳳

コ 甲

=申 … 申
= 申

由

、

00
§

§

、 「

、
申 i

馳

コ
コ

器
器
99

ω
N》

ω
N騨

ゆ
ゆ

ゆ
ゆ
aa
8蕊

い
い
99

SS
SS

Om
Om
切

い
Nい

→
一
→
-1
-i

vo
vv

nロ
ロ

コ

蓉
§
§
蓉

∋
ヨ

ヨ
ヨ

い
い

い
い

Ii
l

li
1

d ヰ
巽

9 鴎 コ 0 君 ' Rd a s戸 R も 婁 」 n V m ヨ Qa d 闘 〇 一

la
te
la
te
nc
y-
TD
[m
s[

0 　 OO 8 0

ぎ
§

G m S
AF
8

=芭

00 ゆ 8 V OO oo
O

O

00
NO
wO
AO
OO
VO
88

覧 、 申 瓢 ㍉磯 瓦由 展 鹸

刀 寒
。

制 QQ mm NN 羅 岬 ° o$ 蒜

一
s

ヨ
O

Co コ ℃己 け 雪 δ

iユ ii

器
§

S O s 尋 7 N d 喜 ad n O 一

la
te
la
te
nc
y-
TD
[m
s]

NA
OO
O

の
　

　
mW
ON
A

OO
OO
O

d言
o

;a
一

い
o

コ『
0

0 sN
8

& m na
m ps
AC
O

艮
…

尋
五

§
コ 匪

o
Vp 醇 弓
0

口
」
od

■
o◎

-8

la
te
la
te
nc
y-
TD
[m
s]

ゴ
　

　
い

NA
Φ
o◎

ON
Ao

OO
OO
OO
OO
O

0 S § 80 A 8 ゆ 8 ゆ 8 V 8

ノ 三

㌦ 悔
、
1

ム
i;

申
=b

,ヤ i聖睡
曳 ヤ

て
コ

寒
塁
。
。

い
い

一
1-
1

WN
WN

ゆ
む

ゆ
ゆ
aa
aヨ

NN
NN

ニ　
コ
ド
コ
ロコ

　

霧
霧
88

→
一
{一

{一
{v
vワ

ワ

Wロ
ロ
n

蓉
§
蓉
蓉

ヨ
ヨ

ヨ
ヨ
NN
NN

ui
I

:,
ll

ワ 縛 、 『 t t申 i ロ 寄
L

革 t費 晶

て 喫
8 _1

NN 器
警筈

卵 甜 nn SS 33
ww

コ ii

一

帥
諦

里 4 霧 コ 0 曾 ゴ R 言 P 藍 m n

0

la
te
la
te
nc
y-
TD
[m
s]

§
§

§
§

§
§

ロ 鍵
。

§ コ
　

　
ム

cOう な 戸
N

o

m葺 登
§
・

艮
暑

き

尋
N

冒
O

V m 詮
O

m 8 δ
～
1

la
te
la
te
nc
y-
TD
[m
s]

08
蓉

蓉
§
N§

§
§

§
0 0 NO

s 言
wO

7 壼
き N O 0 v O

'

軍
、

轄
。
。

o①
一
i-
{

・ ,
¥W
NW
N

り
ゆ

り
ゆ

1醸
弱

ニ
　
コ
　
ニ
　
コ
　

SI
CN
NN
N

;■
→

一
→
-1
-i

覧
oo
oo

l凹
・
.0

9 、
§
薯
§
§

、
ヨ

∋
∋

・
.s
of
mm ・
,

罵

、

,4
=
'

＼
、 、

■ ㌔

ヤ 顛

, 、

, 「

、 、

、

つ §
。

制 §
§

霧 岬 §
§

蒜 1

ロ
♂

ε a Ns O s 尋 0 望 ロ 弓 am R O

TI ロ
ロ　

ロ

o C 「
cD

N α ■ r① 一 ①
7

n《 0 《
o

「
7

①
9

a 《
y

■ 一 7 「
0

信 07 ℃ C一 ∈ 胃 7 一
z

cD n -. my 7 占 「 9 = H 　
　

fD
5

一 一
w

g C 謬
0

0 9 a 9 O = cD .a 「
O

n oN y n 「 ① H z ① y ■

la
te
la
te
nc
y-
TD
[m
sJ

NW
AN
TV
OD
(O

OO
OO
OO
OO
OO

la
te
la
te
nc
y-
TD
[m
s]

　
　

ゴ
NA
OO
70
NA

OO
OO
OO
OO

la
te
la
te
nc
y-
TD
[m
s]

oq
Oδ

NO
NW
O毬

0 の 8 80

s CO
mo

A

蓋
8 の 8 ① 0 0 V8

＼

、 、 1 i 覧

Ψ

唖

ti
、
、

霧
9

　
　

-i
-

vo 開
n

　
　

00
00

ヨ
ヨ

PN

m ぎ
ε

aN S O a n ざ 甑
3

σ ad 四 〇 一

0
0 8 NO O

け
い

ぎ
8

C m 菅
§

ミ
。

NO

ゆ
8

VO O oo
O

O

覧

亀

、

1 駈 竃 鵬 旨

、 、

0。 網 vv oe OO OO ヨ
ヨ
NN

m x m G d N s Oゆ o 謹 コ 随 仰 mヨ P ad n O 一

の 00 80

ぎ
§

§
轟

88 コ 互
0
0

} OC m言 C 雪 N

Φ
0

0 V OO

la
te
la
te
nc
y-
TD
[m
s]

の
一
ら
Nω

Aσ
10
㍉

」
◎
OO
O

OO
OO
OO
OO
OO
O

la
te
la
te
nc
y-
TD
[m
s]

◎
0

0 0

}

～

藁鱈 6弓 II
A

OO
OO

33
NN

国
ヰ

m一 む 蕊 9 0 0 」 コ ロ 紳 w ヨ
Q

a d 隅 〇 一

一
_▲

_△
一

■
Ln
》

Nレ
AΦ

00
0N
騨

↓
Lo
qo
o

OO
OO
OO
OO
OO
O

0 の
0

0 80 § A 8 ゆ 8 ゆ 8 V 8

ノ
'

、 、

1 i

1 i ℃

1 、

、
、 、

0。 刻 vv on So ヨ
ヨ

Nい コ i コ
i

I

oヰ Q qd N s Oう a ご コ 四 メ w 3σ a d 質 →

la
te
la
te
nc
y-
TD
[m
s]

0

oN
Oホ

NO
Nw
O緕

AO
畠
0

0 　 OO NS

ぎ
§

Cm
?

90
CO 互
§ 00 0 NO O ゆ

8

竃

0。
P ,→

mx

→
-i
mv
v

oヨ

囮
巳
m

■△
一
LN
oo
J

Oo
io

う

3ヨ
o

柳
σ
[一

ロ
ヒ

, 冒

仰 d ヨ
v

a w ll 一

い 00 N O O

「
←

ω

ぎ
8邑 斜

星
8

蓋
8 0 8 0 V 8

la
te
la
te
nc
y-
TD
[m
s]

ゆ
8

、

、 、

、
、

臨

1 、

ヤ , 申 り 申 ε

、甲 由

08
8S
…

聖
8V
OO
OO
OO
OO
O

la
te
la
te
nc
y-
TD
[m
s)

0。 網 vv MO OO OO ヨ
ヨ

い
N

iロ i旨

鑑 m Q口
}

い
s

O う u 爵 コ n

ρ m 3 σ
a

ゆ lI 一

　
Nく

ゆ
Aく

ハ
ゆ

og
gg
gg
g

0 0 NO

穿 Oc mO 豆 匿
δ 0 0 0

,'

も

、

幽 亀 { 、

、 、

、

、 、
、

0

la
te
la
te
nc
y-
TD
[m
s]

0。 網 vv o
n

OO
OO

OO ∋
ヨ

ゆ
P

、

塁 m Qd い
s

Oう a ゴ コ 囮 圏 d a σ
a

m n の 0

09
蓉

蓉
§
N§

i塞
0 0 NO

穿 ow
c
c

豆 .一
一
,A

■
△
o

N}

0 0 vO

㌔ii 、 、
、

i L

ユ ㌦ 1 、

、

0。 綴 vv ne OO
8S

33 MN

、
、 、

、

き Gm m s 書 言 n N d 3Q a m [さ

S a C ms oS 雪 t-
1

0 N O w O A O 0 8 0

、 ノ 、
、
、 、

、

、

、

、

、由

、 ず

oA
鋼

vv NA OO
OO

OO ヨ
ヨ

NN

、

㍉ ' 、 、

i　 i　

き G 塾 書 言 u w 3v am n さ

d N● 0 3喜 の ω 5 0 ≦ ;' σ
q

酔 , ce 　 薗 一 〇 　 w- oa n 冤 OC }$ a

■
¶

1

1

N N

o■
目

「
一
.

9{
Ω

NI
Cz

o
　

コ

3N 暫
V

la
te
la
te
nc
y-
TD
[m
sJ

　
　ら

　レ
　
レ

00
°
oo
$o

la
te
la
te
nc
y-
TD
[m
ss

　
　

　
N

AT
Rf
ON
AO
OO
OO
OO
O

la
te
la
te
nc
y-
TD
[m
s]

0

ω
「
-0

9

11
1:

嚢
n3
NO

7唱
《 Ho

O

n 「
9

H 7 占
.

7陣 RD
「

《
①

0

コ On P-{ 調 no 88 33 NN

1 　 i 　 [ロ i I ■

　
の
N

AT
Wo
NO
O

OO
OO
O

0

m ず
;

蕾 s OO ℃
}〇

一
「

ロ
d

鳥
i} 塁
1§

釜
n

Vヨ 甲
'い

　
ロ　

d a a蓉 暮 一
N OO

.¥
'殴

唖
、

、 、

『
、

0。 網 ao ao

・・
、
00
§

㍉

、
認

i一
殉

1 I i 旨 ヨ

∈ 胃 s 一 7 fD n 「
9

N7 占 「
9

= N ロロ
m

① 5一

3

0

mま ; a頓
=「

0

09 0霧 言
三

註
書

艮
量

§

マ
n

・
s冨

藪
N-

gm
8

と 一

N O O

0。 制 vv Rl
l

け
の

00
00

ヨ
ヨ oり

1 1じ i　 31

la
te
la
te
nc
y-
TD
[m
s[

一
ギ i

d ま 乙 N 蔓 d a 轟 〒 包 磐
S

d と 一

一
噛

卜
QN
)

σ
10
り
10
σ
9

00
00
00

la
te
la
te
nc
y-
TD
[m
s]

の
の

の
N

AW
WO
NA
OO
OO
OO
O

O

la
te
la
te
nc
y-
TD
[m
s]

の
け

い
N」

d・
oq
OO
Nh
A

OO
OO
OO
OO

0 0

塞 讐 窪
塁 さ

当
。

n 3 呂
の q O N 8

1 i

00馴 vv ee og 33 NN i

1 , ` , i i 1 i

t 1

0

帥 諦 雪 4 m髪
}

σ
1

0°
→馳

oa

-N 鳥
喜

窪
嚢

δ
襲
,o

鼻
→ n

' _
3

ご
N

農
§

d Q

N 8

5i コ
i

コ
i

1

、 、
、
、

　 0。 ρ
」

お nn 8S 33
NP

「 =

0

a 壁 り 雷
(ハ

の
く
つ
s

n

書
愛

言
3'

d§
コ
n

n V冨 =.
.巴

m

詮
蓉

d O

噛
o

C ≡
o

偵
01
g

a =蚕 垂
奉

ユ
ξ

o£
一

,a
O

a l§ 霧

0

la
te
la
te
nc
y-
TD
[m
s]

　
ゆ
0

0°
g

ゆ
NN

OS
O

OO
O

N8

oa
網

vv nn SS 33 ω
い

1

の ま 乙
w

N 蚕 書 a 鳥
ヨ

ロ 仰 m 言 審 二

N
og

la
te
la
te
nc
y-
TD
[m
s]

00
0g
oO
OO
OO
OO

la
te
la
te
nc
y-
TD
[m
sj

て 0。 pj 調 ae 8$ 3N

き
ミ

m m 書
q

・
-d
N

兄
;

m n薯 轟
m_
-

A 差
量

Q 曾 O

の
い

　
Nレ

sL
o◎

Oo
NA

o8
88
88
88

0 N O O 08 の 0 00 N O 8

コ 畢
。

N ヨ
ヨ

馳 §
§

蒜 旨 3

0

量 欝
q

%o
コド

くシ
Oq a器 ロ
ム

コ
　

塁
募

一

R器
8

い
　

く
ウ

冒
お

.剤
冨

mN 馨
薯

き
NO 8

コ On ,洲 ヨ on 88
00

ヨ
ヨ

い
N

i5

塁 藝 O

a m 曇 ロ 仰 d ヨ ぴ
a

m O O

噂
「

1

N W

=コ C(
p

胃
信

■
o■

璽

℃
①
0

0「
9

..

「
o

ro ①

霧
蚕

fD
n

ω
《

nO
cg
o

N 77 _.
fD

=① 9Ω
・

y3 舞
霧

3.
一
.

o(
㌧

巴
i
-

∋
)

彗
y

3n ①
《

=「
ω 8 n -s ① Nz 占
.

5 - cD 「
C

① 一 芝 胃 s 一
7

fD n 「 ① H 7占 「 ① 7 N 　
コ

0 5 一 噛 9C 胃 コ 0 9 a 冒

9器 コ ヨ
'冨

z里 →
n

冨 呂

ia
te
la
te
nc
y-
TD
-2
TC
[m
s]

一
」

一
LN
}N
⊃
w

oσ
10
σ
10
σ
10

0

la
te
la
te
nc
y-
TD
-7
TC
[m
s]

0 0 　 00 の
0

0 NS

i } 1 十 l l i l

一
凸

一
NN
勝
w

VI
Of
Jt
Of
nO

la
te
la
te
nc
y-
TD
-1
TC
[m
sj

霧
9

ロ
ロ

ー→
一
→

vv 囮
醒

　
　

00 00 ヨ
ヨ

wa !I I

0

ゴ
ゴ

　
　

ON
AO
fW
ON
AT

0

き
壽

い コ
「

σ
1

00

d

兄
三

塁
1蓉

言
A

圃
ヨ

ー
'い

　
　
m

§
O

m n O 一

N8

i i t If I

の
δ

N S s 睾 d n 3 出

馨
9

ロ
ロ

→
-1
0竃⊃

囮
臨

　
　

00
00

∋
ヨ

い
い

薗
津

黛 q 聾
O ll
蓉

壽
蓉

i O

la
te
la
te
nc
y-
TD
-2
TC
[m
s]

oo
O扇

NO
Nw
O鴇

AO

N O O

1 [… 1十 ll i1

0。 刻 vv OO OO OO ヨ
ヨ
NN

d 建 量 量 d3 4 艮 n 仰 d ヨ
ロ

紐 闘 〇 一

la
te
la
te
nc
y-
TD
-1
TC
[m
sJ

o偵
0茜

NO
NN
8霧

0 8 　 0 0 ゆ
0

0 N8

　 i 旨 l l 　 1 1 1 1 　 …

0

la
te
la
te
nc
y-
TD
・
1T
C[
ms
]

00
駁

vv on 讃 i i I

一
一
NN

σヤ
Oσ

10
σ
1

0

d 套 m s ll &睾
0

轟
d。

言
3

ご
N

5y
一

ヨ
σ
1Q
O

量 ll 一

N 8

Gd 謬 器

コ i 　 i 十 i

00
網
'

vv BI
I

00
00

蒜

0

讐
乙

a8 登
§S dO

コ
n

n V写 mN ヨ
_・

区
O

d n 一

la
te
la
te
nc
y-
TD
-2
TC
[m
s]

の
バ

　
バ

ゆ
NA
Of
WO
NA
TW

OO
OO
OO
OO
OO

N8

0。 馴 vv nn OO
OO

ヨ
ヨ
oりい

器
壽

N s O 書 a 艮 n 辺 3 gm ⊥

la
te
la
te
nc
y-
TD
-1
TC
[m
s[

。
8s
88
§

蓉
碁

蓉
蓉

0 80 の 0 0
=o

→ n ヨ
N

　 0 00 N O8

圭

0

la
te
la
te
nc
y-
TD
-1
TC
(m
s]

1霞
。

1肋
一
1

↓

　
サ

ー
1-
i

vv AA

I蓉
蓉

lo
oI ヨ

ヨ
σ
●
い

ii 　

m ま
乙

a N 蔓 3 鳥 雪 号 w 3 e 雪 va m き

。
巴
g8
S§

§
碁

0 §
Rd N 蚕 す

_.
言

8
コ
02

量

象 NO 8

}1 β 『 O B

　
1

　

m♂ ; N S O 呈 a 艮 e 認 雪 m き

8

QO m m 9' 量
§

互 鼠
一 § NO 8

1

'‡ 冒
7§ 蓉

ヨ
0 3m

箕

o →

し [1

d ぎ藝 量 m a 艮 」 n 望 塁 gd き

`
9

1

E.

E.1.

Full set of results for the suspicion-steady faultload

 Graphs showing the early latency

 n = 3, throughput = 10 1/s, lambda = 0.1n = 7, throughput = 10 1/5, lambda = 0.1

 CTCT ------
Paxos-Paxos

80-- 80--

 ›.. 60-- (>3.. 60-- E'
c

 _40- m - —40 -
,

 Mrct,

 m

 20--20 --
 7'. ... -+..."- - —. -4 444-444 -+ 4 -4- - -I- --4------------------------------------I

 11 101001000101001000
 mistake recurrence time TMR [ms]mistake recurrence time TM R [ms]

 n = 3, throughput = 300 1/s, lambda = 0.1n = 7, throughput = 300 1/s, lambda = 0.1

 - PaxosPaxos --------
 80=-80--

 -m-Vf

 60-\g- .-8. 60-

 1- EE *1% -.-_

 2I I-...

 1010010001 101001030
 mistake recurrence time TM R 1ms]mistake recurrence time TM R [ms]

Figure 29. Latency vs. TmR with the suspicion-steady faultload, with TM = 0 (A = 0.1).

 n = 3, throughput = 101/s. lambda = 1n = 7, throughput -10 Vs, lambda = 1

 CT ------
 PaxosPaxos

 ..T
 g_.g_.

 - iE l
b'lb'
 >.

 1111-,...s .
 20

4--------------------------------------+ 44 I I

 1010010001101001000
 mistake recurrence tine TMR [ms]mistake recurrence time TM R [ms]

 n = 3, throughput = 300 1/s, lambda = 1n = 7, throughput = 3001/s. lambda = 1
 100 --^.

 CT -------CT ------
 PaxosPaxos

 80--
7.0-80-+„ Wi*_•.,

 -.g-.,, -t.60 -'1..1,_
 2±-.. -3

 fat'NE 40 --. ...
 Eri1--

 m'v....*rt.............„i
 20-4.4•44....,...._ ._4+4_4.4_20-

 1010010001101001000

 mistake recurrence time TM R Ems]mistake recurrence time TM R Ems]

Figure 30. Latency vs. TmR with the suspicion-steady faultload, with TM = 0 (A = 1).

24

1000

n = 3, throughput = 1 1/s, lambda = 10

 800
10 E

8. 600

m
 400

•
200

1000

n = 7, throughput = 1 1/s, lambda = 10

 CT
Paxos --------

110 100 1000
 mistake recurrence time TMR [ms]

 n = 3, throughput = 30 1/s, lambda = 10

 800

E

8. 600

~p~400

O

 200

0

 CT
Paxos --------

1000

 800

E

 600

 400

 200

1000

1 10 100 1000
 mistake recurrence tree TMR [ms]

 n = 7, throughput = 30 1/s, lambda = 10

 CT -----
Paxos --------

 800

E

8. 600

i0 400

 200

 CT ------
Paxos --------

Figure 31

 10 100 1000110 100 1000

 mistake recurrence time TMR [ms]mistake recurrence thee TMR [ms]

. Latency vs. TMR with the suspicion-steady faultload, with TM = 0 (A = 10).

100

n = 3, throughput = 10 1/s, TMR = 50 ms, lambda = 0.1

100

n = 7, throughput = 10 1/s, TMR = 500 ms, lambda = 0.1

 80

E
•60

640

 20

0

 CT -----
Paxos

110100 1000

 mistake duration TM [ms]

n = 3, throughput = 300 1/s, TMR = 50 ms, lambda = 0.1

 80

E

 60

 40

 20

0

 CT -----
Paxos

100

1:

1101001000
 mistake duration TM [ms]

n = 7, throughput = 300 1/s, TMR = 500 ms, lambda = 0.1

 80

E

 60

•
40

B

 20

0

 CT -----
Paxos

100

 80

E
 60

T40

 20

0

 CT
Paxos

 10100 1000110 100 1000
 mistake duration TM [ms]mistake duration TM [ms]

Figure 32. Latency vs. TM with the suspicion-steady faultload, with TMR fixed (A = 0.1).

25

 100

n = 3, throughput = 10 1/s, TMR = 100 ms, lambda = 1

100

n = 7, throughput = 10 1/s, TMR = 1000 ms, lambda = 1

 80

E

 60

 40

 20

0

 CT ------
Paxos --------

1101001000
 mistake duration TM [ms]

n = 3, throughput = 300 1/s, TMR = 100 ms, lambda = 1

80

E

8. 60

 40

 20

 CT -
Paxos --------

100

f ~~

100

1101001000
 mistake duration TM [ms]

n = 7, throughput = 300 1/s, TMR = 1000 ms, lambda = 1

 80

E
6, 60

 40

 20

 CT -----
Paxos --------

10 100

mistake duration TM [ms]

1000

 80

E

6, 60

T 40

 20

0

 CT -----
Paxos --------

Figure 33.

1

Latency vs. TM with the suspicion-steady faultload

101001000

mistake duration TM [ms]

ultload, with TMR fixed (A = 1).

1000

 800

E
>. 600

 400
A

 200

0

n = 3, throughput = 1 1/s, TMR = 500 ms, lambda = 10

 CT -----
Paxos

1 10 100 1000 10000

 mistake duration TM [msj

n = 3, throughput = 30 1/s, TMR = 500 ms, lambda = 10

1000

n = 7, throughput = 1 1/s, TMR = 5000 ms, lambda = 10

 800

E
>. 600

 400

 200

0

 CT -----
Paxos --------

1000

1
,r ,,a,

1 10 100 1000 10000
 mistake duration TM [ms]

n = 7, throughput = 30 1/s, TMR = 5000 ms, lambda = 10

 800

 600

t0 400

 200

0

 CT
Paxos

 ArV

10 100 1000

mistake duration TM [ms]

10000

1000

 800

E 8. 600

 400

 200

0

CT -
Paxos........

- s- 8-x 8' 6If

Figure 34. Latency vs. TM with the suspicion-steady faultload

10 100 1000 10000
mistake duration TM [ms]

AtIoad, with TMR fixed (A = 10).

26

E.2. Graphs showing the late latency

 E

 E
U
1n
1n

Figure 35.

n = 3, throughput = 10 1/s, lambda = 0.1n = 7, throughput = 10 1/s, lambda = 0.1

 CT---CT -------
 PaxosPaxos --------

80 --80 --

 g-60 --60 --

 i
40 -- la. 40 --

 m
20 ;-20 .._..-

 110 100 1000110100 1000
 mistake recurrence time TMR [ms]mistake recurrence time TMR [ms]

 n = 3, throughput = 300 1/s, lambda = 0.1 n = 7, throughput = 300 1/s, lambda = 0.1

CT -------CT
 PazosPaxos

80—-80 --

 E
60 --60 —- U

 C7 m

 1,1'5*-a
20 - 4%. -20 --

i---------------------H + t •

1101001000110 100 1000
 mistake recurrence time TM R [ms]mistake recurrence time TM R [ms]

Latency vs. TMR with the suspicion-steady faultload, with TM = 0 (A = 0.1).

E

is

E

iv

Figure 36.

 n = 3, throughput = 10 1/s, lambda = 1n = 7, throughput = 10 1/s, lambda = 1
•

CT -------CT
 PaxosPaxos

80 -- 80 -
 ^m

 E
 U C
 m

40 -- 1=6 40 i_.-

 110 1001000110 1001000
 mistake recurrence time TMR [ms]mistake recurrence time TMR [ms]

n = 3, throughput = 300 1/s, lambda = 1n = 7, throughput = 300 1/s, lambda = 1

CT ------CT ------
 Paxos'.Paxos

80 -- 80 - 'I•-

 E1,

 c

 •S

 it
20+-*+-------------------------++ +20 -

110100 1000110 1001000
 mistake recurrence time TM R [ms]mistake recurrence time TMR [ms]

Latency vs. TMR with the suspicion-steady faultload, with TM = 0 (A = 1).

27

1000

n = 3, throughput = 1 1/s, lambda = 10

 800

 600

t° 400

as

 200

0

1000

n = 7, throughput = 1 1/s, lambda = 10

 CT
Paxos --------

 10 100 1000
 mistake recurrence time TMR Ems]

n = 3, throughput = 30 1/s, lambda = 10

 800

E
 600

1.-6 400

 200

 CT
Paxos --------

1000 1000

 800

E
 600

m
1-0 400

 200

0

 10 100 1000
 mistake recurrence time TMR [ms]

n = 7, throughput = 30 1/s, lambda = 10

 CT -----
Paxos --------

 800

E
~, 600

 400

 200

0

 CT -----
Paxos --------

i M

 10 100 1000110 100 1000

 mistake recurrence time TMR [ms]mistake recurrence time TMR [ms]

Figure 37. Latency vs. TMR with the suspicion-steady faultload, with TM = 0 (A = 10).

100

n = 3, throughput = 10 1/s, TMR = 50 ms, lambda = 0.1

100

n = 7, throughput = 10 1/s, TMR = 500 ms, lambda = 0.1

 80

E

 60

`°° 40

ro

 20

 CT ------
Paxos

1101001000

 mistake duration TM [ms]

n = 3, throughput = 300 1/s, TMR = 50 ms, lambda = 0.1

 80

.
E

 60

1. 40

 20

0

 CT -----
Paxos

100

1101001000

 mistake duration TM Ems]

n = 7, throughput = 300 1 /s, TMR = 500 ms, lambda = 0.1

 80

E 60

16 40

 20

0

 CT
Paxos --------

100

 80 '14
.

15 40

 20

0

 CT
Paxos

Figure 38.

1

1 101001000 1101001000
mistake duration TM [ms]mistake duration TM Ems]

Latency vs. TM with the suspicion-steady faultload, with TMR fixed (A = 0.1).

28

 100

n = 3, throughput = 10 1/s, TMR = 100 ms, lambda = 1

100

n = 7, throughput = 10 1/s, TMR = 1000 ms, lambda = 1

80

E 60

tt 40

20

0

 CT
Paxos

) -,
1101001000

mistake duration TM [ms]

n = 3, throughput = 300 1/s, TMR = 100 ms, lambda = 1

80

E -60

tit 40

20

0

 CT ------
Paxos

100 • •. :

„

 :II

100

1101001000
 mistake duration TM [ms]

n = 7, throughput = 300 1/s, TMR = 1000 ms, lambda = 1

 80

E
 60

t—° 40
i0

 20

 CT -----
Paxos --------

10 100

mistake duration TM [ms]

1000

80

E
•60

1-0 40
is

 20

0

CT -----
Paxos --------

Figure 39.

/

~•~,i. f

Latency vs. TM with the suspicion-steady faultload

10100 1000
mistake duration TM Ems]

ultioad, with TMR fixed (A = 1).

1000

 800

E
 600

 400

 200

0

n = 3, throughput = 1 1/s, TMR = 500 ms, lambda = 10

 CT ------
Paxos

1 10 100 1000 10000
 mistake duration TM [ms]

n = 3, throughput = 30 1/s, TMR = 500 ms, lambda = 10

1000

n = 7, throughput = 1 1/s, TMR = 5000 ms, lambda = 10

 800

E
 600

1-0 •400

 200

0

 CT -----
Paxos --------

1000
 CT -----

Paxos --------

1 10 100 1000 10000
 mistake duration TM Ems]

n = 7, throughput = 30 1/s, TMR = 5000 ms, lambda = 10

 800

E

 600

t0 400

 200

0
10 100 1000

mistake duration TM Ems]

10000

1000

 800

E -600

15 400

eo

 200

Figure 40.

 CT —

Paxos

l
i

Latency vs. TM with the suspicion-steady faultload

10 100 1000 10000
mistake duration TM [ms]

, with TMR fixed (A = 10).

29

