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Abstract 1. Introduction

  Protocols that solve agreement problems are essential 
building blocks for fault tolerant distributed systems. While 
many protocols have been published, little has been done 
to analyze their performance, especially the performance 
of their fault tolerance mechanisms. In this paper, we com-
pare two well-known asynchronous consensus algorithms. 
In both algorithms, a leader process tries to impose a de-
cision, and another leader retries if the leader fails doing 
so. The algorithms elect leaders differently: the Chandra-
Toueg algorithm has a rotating leader, whereas processes 
in the Paxos algorithm elect leaders directly. We investigate 
the performance implications of this difference. 

  In the system under study, processes send atomic broad-
casts to each other. Consensus is used to decide the delivery 
order of messages. We evaluate the steady state latency in 

(1) runs with neither crashes nor suspicions, (2) runs with 
crashes and (3) runs with no crashes in which correct pro-
cesses are wrongly suspected to have crashed, as well as the 
transient latency after (4) one crash, (5) multiple simultane-
ous crashes and (6) multiple sequenced crashes. The results 
show that the Paxos algorithm tolerates frequent wrong sus-

picions (3) and correlated crashes that occur within a short 
time (5) better, while the performance is comparable in all 
other scenarios. 
Keywords: simulation, consensus, atomic broadcast, rotat-
ing coordinator, leader, asynchronous, failure detector
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  Agreement problems — such as consensus, atomic 
broadcast or atomic commitment — are essential build-
ing blocks for fault tolerant distributed applications, in-
cluding transactional and time critical applications. These 
agreement problems have been extensively studied in vari-
ous system models, and many protocols solving these prob-
lems have been published [2,10], offering different levels of 

guarantees. However, these protocols have mostly been an-
alyzed from the point of view of their safety and liveness 
properties, and very little has been done to analyze their per-
formance. Also, most papers focus on analyzing failure 
free runs, thus neglecting the performance aspects of fail-
ure handling. In our view, the limited understanding of 

performance aspects, in both failure free scenarios and sce-
narios with failure handling, is an obstacle for adopting 
such protocols in practice. This paper presents a perfor-
mance study focusing on consensus, a problem related to 
most other agreement problems [ 15], in scenarios that in-
volve failure handling. 

The two algorithms. We present a study comparing the per-
formance of two consensus algorithms: the Chandra-Toueg 
[5] and Paxos [18, 21] algorithms. These well-known algo-
rithms are representative of consensus algorithms designed 
for the asynchronous system model (with minimal exten-
sions necessary to solve consensus). They are important be-
cause of their robustness: regardless of their execution en-
vironment, they never violate their safety properties. Also, 
they have the highest possible resiliency in such a system: 
they tolerate f < n/2 crashes in a system with n processes. 
Moreover, there is an ongoing informal debate in the com-
munity about their relative performance. We hope that our 
comparison will bring some objective arguments to this de-
bate.



  The algorithms follow a common pattern by structuring 
their execution into rounds. In each round, a process called 

 leaderl tries to impose a decision. A round may fail be-
cause of failures or uncertainty about failures. The algo-
rithms differ in how they choose a leader for the next round: 

processes in the Chandra-Toueg algorithm rotate the leader 
role among all processes, whereas processes in the Paxos al-

gorithm elect leaders directly in an uncoordinated manner. 
These two approaches are often referred to as rotating coor-
dinator paradigm and leader based paradigm, respectively. 
In this paper, we investigate the performance implications 
of this difference. 

Elements of the performance study. The two consensus al-

gorithms are analyzed in a system in which processes send 
atomic broadcasts to each other. Since the atomic broad-
cast algorithm that we use [5] leads to the execution of a se-
quence of consensus to decide the delivery order of mes-
sages, evaluating the performance of atomic broadcast is 
a good way of evaluating the performance of the underly-
ing consensus algorithm in a realistic usage scenario. In our 
study, the atomic broadcast algorithm uses either of the two 
consensus algorithms. We study the system using simula-
tion, which allows us to compare the algorithms in a variety 
of different environments. We model message exchange by 
taking into account contention on the network and the hosts, 
using the metrics described in [29, 30]. We model failure de-
tectors in an abstract way, using the quality of service (QoS) 
metrics proposed by Chen et al. [6]. We compare the algo-
rithms using the benchmarks proposed in [29, 33] (which 
are stated in terms of the system under study, i.e., atomic 
broadcast). Our main performance metric for atomic broad-
cast is early latency, the time that elapses between the send-
ing of a message m and the earliest delivery of m. We use 
symmetric workloads. We evaluate the steady state latency 
in (1) runs with neither crashes nor suspicions, (2) runs with 
crashes and (3) runs with no crashes in which correct pro-
cesses are wrongly suspected to have crashed, as well as the 
transient latency after (4) one crash, (5) multiple simultane-
ous crashes and (6) multiple sequenced crashes. 

The results. Our main finding is that, although the two algo-
rithms have comparable performance in scenarios (1), (2), 

(4) and (6), the Paxos algorithm performs significantly bet-
ter in scenarios 3 and 5. With multiple correlated crashes 
that occur within a short time, the reason is that the Paxos 
algorithm elects a correct leader immediately after detect-
ing the crashes. We found the largest difference when wrong 
failure suspicions were frequent and/or long lasting wrong 
failure suspicions. The reason is that the Paxos algorithm 

generates less contention: its leader election mechanism 
makes sure that only a small subset of all processes start

1 Ref. [5] uses the term coordinator. We stick to leader throughout the 

   paper.
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concurrent rounds, whereas the rotating leader scheme in 

the Chandra-Toueg algorithm results in nearly all processes 

starting concurrent rounds. Therefore the leader based ap-

proach seems more suited to environments in which the fail-
ure detection service makes mistakes often. 

Structure. The rest of the paper is structured as follows. 

Section 2 presents related work. Section 3 defines the sys-
tem model and the agreement problems used in this pa-

per. We introduce the algorithms in Section 4. Section 5 
describes the benchmarks we used, followed by our sim-

ulation model for the network and the failure detector and 
leader oracles in Section 6. Our results are presented in Sec-

tion 7, and the paper concludes with a discussion in Sec-
tion 8.

2. Related work

  Most of the time, consensus algorithms are evaluated us-
ing simple metrics like time complexity (number of com-
munication steps) and message complexity (number of mes-

sages). This gives, however, little information on the real 

performance of those algorithms. A few papers provide a 
more detailed performance analysis: Ref. [27] compares 
the impact of different implementations of failure detectors 
on the Chandra-Toueg consensus algorithm, and Ref. [8] 
and [24] analyze the latency of the same algorithm, con-
centrating mostly on the effect of wrong failure suspicions. 
All these papers consider only isolated consensus execu-
tions, which are a special case of our workloads, corre-
sponding to a very low setting for the throughput. Other 

papers [31, 33] consider a consensus algorithm embedded 
in an atomic broadcast algorithm, but they do not aim at 
comparing consensus algorithms. Note also that the perfor-
mance of atomic broadcast algorithms is studied more ex-
tensively in the literature than the performance of consen-
sus algorithms (see [29] for a summary). 

  Most papers on the performance of agreement algo-
rithms only consider failure free executions (our normal-
steady faultload), which only gives a partial and incom-

plete understanding of the behavior of the algorithms. We 
only note a few interesting exceptions here. The transient ef-
fects of a crash are studied in [22, 27, 33], but the faultload 
in [22, 27] is different from our crash-transient faultload. 
Ref. [27] assumes that the crash occurs at the worst possi-
ble moment during execution, leading to the worst case la-
tency. In contrast to our faultload, this faultload requires a 
detailed knowledge of the execution, which is only avail-
able if one considers very simple workloads (isolated ex-
ecutions of consensus in [27]) in an analytical or simula-
tion model. The other paper [22] measures the latency of 
the group membership service used by the algorithm to tol-
erate crash failures.2 This way of considering the transient



effects of a crash is less general compared to our faultload, 

as it is stated in terms of an implementation detail of the al-

gorithm under study. 
  The assumptions and/or the algorithms used in all the 

studies listed are too different to allow a meaningful com-

parison of the results with those in this paper. Our previous 
work [17] would be an exception: it compares the same al-

gorithms using measurements rather than simulation, and 
with fewer faultloads. However, bugs discovered and fixed 
since its publication invalidate the results presented there.

3. Definitions

3.1. System model

  We consider a widely accepted system model. It consists 
of  n processes pl, ... , pn that communicate only by mes-
sage passing. The system is asynchronous, i.e., we make 
no assumptions on its timing behavior: there are no bounds 
on the message transmission delays and the relative pro-
cessing speed of processes. The network is quasi-reliable: it 
does not lose, alter nor duplicate messages (messages whose 
sender or recipient crashes might be lost). In practice, this 
is easily achieved by retransmitting lost messages. We con-
sider that processes only fail by crashing. Crashed processes 
do not send any further messages. Process crashes are rare, 
and process recovery is slow: both the time between crashes 
and time to repair are much greater than the latency of the 
algorithms investigated. 

  The consensus algorithms used in this paper use ora-
cles to tolerate process crashes: the Chandra-Toueg algo-
rithm (CT) uses failure detector oracles and the Paxos al-

gorithm (Paxos) uses leader oracles. A failure detector or-
acle outputs a list of processes it suspects to have crashed. 
It might make mistakes: it might suspect correct processes 
and it might not suspect crashed processes immediately. A 
leader oracle outputs a single leader process that it trusts to 
be alive. All leader oracles in the system strive to output the 
same leader process. This oracle might make mistakes as 
well: it might elect crashed processes as leader, and differ-
ent oracles might elect different leaders. To make sure that 
the consensus algorithms terminate, we need some assump-
tions on the behavior of the oracles: OS for CT [5] and C2 
for Paxos [4]. These assumptions are rather weak: they can 
usually be fulfilled in real systems by tuning implementa-
tion parameters of the oracles [11, 31]. Also, they are equiv-
alent: one can solve the same set of problems when using 
the asynchronous model with oracles fulfilling either of OS 
and 52 [4].

2 Certain kinds of Byzantine failures are also injected.

3.2. Agreement problems

 We next give informal definitions of the agreement prob-
lems needed for understanding this paper; see [5, 16] for 
more formal definitions. 

  In the consensus problem, each process proposes an ini-
tial value. Uniform consensus (considered here) ensures 
that no two processes decide differently, and that the de-
cision value is one (any one) of the proposals. 

  Atomic broadcast is defined in terms of two primitives 
called A-broadcast(m) and A-deliver(m), where m is some 
message. Uniform atomic broadcast (considered here) guar-
antees that (1) if a message is A-broadcast by a correct pro-
cess, then all correct processes eventually A-deliver it, (2) 
if a process A-delivers a message, then all correct processes 
eventually A-deliver it, and (3) all processes A-deliver mes-
sages in the same order. 

  The algorithms in this study use (non-uniform) reliable 
broadcast, which guarantees that if a message is broadcast 
or delivered by a correct process, then all correct processes 
eventually deliver it (even if the sender crashes).

4. Algorithms

  This section sketches the two consensus algorithms, con-

centrating on their common points and their differences. We 

then introduce the atomic broadcast algorithm built on top 
of consensus.

4.1. The consensus algorithms

  For solving consensus, we use the Chandra-Toueg OS al-

gorithm [5] and the single-decree Synod algorithm from the 
Paxos paper [ 18, 21]. Henceforth, we shall refer to the algo-
rithms as CT algorithm and Paxos algorithm, respectively. 
We also use these names to refer to the atomic broadcast al-

gorithm used with the corresponding consensus algorithm 
if no confusion arises from doing so.

4.1.1. Common points The algorithms share a lot of as-
sumptions and characteristics, which makes them ideal can-
didates for a performance comparison. In particular, both 
algorithms are designed for the asynchronous model with 
equally strong oracles: OS failure detectors (CT algorithm; 
see Section 3.1) and 1-2 leader oracles (Paxos algorithm). 
Both tolerate f < n/2 crash failures. In both algorithms, 
processes execute a sequence of asynchronous rounds (i.e., 
not all processes necessarily execute the same round at a 
given time t). Each round has a leader (called coordina-
tor in [5]), whose role is to try to impose a decision value 
on all processes. If it succeeds, the consensus algorithm ter-
minates; if it fails, some additional rounds are executed with 

possibly a different leader. Moreover, leaders execute a very

3



similar protocol in each round,3 discussed in detail in Sec-
tion 4.1.3. 

4.1.2. Electing a leader The main difference between the 
algorithms is how the leaders are chosen. A new leader is 
necessary whenever the current round is not successful. A 
round may not be successful if one or more processes want 
a different leader, usually because they suspect the current 
leader to have crashed. 

  The CT algorithm is based on the rotating coordinator 

paradigm. Whenever the current leader is suspected, the 
leader is chosen to be the next process, in a round-robin 
fashion. In other words, each process executes a sequence 
of rounds 1,  2,  ...,  and there is a priori agreement on the 
identity of the leader: process pi is leader for rounds kn + i. 

  There is no such a priori agreement in the Paxos algo-
rithm. A process pi considers itself leader (and starts a new 
round) when its leader oracle outputs pi. Other processes 
only start participating in this round when they receive a 
message from the leader. Leaders always choose unique in-
creasing round numbers: process pi is leader for rounds 
kn + i, just like in the CT algorithm. However, unlike in 
the CT algorithm, a given process hardly ever executes all 
of the rounds 1, 2, ...: there are usually gaps in the sequence 
of rounds. 

4.1.3. Execution of a round We now sketch the execu-
tion of one round in each of the two algorithms, illustrated 
in Fig. 1. Further details of the execution are not necessary 
for understanding the rest of the paper. 

Read phase. Throughout the execution, processes maintain 
their current estimate of the decision value. Both algorithms 
start the round with a read phase whose purpose is to update 
the leader's estimate with a recent estimate. In the Paxos al-

gorithm, the leader sends a read message to all processes, 
and all processes reply with their estimate (estimate mes-
sages). In the CT algorithm, the read message is not nec-
essary, as all processes execute every round. In each of the 
two algorithms, the leader only waits for an estimate from 
a majority of all processes, and then updates its own esti-
mate. 

Write phase. In this phase, the leader sends its estimate to 
all, proposing its acceptance (proposal messages). A pro-
cess accepts this estimate if it has not seen messages from a 
later round (in the case of the Paxos algorithm) or if it does 
not suspect the leader (CT algorithm). 

  When a process accepts a proposal, it updates its own es-
timate and sends back an ack message; otherwise, it sends 
back a nack message (not shown in Fig. 1). In the case of 
the CT algorithm, the nack message is sent before receiv-
ing the proposal.

3 This is why we chose the CT algorithm over other algorithms written 
   for the same system model (e.g., [25] and [20]).

  The leader waits for messages from a majority of all pro-
cesses, and decides if it has received a majority of ack mes-
sages. In this case, it also sends a decision message to all 
using reliable broadcast. Upon receiving this message, the 
other processes decide as well. If the leader receives one 
nack message before deciding (this is not shown in Fig. 1) 
it finishes executing the round without deciding.

pl .

read phase write phase 
    leader

Figure 1. Example of a round in the CT and 
Paxos algorithms (CT does not send the read 
message)

4.2. Optimizations to the consensus algorithms

  The consensus algorithms implemented contain several 
optimizations with respect to the published versions [5, 18, 
21]. The goal of the optimizations is to reduce the number 
of messages in the most common scenario: when no process 
is suspected (CT algorithm) or when the leader is the same 

process (pi) throughout the execution (Paxos algorithm). 

 • The read phase is not necessary in the first round, in 
   either of the two algorithms. This is why its messages 

   are gray in Fig. 1. 

 • In the original CT algorithm, the non-leader processes 
   start the next round immediately after sending the 

   ack message. This generates estimate messages which 
   are not needed in the most common scenario. These 
   messages degrade performance. To prevent this, non-
   leader processes wait for an abort message before 

   starting the new round .4 The abort message is sent by 
   the leader if it receives nack messages. 

 • In the write phase, the leader stops the current round 
   after receiving the first nack message, because it is 

   known at this point already that the round has failed. 
   The original algorithms always wait for (ack and nack) 
   messages from a majority of processes.

4 The non-leader processes also start a new round if they start suspect-

   ing the leader.
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• In both algorithms, the decision message must be sent 
 using reliable broadcast (see Section 3.2). We use an 

 efficient algorithm inspired by  [ 13] that requires only 
 one broadcast message if the sender is not suspected. 

• The CT algorithm always starts with the same leader 

Pi - If P1 crashes, this affects steady-state performance 
 negatively. We fix this problem by having the consen-

 sus decide on the first leader of the next consensus 

 (beside the order of messages) [9]. Processes propose 
 the first process that their failure detector trusts as first 

 leader. This choice makes sure that, eventually, crashed 

 processes do not ever become first leaders.

4.3. The Chandra-Toueg atomic broadcast algo-

   rithm

  In the Chandra-Toueg atomic broadcast algorithm [5], 
a process executes A-broadcast by sending a message to 
all processes.5 When a process receives such a message, it 
buffers it until the delivery order is decided. The delivery or-
der is decided by a sequence of consensus numbered 1, 2, 
etc. The value proposed initially and the decision value of 
each consensus are sets of message identifiers. Let msgk be 
the set of message IDs decided by consensus # k. The mes-
sages denoted by msgk are A-delivered before the messages 
denoted by msgk+1, and the messages denoted by msgk are 
A-delivered according to a deterministic function, e.g., ac-
cording to an order relation defined on their IDs. 

  The algorithm inherits the system model and any fault 
tolerance guarantees from the underlying consensus algo-
rithm. We use this atomic broadcast algorithm with both the 
CT and Paxos consensus algorithms. 

  The performance of the algorithms can be improved by 
packing messages from subsequent consensus executions 
into one message. For the sake of simplicity, we did not per-
form such optimizations [1, 3, 12]. This decision affects the 
two algorithms in the same way, hence we introduce no bias 
in the performance study.

5.1. Performance metrics and workloads

  Our main performance metric is the early latency of 
atomic broadcast. Early latency L is defined for a single 
atomic broadcast as follows. Let A-broadcast(m) occur at 
time to, and A-deliver(m) on pi at time ti, for each i = 
1, ... , n. Then latency is defined as the time that elapses un-

til the first A-delivery of m, i.e., L def (mini—l,...01 ti) — to. 
In our study, we compute the mean for L over a lot of mes-
sages and several executions. 

  This performance metric makes sense in practice. Con-
sider a service replicated for fault tolerance using active 
replication [26]. Clients of this service send their requests 
to the server replicas using Atomic Broadcast. Once a re-
quest is delivered, the server replica processes the client re-
quest, and sends back a reply. The client waits for the first 
reply, and discards the other ones (identical to the first one). 
If we assume that the time to service a request is the same 
on all replicas, and the time to send the response from a 
server to the client is the same for all servers, then the first 
response received by the client is the response sent by the 
server to which the request was delivered first. Thus there 
is a direct link between the response time of the replicated 
server and the latency L. 

  Beside the early latency, we also compute the late la-
tency, the time that elapses until the last A-delivery of a 

def 
message m: Liate = (maxi_i ... n ti) — to. 

  Latency is always measured under a certain work-
load. We chose simple workloads: (1) all destination pro-
cesses send atomic broadcast messages at the same constant 
rate, and (2) the A-broadcast events come from a Pois-
son stochastic process. We call the overall rate of atomic 
broadcast messages throughput, denoted by T. In gen-
eral, we determine how the latency L depends on the 
throughput T. 

  The system can only reach a steady state if the through-
put is under some maximal throughput Tmax. Beyond this 
throughput, some processes are left behind. We detect if the 
system reaches steady state by observing if the late latency 
stabilizes over time.

5. Benchmarks

  This section describes our benchmarks, consisting of 

performance metrics, workloads and faultloads. In order to 
get meaningful results, we state the benchmarks in terms 
of the system under study (processes sending atomic broad-
casts) rather than in terms of the component under study 

(consensus). Previous versions of the benchmarks are pub-
lished in [29, 33].

5 This message is sent using reliable broadcast. We use the efficient al-

   gorithm mentioned Section 4.2.

5.2. Faultloads

  The faultload is the part of the workload that describes 
failure-related events that occur during an experiment [19]. 
We concentrate on (1) crash failures of processes, and (2) 
the behavior of unreliable failure detectors. We evaluate 
the performance of the algorithms with four different fault-
loads. We now describe each of them in detail, mentioning 
which parameters influence latency with each faultload. 

Normal-steady faultload. With this faultload, we have nei-
ther crashes nor wrong suspicions in the experiment. We 
measure latency after the system reaches its steady state (a

5



sufficiently long time after startup). Parameters that influ-
ence latency under this faultload are the algorithm (A), the 
number of processes (n) and the throughput  (T). 

Crash-steady faultload. One or more crashes occur be-
fore the experiment. We measure latency after the system 
reaches its steady state: a sufficiently long time after startup 
and any crashes. Beside A, n and T, an additional parame-
ter is the set of crashed processes. In the steady state of the 
system, all failure detectors in the system permanently sus-

pect all crashed processes at this point, and all leader ora-
cles have elected the same correct process. No wrong sus-
picions occur, and the leader no longer changes. 

Crash-transient faultload. With this faultload, we inject 
one or more crashes at some point in time after the system 
reached a steady state. Multiple crashes represent correlated 
failures. We model both simultaneous multiple crashes and 
crashes that happen in a sequenced manner, spaced apart by 
the crash interval TC . 

  After the crashes, we can expect a halt or a significant 
slowdown of the system for a short period. We would like 
to capture how the latency changes in atomic broadcasts di-
rectly affected by the crashes. Our faultload definition rep-
resents the simplest possible choice: we determine the la-
tency of an atomic broadcast sent when the crashes start (by 
a process that does not crash). Of course, the latency of this 
atomic broadcast may depend on the choice for the sender 
and the crashing processes. In order to reduce the number of 
parameters, we consider the worst case, i.e., the case that in-
creases latency the most. 

  The precise definition for the faultload is the follow-
ing. Consider that a list of c processes C crashes at times 
t, t + Tc, ... , t + (c — 1) - Tc, respectively, where Tc > 0 
(no other crashes nor wrong suspicions occur). Let process 
p (p C) execute A-brvadcast(m) at t. Let L(p, C) be the 
mean latency of m, averaged over a lot of executions. Then 

Lcrash def maxp,c L(p, C), i.e., we choose the sender and 
the crashing processes such that latency increases the most. 

  Beside A, n, T, c and Tc, an additional parameter de-
scribes how fast failure detectors and leader oracles detect 
the crashes. This parameter is discussed in Section 6.2. 

Suspicion-steady faultload. No crashes occur, but failure 
detectors generate wrong suspicions, and leader oracles 
change their mind about the leader. This causes the algo-
rithms to take extra steps and thus increase latency. Beside 
A, n and T, additional parameters include how often wrong 
suspicions occur and how long they last. These parameters 
are discussed in Section 6.2.

6. Simulation models

  Our approach to performance evaluation is simulation, 

which allowed for more general results as would have been

6

feasible to obtain with measurements in a real system (we 
can use a parameter in our network model to simulate a va-
riety of different environments). We used the Neko proto-
typing and simulation framework [32] to conduct our ex-

periments. We used the same models for our previous work 
[29, 33].

6.1. Modeling the execution environment

  We now describe how we modeled the transmission of 
messages. We use a model inspired from simple models of 
Ethernet networks [28], and validated in [29]. The key point 
in the model is that it accounts for resource contention. This 

point is important as resource contention is often a limiting 
factor for the performance of distributed algorithms. Both a 
host and the network itself can be a bottleneck. These two 
kinds of resources appear in the model (see Fig. 2): the net-
work resource (shared among all processes) represents the 
transmission medium, and the CPU resources (one per pro-
cess) represent the processing performed by the network 
controllers and the layers of the networking stack, during 
the emission and the reception of a message (the cost of 
running the algorithm is negligible). A message m trans-
mitted for process pi to process p; uses the resources (1) 
CPUi, (2) network, and (3) CPU;, in this order. Message 
m is put in a waiting queue before each stage if the corre-
sponding resource is busy. The time spent on the network 
resource is one time unit. The time spent on each CPU re-
source is A time units; the underlying assumption is that 
sending and receiving a message has a roughly equal cost.

Process pi send

10

receive Q

'Zi
CPU i 

(a time units)

Process p;

CPU; 
(X time units) • 

5-

Network (1 time unit)

Figure 2. Transmission 

network model.

of a message in our

 The A parameter (0 < A) shows the relative speed of 

processing a message on a host compared to transmitting it 
over the network. Different values model different network-
ing environments. We conducted experiments with a variety 
of settings for A.



  We model network-level multicasts: a message sent to 
several destinations is only processed once on the sending 

 CPU resource and on the network resource. 
  Crashes are modeled as follows. If a process pi crashes 

at time t, no messages can pass between pi and CPUi af-
ter t; however, the messages on CPUi and the content of 
the attached queues are still sent, even after time t. In real 
systems, this corresponds to a (software) crash of the ap-

plication process (operating system process), rather than a 
(hardware) crash of the host or a kernel panic. We chose to 
model software crashes because they are more frequent in 
most systems [14].

up

p

trust trust

FD at q suspect

mistake duration
-------------------------------------------------------- D.

TM

mistake recurrence time TMR

suspect 
-~ 1

Figure 4. Quality of service metrics describ-
ing wrong suspicions made by failure detec-

tors. Process q monitors process p.

6.2. Modeling failure detectors

  One approach to examine the behavior of a failure detec-
tor is implementing it and using the implementation in the 
experiments. However, this approach would restrict the gen-
erality of our performance study: another choice for the al-

gorithm would likely give different results. Also, it is not 
justified to model the failure detector in so much detail, as 
other components of the system, like the execution environ-
ment, are modeled much more coarsely. We built a more 
abstract model instead, using the notion of quality of ser-
vice (QoS) of failure detectors introduced in [6]. The au-
thors consider the failure detector at a process q that moni-
tors another process p, and identify the following three pri-
mary QoS metrics: 

 • Detection time TD: The time that elapses from p's 
   crash to the time when q starts suspecting p perma-

   nently. The definition is illustrated in Fig. 3.

uppI down  
^t

trust

FD at q suspect

trust

detection time TD

suspect

Figure 3. Quality of service metric express-
ing the speed of failure detection. Process q 

monitors process p.

• Mistake recurrence time TMR: The time between two 
 consecutive mistakes (q wrongly suspecting p), given 

 that p did not crash; see Fig. 4. 

• Mistake duration TM: The time it takes a failure de-
 tector component to correct a mistake, i.e., to trust p 

 again (given that p did not crash); see Fig. 4.

  Not all of these metrics are equally important in each of 
our faultloads (see Section 5.2). In the normal-steady fault-
load, the metrics are not relevant. The same holds in the 
crash-steady faultload, because we observe the system a 
sufficiently long time after all crashes, long enough to have 
all failure detectors to suspect the crashed processes per-
manently. In the suspicion-steady faultload no crash occurs, 
hence the latency of atomic broadcast only depends on TMR 
and TM (shown in Fig. 4). In the crash-transient faultload 
no wrong suspicions occur, hence TD is the relevant met-
ric (shown in Fig. 3). 

  In [6], the QoS metrics are random variables, defined on 
a pair of processes. In our system, where n processes mon-
itor each other, we have thus n(n — 1) failure detectors in 
the sense of [6], each characterized with three random vari-
ables (TD, TMR, TM). In order to have an executable model 
for the failure detectors, we have to define (1) how these 
random variables depend on each other, and (2) how the dis-
tribution of each random variable can be characterized. To 
keep our model simple, we assume that all failure detec-
tor modules are independent and the tuples of their random 
variables are identically distributed. Moreover, note that we 
do not need to model how TMR and TM depend on TD, 
as the two former are only relevant in the suspicion-steady 
faultload, whereas TD is only relevant in the crash-transient 
faultload. As for the distributions of the metrics, we took 
the simplest possible choices: TD is a constant, and both 
TMR and TM are exponentially distributed with (different) 
constant parameters. This choice only represents a starting 
point, as we are not aware of any previous work we could 
build on (apart from [6] that makes similar assumptions). 
We will refine our models as we gain more experience. 

  Finally, note that this abstract model for failure detec-
tors neglects that failure detectors and their messages put 
a load on system components. This simplification is justi-
fied in a variety of systems, in which a rather good QoS can 
be achieved with failure detectors that send messages in-
frequently. This is the case whenever TD and TMR are not 
too small. Moreover, if this is not the case, it is fair to as-
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sume that the overhead of failure detection affects both al-

gorithms, and furthermore, that the overhead affects the al-
gorithm that already has performance problems to a greater 
extent. Thus it is unlikely that neglecting the load generated 
by failure detectors actually changes which algorithm per-
forms better at any given setting (though it might change the 
absolute values of performance metrics).

6.3. Modeling leader oracles

  Our leader oracles for the Paxos algorithm rely on fail-
ure detectors: at any point in time, the leader is the process 
with the smallest index of all processes trusted by the failure 
detector. We implemented leader oracles with failure detec-
tors because a leader oracle must detect the crash of other 

processes.6 The failure detectors underlying the leader ora-
cles are modeled with their quality of service parameters as 
described in the previous section. 

  Recall from Section 3.1 that the CT algorithm requires a 

 OS failure detector and the Paxos algorithm an S2 leader or-
acle. The reader might wonder why the transformation of 

OS to S2, described in [7], is not used here. The reason is 
that we do not aim at modeling OS or C2; instead, we aim 
at modeling the performance characteristics of failure de-
tectors (following [6]).7 One question might be whether our 
failure detector model ensures a better coverage of the as-
sumptions of OS or those of f2. However, this question is 
not relevant for our study. Oracles satisfying the assump-
tions of OS and 52, respectively, ensure that the algorithms 
terminate, but there are runs in which the algorithms termi-
nate, even though the assumptions are not satisfied. More-
over, we can use simulations to obtain coverage data di-
rectly.

7. Results

  We now present our results for all four faultloads and a 
variety of network models. We obtained results at a vari-
ety of representative settings for A: 0.1, 1 and 10. The set-
tings A = 0.1 and 10 correspond to systems where com-
munication generates contention mostly on the network (at 
A = 0.1) and the hosts (at A = 10), respectively, while 
A = 1 is an intermediate setting. For example, in current lo-
cal area networks, the time spent on the hosts is much higher 
than the time spent on the wire, and thus A = 10 is prob-
ably the setting that corresponds best to such an environ-
ment.

6 The leader oracle has other potential uses, e.g., it can be used to im-

   plement load balancing among all correct processes (see Section 8). 
   We intend to investigate this aspect in the future. 

7 Another reason is that our transformation is more efficient ( [7] uses 
   additional messages).
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  Most graphs show the early latency vs. the throughput. 
Graphs showing the late latency are presented in the ap-

pendix only. Values of the late latency are slightly higher, 
but all other characteristics of the corresponding graphs are 
very similar. The reason is that if one process reaches a de-
cision in either of the consensus algorithms, all other pro-
cesses will soon follow, thanks to the decision message (see 
Section 4.1.3). The maximal throughput is approximately 
the highest throughput value, that is, the x coordinate of the 
rightmost point, in all graphs showing the steady-state la-
tency; beyond this throughput, the late latency did not sta-
bilize (see Section 5.1). We set the time unit of the network 
simulation model to 1 ms, to make sure that the reader is not 
distracted by an unfamiliar presentation of time/frequency 
values (one that refers to time units). Any other value could 
have been used. The 95% confidence interval is shown for 
each point in the graphs. 

  The two algorithms were always run with an odd number 
of processes. The reason is that the same number of crash 
failures k (k = 1, 2, ...) is tolerated if the algorithms are
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run with 2k + 1 and 2k + 2 processes; thus adding a pro-
cess to a system with an odd number of processes does not 
increase the resiliency of the system. Also, we always ran 
the algorithms with seven or fewer processes. Studying the 
scalability of the algorithms did not seem worthwhile, be-
cause neither algorithm is especially scalable: processes of-
ten wait for messages from . n/2 processes, whereas scal-
able algorithms tend to synchronize much fewer processes 
(see, e.g, [23]). Also, it is questionable that using algorithms 
tolerating n/2 failures makes sense when n is large.

7.1. Normal-steady and crash-steady fault-
   loads (Figures 5 and 6, Appendixes B and 

  C)

  With these faultloads, the two algorithms have the same 

performance. Each curve thus shows the latency of both al-
gorithms. For the sake of readability, we only present a sub-
set of the results in Fig. 5 (normal-steady faultload) and 
Fig. 6 (crash-steady faultload). The full set of results is pre-
sented in Appendixes B and C. The latency increases with 
the throughput and with the number of processes. Some-
what surprisingly, the latency decreases with the number of 
crashes. The reason is that the crashed processes no longer 
load the network with messages. 

  The fact that the two algorithms have the same perfor-
mance is not surprising. Their only important difference 
is the way of electing a new leader, and no new leader 
is elected with these faultloads (such that this influences 
the steady-state performance). In fact, we have deliberately 
chosen similar algorithms for this study, so that we can con-

centrate on the performance differences observed with the 
other faultloads.

7.2. Crash-transient 
Appendix D)

faultload (Figures 7 to 10,

  With this faultload and c crashes, we only present the la-
tency after crashing the first c processes (pi, ... , pa), as this 
is the case resulting in the highest transient latency (and 
the most interesting comparison). The crash of any addi-
tional processes affects the two algorithms in the same way 
(slightly decreased latency; cf. Fig. 6). 

  We set the failure detection timeout TD to 100 ms at 
A = 0.1 or 1, and to 1000 ms at A = 10. This choice mod-
els a reasonable trade-off for the failure detector. On the one 
hand, the detection time TD is low enough (comparable to 

the latency overhead) to make sure that the failure detec-
tor does not degrade performance catastrophically when a 
crash occurs. On the other hand, the detection time is high 
enough (it is a high multiple of the roundtrip time at low 
loads: 2 + 4A) to avoid that failure detectors suspect cor-
rect processes.8 

  All figures show the latency overhead, i.e., the la-
tency minus the detection time TD, rather than the latency.9 
Graphs showing the latency overhead are more illus-

8 As we use an abstract model for the failure detectors for the sake of 

   generality, this does not appear directly in our simulations. The argu-
   mentation is about a hypothetical implementation. Given that this im-

   plementation can afford spending a high multiple of the roundtrip time 
   before generating a suspicion, wrong suspicions will be rare. 

9 Actually, Fig. 10 shows a derived quantity.
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trative; note that the latency is always greater than the 
detection time TD with this faultload, as no atomic broad-
cast can finish until the crash of the first leader is de-
tected. 

One crash (Fig. 7). We start by discussing the results for 
the case of one crash. The latency overhead of both algo-
rithms is shown at n = 3 (top) and n = 7 (bottom) and a 
variety of values for A (0.1, 1 and 10 from left to right). 

  The results show that (1) both algorithms perform rather 
well (the latency overhead of both algorithms is only a 
few times higher than the latency with the normal-steady 
faultload; see Fig. 5) and that (2) the algorithms perform 
roughly the same. The CT algorithm performs slightly bet-
ter at n = 3, A > 1 and n = 7, A = 10, i.e., with a small 
number of processes and a high A meaning a relatively fast 
network. The Paxos algorithm performs slightly better at 
n = 7, A < 1, i.e., with a lot of processes and a small A 
meaning a relatively slow network. 

  The differences can be explained by differences in the 
execution of the algorithms once the crash of the first leader 
is detected. In the CT algorithm, all processes send a nack 
message to the first leader. In the Paxos algorithm, the new 
leader sends a read message. The rest of the execution (from 
the estimate message of the second round) is the same. The 
CT algorithm thus uses fewer communication steps, but 

generates more contention on the network; moreover, the 
increase in network contention is proportional to the num-
ber of processes. This explains why the CT algorithm is fa-
vored by a fast network and a small number of processes. 

Multiple simultaneous crashes (Fig. 8). For this case, the 
latency overhead of both algorithms is shown at n = 7, for 
2 and 3 crashes (the algorithms do not tolerate more than 3 
crashes) and a variety of values for A (0.1, 1 and 10 from 
left to right). 

  The results are different from those obtained with one 
crash only: the Paxos algorithm always outperforms the CT 
algorithm. The reason is that the CT algorithm takes more 
rounds: it rotates over all crashed processes first, whereas

the Paxos algorithm elects a correct leader after the first 
round. 
  The fact that the CT algorithm rotates over the crashed 

processes also explains why its latency increases with the 
number of crashes. The latency of the Paxos algorithm, 
however, decreases with the number of crashes. The reason 
is that fewer correct processes load the system with mes-
sages to a smaller extent (cf. Fig. 6). 

Multiple sequenced crashes (Figures 9 and 10). Fi-
nally, we investigated what happens when multiple 
non-simultaneous crashes occur. The order in which pro-
cesses crash is p1, ... , pc, so we obtain the highest transient 
latency. The time that elapses between two crashes is called 
crash interval Tc (thus all values shown in Fig. 8 were ob-
tained at Tc = 0). 

  Fig. 9 shows the effect of Tc on the latency overhead. 
The curves were obtained with n = 7 processes, c = 3 
crashes and a low load (0.1 s-1) at a variety of values 
for A (0.1, 1 and 10 from left to right). The characteris-
tics of all other curves are similar (see Appendix D). Up to 
Tc TD, the latency of both algorithms increases accord-
ing to (c — 1) - Tc; the reason is that each of the crashes is 
not yet detected when the following crash happens. This re-

gion is highlighted in Fig. 10, which plots the latency over-
head minus (c — 1) - Tc rather than the latency overhead. 
One can see that the performance advantage of Paxos de-
creases as Tc increases. The reason is that the Paxos algo-
rithm perceives the crashes separately: it cannot elect a cor-
rect leader in one step as at small values of Tc (Fig. 8), 
and thus cannot maintain a significant performance advan-
tage over the CT algorithm. 

  Except for small Tc values, the relative performance in 
this region (Tc below , TD) depends on A; higher values, 
i.e., a faster network, favor the CT algorithm. The expla-
nation is the same as in the case of one crash (see above; 
Fig. 7): the CT algorithm uses fewer communication steps 
but generates more contention on the network. 

  As Tc grows beyond TD, both algorithms detect the
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first crash before the next ones happen, and can reach a de-
cision. Therefore the transient latency quickly decreases un-
til it is essentially the same as with a single crash (Fig. 7).

7.3. Suspicion-steady faultload (Figures 11 and 12, 
Appendix E)

  The occurrence of wrong suspicions are quantified with 
the TMR and TM QoS metrics of the failure detectors. As 
this faultload does not involve crashes, we expect that the 
mistake duration TM is short. In our first set of results 

(Fig. 11 for A = 1; the results for A = 0.1 and 10 are 
similar and are omitted here for better readability; see Ap-

pendix E for the full set of results) we hence set TM to 0, and 
latency is shown as a function of TMR. In each figure, we 
have four graphs: the left column shows results with 3 pro-
cesses, the right column those with 7; the top row shows re-
sults at a low load (10 s-1; 1 s-1 if A = 10) and the bottom 
row at a moderate load (300 5-1; 30 s-1 if A = 10); the al-

gorithms can take a throughput of about 700 s-1 (70 s-1 if 
A = 10) in the absence of suspicions (i.e., with the normal-
steady faultload; see Fig. 5 and Appendix B). 

  The results show that the CT algorithm is much more

sensitive to wrong suspicions if these occur frequently. We 
illustrate this on Fig. 11: at n = 3 and T = 10 s-1, that is, 
the settings at which the CT algorithm tolerates wrong sus-

picions most, the CT algorithm only works if TMR > 5 ms, 
whereas the FD algorithm still works at the smallest TMR 
value considered (1 ms); the latency of the two algorithms 
is only equal at TMR > 100 ms. The CT algorithm breaks 
down at higher values of TMR for all other settings, whereas 
the Paxos algorithm continues to work even with 1 ms. 

  The results can be explained by the difference in the 
mechanisms that the algorithms use to elect the next leader. 
The CT algorithm always chooses the next process (in a 
round-robin manner) as the next leader. Moreover, sus-

picions are likely to abort the current round. Therefore, 
if wrong suspicions occur frequently, a lot of rounds are 
needed to finish a consensus execution, and all processes be-
come leaders, executing rounds that overlap. In contrast, the 
Paxos algorithm is run with a leader oracle that elects the 

process with the smallest index among all suspected pro-
cesses. If suspicions are short (TM = 0), the leader ora-
cle will only ever elect pi and p2 as leader. Only these two 

processes start overlapping rounds. Moreover, suspicions, 
even if they lead to a change in the output of the leader ora-
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cle, do not abort the current round directly; their only effect 
is to start other rounds in parallel that might conflict with 
the current round. Because of these differences, the CT al-

gorithm generates much more contention on the hosts and 
the network: it is likely that n processes run rounds in par-
allel, whereas the Paxos algorithm only has two processes 
that run rounds in parallel. The increased contention of CT 
is the reason why the Paxos algorithm performs better with 
this faultload. 

  In the second set of results (Fig. 12 for A = 1; the re-
sults for A = 0.1 and 10 are similar and are omitted here for 
better readability; see Appendix E for the full set of results) 
TMR is fixed and TM is on the x axis. We chose TMR such 
that the latency of the two algorithms is close to equal at 
TM = 0. For example, with A = 1 (Fig. 12), (i) TMR = 100 
ms for n = 3 and (ii) TMR = 1000 ms for n = 7. 

  The results show that the CT algorithm is more sensi-
tive to the mistake duration TM as well, not just the mistake 
recurrence time TMR. Once again, the difference can be at-
tributed to the fact that the Paxos algorithm generates less 
contention: its leader oracle usually outputs only a small 
subset of all processes, hence only a few processes start 
rounds concurrently, whereas all processes are likely to do 
so in the CT algorithm.

8. Discussion

  We have compared the 

Toueg and Paxos consensus

performance of the Chandra-
algorithms. These algorithms

are representative for consensus algorithms designed for the 
asynchronous system model (with a minimal extension to 
allow us to solve the consensus problem) and f < n/2 pro-
cess crashes (the highest f that the system model allows). 
Following a common pattern, the algorithms have a similar 
structure: they execute a sequence of rounds whereby each 
round has a leader that tries to impose a decision. They dif-
fer in how they tolerate (suspected) failures of the leader: 
processes in the Chandra-Toueg algorithm rotate the leader 
role among all processes, whereas processes in the Paxos al-

gorithm elect leaders directly in an uncoordinated manner. 

  Not surprisingly, the two algorithms have the same 
steady-state performance if neither crashes nor wrong sus-
picions occur, or if crashes occur but wrong suspicions do 
not. In fact, the algorithms differ only in how they han-
dle suspected crashes, and this difference does not come 
into play in these scenarios. This result allows us to 
state with confidence that performance differences ob-
served in the other scenarios are due to the differences in 
failure handling and not other artifacts of the two algo-
rithms. 

  As for the transient performance after one crash or mul-
tiple sequenced crashes, the performance differences are 
small, and the relative performance depends on the relative 
speed of the network and the hosts, as well as on the num-
ber of processes. The Paxos algorithm has better transient 
performance after multiple correlated crashes that happen 
simultaneously or within a short time, because its leader or-
acle elects a correct leader immediately after detecting the
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crashes. This advantage seems to be inherent to the leader-
based approach that the Paxos algorithm follows. 

  We found the largest difference in scenarios with fre-

quent or long lasting wrong failure suspicions. In such sce-
narios, the Paxos algorithm performs better. The reason is 
that it generates less contention: its leader oracle makes sure 
that only a small subset of all processes start concurrent 
rounds, whereas the rotating leader scheme in the Chandra-
Toueg algorithm results in nearly all processes starting con-
current rounds. Once again, this advantage in environments 
in which the failure detection service makes mistakes of-
ten seems to be inherent to the leader-based approach. 

  We have chosen consensus algorithms with a central-
ized communication scheme, with one process coordinat-
ing the others. In the future, we would like to investigate al-

gorithms with a decentralized communication scheme (e.g., 
[25] and [20]) as well. We would also like to investigate 
how results change in a load balanced configuration, e.g., in 
a configuration in which the first leader of subsequent con-
sensus executions rotates among all processes that are alive. 
The coordinated fashion of electing the next leader in the 
Chandra-Toueg algorithm might provide performance ben-
efits in such a configuration.
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A. Explanations for the full set of results 

For the sake of readability, only a representative subset of our results 
appears in the body of the paper. In the appendix, we present the full 
set of results. This includes results for all combinations of the fol-
lowing: 

 • Performance metrics: early and late latency. 

 • Relative contention in the network model (A): 0.1, 1 and 10. 

 • Number of processes (n): 3, 5 and 7. 

 • Number of crashes: 1 (for n  = 3); 1 and 2 (for n = 5); 1, 2 and 
3 (for n=7). 

B. Full set of results for the normal-steady faultload 

B.1. Graphs showing the early latency
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  Figure 13. Latency vs. throughput with the normal-steady faultload.
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B.2. Graphs showing the late latency
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 C. 

C.1.

Full set of results for the crash-steady faultload 

Graphs showing the early latency
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    Figure 15. Latency vs. throughput with the crash-steady faultload (A = 0.1).
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     Figure 16. Latency vs. throughput with the crash-steady faultload (A = 1).
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C.2. Graphs showing the late latency
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    Figure 18. Latency vs. throughput with the crash-steady faultload (A = 0.1).
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Figure 19. Latency vs. throughput with the crash-steady faultload (A = 1).
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E. 

E.1.

Full set of results for the suspicion-steady faultload 

 Graphs showing the early latency

                         n = 3, throughput =  10  1/s, lambda = 0.1n = 7, throughput = 10 1/5, lambda = 0.1 
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Figure 29. Latency vs. TmR with the suspicion-steady faultload, with TM = 0 (A = 0.1).
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Figure 30. Latency vs. TmR with the suspicion-steady faultload, with TM = 0 (A = 1).

24



1000

n = 3, throughput = 1  1/s, lambda = 10

    800 
10 E 

8. 600 

m 
    400 

•
200

1000

n = 7, throughput = 1 1/s, lambda = 10

 CT 
Paxos --------

110 100 1000 
      mistake recurrence time TMR [ms] 

    n = 3, throughput = 30 1/s, lambda = 10

   800 

E 

8. 600 

~p~400 

O 

    200

0

 CT 
Paxos --------

1000

   800 

E 

   600 

    400 

    200

1000

1 10 100 1000 
      mistake recurrence tree TMR [ms] 

    n = 7, throughput = 30 1/s, lambda = 10

 CT ----- 
Paxos --------

    800 

E 

8. 600 

i0 400 

    200

 CT ------ 
Paxos --------

Figure 31
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. Latency vs. TMR with the suspicion-steady faultload, with TM = 0 (A = 10).
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Figure 32. Latency vs. TM with the suspicion-steady faultload, with TMR fixed (A = 0.1).
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Latency vs. TM with the suspicion-steady faultload
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Figure 34. Latency vs. TM with the suspicion-steady faultload
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E.2. Graphs showing the late latency
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n = 3, throughput = 10 1/s, lambda = 0.1n = 7, throughput = 10 1/s, lambda = 0.1 
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Latency vs. TMR with the suspicion-steady faultload, with TM = 0 (A = 1).
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Figure 37. Latency vs. TMR with the suspicion-steady faultload, with TM = 0 (A = 10).
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Latency vs. TM with the suspicion-steady faultload, with TMR fixed (A = 0.1).
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