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Rewriting Game Theory as a Foundation for 

  State-Based Models of Gene Regulation

Chafika  Chettaouii, Franck Delaplacei •*, Pierre Lescanne2, 
Mun'delanji Vestergaard3, and Rene Vestergaard3'**

    1 IBISC - FRE 2873 CNRS , Evry, France 
2 LIP - UMR 5668, Ecole Normale Superieure , Lyon 

3 JAIST
, Nomi, Ishikawa, Japan

Abstract. We present a game-theoretic foundation for gene regulatory 
analysis based on the recent formalism of rewriting game theory. Rewrit-
ing game theory is discrete and comes with a graph-based framework 
for understanding compromises and interactions between players and for 
computing Nash equilibria. The formalism explicitly represents the dy-
namics of its Nash equilibria and, therefore, is a suitable foundation for 
the study of steady states in discrete modelling. We apply the formalism 
to the discrete analysis of gene regulatory networks introduced by R. 
Thomas and S. Kauffman. Specifically, we show that their models are 
specific instances of a C/P game deduced from the K parameter.

1 Introduction

Gene regulation concerns the mutual inhibition and activation among genes and 

the wider impact this has on cells and on whole organisms through the resulting 

protein production or lack thereof, aka gene expression. In particular, the regu-
lation of genes may involve complex regulatory processes such as auto-regulation 

and feedback loops, possibly via complex pathways. Studying regulation benefits 

from using formal tools to give well-founded explanations of their complexities. 

                    yn+ 
   Substantial work has focused on stochastic techniques and differential equa-
tions (over time) [4]. In this article, we focus on the two best known state-based 
(aka logical and multivalued) models, due to Kauffman [5, 6] and Thomas [18,19]. 
The two models are discrete and aim at providing qualitative information about 
the dynamic aspects of gene regulation [4] . They are underpinned by the defi-
nition of a state graph that is intended to represent possible gene-state changes 
[1, 19] . Informally, analyzing the dynamics of the state graph is based on the 
identification of paths having specific topological properties. Notions in dynami-
cal systems are translated into topological properties on the graph. A trajectory 
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is a pathway, a steady state is a sink (i.e., a vertex with no output edge), and 

periodicity is described by a cycle. Terminal cycles and sinks are remarkable 
topological features because they both embody attractors. Special attention is 
paid to attractors because they represent robust and steady characteristic modes 
of a dynamic system. Hence  they can be considered as functional features (ca-
pabilities) of the system at a more integrated level because, over time, evolution 
will make the system reach one of them as influenced by external conditions. 

  Cycles, sinks and more generally attractors, can be computationally unified 
in a homogeneous notion of terminal strongly connected components (TSCC). 
Basically, it represents a sub graph where any two vertices are connected to-
gether by a cycle and from where there is no escaping path. The topology of 
the attractor is often interpreted as a characteristic feature of the regulatory dy-
namics. For instance, cycles and sinks correspond respectively to homeostasis [2] 
and multi-stationarity. However to embrace the complexity of these dynamics, 
one must understand and be able to work with them as mathematical objects in 
a general and ideally algebraic manner to smoothly and coherently address all 
the known and desirable features of gene regulation and to accommodate future 
discoveries. In other words, a foundation is called for that, on the one hand, is 
flexible and general and, on the other hand, employs a conceptual and technical 
framework that sheds direct light on the issues at hand, i.e., that can bridge 
the gap between topological features in a state graph and regulatory effects of 
inter-dependent but autonomous genes. 

  The cornerstone of our contribution is to show that the steady states of gene 
regulatory networks, as they are commonly understood, are a recently estab-
lished kind of Nash-style equilibria, called change-of-mind equilibria [14] . The 
game-theoretic perspective we provide is technically and conceptually beneficial 
because non-cooperative game theory is the embodiment of the compete-and-
coexist reality of genes and because it allows us to leverage the independently 
developed theory of dynamic equilibria in rewriting game theory. In particu-
lar, we show that Kauffman's and Thomas' models can be defined as specific 
instances of a particular game-skeleton. Technically, this recasts steady states 
(attractors) and gene regulation to the fixed-point construction underlying our 
discrete Nash equilibria. In particular, we show that steady states are the least 
non-empty fixed points (in a lattice of fixed points) of the update functions 
already considered by Kauffman and Thomas. 

  In Section 2, we briefly account for (rewriting) game theory, computation of 
discrete Nash equilibria, and the very general game formalism involved, called 
conversion/preference (C/P) games. In section 3, we review the discrete models 
for gene regulation introduced by Kauffman and Thomas. In section 4, we show 
that the two models can be viewed as instances of a C/P game.

  In [15], we apply rewriting game theory to protein signalling in mitogen-
activated protein kinase (MAPK) cascades, which govern biological responses 
such as cell growth. The aim there is more practical than in this article and
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Fig. 1. Example of sequential(extensive form) and strategic game(normal form)

involves establishing an analytic model for protein signalling in the first place 

and to develop tool support for it.

2 Rewriting Game Theory

In this section, we first provide a gentle reminder of the relevant ideas in game 
theory (Section 2.1) and then introduce the principles of a framework for dis-
crete game theory (Section 2.2), before going into more technical details in the 
remainder of the section. The framework generalises the notions of strategic 
games and Nash equilibria without involving probability theory and continuous 
notions. Good accounts of traditional game theory are [9, 13] .

2.1 Non-Cooperative Game Theory 

Non-cooperative game theory is game theory based around the notion of Nash 
equilibrium. Nash equilibria are defined over strategies that account for the in-
tended behaviour of all agents/players in a game. We say that an agent is happy 
if he cannot change his contribution to a (combined) strategy and generate a 
better overall outcome for himself. A (combined) strategy is a Nash equilibrium 
if all agents are happy with it. Game theory involves a wide spectrum of games 
and theories. However two kinds of games are usually considered for modelling : 
sequential games and strategic games. An example using a sequential game in ex-
tensive form is in Figure 1, left. An example of a strategic game in normal-form 
is in the figure, right. 

  A play of the game on the left is a path from the root to a leaf, where the 
first (second) number indicates the payoff to agent ai (a2). A strategy over the 
game, by contrast, is a situation where a choice has been made in all internal 
nodes, not just in the nodes on a considered path. While it might look like the 
strategy of al going right and a2 going left is good, it is not a Nash equilibrium 
because a2 can go right, for a better payoff. At that point, also al can benefit 
from changing his choice and, in fact, the only Nash equilibrium in the game 
is ai (a2) going left (right). Nash equilibria can be guaranteed to exist for all 
sequential games, a result known as Kuhn's Theorem [7,20]. 

  In strategic games, players act simultaneously. In contrast to sequential games, 
Nash equilibria do not always exist in a pure form in strategic games. An example 
is above on the right. In the example, there are two players: vertical, who chooses 
a row and gets the first payoff, and horizontal, who chooses a column and gets
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the second payoff. As can  be seen, in no outcome are both players happy, i.e., 
one player always can and wants to move away. Instead, Nash's Theorem says 
that a probabilistic combination of strategies exists, where the agents are happy 
with their expected payoffs [10,12] . In the example, the only probabilistic Nash 
equilibrium arises if both agents choose between their two options with equal 
probability for expected payoffs of a half to each. Addressing the hows and whys 
of this in general quickly turns in to pure probability theory, with justifications 
that need not necessarily be meaningful in the application area.

2.2 Conversion/Preference Games 

Conversion/preference (C/P) games have been designed as an abstraction over 
strategic-form games and as a game formalism that introduces as few concepts as 
possible. This aim leads us to distinguish two relations on strategies, Conversion 
and Preference. The key concept of C/P games is the synopsis, which abstracts 
the notion of (combined) strategies. Roughly speaking, conversion says how an 
agent can move from a synopsis to another; in other words, it says which changes 
are allowed on synopses for a given agent. An agent makes choices among syn-
opses according to which he prefers over others. It should be noted that conver-
sions and preferences depend on agents. In what follows, conversion is denoted 
>-- and preference is denoted 4. Clearly strategic-form games are instances of 
C/P games, conversions are one dimension move (for instance along a line or a 
column), while preferences are given by comparisons over payoffs: a synopsis is 
preferred by an agent over another if his payoff is larger in the former. 

Definition 1 (C/P Games [14D) Gcp are 4-tuples (A, S, (a )aEA, (4a)aEA) 

 - A is a non-empty set of agents. 
 - S is a non-empty set of synopses (read: outcomes of the game). 

 - For a E A, >-a. is a binary relation over S, associating two synopses if 
   agent a can convert the first to the second. 

 - For a E A, <a is a binary relation over S, associating two synopsis if agent a 
   prefers the second to the first. 

  The idea of the definition is to make explicit the parts of strategic-form games 
that are relevant to the definition of Nash equilibria and to dispense with any 
other structural constraints, such as the uniform restriction that `vertical' can 
only move up and down. To illustrate, we note that the example we considered 
earlier amounts to the C/P game in Figure 2.

2.3 Abstract Nash Equilibrium 

The following definition says that a synopsis s, i.e., our abstraction over (com-
bined) strategies, is an abstract Nash equilibrium if and only if all agents are 
happy, meaning that whenever an agent can convert s to s' then it is not the 
case that he prefers s' to s. The notion of abstract Nash equilibrium specialises 
to Nash's concrete form in the presence of the discussed structural constraints 
on strategic-form games.
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s s 5<a s'

S s

Fig. 3. The (free) change-of-mind relation for agent a in WI'

Definition 2 (Abstract Nash Equilibrium [14]) Given G". 

EgaN(s) ° VaEA,s'ES.S S' '(Sass') 

  We suppress the word abstract from the definition for the reason discussed 
above: in strategic-form games, the notions coincide. [14]. Said differently, Defi-
nition 2 is merely a more general (and simpler) way of writing what Nash wrote 
[10,12] . Technically, the form of our definition is intended to facilitate the fol-
lowing definition, thus giving rise to the name rewriting game theory. 

Definition 3 ([14]) Given G", the change-of-mind relation,-~for agent a 
is given in Figure 3. Let ->°=UaEA ->a 

  In other words, a Nash equilibrium is a synopsis for which there is no outgoing 
change-of-mind step, i.e., an -4-irreducible (aka a ---normal form). 

Proposition 4 ([14]) EgaN (s) s E IrR-

  The benefits of the changed perspective on game theory are partly concep-
tual, in the first instance for people who like rewriting, but they are also technical 
in that Proposition 4 highlights the positive notion, i.e., change-of-mind, that 
is behind Nash's original definition and through which we get easy access to a 
range of formal(ist) tools, not least of which is definition and proof by induction.

2.4 A Graph-Theoretic Construction 

Returning to our rewriting/graph-theoretic view on game theory, we note that 
for arbitrary finite graphs only cycles can prevent the existence of terminal nodes. 
We show in this section how that simple observation suffices for underpinning a 
discrete version of Nash's Theorem for arbitrary finite C/P games. The relevant 
graph-theoretic notion we need for capturing all cycles is strongly connected 
components.
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Fig. 4. Change-of-mind equilibrium for our running strategic-form example

— A graph is a binary relation on a carrier set, called vertices: V x V. 
— The reflexive , transitive (or pre-order) closure,*, of a graph, —>, is 

vi v2Vi —j*v v—>*v2 

*** V
1 V2 v —> v v1 V2 

— The strongly connected component (SCC) of a vertex, v, in a graph is 

Lvi {v' v—>*v'Av'—>*v} 

   (The relation "is in the L—i-class of" is an equivalence relation.) 
— The set of SCCs of a graph is 

[V]{ LvJ v E V} 

— The shrunken graph of V x V is r.0 LVJ x [V], defined by 

Va r> VbVa Vb A Ova E Va, vb E Vb . va —* vb) 

  The set [V] and the relation ra allows us to define a C/P game with the same 
set of agents, [V] as set of synopses and r, as both conversion and preference. 
We call that game the "shrunken game". The following result says that a Nash 
equilibrium exists in "shrunken" games. 

Theorem 5 ([14]) For any finite C/P game, (A,S, ( a )aEA, (4a)aEA), 

— (A, [Si , ((a)aEA) has a Nash equilibrium, 
 — all of which can be found in linear time in the size of S and 

  Nash's Theorem says that probabilistic Nash equilibria exist for all finite 
strategic-form games. By comparison, the result above says that "shrunken" 
Nash equilibria always exist for finite members of the much larger class of C/P 
games. We clarify what the L—H-qualifier means next.

2.5 Change-of-Mind Equilibria 

The topic of this section is to directly characterise the Nash equilibria prescribed 
by Theorem 5. Naively speaking, our notion of change-of-mind equilibrium is 
simply the graph underlying the considered compromises between synopses. 

Definition 6 (Change-of-Mind Equilibrium) Write - for -f f1 (S x S).
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 —  Egcom  (s) Vs' E S . (s—>* s' s' E [s] ) 

— Egcom (~J) o Egcom (s)

  We refer to the former notion as change-of-mind equilibrium points and the 
latter simply as change-of-mind equilibria. The concept of change-of-mind equi-
librium is well-defined because "_ E [sr" is an equivalence relation.

Lemma 7 Consider (A, S ( LE a, (aa)aE a), (A, LS (~a)aE a, (r-a)aEA)•

Egcom (14.1) EgaN(Ls])

  The lemma implies that the Nash equilibria prescribed by Theorem 5 have 
the property that no agent can escape from them. Agents are allowed to move 
within the equilibria but they will have to stay within the set perimeter. We will 
return to the issue of size of the perimeter in Section 5. For now, we note that our 
running example, see Figure 1, left, and Figure 2, has the change-of-mind equi-
librium in Figure 4. We note that both the probabilistic Nash and the change-
of-mind equilibria of the example involve all four outcomes. The probabilistic 
version prescribes an exact expected payoff, while the discrete change-of-mind 
version makes the dynamics behind the equilibrium clear. The two notions may 
differ quite substantially in general but neither is uniformly smaller, has higher 
(implied) payoff values, or is better in any similar sense.

3 Basic State-Based Analysis of Gene Regulation

We now leave game for a while and analyse models of gene regulation. 
   Kauffman's and Thomas' models differ on a number of minor and on one ma-

jor issue, relative to our presentation. Among the minor ones, we count Kauff-
man's assumption that i) genes are boolean, i.e., that they can be in exactly 
two states: active (expressing protein) or inactive and that ii) when one gene 
regulates another it is always either repressing or activating it. Assumption ii) is 
reflected in the signs (polarities) annotated to the regulatory-network example 
at the beginning of Section 1. The major difference between the two approaches 
concerns the way states are updated. In Thomas' model only one gene is updated 
at each step (asynchronous update) while in Kauffman's all genes are updated 

(synchronous update), albeit possibly reflexively. We return to this issue in Sec-
tion 3.2.

3.1 Regulatory Networks

On the minor issues, we essentially follow Thomas' more general perspective of 
allowing for a gene to assume a fixed but unbounded number of states (albeit 
typically 2 or 3) and of using a more detailed way of specifying regulation.

Definition 8 (Regulatory Networks) are 3-tuples (G, n, K):
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 G =  {cI, cro}, with cI o < cI1 and croo <

CcI cro~
K ((_, croo)) = cIi 
Kcj((_, crol)) = cIo 
Kcj((_, cro2)) = cIo

crol < cro2 

Kc,n((cIo, croo)) = cro2 
Kcm,((clo, croi)) = cro2 
KC,..((clo, cro2)) = croo 

K„,o((cIi,_)) = croo

Fig. 5. Two-variable regulatory network for phage A (_ is wildcard)

 — G is a non-empty set of genes, ranged over by g, gi and each associated with 
   a non-empty, linearly ordered set of states, (Sg, <g), ranged over by sg, sg; 

 — C G x G, a relation, with gi g2 saying that gi may regulate g2 — let 
Zg°_{gi gi m. g} be the regulatory inputs to g; 

 - KG _ ®
gEG Kg, are comfort functions, Kg : ®giEZg Sg Sg,for each 

   gene saying when g is being regulated and what state it is pushed towards. 

  We note that G is not restricted to genes, per se, but could also contain, 
e.g., proteins, or something completely different. We also note that our comfort 
functions are seeming slightly more general than Thomas' corresponding notion 
of logical parameters for the simple reason that, as given, Definition 8 is more in 
line with our other definitions; for the examples we consider, we shall not need 
the extra expressive power. Finally, we will sometimes use the comfort functions, 
Kg, as if they had type ®gEG Sg; Sg, with the obvious implicit coercion. 

  As an example, Figure 5displays a regulatory network similar to the Kauffman-
style one at the beginning of Section 1, namely the standard example of bacte-
riophage lambda (phage A), with two genes: cI and cro.

3.2 Gene-State Updates 

Both Kauffman's and Thomas' analyses proceed by considering the state space 
of a given regulatory network, ®gEG Sg, and both prevent updates across a 
state, e.g., cIo to cI2. The rationale for the latter is that moving from a state to 
another involves a phase transition, which is costly in terms of energy, and two 
phase transitions should therefore not be considered atomically. They differ in 
what state they predict the system will move to from a given state. 

  In Kauffman's case, above left, each gene is prompted for its comfort state 
relative to the states of all genes in the given point in the state space and a 
synchronous move is made towards the combined comfort state, while allowing 
for at most one phase transition for each gene. If a gene is not regulated upon, 
i.e., if no comfort state is specified, it retains its state. Reflexive state-space 
transitions are not considered. The details for the example in Figure 5 are in 
Figure 6, left. 

  In Thomas' case, Figure 6 right, each gene is prompted as before but moves 
are made asynchronously, i.e., each state may have several moves out of it,
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 (clo,croo) 

(clo,cro1)(cli,croo) 

(cli,croi) 

(clo,cro2)(cI1,cro2)

(cIo, croo) 
4. 

(cIo, croi) (cIi, croo) 

(cli, croi) 
r. 

(cIo, cro2) F — — — (cl i, cro2)

Fig. 6. Kauffman (left) and Thomas (right) analysis of two-variable phage .\

one for each gene being considered. In the figure, we indicate c/-updates with 

dashed arrows and cro-updates with dotted arrows, although the two are not 

distinguished in the actual analysis.

3.3 Steady States 

In the two state graphs above, (cI1, croo) clearly plays a special role: it is a 
static steady state, i.e., it is the only state that does not have arrows out of 
it. From this, we can seemingly conclude that if the two genes end up in that 
configuration, they stay that way. The relevance of state-based analysis comes 
from the fact that the state in question has been observed to be (self-)sustainable: 
it is phage A's lysogenic state that "involves integration of the phage DNA into 
the bacterial chromosome [of its host] where it is passively replicated at each 
cell division---just as though it were a legitimate part of the bacterial genome" 
[21] . 

Similarly, there is an inescapable cycle, i.e., a dynamic steady state, involving 
(cIo. croi) and (c/o, cro2) in both graphs. The implied regulatory flip-flopping 
between (do, croi) and (cIo, cro2) is, in fact, biologically characteristic of phage 
A's lytic state in which it actively uses its host's transcription mechanism to 
replicate itself [21] .4 

  In our formalism, and despite their obvious topological differences, both 
the static and the dynamic steady states described are simply change-of-mind-
equilibria, which means that they can be uniformly accommodated as far as our 
general theory goes. More, the biological justification for why the states are spe-
cial, i.e., that they are inescapable, is the exact the justification for why they 
are both change-of-mind equilibria.

4 C/P games-based Modeling of Gene Regulatory 
   Networks 

Our modeling of Kauffman/Thomas-style gene regulation via C/P games will 
have the update graphs exemplified in Figure 6 as change-of-mind relations. 
i The cycle between (cIo, croo) and (cli, cro1) is a known false positive of Kauffman's 

  model.
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Several ways of specifying the C/P-game 4-tuple, (A,  S, (a )aEA, (<a)aEA), will 
lead to the desired result. The approach we take interprets the distinction be-
tween conversion and preference as chemical reality vs observation of the same. 
Specifically, we distinguish chemical reactions that genes and proteins are in-
volved in and how closely we choose/are able to observe changes. 

  Given a regulatory network, (G, n., KG), with associated gene states, (Sg)gEG, 
we take the gene state space, SG®gEGSg,as our set of synopses, S. Reflect- 
ing the (perceived) universality of the considered chemical situation, we insist 
that the conversion relations of all agents, whatever we specify them to be, are 
the same. By default, we allow all state changes and leave it to the specific ap-
plications to put in place any necessary ad hoc restrictions.5 Following Thomas, 
however, we are particularly interested in the at-most-one-phase-transition-at-
a-time restriction.

Definition 9 For linear order go < ... < gn, let gi O gj = i — j, and let 

s 

 ±1
s'=Vg E G 7g (s) O 7rg (s') I <

A C/P game whose conversion fulfills the previous definition is called 1-restrained. 
Similarly straightforwardly, our preference relation is dictated by the comfort 
functions, Kg, of a regulation network. 

Definition 10 We say that s' is a comfort approximation for g in s if 

K-Approxg(s, s') ° (71-g (s)< 7rg(s') < Kg(s)) V (7rg(s) > 7rg(s') > Kg(s)) 

Definition 11 Given (G, r , KG) and for any s, s' E SG and g E G, let 

 — s <G s' = Vg . K-Approxg(s, s') 
 — s < g s' = K-Approxg(s, s') A (Vg' . g' 4 g 71g, (S) = 7rg, (s')) 

be the synchronous respectively g-asynchronous preference relations.

  With this, we see that Kauffman-style regulation analysis is a 1-player reg-
ulation game, while Thomas-style regulation analysis is a multi-player game, 
played by the considered genes. In Kauffman-style the 1-player is the whole set 
of genes G, whereas in Thomas-style, players are the elements of G. 

Theorem 12 (Regulation Games & Kauffman/Thomas) Given (G, n—, KG), 

 — The Kauffman update function , cf. Figure 6, left, is the change-of-mind rela- 

   tion,--f,of(G, SG,rl <G), the 1-restrained synchronous regulation game, 
   and the steady states are the change-of-mind equilibria, Egc°m. 

 — The Thomas update function, cf. Figure 6, right, is the change-of-mind rela-
1ti

on,—>, of (G, SG, (r1 )gEG, (<g)gEG), the 1-restrained asynchronous regu-
   lation game, and the steady states are the change-of-mind equilibria, Eq`OM 

s For example, for eliminating "false cycles" arising due to vastly differing kinetics for 
  two or more reactions, e.g., in the standard 4-variable model of phage A [17].
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 Ka((_, croo)) = cIl 
KLJ((_, croi)) = cIo 
Kcj((_, cro2)) = cIo

(clo,croo) T N 
(clo,cro1) (cll,croo) 

  I (cll,crol) 
N (cI0, cro2) 0-4 (CI l, cro2)

(do, croo) 

(do, cro1) /, `\(cll,croo)          ~I 
  ?'Cy14,A T 

       (cli,croi)\\ 

(cIo, cro2)(cll, cro2)

Kc,„ ((cI0 , croo) ) 
K, „((clo, crol)) 
Kc,„((cI0, cro2)) 

K,„„((cll,-)) =

= cro2 

= cro2 

= croo 

croo

(clo,croo) 
C ^ y 

(cIo, croi))(cll, croo) 

Iv (cll,croi) 

(cIo, cro2) (c/l, cro2)

(clo,croo) 

(cIo, crol) : ''•. (cll, croo) 

           

• r:• 1•~'•• .• 

(cll,crol) 
                r. • 

(clo, cro2) 4.......* (c/l, cro2)

Fig. 7. A-phage C/P game.

— The upper left hand-side diagram describes the convertibility relation. 
— The upper right hand-side diagram describes the resulting C/P game. 
— The lower left hand-side diagram is the preference relation of cI . 
— The lower right hand-side diagram is the preference relation of cro .

Moreover, and in both cases, the static (dynamic) steady states are the change-
of-mind equilibria that are also (not) Nash equilibria, EqaN 

Proof The statements about the update functions follow by construction. 
The statements about static vs dynamic equilibria are questions of terminology, 
according to Proposition 4: "singleton change-of-mind equilibria are Nash equi-
libria”. That steady states and change-of-mind equilibria coincide follow from 
Lemma 7 and (the proof of) Theorem 5, further to the characterisation of steady 
states as terminal strongly connected components in [3] . ^ 

  In Figure 7 we depict the full regulation game of 2-variable )-phage.

5 A Fixed-Point Construction

The original Thomas characterisation of steady states is in terms of fixed points 
of the considered update function [17]. As noted earlier, that function is a specific 
instance of the following function.
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Definition 13 (Upgrade)  V(S) = UsEs{s' e S s—>*s'}

We first note that V always has fixed points.

Lemma 14 ([14]) The fixed points of VL is a non-empty, complete lattice. 

Proof V is monotonic on the complete lattice P(S) because –** is reflexive, 
and we are done by Tarski's Fixed-Point Theorem [16] .^ 

  Example fixed-points are the empty set, 0, and the whole set, S. The interest-
ing point is that the change-of-mind equilibria are exactly the least non-empty 
(pre-)fixed-points of the upgrade function.

Lemma 15 ([14]) Consider some (A, S, (>-a )aEA, (4a)aEA)•

Egcom (I4 ) 

~ (Ls]) = Ls] A (VS' . 0 c S' c Lsi = 9/(s') s')

  The characterisations of steady states in [17] and in [3] therefore coincide, 
with the proviso that the fixed points are least non-empty, and both are instances 
of our more general theory of dynamic equilibria in rewriting game theory.

6 Conclusion

In this article we introduce a game-theory based framework to model gene reg-
ulatory networks. We show that a discrete Nash equilibrium can be viewed as a 
generalization of steady states in discrete models (TSCC). More, we show that 
Thomas' and Kaufinan's models are particular instances of a more general game 
construction (that conceivably could have other interesting instances). Game 
theory aims at describing equilibria coming from interactions between agents. 
One way of viewing Nash-style equilibria is that they are logical expressions cap-
turing the functional units at the level of abstraction above the one at which the 
considered game exists. In this paper, for example, we have shown that change-
of-mind equilibria can be used to predict what gene expression will take place. 
In other words, we have moved from the chemical abstraction level of protein 
binding and catalysis captured in expression games, up to the biochemical ab-
straction level of, e.g., phage A's lysogenic and lytic states. At the other end of 
the spectrum, Maynard Smith has shown that a game-theoretic analysis of the 
ecological concept of fitness leads to the formal substantiation of Darwinian evo-
lution, i.e., "survival of the fittest". Our future work concerns similar treatments 
of the various abstraction levels in between, namely chemical, biochemical, cellu-
lar, multi-cellular and environmental level. Game theory may provide a unified 
framework to encompass theory occuring at different levels and to provide a 
suitable framework to deal with interactions between levels in order to get an 
integrative theory of biology.
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