
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title

Layered Object-Oriented Application Frameworks

for Extensible CVS Proxy to Support Configuration

Management Process

Author(s)
Fujieda, Kazuhiro; Hayasaka, Ryoh; Ochimizu,

Koichiro

Citation

Research report (School of Information Science,

Japan Advanced Institute of Science and

Technology), IS-RR-2003-012: 1-7

Issue Date 2003-09-26

Type Technical Report

Text version publisher

URL http://hdl.handle.net/10119/8436

Rights

Description
リサーチレポート（北陸先端科学技術大学院大学情報

科学研究科）

Layered Object-Oriented Application Frameworks for

 Extensible CVS Proxy to Support Configuration

 Management Process

Kazuhiro Fujieda*, Ryoh Hayasaka**, and Koichiro Ochiinizu*

 September 26, 2003

IS-RR-2003-012

* School of Information Science

Japan Advanced Institute of Science and Technology (JAIST)

 Asahidai 1-1, Tatsunokuchi Ishikawa, 923-1292 Japan

{fujieda,ochimizu}@jaist.ac.jp

** SOUMU Corporation

1-29-9 Hatagaya, Shibuya, Tokyo, Japan

 ryoh@soumu.co.jp

Layered Object-Oriented
 to Support

Application Frameworks for Extensible

Configuration Management Process

CVS Proxy

 Kazuhiro FujiedaRyoh Hayasaka
Japan Advanced Institute of Science and Technology SOUM Corporation
1-1 Asahidai, Tatsunokuchi, Nomi, Ishikawa, Japan 1-29-9 Hatagaya, Shibuya, Tokyo, Japan

fujieda@jaist. ac.jpryoh@soumu.co.jp soumu.co.jp

 Koichiro Ochimizu
 Japan Advanced Institute of Science and Technology

ochitnizu@jaistac.jp jaist.ac.jp

Abstract

 CVS (Concurrent Versions System) is widely used in var-
ious software development projects. The reason is that it is
simple to deploy and use, and little regulates the process of
configuration management (CM), unlike rich featured CM
systems. As a consequence developers need to perform the
CM process of their project by hand. We propose an exten-
sible proxy server for CVS. It allows developers to add their
own extensions supporting their process without any modi-

fication to CVS. We use object-oriented application frame-
works to realize this extensibility. The architecture of the

proxy consists of one library layer and two framework lay-
ers: the CVS adapter, the basic system framework, and
extension frameworks. The basic system framework pro-
vides primitive and wide extensibility, and each extension

framework provides domain-specific extensibility. Develop-
ers can implement extensions with low programming cost
with appropriate use of each layer We present an extension

framework for access control mechanisms, and two access
control mechanisms as the examples of extensions.

1. Introduction

 Many software development projects have adopted con-
figuration management (CM) systems to facilitate the im-

plementation of CM. Existing CM systems offer different
spectrums of functionality at different levels [3]. The pro-
cess of CM in each project is different from others. The
functional requirements to CM systems are also different in
each project. It is hard for one single system to provide all
the functionality required for all projects. Such systems as
offer wide spectrum of the functionality consume too many

human and computer resources for small projects to deploy
and use them [2].

 Open source software (OSS) projects have lightweight
CM processes. Each project does not rarely define the work-
flow of its process, nor even keep the document about it.
Whether explicit or not, they have many variations of the

process. You can see some variations in [7] [9] [8]. Most
OSS projects adopt CM systems supporting only version
control. The representative of them is CVS [5]. CVS little
regulates CM processes and supports distributed concurrent
work via the Internet. The functionality regulating CM pro-
cesses too much does not help their work. For example,
UCM (Unified Change Management), the change control
functionality in ClearCase [6], assigns one branch to one
developer and isolates it from other developers. It cannot fit
the branch usages in most OSS projects and even in other
kinds of projects.

 These projects don't necessarily need such functional-
ity. Developers and managers in each project implement
its process by manual procedures. In large-scale projects,
the costs of the implementation become too large to be ac-
cepted. Actually, CVS provides a minimum extent of ex-
tensibility. It lets users specify certain programs invoked
by CVS in specific events. Some projects use this extensi-
bility to implement some facilities reducing the costs. But
CVS provides only limited and fixed chances to invoke pro-

grams, and passes only limited information to these pro-
grams. It can invoke such programs only before the commit
command or after successful executions of all command,
and pass only the target module name of the command and
a tag name, if the command is `tag', to the programs. They
cannot necessarily implement all facilities which they need.

 To extend this extensibility, we provide an extensible

proxy server for the CVS protocol. CVS use a client/server
architecture with this protocol over TCP. A server main-

1

Client

 CVS

protoco

Extensible CVS Proxy

CVS Adapter

CVS
protocol

Server

Figure 1 . Overview of the architecture

tains a repository and takes almost of all processing in CVS.
Clients simply send information necessary for the process-
ing to the server. The proxy server is settled between the
server and each client, and modifies requests and responses
in the protocol according to the extensions integrated into it
by users. These extensions can intercept any request or re-
sponse so it can provide a wider range of extensibility than
the previous way. Users can use their normal CVS client as
long as extensions don't modify the protocol itself.

 We design the proxy with the composition of one library
layer and two layered object-oriented application frame-
works [1] to provide the extensibility. The library layer
named "CVS adapter" processes the binary representation
of the CVS protocol. One framework layer named "ba-
sic system framework" provides normal behavior as a CVS

proxy and primitive and wide extensibility. Another frame-
work layer named "extension framework" provides extensi-
bility to support specific domains of extensions. Users can
implement necessary facilities and integrate them into the

proxy at a low programming cost with the proper use of
these layers.

 This paper is organized as follows. Section 2 illustrates
the architecture of the CVS proxy. Section 3 shows the de-
tails of the CVS adapter and the basic system framework.
Section 4 shows the extension framework to implement var-
ious access control mechanisms, and two examples of ex-
tensions with this framework. Section 5 discusses related
work. Finally, section 6 gives conclusions and future work.

2. Overview of the architecture

 Figure 1 illustrates the architecture of the proxy. The

following outlines three layers in this figure.

compressed. The CVS adapter handles these streams, cut
each request or response from them, and then convert it to
an event object with its name and all arguments.

Basic System Framework The basic system framework
setups the CVS adapter and behaves as a CVS proxy. It
defines the flow of control in the proxy, and how to dispatch
each event object to the corresponding handler. The handler
corresponds the extension 2 and the extension frameworks
in Figure 1. These handlers can modify the event object and
the flow.

Extension Framework It requires the knowledge of the
details about the protocol to define the handlers. A mean-
ingful extension requires not only a handler class but other
additional classes. It takes the high programming cost to
define these handlers and additional classes for every exten-
sion from scratch. The extension frameworks are prepared
for reducing the cost to implement the same expected kinds
of extensions.

 The following sections illustrate the detail designs of
these layers.

3. CVS protocol layer and basic system frame-

 work

 Figure 2 shows the class diagram of the CVS adapter and
the basic system framework. The left side of it shows the
former and the right side shows the latter. Notice that we
omitted the elements to handle errors and construct objects
from the figure and will little mention them in the following
because of simplification.

CVS adapter In the CVS protocol, a command executed

by the CVS client, such as `checkin', `update', `checkout'

or else, consists of many requests and responses. The in-

put and output streams between a server and a client can be

3.1. CVS Adapter

CvsIO cuts one line or one transmission of one file in the

streams. There are two instances of this class. One han-

2

Infrate

(from Zlib)

Defrate

(from Zlib)
1

CvslO

etbrest_of_input

'readline()
4writeline()
4readfile()

writefile()
44ush()
'close

_write(4
close_read() 4'set

_zlevel()

t;,1..2 «instanciate»

10

'e'read()

write()
4close_read() '>close

_write()

Proxy

4main()

1

send analyzer
N

\ \ 1
1 //

cfet

~/ /S2rver

/1

«Interface»
 Analyzer

4receive(CvslO s) : Event...
t'send(CvslO s , Event ev)...

ControlFlow

CvsAdapter

t`receive(): EventSeqence
4send(events : EventSeqence) ...

'state = CLIENTR

,'Ioop()

%fter_clientRO ' before
_clientSO 4

after_clientS0
4after_serverRO 4

before_serverS0
8after_serverS0

«instanciate»

ExtensibleControlFlow

if

analyzer

t'after_clientRO '%efore
_clientSO

def loop
 while true

 case state
when CLIENT_R

 events = client.receive()
 after_clientR(events)

when CLIENT_S
before_clientS(events)
if state == CLIENT_S
client.sendO
after_clientSO

end
when SERVER_S b

efore_serverS(events)
if state == SERVER_S
server.send(eve...

dispatc er

N
receive

RequestAnalyzer

ResponseAnalyzer
«instanciate»

EventSeqence

Otype

Ois_concluded

o..*

«Interface»
Dispatcherinterface

``dispatch(e : EventSequence) ...

«instanciate»

Event

oname
Qargs
Pis_request
tis_command

SimpleDispatcher

'dispatch()

I EventHandlerl

def after_clientR(events)
 dispatcher.dispatch(events)

 case event.type
 when RESPONSE
 state = CLIENT_S

 when IGNORE
 state = CLIENT_R

 else
 super(events)
 end

end

«instanciate»

«instanclate»
EventHandler2

handlers EventHandler

4req _Auth() 4
req_Root()

4'req_Valid_res() 'Preq
_valid_req()

4res _Valid_req() 4
res_Checked_in()

4 ..0

Figure 2. Class diagram of CVS adapter and basic system framework

dles the stream for a client, and another handles the stream

for a server. In the CVS protocol, each request or response

consists of one line or a few lines. Some of them also fol-

lows one file transmission. The RequestAnalyzer knows the

structure of each request, and the ResponseAnalyzer knows

one of each response. These analyzers return an instance

of Event representing each request or response. They also

flush the stream or set the compression level according to

the protocol.

 Two instances of CvsAdapter are constructed by the ba-
sic system framework so each instance has proper analyzers
and one CvsIO object. Each instance corresponds to either
a client or a server. CvsAdapter does not know anything
about the protocol, but handles sequences of Event objects.
It does not have to handle such sequences if the basic sys-
tem framework behaves as a simple proxy. But an exten-
sible proxy may pass multiple requests to a server against

one request from a client.

dle this case.

The operations in this class han-

3.2. Basic system framework

 The basic system framework defines the control flow of

the proxy, how each event is dispatched to the correspond-

ing handlers, how to define the handler.

3.2.1 Control flow of the proxy

In the CVS protocol, a client sends many requests not re-

quiring any response, concludes with one request requiring
responses called `command', and then wait them. Almost

all the command requests correspond the actual CVS com-

mands. A server sends many responses against the request,

and concludes with the either `error' or ok' response, and

then waits requests. This flow of control is shown in the

3

•,v

[
Receive a request

 from client

[con

 Send a request to

 server

luded]
telse

t else] [response required]

Send a response

 to client

 Receive a response

 from server

i

Figure 3. Default flow of control

 •. Invoke dispather " (after clientR)j

[a request / Receive a request discarded or,/[siSend request(s)'`~
 from clientI`reserved Y /to server

 i

i

[concluded] [response ;l -I....
 changed to /[else]I!

 else]request(s)U` % [a request / + changed to '1 response(s)] -7-------......,,_/[response required]

Send response(s)/ [a response(Receive a response
 to clientr--.`~=-- ~ discarded or,, from server—_ _...,else1r^ reserved]

 i

Invoke dispatcher"\, ., (before clientS))

Figure 4. Extensible flow of control

Figure 3 ControlFlow defines it and allow its subclass to

intercept and change the flow at some timings.

ExtensibleControlFlow defines another flow of control

and provides chances to change the flow to the extensions.

This flow of control is shown in Figure 4. It puts the fol-

lowing assumptions on the behavior of the extensions. Each

extension may change one request from the client into an-

other request or a sequence of requests to the server. It may

also discard or keep the request so it isn't sent to the server.

Moreover, it may change it into responses to the client. It
may change one response from the server likewise.

3.2.2 How to dispatch events to handlers

ExtensibleControlFlow uses one instance of a concrete class

realizing Dispatherinterface to dispatch each event to the

corresponding handlers. The basic system framework pro-

vides SimpleDispather as such class. You may, however,

define another class and let the ExtensibleControlFlow use

4

its instance.

 A SimpleDispather object (a dispatcher) has some Even-
tHandler objects (handlers). The dispatcher invokes an op-
eration of each of the handlers on an event in the order
where they were registered. If a handler changes the event
into another, it invokes the rest of the handlers on another.
If a handler consumes the event, it does not invoke the rests.
If a handler changes the event into a sequence of events, it
invokes the rests just like these events are fed separately.

Rationale In the CVS protocol, An actual command

forms a sequence of many requests containing its arguments
and a concluding command request. Handlers cannot know

how the arguments are used until it receives the command

request. If a handler wants to change the arguments ac-

cording to the command, it must consume all request events
until receiving the command, and then return the resulting

sequence of events. Each request sent to the proxy as an

argument may include a whole contents of a file, so these

handlers also consumes the resources of the proxy server. If
a handler does not want to change anything but cause side

effects or only change the result of the command, it can pass
the requests to the server. The dispatcher is so designed as

to manage such two types of handlers.

3.2.3 How to define handlers

Each extension to the proxy is implemented as a subclass
of EventHandler. EventHandler defines operations for all
request and response events. These operations do not any-
thing by default. It is necessary to define all operations in
one class because some extensions may have to track the

protocol and record its state. If these operations were sepa-
rated into several classes, the instances of those subclasses
might have to share an instance recording the state.

4. Extension framework

 Although CvsAdapter manages the byte representation
of the CVS protocol, it requires a deep knowledge of the

protocol to implement an extension with the basic system
framework. It is necessary to prepare some frameworks
for making it easier to implement the same kinds of ex-

tensions. We call them `extension frameworks'. They are
implemented as extensions to the basic system framework.

 CVS only supports the access control to specify who can
write or not the whole repository. More sophisticated con-
trol depends on the underlying operating system. It needs
access control at least better than CVS to perform change
control properly, so we choose the framework to implement
various type of access control as an example of extension
frameworks. We will show the following two extensions

implemented with the framework: ACL (Access Control

ACLManager

EventHandler

 'bcheck()

ll

ACLTarget

{orderd) .\L O..n
ACLUser

>name

Context

user

,command
oarguments

1
r.~

AccessController

t'req_Auth() t'req_Root() ®
req_Directory() t'req_Argument() ®
req_Set() 'breq_ci() 4
req_diff()

4req_tag()

4check(

0..n

Target

ACLGroup

RBACManager

''check()

Variable

<>name
()value

{orderd)

0..n

RBACRoIe

O..n j

..,I RBACTarget

 ri

1..n Parmission

allow

ocommand

_.l
1..n

RBACUser

oname

Figure 5. Class diagram of an extension framework and two extensions

List) independent of underlying OS and RBAC (Role Based

Access Control). The class diagram of the framework and

these extensions is shown in Figure 5

4.1. Extension framework for access control

 Access control generally determines which subject can
or cannot have which type of access to which object. The
models of access control are roughly divided into either
Access Control List (ACL) or capability list. The former
defines the policies on each object and the latter define
them on each subject. In either model, the policies are de-
scribed about subjects, objects, and types of access. Access-
Controller in Figure 5 overrides several methods of Even-
tHandler to extract this triple from a sequence of requests
flowing in the basic system framework and store it into a
Context object. When a user connects the proxy with rsh or
ssh without the password authentication in the CVS proto-
col, AccessController gets the user name with the process
ID of the proxy because it cannot know the user name via
the protocol.

 AccessController passes the requests to the server until
receiving a command request. It invokes the check opera-
tion for each command request to let its subclass determine
whether the command is acceptable or not. If it is accept-
able, AccessController return it to the basic system frame-
work. Otherwise AccessController changes it to the `error'
response. When the client accepts this response, it closes
the connection to the proxy. The proxy also closes the con-
nection to the server in its error handling, so the requests
sent previously are discarded by the server.

 The Variable class holds user variables. Users can set a

user variable by specifying the option `-s' to the cvs com-
mand with an argument VARIABLE=VALUE'. This argu-
ment is sent to the server with the 'Set' request. This op-
tion is originally prepared to pass some variables to the pro-

grams invoked by CVS. It is also useful for passing some
variables to the extensions. AccessController intercepts the
`Set' requests and records these arguments in Variable ob-

jects.

4.2. ACL (Access Control List)

 ACL defines policies as a list of pairs of a subject and
an access type for each object. ACLUser and ACLGroup,
ACLTarget, and Permission in Figure 5 are to represent sub-

jects, objects, and access types respectively. ACLManager
constructs these instances to represent the policies accord-
ing to some configuration files when the proxy start up or
these files are modified. ACLManager override the check
operation to determine whether a command is acceptable or
not according to the policies and the Context object. This
operation iterates checking policies for each target, When
both of the user and the command in the Context object
matches a policy, the operation returns the value of the `al-
low' attribute in the Permission object corresponding to the

policy.

4.3. RBAC (Role Based Access Control)

 RBAC is a kind of capability list and defines the poli-
cies for each role assigned to subjects [4] . The relationships
of elements in Core RBAC are shown in Figure 6. Users
are assigned to roles, permissions are assigned to roles, and

5

Users
User

 User

sessions

 Assignment

Sessions

Roles

Session

Roles

Permission

Assignment

Opera

tions
Objects

Permissions

Figure 6. Relationships between elements in

RBAC

users acquire permissions by being members of roles. Core
RBAC includes the concept of user sessions, which allows
selective activation of roles. Hierarchical RBAC also sup-

ports role hierarchies, which define an inheritance relation
among roles. The concept of role hierarchies is an essence
of RBAC, but we do not support it to avoid its complex-
ity. The concept of session roles is attractive to support the
change control in some OSS projects.

 These OSS projects often give the write permission to
their repository to contributors rather easily. These con-
tributors are called `committers' named after the commit
command of CVS. They can write the repository although
they have to satisfy some requirements. The Committer's
Guide of the FreeBSD project [8] requires committers to
discuss any significant change with other committers be-
fore committing. It also requires that changes against an
area owned by a `maintainer' are reviewed by him/her be-
fore committing. But these are merely verbal rules. From
the point of view of CVS, all of committers and maintain-
ers have the write permission to the whole repository. Al-
though the committers respect these rules, CVS can't pre-
vent their careless mistakes. We believe the concept of ses-
sion roles can prevent them. Each committer can usually
specify his/her session role as an ordinary contributor, and
can specify the session role as a committer when he/she re-
ally commits his/her changes.

 RBACUser, RBACRoIe, Permission, and RBACTarget
in Figure 5 correspond Users, Roles, Operations, and Ob-

jects in Figure 6 respectively. Roles are not hierarchical but
ordered to make the first role assigned to the user of the
default session role. The notion of the default session role
is defined in RBAC. We, however, introduce it for user's
convenience. Users can specify their session roles via the
`-s' option mentioned above. The RBAC extension uses

the ̀ ROLE' variable to specify the session roles. Users can
invoke the command like `cvs —s ROLE=committer
commit'. When users want to specify multiple roles, they
can list the roles separated with a semicolon.

6

5. Related work

5.1. NUCM

 NUCM [10] provides a generic repository model and a

programmatic interface of it to implement new CM systems
on the generic model. This approach tackles the following

problem similar to one in our approach.

... the basic functionality provided by a given

CM system is fixed; if specialized functionality
is needed in a particular situation ...

A particular situation is specific to a CM system in this ap-

proach, while the situation is specific to a project in our ap-
proach. NUCM provides only low-level generic model not
specifying even any version model and concrete CM pro-
cedures to let us implement new models and procedures.
When a project implements a CM facility specific to it with
NUCM, it has to implements a CM system itself at the first

place. The programming costs to do it do not pay. Our ap-
proach provides extensibility to an existing CM system, so
it does not take lower programming costs to implement a

project specific facility than NUCM.

5.2. Visual SourceSafe

 Visual SourceSafe (VSS) allow users to hook into and
control various events within it [11]. This is accomplished
through the creation of a VSS add-in and the registration
of it as a add-in. Most actions accessing a repository, which
called a database in CVS, trigger corresponding events. The
add-in can trap these events and prevent them from occur-
ring before they actually occur, and trap them after they oc-
curred. VSS provides well designed interfaces to access the
database. The add-in can use them to read and write it. Our
approach does not allow extensions to access the repository
because it can break the consistency of the behavior as a
CVS proxy. But we consider most extensions get necessary
information through the CVS protocol.

 VSS clients share the database through the file sharing in
Windows and carry out all functions of VSS. The extensi-
bility with the add-ins mentioned above is provided by the
clients. When a project implements the facilities to support
its CM process with this extensibility, the members of the

project must share the same add-ins. This architecture helps
the add-ins to interact with both of users and the database.
It, however, is not feasible for distributed projects via the In-
ternet, because it is difficult for all members of each project
to share the exactly same add-in. Our approach focuses it
and can enforce the facilities on all members accessing the
repository via the proxy.

VSS client

Add-in

Database

VSS client

Add-in

VSS client

Add-in

User I User 2 User 2

Figure 7. Architecture of Visual SourceSafe

6. Conclusions

 In this paper, we have discussed the architecture of the
extensible CVS proxy. This proxy allows a project to inte-

grate facilities necessary for its CM process into itself. It
has layered object-oriented frameworks of the basic system
framework and the extension frameworks. The former de-
fines the default flow control of the proxy and provides its
extensibility. It defines a customized control flow to dis-

patch the events of requests and responses in the CVS pro-
tocol to corresponding handlers. It also defines how events
are dispatched to the handlers and how the handlers are de-
fined. We presented an example of the latter to implement
access control mechanisms, and it can help to implement
two extensions of ACL and RBAC. We showed Core RBAC
including session roles could be implemented as an exten-
sion to the proxy.

 It is rather easy to design the extension framework for ac-
cess control mechanisms, because they has been researched
and consolidated since long ago. We suppose we can pro-
vide extension frameworks for only limited kinds of exten-
sions, that is, the same kinds of simple extensions, or ones
of which models are fully consolidated. For the former
kinds of extensions, we suppose the extensions of prescrib-
ing naming conventions of files or tags, or writing styles of
logs on committed changes, or coding styles. As for other
kinds of complex extensions, It may be necessary to ,im-

plement them from scratch or on the basis of other similar
extensions or extension frameworks.

 Object-oriented frameworks are generally sophisticated
through iterative reuse in various applications. The frame-
works shown in this paper should be redesigned through im-

plementing various extensions and extension frameworks.
We will implement some extension frameworks for the sim-

ple extensions mentioned above, and also implement exten-
sions to support explicitly change control specific to each

project as mentioned in the Committer's Guide.

7

References

 [1] D. Baumer, G. Gryczan, R. Knoll, C. Linienthal, D. Riehle,
 and H. Ztillighoven. Framework development for large sys-

 tems. Communications of the ACM, 40(10):53-59, Oct.
 1997.

 [2] I. Crnkovic. Why do some mature organizations not use ma-
 ture CM tools? In Proceedings of 9th International Sympo-

 sium on System Configuration Management (SCM-9), pages
 50-65, 1999.

 [3] S. Dart. Concepts in configuration magement systems. In
 Proceedings of Third International Workshop on Software

Configuration Management (SCM-3), pages 1-18, 1991.
 [4] D. F. Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn, and

 R. Chandramoli. Proposed NIST standard for role-based ac-
 cess control. ACM Transactions on Information and System

 Security, 4(3):224-274, 2001.
 [5] K. Fogel. Open Source Development with CVS. Cori-

 olisOpen Press, 1999.
[6] Rational Software Corporation. Unified Change Manage-

 ment from Rational Software: An Activity-Based Process for
 Managing Change. Rational Software Whitepaper TP710A,

 02/02.
[7] The Apache Software Foundation. Apache HTTP server

 developer information. http : //httpd. apache .org/
 dev/, 2002.

[8] The FreeBSD Documentation Project. Committer
 guide. http://www.freebsd.org/doc/en_US.

IS08859-1/articles/committers-guide/, Feb
 2003.

[9] The Mozilla Organization. Mozilla hacking in a nutshell.
http: //www.mozilla.org/hacking/, Feb2003.

[10] A. van der Hoek, A. Carzaniga, D. Heimbgner, and
 A. Wolf. A testbed for configuration management policy

 programming. IEEE Transactions on Software Engineering,
28(1):79-99, Jan 2002.

[11] T. Winter. Visual sourcesafe 6.0 automation.
http://msdn.microsoft.com/ssafe/
technical/articles . asp, Sep 1998.

