
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
Dynamic binary code translation for data prefetch

optimization

Author(s) Ukezono, Tomoaki; Tanaka, Kiyofumi

Citation
13th Asia-Pacific Computer Systems Architecture

Conference, 2008. ACSAC 2008.: 1-8

Issue Date 2008-08

Type Conference Paper

Text version publisher

URL http://hdl.handle.net/10119/8482

Rights

Copyright (C) 2008 IEEE. Reprinted from 13th

Asia-Pacific Computer Systems Architecture

Conference, 2008. ACSAC 2008., 1-8. This material

is posted here with permission of the IEEE. Such

permission of the IEEE does not in any way imply

IEEE endorsement of any of JAIST's products or

services. Internal or personal use of this

material is permitted. However, permission to

reprint/republish this material for advertising

or promotional purposes or for creating new

collective works for resale or redistribution

must be obtained from the IEEE by writing to

pubs-permissions@ieee.org. By choosing to view

this document, you agree to all provisions of the

copyright laws protecting it.

Description



Dynamic Binary Code Translation for Data Prefetch Optimization

Tomoaki Ukezono and Kiyofumi Tanaka
Japan Advanced Institute of Science and Technology

1-1 Asahidai, Nomi-city, Ishikawa 923-1292 Japan
{t-ukezo, kiyofumi} @jaist.ac.jp

Abstract

Recently, CPUs with an identicalISA tend to have dif­
ferent microarchitectures, different computation resources,
and special instructions. To achieve efficient program
execution on such hardware, compilers have machine­
dependent code optimization. However, software vendors
cannot adopt this optimization for software production,
since the software would be widely distributed and there-
fore it must be executable on any machine with the same
ISA. On the other hand, there is a significant gap between
processor's operational speed and memory access speed,
and currently the gap is increasing. In this paper, we intro­
duce several special prefetch instructions that are suitedfor
memory access patterns that frequently appear in program
execution. However, such special instructions are utilized
only by compiler's machine-dependent code optimization,
and therefore software vendors do not utilize such instruc­
tions. To increase opportunities for effectively exploiting
the instructions for optimization, we propose dynamic op­
timization techniques that consist of dynamic code modi-
fication and analysis methods of memory references. We
evaluate the techniques by using SPEC2000 benchmarks.

1 Introduction

Recently, software development methods are increas­
ingly growing by using dynamic link library, dynamic class
loading, and virtual machine techniques. Furthermore, by
using those techniques, automatic program update can be
limited only to code difference, and only the difference
should be distributed across computer networks.

In such software distribution, software vendors do not
deliver source codes to clients because of easy installation.
In most cases, the clients can only receive pre-compiled bi­
nary codes of the software.

On the other hand, advances in hardware are notable as
typified by evolution of recent CPUs. Even if CPUs follow
an identical ISA (Instruction Set Architecture), the CPUs

978-1-4244-2683-6/08/$25.00 ©2008 IEEE

can have different microarchitectures, different computa­
tion resources, and special instructions on each implemen­
tation. (i.e. modem x86 architecture family maintains up­
ward i386 ISA compatibility to execute older binary codes.)
To achieve efficient program execution on such CPUs, com­
pilers provide machine-dependent code optimization. How­
ever, software vendors cannot adopt the optimization if the
products are distributed, since the software must be exe­
cutable on any machine with the same ISA.

In order to solve the problem, dynamic optimization
techniques are effective. Dynamic optimization techniques
can optimize binary codes at run time. In other words, the
dynamic optimization is client-side (not vendor-side) opti­
mization. For Example, JAVA JIT compiler translates byte
codes to native (optimized) binary codes at class loading
time, and reduces overheads due to virtual machine execu­
tion. However, the translation cannot be applied to all parts
of codes, and therefore the remaining byte code execution
is ten times or more inherently-slow compared with native
code execution. Moreover, the JIT compilation overhead is
incurred at every class loading time even if the same class
is loaded again.

In this paper, an infrastructure for dynamic optimiza­
tion, Hybrid Dynamic Optimization System (HDOS) which
is proposed by our previous work [1], is exploited. The
HDOS aims to perform translation from native binary codes
to optimized native binary codes. The HDOS evaluates pro­
gram behavior while the program is running. One feature is
that the HDOS can reuse optimized binary codes at the next
or later execution time without optimization overhead. The
HDOS is organized with dedicated hardware inside a CPU
and operating system support. The dedicated hardware is
called User Definable Trap (UDT). Software called by the
trap is optimizer routines which is provided by an operating
system.

We focus on data prefetch optimizations as application
of the HDOS. Data prefetch techniques make CPU issue a
non-blocking read request before the memory block is ac­
tually used. The memory block read from main memory
is loaded into the cache in the background of program ex-

Authorized licensed use limited to: Japan Advanced Institute of Science and Tech. Downloaded on November 2, 2009 at 03:21 from IEEE Xplore.  Restrictions apply. 



ecution. If the memory block arrives at the cache mem­
ory before the block is actually used, the data prefetch can
eliminate the memory access latency. Three data prefetch
methods, sequential prefetch, indirect prefetch, and indirect
sequential prefetch are proposed in this paper. We introduce
three types of instructions to implement the three prefetch
techniques. By analyzing memory references and replacing
existing load and store instructions with the instructions, the
HDOS optimizes target binary codes.

This paper is organized as follows: Section 2 gives an
overview of the HDOS. Section 3 describes a method of
analysis of memory references and the three prefetch op­
timizations. Section 4 shows how to reuse optimized bi­
nary codes provided by the HDOS. Section 5 shows results
of performance evaluations of prefetch optimization by the
HDOS. Section 6 describes related works of prefetch meth­
ods and dynamic optimizations. This paper is concluded by
Section 7.

2 Overview of the HDOS

The HDOS consists of auxiliary hardware inside a CPU,
dedicated to trap functions, and trap handling software in­
stalled in an operating system. The optimizer routine is im­
plemented as a trap handler. In this section, an overview of
the HDOS is introduced.

The trap hardware generates trap events as the need
arises, which is controlled by the software. The proposed
trap hardware provides a mechanism, User Definable Trap
(UDT). Figure 1 shows a block diagram of the UDT hard­
ware. In the figure, for example, execution of BNE gener­
ates a trap when the branch is taken.

The UDT generates a trap when the reorder buffer com­
mits a bottom entry to the register file. The Trap Event
Driver (TED) is a main circuitry. The TED perfonns two
tasks simultaneously. One is to store the bottom entry into
the Retired Reorder Buffer Entry (RRBE) Buffer. The other
is to search the Trap Definition Table (TDT) for the entry. A
TDT entry is a set of an operation code and instruction be­
havior. When an entry in the TDT matches the retired entry,
the UDT generates a trap. Note that the RRBE and TDT
entries can be accessed by a trap handler.

Conventional CPU design allows the trap handler to have
a control only when the CPU generates traps determined by
the CPU designer, such as exceptions, external interrupts,
and system-calls. The DDT can invoke a trap handler, when
trap conditions specified by the CPU users (not CPU de­
signer) are satisfied. When the UDT is used as dynamic
optimization environment, the trap handler can be imple­
mented as an optimizer routine.

Reorder Buffer

Trap Definition Table
IJEQ M:liAYS

BIE TAKEN

/lOT BAaorMiP-
TAKEN

LOBU ALWAYS

LDL ALWAYS

LDQ ALWAY8

Insert by Software Interface

refer to TOT

TOT Hit

"Read by Software Interface On TOT Hit, the Trap occur

Figure 1. User Definable Trap (UDT) Hard­
ware.

3 Analysis and Optimizations

The HDOS is a client-side optimization method as noted
in the Section 1. For this reason, the HDOS makes it easy to
exploit new instructions for the optimization, since the opti­
mization is a machine-dependent code optimization. Three
types of instructions for the optimization are introduced in
this paper. The instructions, sequential prefetch, indirect
prefetch, and indirect sequential prefetch instruction, are
suited for memory access patterns frequently appearing in
a program. The sequential prefetch instruction is effective
in sequential accesses such as accesses to array data struc­
ture. The instruction is referred to as Sequential Load or
Store Instruction (SLSI) in this paper. The indirect prefetch
instruction is effective in indirect accesses such as accesses
via pointer references. The instruction is referred to as Indi­
rect Load Instruction (ILl). The indirect sequential prefetch
instruction is effective in indirect accesses such as accesses
via pointer-array references. The instruction is Sequential
Indirect Load Instruction (SILl). In later subsections, the
instructions and analyses which is required to exploit the
instructions are described in detail.

3.1 SLSI

One of applications of the HDOS is to utilize SLSIs.
This instruction has two functions; one is the same as by
load or store, and the other is a sequential prefetch func­
tion. The two functions are realized in a single instruction.

Authorized licensed use limited to: Japan Advanced Institute of Science and Tech. Downloaded on November 2, 2009 at 03:21 from IEEE Xplore.  Restrictions apply. 



~
set by softw.-e

interface

PC Stride v..... Stride L.nath Last Adchu Execute

Ox12000 0 0 0 0x200000 1

Ox12100 1 0 0 Ox21(J(J()(J 30

Ox12200 1 0 4 0x220tJ0I 100

Ox12300 0 1 0 0xDIJ(J18 50

Figure 3. The history table of memory refer­
ences.

Figure 2. An example of behavior of SLSI.

Therefore, the optimization has only to replace a load or
store instruction in a program code with the SLSI.

3.1.1 Behavior of SLSI

Figure 2 illustrates run-time behavior of SLSIs.
In the figure, LDQU-.SEQJ>OS is one of SLSIs. This in­

struction executes the following three steps. The first step
is to execute the same function as LDQU (LDQU is one of
load instruction in Alpha[2] instruction set). The second is
to calculate a prefetch address by adding a constant value to
the virtual address accessed in the first step. The third is to
issue a prefetch using the calculated address. The constant
value used in the second step is given by the "Stride Length"
register. The stride length is represented by the number of
cache blocks. In Figure 2, LDQU-.SEQJ>OS issues the first
prefetch while accessing the first memory block. Then, the
second prefetch is issued when the LDQU-.SEQ J>OS is ex­
ecuted for the second memory block. This is the case in the
later execution. Consequently, the LDQU-.SEQ -'pOS con­
stantly prefetches a block ahead by the stride length. In this
example, the LDQU-.SEQ-POS causes six cache misses.
After the sixth miss occurs, the LDQU-SEQ-.POS does not
generate cache misses.

3.1.2 Analysis and Optimization for SLSI

There are three steps for the analysis and optimization of
a program; Step 1 is for loop detection, which is required
since sequential accesses by load or store instructions fre­
quently appear in a loop structure. Step 2 is to create a
memory access history table that holds statistics of mem­
ory accesses during the loop execution, examine the table
to find load and store instructions that generate sequential
accesses, and then list candidates for instructions that could
be replaced by SLSI. Step 3, the last step, selects instruc­
tions that should be actually replaced out of the candidates
and modifies the binary code.

In the step 1, the optimizer routine finds loop structure as
follows. The HDOS creates TDT entries to generate traps
when a backward branch is performed. The UDT mech­
anism calls an optimizer routine every time the CPU ex­
ecutes a backward branch instruction in this TDT config­
uration. The optimizer routine reads the RRBE, adds the
instruction address (PC value) to a list for the loop detec­
tion if the branch is not found in the list, and records (in­
crements) the number of executions of the branch instruc­
tion in the list. (Either subroutine calls such as JSR (Jump
to Sub-Routine) or RET (Return from subroutine) are not
added to the list, since they are not related to loop structure.
When the number of executions exceeds a given threshold,
the corresponding backward branch is identified as a loop­
back branch instruction.

In the step 2, after a loop-back branch is identified, a con­
dition is added to the TDT so that the UDT generates traps
when load or store instructions are executed. The optimizer
routine repeats the analysis of memory accesses until the
specified number of execution of the loop-back branch in­
struction is performed. In this paper, this job is referred to
as the observation phase. Figure 3 illustrates a history table
of memory accesses created by the optimizer routine.

The history table in the figure consists of, from left to
right, the PC value for the load or store instructions, bi­
nary value of a flag Stride indicating occurrence of stride
accesses, binary value of another flag Variable indicating
occurrence of non-stride (=irregular) pattern accesses, the
Stride Length, the Last Address indicating the address the
instruction accesses last time, and Execute that is the num­
ber of executions of the instruction.

When a UDT trap occurs, the optimizer routine searches
the history table by using the PC value corresponding to
the UDT trap occurrence, found in the RRBE register. If a
matching entry is not found, the optimizer routine creates a
new entry with initial values for Stride, Variable, and Stride
Length, as shown in the first row. Otherwise, it updates the
history table by the following four steps.

1. Subtract the Last Address from the address referenced
by the load or store instruction that caused the trap.

Authorized licensed use limited to: Japan Advanced Institute of Science and Tech. Downloaded on November 2, 2009 at 03:21 from IEEE Xplore.  Restrictions apply. 



Then the new Stride Length (SL) is obtained.

2. The obtained SL is compared with the old SL in the
table; if the flag, Variable is equal to 0, and the ob­
tained SL is 0 (initial value), or if Variable is 0 and
the obtained SL is equal to the old SL , then Stride is
set to 1, Variable is to 0, and the SL is updated by
the obtained value. Otherwise, Stride is set to 0 and
Variable is to 1.

3. The Last Address is replaced with the new referenced
address.

4. Execution is incremented.

The Optimizer routine repeats the steps of (1) to (4) until
the end of the observation phase is reached.

After the observation phase, the optimizer routine walks
thorough the history table, and finds load or store instruc­
tions that generated sequential accesses. The load or store
instructions that performed sequential referencing during
the observation phase have the Stride being 1 and the Stride
Length being not 0, as shown in the third row of Figure 3.

In the step 3, the optimizer routine replaces the instruc­
tions found in the step 2 by SLSIs. If, however, there are
too many candidates for the instruction replacement in a
loop, replacing all the candidates may lead to unacceptable
performance degradation; When a group of SLSIs prefetch
more data sets than the number of cache ways (associativ­
ity), there is a possibility of cache-index conflicts between
the prefetch requests, and in the worst-case scenario, it puts
the cache at risk for thrashing.

To avoid this problem, the candidates for the instruction
replacement are sorted in decreasing order of Stride Length,
and the top N candidates are replaced with SLSIs, where N
is the number of cache ways.

3.2 ILl

In high level programming languages such as C lan­
guage, programmers often use pointers to cut searching and
handling time for list and tree data structure. When pointer
variables are accessed, virtual addresses which is held by
the pointer variables are stored in cache memory. To utilize
the characteristic, ILl is added to instruction set. The in­
struction has two functions; one is the same as by load, and
the other is an indirect prefetch function. The two functions
are realized in a single instruction.

3.2.1 Behavior of ILl

The indirect prefetch function is provided by a cache mem­
ory system. The cache memory has additional control bits
which indicates whether the block includes memory ad­
dresses (pointer values). When a cache block is loaded, the

;~[I"" ~'a~; PO Pl P2 P3
additional control bits(P-bits) for each cache block

CQTIIilll: ",'. ---- Is pointer?

cache block I§ego I'~1 I ~;-fseg3 I
Pointer(8B) Pointer(8B)

Figure 4. Meanings of P-Bits.

return normal request
requi data

non-blocking cache read request

additional hardware

If the required data's P-bit is one, enter the PCR-queue.

Figure 5. Block diagram of PC-Cache.

P-Bits are set to O. The execution of the ILl sets the control
bit to 1 before it performs the load function. In this pa­
per, the control bit is called Pointer-indicating Bit (P-Bit),
and the cache system is called pointer chasing cache (PC­
Cache). Figure 4 and Figure 5 show meanings of P-bits and
a block diagram of PC-Cache, respectively.

In the Figure 4, it assumes that a cache block size is 32
bytes and an address is 64 bits (8 bytes). In this cache con­
figuration, the four P-Bits for a cache block are required.
Individual bit indicates whether the corresponding segment
holds memory address (pointer value) or not. When the
cache is accessed, the cache checks P-Bits of a cache block.
Values in the segments for which the corresponding P-bit is
1 are used as an address for prefetching.

In the Figure 5, Pointer Chasing Request queue (PCR­
queue) is added to a conventional data cache. If the hit block
includes pointer values, all the pointer values are inserted
into the PCR-queue while the cache returns the requested
data. When the PeR-queue finds idle cycles for TLB, it is­
sues a pointer value in the top entry to TLB. If the pointer
value can be translated to physical address, the physical ad­
dress is issued to the data cache as a non-blocking read re­
quest. If the request causes a cache miss, the request be­
comes a prefetch request. On the other hand, if the request
hits in the cache, P-Bits of the hit block are checked and
then the pointer values, if any, are issued again. This behav-

Authorized licensed use limited to: Japan Advanced Institute of Science and Tech. Downloaded on November 2, 2009 at 03:21 from IEEE Xplore.  Restrictions apply. 



Program Load.....Program Upload

ior means "pointer chasing".

3.2.2 Analysis and Optimization for ILl

To exploit the ILIon the HDOS, references to pointer vari­
ables have to be found in program execution. If the ref­
erences are found, the HDOS simply replaces the load in­
structions for the references with ILl. To find the load in­
structions, the HDOS can use the history table described in
the section 3.1. First, load instructions that have 1 for the
Variable , such as in the fourth row of Figure 3 are listed.
Then, the optimizer routine analyzes the binary code. If a
base register of the load instruction is a destination register
of the other (preceding) 8-byte load instruction 1, the latter
instruction can be replaced with ILl.

Main Memo
/._._..e.i.o~Jy..Ei.'~._ .._.o_oo_ .. _ .. _ .. ,

// Pli ram Header \
{ \
! !

I !
p_vaddr!

!
!

' .. ,~~\ ..
..~

!. !

i !

! !
! i.

! !

! .i
\. ./

\ ...... _ •• _ •• _ •• _ •• _ •• _ •• _ •• _. _ •• _ ._ •• _. - _0' ./

3.3 SILl

The SILl has both SLSI and ILl functionalities. In the
first step of SILl execution, the SILl executes the same func­
tion as ILl except that it does not set P-Bits of the target
block. At the same time, it executes the same function as
SLSI for 8-byte load. Then when the prefetched block ar­
rives at cache memory, the block with all P-Bits asserted
is stored in the cache memory and all 8-byte values in the
block are inserted into the PeR-queue. Using the SILl,
pointer-array data can be prefetched with data that are ref­
erenced by the pointers, in more advance than using ILl.

3.3.1 Analysis and Optimization for ILl

To exploit the SILl on the HDOS, the analysis is based on
SLSI analysis. At the same time as analysis for SLSI, the
HDOS checks possibility of SILl. If the candidates for re­
placement with 8-byte SLSI are found, the optimizer rou­
tine analyzes a binary code. If a destination register of
the load instruction is used for a base address of the other
load instructions, the former instruction can be replace with
SILl.

4 Reusing Optimized Binary Codes

The HDOS can transparently optimize target binary
codes, since the optimization does not require any run-time
software environment such as virtual machines and inter­
preters. Moreover, the optimization does not require any
advance modification of target binary codes, such as code
augmentation. However, overheads of the optimization are
not negligible. For example, cost for executing the opti­
mization routine and inefficient pipeline execution due to
generating UDT trap can diminish the effect of the opti­
mization. Though, optimized binary codes can be reused

1In 64-bit architecture, pointer values are represented in 8-byte data.

Figure 6. An Example of Program Uploader
on ELF Executable Binary Format.

because of the characteristic of "translation from native bi­
nary to native binary". In this section we describe how to
reuse optimized binary codes.

To reuse the results of the optimization, operating system
support is needed. We propose a binary code dump method
which reorganizes an executable file from a program binary
code located in main memory. This method is called a pro­
gram uploader.

Figure 6 shows a program upload example of the case of
ELF32 executable binary format in UNIX system.

In general, a program loader which is included in an op­
erating system function such as UNIX exec system call
locates a binary code on main memory by using informa­
tion on a program header table in an executable file. The
each program header entry has the following information.

typedef struct {
uint32_t p_type;
Elf32_0ff p_offset;
Elf32_Addr p_vaddr;
Elf32_Addr p-paddr;
uint32_t p_filesz;
uint32_t p_memsz;
uint32_t p_flags;
uint32_t p_alin;
Elf32_Phdr;

An important information of ELF32 header entry is
a set of p_offset, p_vaddr and p_filesz. The
p_offset represets an offset from head of the executable
file. The p_vaddr represents memory address that will be
loaded program binary. The p_filesz represets size of
program binary that is copied onto main memory. Before

Authorized licensed use limited to: Japan Advanced Institute of Science and Tech. Downloaded on November 2, 2009 at 03:21 from IEEE Xplore.  Restrictions apply. 



starting program execution, as in the figure, the operating
system sets the file region A on the segment of main mem­
ory A' by using the infomations.

In our proposal, when program execution is over, the
program uploader replaces a binary code of the read only
segment in the executable file with the optimized binary
code existing in main memory, referring to information on
the program header. The p_type holds segment informa­
tion such as read only segment. Program text and read only
data segment should be set by read only. Therefore the
program uploader checks p_type information of program
header and finds segments for program text at first. Then the
program uploader replaces file region (A) with memory seg­
ment (A') by using p_offset,p_vaddr and p_fi1esz
information related to the text segment.

This method should be provided by a system call. In gen­
eral UNIX system, if the she11 uses the system call, the
HDOS and the optimizations can be transparent for system
user and application programmer.

5 Performance Evaluation

In this section we evaluate performance of binary codes
optimized by the HDOS.

5.1 Simulation Methodology

The simulation environment is based on SimpleScalar
3.0 using Alpha binaries[3]. We modified the SimpleScalar
to model in detail a memory system with prefetch functions
and PC-Cache and to add SLSls, ILl and SILl to the Alpha
instruction set. The instructions can be provided by utiliz­
ing miscellaneous instructions in Alpha ISA.

The UDT hardware was not implemented in the simula­
tion model. Instead, the UDT trap detection and the opti­
mizer routine were implemented as simulator codes. The
sim-outorder was simulated with the architecture and func­
tional resources shown in Table 1. The HDOS parameters
are shown in Table 2.

We used twenty-one applications from SPEC2000
benchmark suite [4]. The pre-compiled binaries of the
SPEC2oo0 available from [5] were used in the experiments.
All the benchmarks were run until two-billion instructions
were committed.

5.2 Performance Evaluations for SLSI

Figure 7 and 8 respectively show cache-miss rates and
IPC performance through the program execution when the
HDOS utilizes the SLSI, ILl, SILl. The optimizations are
indicated as individual bars, from left to right,. SLSls, ILl,
SILl, and ALL of the three optimization at the same run
time. Note that the cache misses in these results do not

Table 1. Simulation Parameters of Sim­
pleScalar

issue width 4
data-II cache 64KB 4WAY

32B-BLOCK
data-II access latency 1 cycle
inst-11 cache 64KB 4WAY

32B-BLOCK
inst-11 access latency 1 cycle
unified-12 cache 2MB 8WAY

64B-BLOCK
unified-12 access latency 6 cycles
memory access latency [first]: 120

[inter]: 12 cycles
memory access bus width 8 bytes

Table 2. Parameters of the HOOS

threshold of backward loop count 100
loop-back count for mem-access observation 100
stride length(for SLSI,SILI) 20

include misses on blocks for which a prefetch had been al­
ready issued.

Using SLSI optimization, in the applications except
art, the L2 cache-miss rate was decreased. Especially,
in gzip, mef, wupwise and equake, the miss rate was
significantly decreased. In the applications except art, the
IPC performance was increased. Especially, the gzip was
most improved. This is because the perfonnance of the
gzip depends heavily on accessing to array data structure.
Only for the art, the miss rate and the IPC perfomfance
were got worse, since a prefetch by SLSI caused ineffi­
ciency of the cache usage. The results show the SLSI op­
timization is effective in eleven of twenty-one SPEC2000
applications.

The ILl could not be applied in almost all FP bench­
marks, and the performances were the same as non­
optimized binary codes. Using ILl, in all of the INT appli­
cations, the rate was decreased. Especially, in me f, signif­
icant decreasement was observed. This is because the miss
rate in the me f depends heavily on accesses using pointer
values. Especially, in mef, per1bmk, and gap, nonneg­
ligible performance improvement was observed. In the ap­
plications, the performance depends on indirect accessing.
The performance degradation is not observed in the ILl re­
sults.

In the results of SILl, both of the results are similar to
the ILl results. Main differences from the ILl results are

Authorized licensed use limited to: Japan Advanced Institute of Science and Tech. Downloaded on November 2, 2009 at 03:21 from IEEE Xplore.  Restrictions apply. 



0.7

0.6 1----------------------------1

0.5 1-----------------------

0.4 1--_--11-----..0.- - _

0.3 1------'--'-

0.2 t----

0.1

Figure 7. L2 Cache Miss Rate for SPEC2000.

3

2.5.1-------------------------

2I-I1-II1--------------------

1.5

1

0.5

Figure 8. IPC Performance for SPEC2000.

o Original
mSLSI
.IU
.SIU
• ALL

o Original
raSLSI
.xu
.SIU
• ALL

the mef and gap. In the mef, cache-miss rate was more
decreased than the ILl. It indicates that the me f has many
or large pointer-array data structures. In the gap, cache­
miss rate was less decreased than the ILl. It indicates that

the gap has pointer data structures where the data struc­
tures are not pointer-array data structures but tree or list data
structure.

The three optimizations, SLSI, ILl, and SILl optimiza-

Authorized licensed use limited to: Japan Advanced Institute of Science and Tech. Downloaded on November 2, 2009 at 03:21 from IEEE Xplore.  Restrictions apply. 



tion, can be exploited simultaneously. Finaly, we evaluated
total performance of the multiple optimizations. In many
applications, cache-miss rates and IPC perfonnance are im­
proved more than individual optimization. Especially, in the
me f, cache-miss rate was greatly decreased. We confirmed
that the both of SLSI and SILl optimizations were effective
in this program.

6 Related Work

In this section, we describe other prefetch techniques and
dynamic optimization techniques as related works. There
are three approaches for prefetching. software prefetch,
hardware prefetch, and dynamic prefetch optimization.

The software approach requires the compiler to insert
prefetch instructions at the most appropriate places in an
assembly language code of the program [6, 7]. Advanta­
geous points of software approaches are flexibility in han­
dling memory access trends which differ from program to
program and unnecessity of any hardware assistance.

Hardware approach uses additional hardware in the
CPU. The hardware issues a prefetch in the background
of program execution, which can reduce memory access
latency. Several hardware prefetch techniques have been
proposed [8, 9, 10], which find relatively simple memory
accesses, such as stride memory accesses, through address
analysis, and apply prefetching to the accesses. The tech­
niques allow prefetch to be issued with high accuracy by
using the hardware dedicated to the memory access analy­
sis.

The dynamic prefetch optimization has advantages of
both hardware and software techniques. One of dynamic
prefetch optimization techniques for a data prefetch was
proposed by Jean et al. [11]. The system does not require
any additional hardware. Rather, it only requires software
modification of target binaries in advance. An optimizer
routine which monitors the program behavior and modifies
a target binary is implemented by a signal handler and a
thread which is invoked periodically. There are two advan­
tages of our system over the system. One is that our system
can use precise informations such as virtual addresses ac­
tually issued, by using the specific hardware (DDT). The
other is simple binary modification by introducing new in­
structions dedicated to several accesses patterns (SLSI, ILl,
SILl). Using the instructions, overheads of fetching addi­
tional prefetch instructions can be avoided.

7 Conclusions

In this paper, new instructions, SLSls, ILl and SILl are
proposed. The instructions are exploited by dynamic op­
timization system which is called HDOS, and are effec­
tive in memory access patterns that frequently appear in

program execution. We proposed an analysis technique
which can find instructions related to sequential, indirect,
and sequential-indirect access patterns by using the DDT
support. Those instructions can be replaced with the pro­
posed instructions. The simulation results of SPEC2000
benchmarks showed that the optimization was effective in
most applications, especially when the three optimizations
were combined.

References

[1] T.Ukezono, K.Tanaka, Dynamic Binary Optimization
Using Hardware Analysis System, IPSJ SIG Techni­
cal Reports, ARC, Vol.2005, No. 120, pp.7-12, 2005 (in
Japanese).

[2] Alpha Architecture Reference Manual, THIRD EDI­
TION, ALPHA ARCHITECTURE COMMITTEE,
Digital Press, ISBN 1-55558-202-8.

[3] D.Burger, T.Austin and S.Bennett, Evaluating Future
Microprocessors: The SimpleScalar Toolset, Tech Re­
port CSTR-96-1308, Univ. of Wisconsin, CS Dept.,
July 1996.

[4] http://www.spec.org

[5] http://www.simplescalar.com

[6] V.Santhanam, E.H.Gornish and W.C.Hsu, Data
Prefetching on the HP PA-8000, Proc. of 24th annual
International Symposium on Computer Architecture,
pp.264-273, 1997.

[7] K.C.Yeager, The MIPS Rl0000 Superscalar Micropro­
cessor, IEEE Micro, Vol. 16, No.2, pp.28-41, 1996.

[8] J-L.Baer and T-F.Chen, Effective Hardware-Based Data
Prefetching for High Performance Processors, IEEE
Transactions on Comuters, Vol.44, No.5, pp.609-623,
1995.

[9] F.Dahlqren, M.Dubois, and P.Stenstrom, Fixed and
Adaptive Sequential Prefetching in Shared Memory
Multiprocessors, Proc. of International Conference on
Parallel Processing, pp.I-56-63, 1993.

[10] J.W.C.Fu, J.H.Patel and B.L.Janssens, Stride Directed
Prefetching in Scalar Processors, Proc. of 25th Interna­
tional Symposium on Microarchitecture, pp.l02-110,
1992.

[11] J.C.Beyler and P.Clauss, Perfonnance Driven Data
Cache Prefetching in a Dynamic Software Optimiza­
tion System, Proc. of the 21 st International Conference
on Supercomputing, pp.202-209, 2007.

Authorized licensed use limited to: Japan Advanced Institute of Science and Tech. Downloaded on November 2, 2009 at 03:21 from IEEE Xplore.  Restrictions apply. 


