
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title Trace anonymity in the OTS/CafeOBJ method

Author(s)
Kong, Weiqiang; Ogata, Kazuhiro; Cheng, Jian;

Futatsugi, Kokichi

Citation
8th IEEE International Conference on Computer and

Information Technology, 2008. CIT 2008.: 754-759

Issue Date 2008-07

Type Conference Paper

Text version publisher

URL http://hdl.handle.net/10119/8487

Rights

Copyright (C) 2008 IEEE. Reprinted from 8th IEEE

International Conference on Computer and

Information Technology, 2008. CIT 2008., 754-759.

This material is posted here with permission of

the IEEE. Such permission of the IEEE does not in

any way imply IEEE endorsement of any of JAIST's

products or services. Internal or personal use of

this material is permitted. However, permission

to reprint/republish this material for

advertising or promotional purposes or for

creating new collective works for resale or

redistribution must be obtained from the IEEE by

writing to pubs-permissions@ieee.org. By choosing

to view this document, you agree to all

provisions of the copyright laws protecting it.

Description



Trace Anonymity in the OTS/CafeOBJ Method

Weiqiang Kong, Kazuhiro Ogata, Jian Cheng, and Kokichi Futatsugi
Japan Advanced Institute of Science and Technology (JAIST)

1-1, Asahidai, Nomi, Ishikawa 923-1292, Japan
{weiqiang, ogata, kokichi}@jaist.ac.jp

Abstract

We report on a case study in which the OTS/CafeOBJ
method is used to formalize and verify trace anonymity
property of distributed systems. In this case study, the prop-
erty of trace anonymity is formalized with the trace no-
tations of Observational Transition Systems (OTSs), and
CafeOBJ language/system is used as an interactive theo-
rem prover to verify that systems satisfy such property. The
work presented in the paper follows the approach proposed
in [3], in which I/O automaton and Larch prover are em-
ployed for handling trace anonymity.

1. Introduction

The use of formal methods for safety property analysis
has become standard practice. However, although there is
an increasing concern about people’s privacy, the use of for-
mal methods for analysis of privacy related properties such
as anonymity, is still in its elementary stage and only a few
studies exist in the literature.

In an early study by Schneider et al. [7], a formal def-
inition to anonymity, which is called strong anonymity, is
proposed based on the trace notations of CSP. Basic princi-
ple behind the definition is that: an event that could have
originated from one agent could equally have originated
from any other (from a given set of agents). A CSP model
checker FDR is then employed to analyze the satisfaction
of finite-state systems to such anonymity.

To analyze anonymity property of more general infinite-
state systems, Kawabe et al. extend in [3] the concept of
strong anonymity to trace anonymity, which is defined in
terms of the trace notations of I/O automaton while keeping
the basic principle of viewing anonymity used in [7]. An
inductive verification technique based on a notion of anony-
mous simulation is then proposed. It is shown that the exis-
tence of an anonymous simulation leads to trace anonymity.
The formal verification that an infinite-state system satisfies
trace anonymity is carried out using Larch prover.

In this paper, following the definition of trace anonymity
and its inductive proof technique proposed in [3], we
demonstrate how the OTS/CafeOBJ method [6] could be
used for trace anonymity analysis. More specifically, the
trace anonymity is formalized in terms of trace notations
of Observational Transition Systems (OTSs), which are a
kind of state transition systems that can be straightforwardly
written in terms of equations. We then detail the definition
of anonymous simulation that leads to trace anonymity of an
OTS. At last, the satisfaction of infinite-state systems (mod-
eled as OTSs) to trace anonymity is verified by using the
CafeOBJ language/system as an interactive theorem prover.

The rest of the paper is organized as follows: Section 2
introduces the OTS/CafeOBJ method. Section 3 describes
how to formalize trace anonymity with the trace notations
of OTSs and the proof technique based on anonymous sim-
ulation. Section 4 demonstrates modeling and verification
of trace anonymity for a simple example used in [3]. And
Section 5 concludes the paper and mentions future work.

2. The OTS/CafeOBJ Method

The notion of Observational Transition Systems (OTSs)
to be introduced in this section is an extended version of the
original one described in [6]. We assume that there exists
a universal state space denoted by Υ, and each data type
(including Bool for Boolean values) used is provided. A
data type is denoted by D with a subscript such as Do1.

Definition 1 An OTS S is 〈O, I,A, T 〉, where:

- O : A finite set of observers. Each observer is an in-
dexed function ox1:Do1,...,xm:Dom : Υ → Do. Given
an OTS S and two states υ1, υ2 ∈ Υ, the equivalence
(denoted by υ1 =S υ2) between them wrt S is de-
fined as ∀ox1:Do1,...,xm:Dom : O. ∀x1 : Do1 . . . ∀xm :
Dom. (ox1,...,xm(υ1) = ox1,...,xm(υ2)).

- I : A set of initial states such that I ⊆ Υ.

- A : A finite set of actions (indexed names). Actions are
classified into a set of external actions AE and a set of
internal actions AI , and AE ∩ AI = ∅.

978-1-4244-2358-3/08/$20.00 © 2008 IEEE CIT 2008754

Authorized licensed use limited to: Japan Advanced Institute of Science and Tech. Downloaded on November 3, 2009 at 21:56 from IEEE Xplore.  Restrictions apply. 



- T : A finite set of conditional transitions. Each transi-
tion is a nondeterministic function1 ty1:Dt1,...,yn:Dtn :
Υ → Υ with an indexed action in A as its name.
ty1,...,yn(υ) for each υ ∈ Υ is called a successor state
of υ wrt ty1,...,yn . The condition cty1,...,yn

for a tran-
sition associated with action ty1,...,yn ∈ A, which is a
predicate on states, is called the effective condition. If
cty1,...,yn

does not hold in υ, then ty1,...,yn(υ) =S υ.

For brevity, we may omit the indexes of observers and
actions by assuming that their names (without indexes) are
distinct from each other. A transition in T , in which appli-
cation of an action t moves state υ1 to υ2 (or other states
nondeterministically, say υ3), can be written as υ1 →t

S υ2

(or υ1 →t υ3) and t could be omitted if t ∈ AI . The
subscript S could also be omitted if it is clear from the con-
text. �S is a reflexive transitive closure of →S . We write
υ1 ⇒t

S υ2 for multiple-time applications of actions moving
υ1 to υ2 and among the applied actions there is one t ∈ AE ,
or for υ1 �S υ2 if no external actions are applied.

Definition 2 Given an OTS S, reachable states wrt S are
defined as: (1) Each υ0 ∈ I is reachable wrt S. (2) For
each υ, υ′ ∈ Υ, and some t ∈ A such that υ →t

S υ′ is a
transition in T , if υ is reachable wrt S, so is υ′. The set of
all reachable states of S is denoted by RS .

Definition 3 Given an OTS S, transition sequences wrt S
are defined as: (1) Each υ0 ∈ I is a transition sequence. (2)
For an arbitrary transition sequence α, if there is a transi-
tion last(α) →t

S υ, then α →t
S υ is a transition sequence.

The function last over transition sequences is defined as:
(1) last(υ0) = υ0, and (2) last(α →t

S υ) = υ. The set of
all transition sequences of S is denoted by T SS .

Definition 4 Given an OTS S, traces wrt S are de-
fined by a function trace over transition sequences as:
{trace(ts) | ts ∈ TSS}. The function trace is defined
as: (1) trace(υ0) = ε, where ε denotes an empty trace,
and υ0 ∈ I, and (2) trace(α →t

S υ) = (if t ∈
AE then trace(α), t else trace(α). The set of all
traces of S is denoted by Traces(S).

In the OTS/CafeOBJ method, an OTS is described in
CafeOBJ [1]. CafeOBJ is an algebraic specification lan-
guage and system mainly based on order-sorted algebras
and hidden algebras. Data types can be specified in terms
of order-sorted algebras, and state machines such as OTSs
can be specified in terms of hidden algebras. A CafeOBJ
visible sort denotes an abstract data type, and a hidden sort
denotes the state space of an abstract state machine. There
are two kinds of operators in hidden sorts: action and ob-
servation operators. An action operator can change a state

1This nondeterminism is only for explanation purpose. The transition
function that we essentially specified in CafeOBJ is a deterministic one.

of an abstract state machine; only observation operators can
be used to observe the inside of an abstract state machine.
Declarations of observation and action operators start with
bop, and those of other operators with op. Operators are de-
fined in equations. Declarations of equations start with eq,
and those of conditional equations with ceq. The CafeOBJ
system rewrites a given term by regarding equations as left-
to-right rewrite rules.

The universal state space Υ is denoted by a hidden sort,
say H. An observer ox1,...,xm is denoted by a CafeOBJ ob-
servation operator. We assume that there exist visible sorts
Vk and V denoting Dk and D, where k = o1, . . . , om.
The CafeOBJ observation operator is declared as bop o :
H Vo1 . . . Vom-> V .

An action ty1,...,yn is denoted by a CafeOBJ action
operator. We assume that there exists a visible sort Vk

denoting Dk, where k = t1, . . . , tn. The CafeOBJ action
operator is declared as bop t : H Vt1 . . . Vtn -> H . A
transition associated with the action ty1,...,yn is described
by a conditional equation in a form of changing the value
returned by ox1,...,xm when cty1,...,yn

(υ) holds (note that
in the following equation we essentially only consider the
transition as a deterministic one):

ceq o(t(S, Xy1 , . . . , Xyn), Xx1 , . . . , Xxm )

= e-t(S, Xy1 , . . . , Xyn , Xx1 , . . . , Xxm )

if c-t(S, Xy1 , . . . , Xyn) .

S is a CafeOBJ variable of sort H and all the Xs being as pa-
rameters of o and t are CafeOBJ variables of corresponding
visible sorts. t(S, Xy1 , . . . , Xyn) denotes the successor state
of S wrt ty1,...,yn . e-t(S, Xy1 , . . . , Xyn , Xx1 , . . . , Xxm)
denotes the value returned by ox1,...,xm in the successor
state. c-t(S, Xy1 , . . . , Xyn) denotes the effective condi-
tion cty1,...,yn

(υ1). The value returned by ox1,...,xm is
not changed if ¬cτy1,...,yn

(υ1), and this is described as
t(S, Xy1 , . . . , Xyn) = S.

We will illustrate the verification technique of the
OTS/CafeOBJ method in Section 4 with an example.

3. Trace Anonymity

In this section, following the approach described in [3],
we demonstrate how to use the trace notations of OTSs to
formalize trace anonymity and the proof technique based on
a notion of anonymous simulation.

3.1 Formalization of Trace Anonymity

According to the IT security functional requirements for-
mulated by ISO/IEC [2], the notion of anonymity ensures
that a user may use a resource or service without disclos-
ing the user’s identity. Although this informal require-
ment/definition is enough for us to understand the meaning

755

Authorized licensed use limited to: Japan Advanced Institute of Science and Tech. Downloaded on November 3, 2009 at 21:56 from IEEE Xplore.  Restrictions apply. 



pc = start,

quarter = 0

jazz

n

jazz

n-1

jazz

1

stop

0

…playMusic playMusic…

rock

n

rock

n-1

rock

1
…playMusic playMusic…

startJB(n,Alice)

startJB(n,Bob)

playJazz

playRock

Figure 1. Jukebox
of anonymity, it is difficult, due to the non-functional essen-
tials, to propose a formal definition of anonymity that could
serve as the basis for formal analysis.

The definition of trace anonymity described in [3] cir-
cumvents the problem by following a principle called “prin-
ciple of confusion” [7, 5]: a system is anonymous if one
user can cause an observable trace, then it is possible for
the other users (from a given set of users) to cause the same
trace (modulo special actions with regard to a user’s iden-
tity). Therefore an intruder (or outside observer) of a sys-
tem could not distinguish the difference between the given
set of users’ behaviors. This given set of users is also called
anonymity group in [5], which is to be determined and intro-
duced by system analyzers. To formalize trace anonymity
based on this principle, we first define the concept of fam-
ily of actor actions (corresponds to anonymity group) with
which the trace anonymity is discussed.

Definition 5 Given an OTS S, A is called a family of
S’s actor actions if the following conditions hold: (1)⋃

A′∈A
A′ ⊂ TE , (2) A′ ∩ A′′ = ∅ for any A′, A′′ ∈ A.

An element of A is called a set of actor actions.

Definition 6 Given an OTS S = 〈OS , IS ,AS , TS〉, and
a family of actor actions A, an “anonymized” OTS SA =
〈OSA

, ISA
,ASA

, TSA
〉 wrt A is defined as follows:

(1) OSA
= OS , ISA

= IS , and ASA
= AS ,

(2) For any transition υ1 →t
S υ2 in TS , (2.1) if t ∈ A for

some A ∈ A, then υ1 →t′
SA

υ2 for any t′ ∈ A is a
transition of TSA

, (2.2) otherwise if t /∈
⋃

A∈A
A, then

υ1 →t
SA

υ2 is a transition of TSA
.

Note that the (external and internal) attribution of SA’s
actions remains the same as the one of S. And besides, we
can deduce that RSA

= RS .

Definition 7 Given an OTS S, and a family of actor actions
A, S is called trace anonymous wrt A if Traces(SA) =
Trace(S).

We use the same example Jukebox system described in
[3] to explain the idea of trace anonymity. Assume that there
is an electronic jukebox placed in a building that plays n
music to the public if someone inserts n quarters. There are
two persons – Alice and Bob, who are going to insert coins
anonymously, namely that they do not want others to know

pc = start,

quarter = 0

jazz

n

jazz

n-1

jazz

1

stop

0

…
playMusic playMusic

…

rock

n

rock

n-1

rock

1
…

playMusic playMusic
…

startJB(n,Alice)

startJB(n,Bob)

playJazz

playRock

startJB(n,Bob)

startJB(n,Alice)

Figure 2. JukeboxA

who inserted the coins. If Alice inserts the coins, she would
choose songs randomly, but choose the title jazz for the
last song for her favorite genre; and if Bob inserts the coins,
he would also choose songs randomly, but choose the title
rock for the last song. The behavior of Jukebox is shown
in Figure 1, in which the values of the state variable pc de-
note the status of the jukebox wrt the category of songs it is
playing, and the values of the variable quarter denote the
coins currently remained. A formula attached to an arrow
denotes an external action applied between two states.

The family of actor actions A = {{startJB(n, Alice),
startJB(n, Bob)} | n ∈ {1, 2, . . .}} is introduced to
analyze trace anonymity of the jukebox system. The
behavior of the “anonymized” jukebox JukeboxA wrt
A is shown in Figure 2. We can see that the juke-
box system is not trace anonymous wrt A because
the trace “startJB(n, Bob), playMusic, . . . , playJazz”
of JukeboxA is not a trace of Jukebox, and therefore
Traces(JukeboxA) �= Traces(Jukebox).

An observation obtained from the unsatisfiability of trace
anonymity of Jukebox is that: the occurrence of the actions
playJazz and playRock makes it possible for the intruder
to deduce the identity of the person who inserts the coins.
We now hide these two actions by considering them as in-
ternal actions that could not be observed by the intruder.
This jukebox system is named as Jukebox. It can be eas-
ily seen that Jukebox is trace anonymous wrt A because
Traces(JukeboxA) = Traces(Jukebox).

3.2 Proof Technique for Trace Anonymity

We now demonstrate how to use OTSs’ notations to for-
malize the proof technique for trace anonymity described in
[3], which is based on a notion of anonymous simulation.

Given an OTS S and a family of actor actions A, to
prove that S is trace anonymous wrt A, we could show that
(1) Traces(SA) ⊆ Traces(S) and then (2) Traces(S) ⊆
Traces(SA), and thus Traces(SA) = Traces(S). Item
(2) holds trivially since SA contains all the transitions of
S. As to the proof of item (1), Lynch et al. has proved a
theorem in [4] that (1) holds if there exists a forward simu-
lation from SA to S. To directly prove the existence of such
forward simulation using some formal verification tools, SA

and S should be firstly specified. However, reasoning on SA

may be problematic due to the in-confluent problem caused
by SA’s non-deterministic feature (different successor states

756

Authorized licensed use limited to: Japan Advanced Institute of Science and Tech. Downloaded on November 3, 2009 at 21:56 from IEEE Xplore.  Restrictions apply. 



may be reached from a given state by applying one same
action). This problem is circumvented in [3] by introducing
the notion of anonymous simulation.

Definition 8 Given an OTS S and a family of actor ac-
tions A, r : RS RS → Bool is called an anonymous
simulation of S on A if it satisfies the following condi-
tions: (1) r(υ0, υ0) holds for any υ0 ∈ I. (2) For each
υ1, υ2, υ

′
1 ∈ RS such that r(υ1, υ

′
1) and υ1 →t

S υ2:

(i) If t ∈ A for some A ∈ A, then for all t′ ∈ A there
exists υ′

2 ∈ RS such that r(υ2, υ
′
2) and υ′

1 ⇒t′
S υ′

2;

(ii) If t /∈ A for any A ∈ A: (a) if t ∈ TE , then there exists
υ′

2 ∈ RS such that r(υ2, υ
′
2) and υ′

1 ⇒t
S υ′

2; (b) If
t ∈ TI , then there exists υ′

2 ∈ RS for some t′ ∈ TI

such that r(υ2, υ
′
2) and υ′

1 ⇒t′
S υ′

2 (or υ′
1 �S υ′

2 in
this situation where no external transitions).

A theorem has been proved in [3] that an anonymous
simulation r : RSA

RS → Bool (note that RSA
= RS ) is a

forward simulation from SA to S. Therefore, if there exists
an anonymous simulation of S on A, then Traces(SA) ⊆
Traces(S) holds, and thus S is trace anonymous on A. In
this paper, we omit the proof for this theorem, and the idea
of the proof follows the one in [3]. By introducing the no-
tion of anonymous simulation, we do not need to explicitly
construct SA when reasoning about trace anonymity of an
OTS S wrt A, but only need to work on S.

4. Formal Analysis of the Jukebox System

In this section, we demonstrate how to analyze trace
anonymity of Jukebox using the OTS/CafeOBJ method.

4.1 Modeling and Specification

Jukebox is firstly modeled as an OTS Sjb. The data
types used in Sjb are: (1) Bool for Boolean values, (2)
Nat for Natural numbers representing the value of coins in-
serted, (3) Label for the values of program counters (pc).
start, jazz, rock and stop are declared as constants
of Label, (4) Pid for users’ identities of the jukebox sys-
tem, and Alice and Bob are declared as constants of Pid.

Sjb is 〈Ojb, Ijb,Ajb, Tjb〉 such that:

Ojb � {pc : Υ → Label, quarter : Υ → Nat}
Ijb � {υinit ∈ Υ | pc(υinit) = start ∧

quarter(υinit) = 0}
Ajb � AEjb

∪AIjb
where,

AEjb
� {startJBn:Nat,p:Pid, playMusic}

AIjb
� {playJazz, playRock}

Tjb � {startJBn:Nat,p:Pid : Υ → Υ,

playMusic : Υ → Υ,
playJazz : Υ → Υ, playRock : Υ → Υ}

The four transitions modeling the behavior of the juke-
box system are defined as follows:

- cstartJBn,p(υ) � pc(υ) = start ∧ quarter(υ) = 0.
If cstartJBn,p(υ), then startJBn,p(υ) � υ′ such that
pc(υ′) � if p = Alice then jazz else rock,
quarter(υ′) � n.

- cplayMusic(υ) � (pc(υ) = jazz ∨ pc(υ) = rock) ∧
quarter(υ) > 1.

If cplayMusic(υ), then playMusic(υ) � υ′ such that
pc(υ′) � pc(υ), quarter(υ′) � quarter(υ) − 1.

- cplayJazz(υ) � (pc(υ) = jazz ∧ quarter(υ) = 1.
If cplayJazz(υ), then playJazz(υ) � υ′ such that
pc(υ′) � stop, quarter(υ′) � 0.

- cplayRock(υ) � (pc(υ) = rock ∧ quarter(υ) = 1.
If cplayRock(υ), then playRock(υ) � υ′ such that
pc(υ′) � stop, quarter(υ′) � 0.

Sjb is specified in CafeOBJ. Basic building blocks of
CafeOBJ specifications are modules. We assume that the
data types corresponding to the sorts Bool, Nat, Label
and Pid have been defined. Sjb is specified as a module
JUKEBOX. The signature of the module is as follows:

op init : -> Sys
bop pc : Sys -> Label
bop quarter : Sys -> Nat
bop startJB : Sys Nat Pid -> Sys
bop playMusic : Sys -> Sys
bop playJazz : Sys -> Sys
bop playRock : Sys -> Sys

Sys is the hidden sort denoting the state space Υ. Con-
stant init denotes an arbitrary initial state of Sjb. The
two observation operators correspond to the observers, and
the four action operators correspond to the actions. In this
paper, we show the CafeOBJ specifications for init and
transitions associated with startJB as demonstration ex-
amples, where “--” denotes a line of comments:

-- for any initial state init
eq pc(init) = start .
eq quarter(init) = 0 .

-- for transitions associated with startJB
op c-startJB : Sys Nat Pid -> Bool
eq c-startJB(S,N,P)

= (pc(S) = start and quarter(S) = 0) .
--
ceq pc(startJB(S,N,P))

= (if P = Alice then jazz else rock fi)
if c-startJB(S,N,P) .

ceq quarter(startJB(S,N,P))
= N if c-startJB(S,N,P) .

ceq startJB(S,N,P) = S if not c-startJB(S,N,P) .

757

Authorized licensed use limited to: Japan Advanced Institute of Science and Tech. Downloaded on November 3, 2009 at 21:56 from IEEE Xplore.  Restrictions apply. 



4.2 Verification of Trace Anonymity

Basic steps for verifying trace anonymity wrt the family
of actor actions A is first to define a candidate anonymous
simulation r of Sjb, and then to prove that r satisfies the
conditions defined in Definition 8.

We declare a module SIM, which imports module
JUKEBOX. In module SIM, the following operator and
equation are declared for defining a candidate anonymous
simulation r:

op r : Sys Sys -> Bool
eq r(A:Sys,B:Sys)

= quarter(A) = quarter(B) and
(pc(A) = pc(B)
or (pc(A) = jazz and pc(B) = rock)
or (pc(A) = rock and pc(B) = jazz)) .

In the module SIM, we also declare constants s1, s1’,
s2 and s2’ of sort Sys to denote arbitrary states of Sjb.
We next declare a module STEP, which imports module
SIM. In module STEP, the following operator and equation
are declared:

op step-r : -> Bool
eq step-r = r(s1,s1’) implies r(s2,s2’) .

We start now to prepare proofs (or proof scores) to check
the satisfaction of r to those conditions. A proof passage
(basic fragments of a proof score) for checking the condi-
tion of (1) of Definition 8 (for simplicity, we write D8.1 and
so on in the following description) is written as follows:

open SIM
red r(init,init) .
close

The CafeOBJ command open constructs a temporary
module that imports a given module (module SIM in the
above proof passage), and CafeOBJ command close de-
stroys such a temporary module. CafeOBJ command red
reduces (via term rewriting) a term denoting a proposition
to its truth value by considering equations available in this
temporary module as left-to-right rewrite rules. CafeOBJ
system returns true for this proof passage, which means
that the condition D8.1 holds.

To check the satisfaction of r to condition D8.2, the
constants s1, s1’, s2 and s2’ declared in SIM are
used. By assuming the premise of D8.2, namely that
r(s1,s1’) and an action (named as t) moving s1 to
s2, we conduct case-splitting on t to check if there exists
state s2’, which makes (i) and (ii) of D8.2 hold. A tem-
plate for writing proof passages for such cases is as follows:

open STEP

(1) Declare constants to be used as parameters of t and t′.
(2) Declare equations denoting that c-t(s1) holds or does not hold.

(3) eq s2 = t(s1) .

(4) eq s2’= t′(s1’) .

(5) red step-r .

close

Note that in the above template, we omit the parameters
of actions t and t′. For each such case, we usually split it
into multiple subcases with further basic predicates. We
now start the case-splitting on t.

case 1: t = startJBn,Alice.
Since t ∈ {startJB(n, Alice), startJB(n, Bob)} of
A, we need to consider two situations where: (1)
t′ = startJBn,Alice and (2) t′ = startJBn,Bob. Situation
(1) is split into three subcases based on two basic predicates:

bp1 � pc(s1’) = start, bp2 � quarter(s1’) = 0.

The subcases correspond to: ¬bp1, bp1 ∧ bp2, and bp1 ∧
¬bp2, respectively. We show the proof passage for subcase
¬bp1 as an example in this paper:

open STEP
op n : -> Nat .

-- eq c-startJB(s1,n,Alice) = true .
eq pc(s1) = start . eq quarter(s1) = 0 .
--
eq s2 = startJB(s1,n,Alice) .

-- basic predicate: not bp1
eq (pc(s1’) = start) = false .

-- check if there exists s2’
eq s2’ = startJB(s1’,n,Alice) .
red step-r .

close

CafeOBJ system returns true for all these three proof
passages. As to situation (2), it is also split into three sub-
cases based on the same basic predicates used for situation
(1). We show the proof passage for subcase bp1 ∧¬bp2 as
an example as follows:

open STEP
op n : -> Nat .

-- eq c-startJB(s1,n,Alice) = true .
eq pc(s1) = start . eq quarter(s1) = 0 .
--
eq s2 = startJB(s1,n,Alice) .

-- basic predicate: bp1 and not bp2
eq pc(s1’) = start .
eq (quarter(s1’) = 0) = false .

-- check if there exists s2’
eq s2’ = startJB(s1’,n,Bob) .
red step-r .

close

CafeOBJ system returns true for all the three subcases
of situation (2).

case 2: t = startJBn,Bob.
We omit the description of this case since it is very similar
to case 1.

758

Authorized licensed use limited to: Japan Advanced Institute of Science and Tech. Downloaded on November 3, 2009 at 21:56 from IEEE Xplore.  Restrictions apply. 



case 3: t = playMusic.
Since t is not in any set of A and t ∈ TE , we only need to
check the situation that t′ = playMusic. This case is split
into ten subcases based on three basic predicates:

bp1 � pc(s1’) = jazz, bp2 � pc(s1’) = rock,

bp3 � quarter(s1’) = quarter(s1).

The first five subcases assume bp1 in c-playMusic,
while the other five assume bp2. Each of the two five sub-
cases correspond to: ¬bp1 ∧ ¬bp2, ¬bp1 ∧ bp2 ∧ ¬bp3,
¬bp1 ∧ bp2 ∧ bp3, bp1 ∧ ¬bp3, and bp1 ∧ bp3, respec-
tively. We show the proof passage for subcase ¬bp1∧ ¬bp2
while assuming bp1 in c-playMusic as an example:

open STEP
-- eq c-playmusic(s1) = true .
eq pc(s1) = jazz . eq (quarter(s1) > 1) = true .
--
eq s2 = playmusic(s1) .
-- basic predicate: not bp1 and not bp2
eq (pc(s1’) = jazz) = false .
eq (pc(s1’) = rock) = false .
-- check if there exists s2’
eq s2’ = playMusic(s1’) .
red step-r .
close

case 4: t = playJazz.
Since t ∈ TI , we need to check the situation that t′ might
be any transition in TI , namely playJazz or playRock.
This case is split into five subcases based on three basic
predicates:

bp1 � pc(s1’) = jazz, bp2 � quarter(s1’) = 1,

bp3 � pc(s1’) = rock.

The five subcases correspond to: bp1 ∧ bp2, bp1 ∧¬ bp2,
¬ bp1 ∧ ¬bp2, ¬bp1 ∧ bp2 ∧ ¬bp3, ¬bp1 ∧ bp2 ∧ bp3,
respectively. We show the proof passages for subcases bp1
∧ bp2 and ¬bp1 ∧ bp2 ∧ bp3 as follows:

open STEP .
-- eq c-playJazz(s1) = true .
eq pc(s1) = jazz . eq quarter(s1) = 1 .
--
eq s2 = playJazz(s1) .
-- basic predicate: bp1 and bp2
eq pc(s1’) = jazz . eq quarter(s1’) = 1 .
-- check if there exists s2’
eq s2’ = playJazz(s1’) .
red step-r .
close

open STEP .
-- eq c-playJazz(s1) = true .
eq pc(s1) = jazz . eq quarter(s1) = 1 .
--
eq s2 = playJazz(s1) .
-- basic predicate: not bp1 and bp2 and bp3
eq (pc(s1’) = jazz) = false .
eq quarter(s1’) = 1 . eq pc(s1’) = rock .
-- check if there exists s2’
eq s2’ = playRock(s1’) .
red step-r .
close

Note that in the above two proof passages, internal actions
playJazz and playRock are used as t′ respectively. This
point is not detailed in [3]. CafeOBJ system returns true
for all the above proof passages.

case 5: t = playRock.
We omit the description of this case since it is very similar
to case 4.

5. Conclusion

In this paper, following the approach proposed in [3],
we demonstrated how to use the OTS/CafeOBJ method to
formalize and verify trace anonymity of infinite-state sys-
tems. This work is a starting point for our further research
on formal analysis of anonymity, and more broadly, formal
analysis of privacy related properties.

We have noticed that in the proof technique described
above, coming up with the anonymous simulation relation
r is a non-trivial task. If anonymity can be formalized as
an invariant property, then the already well-studied proof
technique of the OTS/CafeOBJ method for invariants could
be directly used for the analysis of anonymity. This leads to
our future work of proposing a way to formalize anonymity
as invariant properties, which could be inductively verified
by the OTS/CafeOBJ method.

Acknowledgements

This research is conducted as a program for the “21st
Century COE Program” in Special Coordination Funds for
promoting Science and Technology by Ministry of Educa-
tion, Culture, Sports, Science and Technology. We would
like to thank Yoshinobu Kawabe for the discussion in JAIST
about his anonymity work.

References

[1] CafeOBJ web site. http://www.ldl.jaist.ac.jp/cafeobj/.
[2] ISO. Information technology – Security techniques – Evalua-

tion criteria for IT security. ISO/IEC 15408-2, 2005.
[3] Y. Kawabe, K. Mano, H. Sakurada, and Y. Tsukada. Theorem-

proving anonymity of infinite-state systems. Information Pro-
cessing Letterss, 101(2007):46–51, 2007.

[4] N. Lynch and F. Vaandrager. Forward and backward simula-
tions part i: Untimed system. Information and Computation,
121(2):214–233, 1995.

[5] S. Mauw, J. Verschuren, and E. P. de Vink. A formalization
of anonymity and onion routing. In ESORICS 2004, volume
3193 of LNCS, pages 109–124. Springer, 2004.

[6] K. Ogata and K. Futatsugi. Proof scores in the OTS/CafeOBJ
method. In FMOODS 2003, volume 2884 of LNCS, pages
170–184. Springer, 2003.

[7] S. Schneider and A. Sidiropoulos. CSP and anonymity.
In ESORICS 1996, volume 1146 of LNCS, pages 198–218.
Springer, 1996.

759

Authorized licensed use limited to: Japan Advanced Institute of Science and Tech. Downloaded on November 3, 2009 at 21:56 from IEEE Xplore.  Restrictions apply. 


