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Abstract 
Cardiovascular disease is the one of most important diseases for human in the 
developed countries and is responsible for millions of deaths and disabilities 
every year. In cardiovascular biomechanics, the fluid-structure interaction 
within large blood vessel is required to understand the aortic wall tear, aortic 
dissection and so on. Strongly-coupled methods yield the resolution of a 
nonlinear problem on the fluid–structure interface, which may be very 
time-consuming. A loosely coupled method was used to study the complex 
mechanical interaction under steady flow and pulsatile flow in a three-layered 
aortic arch model. The results showed the impact of steady flow and pulsatile 
flow, the variations of wall stress along arch portion, and wall stress 
distribution in three-layered wall. 

Key words:  Layered Wall, Loosely-Coupled Algorithms, Fluid-Structure 
Interaction, Cardiovascular, Aorta 

 

1. Introduction 

Cardiovascular disease is one of most important diseases for human in the developed 
countries and is responsible for millions of deaths and disabilities every year [1]. In 
cardiovascular biomechanics one of the major topics today is the simulation and 
analysis of the hemodynamics of the cardiovascular system using computational 
methods [2]. From the mechanical point of view, tear and dissection appear if the 
stresses acting on the wall rise above the ultimate value for the aorta wall tissue. 
Thubrikar et al. [3] proposed that longitudinal stress could be responsible for the tear in 
the aortic dissection. MacLean et al. [4] showed the role of radial tensile stress in aortic 
dissection. The simulation of the fluid-structure interaction (FSI) in large arterial vessel 
can provide the insight of a risk predictor for aortic wall tear, aortic dissection, and so 
on. The complexity of the geometry, motion, deformation and flows and their 
interactions make the simulation a major challenge.  

There are many approaches attempting to solve the FSI problems. Generally the 
approaches for FSI can be differentiated into monolithic (strongly coupled) and 
staggered (loosely coupled) methods. For the first approach, it has been observed in 
many works [5, 6, 7] that strongly-coupled algorithms seem to be mandatory in blood 
flows. But strongly-coupled methods yield the resolution of a nonlinear problem on the 
fluid–structure interface [7], which may be very time-consuming. The staggered 
algorithms for fluid–structure problems are very efficient in aeroelasticity [8, 9]. The 
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loosely coupled methods have the advantages: they ensure that the fluid–structure 
solver will automatically inherit future improvements in fluid or structure algorithms 
[10]. Besides, the loosely coupled method can make utilization of high performance 
computing [11, 12], especially for some simulations that have intensive memory and 
CPU requirements. 

In this paper, the complex mechanical interaction between blood flow and wall 
dynamics is simulated using the loosely-coupled algorithms. The computational fluid 
dynamics (CFD) and computational structure dynamics (CSD) equations are solved 
independently each other.  

The human aorta has a characteristic configuration of the arch and the aorta wall is 
composes of three layers: the tunica intima (innermost), the tunica media (middle), and 
the tunica adventitia (outermost). So a three-layered aortic arch model is constructed to 
simulate the interaction between blood flow and wall dynamics. The stress distributions 
along the arch and in wall are analyzed. 

 

2. Methods 

A. Loosely Coupled Algorithm 
In the fluid-structure interaction problem, fluid affects structure and also structure 

affects fluid. In this study, the procedure is based on loose coupling of three fields of 
problems: the flow, the elastic body, and the mesh movement – that is, the CFD 
(computation fluid dynamics), CSD (computational structural dynamics), and CMD 
(computational mesh dynamics) procedures.  

The coupling strategy is first to solve the CFD and calculate the traction at the 
interface, second to apply fluid traction on the structure, solve the CSD, and obtain the 
displacement on interface, and then to impose the displacement of interface, solve the 
CMD, calculate the mesh velocity and impose the mesh velocity on CFD. 
(i) Computational Fluid Dynamics (CFD) 

The ALE (Arbitrary Lagrangian Eulerian) form of the Navier-Stokes equations is 
used to solve for fluid flow for FSI problems and calculate the traction at wetted 
surface that constitutes the boundary between the fluid and the structure. The equations 
governing the fluid (CFD) are: 
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where iu  is the velocity, Fρ is the fluid density, F
ijσ  is the fluid stress tensor, 

F
if is the body force at time t per unit mass, û is the mesh velocity. For a nearly 

incompressible field the first term of the second equation is equal to zero. The boundary 
conditions can be expressed: 

ii uu =            on )(tU Γ               (3) 

where )(tU Γ is the velocity boundary condition and the tilde symbol (－) denotes the 

prescribed values. 
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After spatial discretization by the finite element method, the Navier-Stokes equations 
are expressed in the ALE formulation: 

fCpDv)vvN(vΜ =−+−+ ˆa                (4) 

                0vCT =                                    (5) 

where M represents the fluid mass matrix; N ,D, and C are, respectively, the convective, 
diffusive, and divergence matrices; f is an external body force; vectors a, v, and p 
contain the unknown values of acceleration, velocity, and pressure, respectively.  

Vectors a, v, and f are expressed as 

{ }TITUTFT aaaa ,,= , { }TITUTFT vvvv ,,= , { }TITUTFT ffff ,,=    (6) 

where superscript (F) indicates values related to nodes placed in the fluid )(tFΩ , 

superscript (U) indicates values related to nodes on the boundary )(tU Γ , superscript (I) 

indicates values related to the nodes on interface )(tI Γ  between fluid and structure. 

In the equation (6), the following compatibility conditions are already imposed on 
the interface: 
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Equation (4) can be partitioned as follows 
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and the equation (5) can be expressed as 
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In the loose coupling approach, the equations (8) (9) are rearranged so that they are 
explicit in the fluid unknowns. Thus: 
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The load applied by the fluid on the elastic body along the interface is obtained: 
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where tI  is the traction applied by the fluid on the elastic body along the interface 
between fluid and structure. Equation (12) is an expression of Newton’s third law.  
(ii) Computational Structural Dynamics (CSD) 

The overall structural behavior is described by the momentum equation (13), the 
equilibrium equation (14) and the constitutive equations (15) (16): 
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where i
I t is the surface traction vector calculated in CFD, Sρ is the density of the 

structural material, id
..

 is the acceleration of a material point (where displacement is 

defined as 0iii xxd −= , and 0ix  is the stress-free position), S
ijσ  is the stress 

tensor in the structural domain, S
if  is the externally applied body force vector, 

)(tSΩ is the structural domain, S
jn is the outward pointing normal on )(tSΓ , Dijkl is 

the material (lagrangian) elasticity tensor, and klε  is the infinitesimal strain tensor. 

The wall deformation is thus governed by the principle of virtual displacements 
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where idδ  is the virtual displacement vector. 

Boundary conditions for structural domain take the following form: 

              ii dd =        on Γd                          (18) 

              ii ff =        on Γσ                           (19) 

where Γd  is the displacement condition, Γσ  is the stress boundary condition. 

Initial conditions for structural domain take the following form: 
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The corresponding matrix equation for structure can be written as 

ftfdKaM σ−+=+ ISSSSS                    (21) 

where S M, S K are, respectively, the structural mass, nonlinear stiffness matrices; fS is 

the external body force vector, tI is the traction applied by the fluid on the interface, 

fσ  is the force due to the internal stresses at the most recently calculated 

configuration, fσ  is is zero for steady problem but not zero for unsteady problem; S d 

is the vector of increments in the nodal point displacement; and S a is the vector of 
nodal point acceleration. The equation of motion can be integrated and the 
displacement, velocity, and acceleration vectors can be calculated: 
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In these equations, β andγ are integration parameters that can be adjusted to achieve 

numerical accuracy and stability. The displacement at interface between fluid and 
structure is: 

dd SI =        on )(tI Γ                              (25) 

The displacement at interface is input to CMD to determine the fluid mesh 
displacement.  
(iii) Computational Mesh Dynamics (CMD) 

The remeshing algorithm employs a scalar distortion parameter, i
elΦ~ , as an element 

quality indicator. The normalized distortion parameter is defined as 
0/~
el

i
el

i
el ΦΦ=Φ                                  (26) 

where el denotes element number, i is the iteration count, and 0 represents the initial 
mesh. The Young’s modulus of each element in the mesh is calculated as  

              ( )ni
elel EE Φ= ~ˆˆ 0                                   (27) 

where 0Ê  is an elasticity modulus input by the user, n is a parameter to determine the 

stiffness of the element. The value of n can range between 0 and 10. Zero represents no 
stiffening and 10 represents maximum stiffness. The value of 2 was used due to the 
typical value for power coefficient for hexahedral element in the present study. 

The elasticity-based model is used to determine the mesh displacement and update 
the mesh geometry. The mesh is treated as an elastostatic structure upon which stresses 
are imposed by virtue of the movement of the structure. The displacements are obtained 
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from 

0dK =ˆˆ                                             (28) 

where K̂ is the stiffness matrix, and d̂  is the mesh displacement vector defined by  

)ˆ(ˆ)(ˆˆ
reftt RRd −=                                      (29) 

where R̂  is the mesh position vector, and reft̂  is the reference time.  

The equation (28) can be rewritten in a partitioned form as 
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On the interface between fluid and structure, the mesh displacement is imposed 
according to the boundary conditions: 

dd ˆˆ I=                                         (31) 

So we obtain 

dKdK ˆˆˆˆ IFIFFF =−                               (32) 

which shows that the fluid mesh motion is driver by the elastic body motion. This 
equation, together with the other boundary condition, is solved for the fluid mesh 
displacement. After it is remeshed, it starts the new loop from CFD. 

B. Geometry of Aortic Arch 
The aorta is the largest artery in the human body. It consists of the ascending aorta, 

the aortic arch, and the descending aorta. A radius of the arch was set to be 0.03m and 
the diameter of vessel was assumed to be uniform (0.024m). The average diameter of 
aorta is 0.02-0.025m [13]. All the major branches of the arch were neglected as a first 
order approximation. The thickness of whole wall was chosen to be 0.002m. The 
thickness of the aortic wall was 0.002m on postmortem computed tomography in 
Shiotani’s [14] paper. Fig. 1 shows the geometry of analysis model including finite 
element mesh described. 

 
Fig. 1 Geometry of analysis model including finite element mesh described. The 

angle a represents the wall position in the median longitudinal cross-section. 
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C. Properties of Wall Layers 
The three-layered wall model as well as intact wall model was conducted in this 

study. 
(i) One-layered wall model 
The thickness of intact wall was set to t =0.002m. The elastic properties of aorta 

wall were determined by Young’s modulus. In this study, the aortic arch is a 
self-supporting structure. The E=6.5MPa [15] was chosen for the Young’s modulus of 
aorta wall. Poisson’s ratio is set 0.45 as nearly incompressible material. 

(ii) Three-layered wall model 
In this three-layered wall model, the thickness ratio of intima/media/adventitia was 

set to 1/6/3 based on [16]. In this present study, the Young’s modulus of media layer is 
assumed three times larger than that of adventitia layer and that of intima layer base on 
the literature [17, 18, 19, 20]. Since the mean Young’s modulus of vessel wall is same, 
we assume that the Young’s modulus of layer is in inverse proportion to the area of 
layer, thus: 

aammii AEAEAEAE ⋅+⋅+⋅=⋅                  (33) 

where iA , mA , aA and A are the area of intima layer, media layer, adventitia layer and 

whole wall, respectively. We assume the vessel is straight, so using the volume equation, 
the equation (33) becomes: 

       
])(2[]2[

]2[
22

2

mmimiii tttrEtrtE

trtE

++⋅++⋅=

+⋅
 

])(2[ 2
aamia ttttrE +++⋅+                   (35) 

where r is the radius of the lumen. We can obtain the Young’s modulus of intima layer, 
media layer, and adventitia layer: Ei= 2.984140MPa, Em= 8.952421MPa, Ea= 2.984140 
MPa. Wall’s Poisson coefficient is set 0.45 in both models. 

D. Properties of Fluid and Boundary Condition 
The surface of the inlet channel was fixed. The outer edge of outlet was constrained 

in the axial direction and permitted to move in the other directions.  
The fluid is Newtonian with a density of 1050 kg/m3 and a viscosity of 0.0035 Pa·s. 

The Newtonian assumption has been considered acceptable since minor differences in 
the basic flow characteristics are introduced through the non-Newtonian hypothesis 
[21].  
   (i) Steady inflow condition 

The Reynolds number of inlet flow was fixed at Re=1350 and Re=4000. The time 
average Reynolds numbers over a whole cycle is Re=1350 in the ascending aorta taken 
from Liepsch’s [22] measurements of the flow in a human aortic arch. The typical 
Reynolds number for blood flow is approximately Re=4000 in the aorta [23]. 

(ii) Usteady inflow condition 
At the aortic inlet, a flat flow velocity profile was used together with pulsatile 

waveform based on reported experimental data by [24, 25]. In our calculations, the 
Reynolds number is fixed at Re=4000 based on the inlet velocity at peak systole of the 
cardiac cycle. At the beginning of the simulation, the iteration has large errors and three 
cardiac cycles have been simulated in order to achieve a periodically convergent 
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solution independent from the initial conditions. 

 
Fig. 2 Inlet velocity profile. n is the time step, ncycl is the total time steps in one 

cycle. For the final run, the cardiac cycle is started at A and ends at B. 
 

3. Results 

A. Steady Inflow Condition 
 

 

 
Fig. 3. The mean stresses distribution in outer wall in the one-layered and three-layered 
model along the arch portion at Re=1350 and Re=4000. The mean circumferential 
stress distribution (a). The mean longitudinal stress distribution (b). The mean radial 
stress distribution (c). The mean shear stress distribution (d). 

 
The variations of mean stresses on outer wall along the arch at the inlet flow 

Reynolds number of Re=1350 and Re=4000 for the one-layered model and the 
three-layered model are shown in Fig. 3. The mean stress is average stress of transverse 
cross wall. 

The stress at Re=4000 is higher than that at Re=1350. The variations of 
circumferential, longitudinal, and radial stress at Re=1350 and Re=4000 have a similar 
pattern. The circumferential stress gets a minor peak at the mid ascending portion and 
then decreases along the arch. For longitudinal stress, the peak values are at the 
entrance ascending portion, the top of the arch and the distal end of arch. The radial 
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stress gets a peak value at the mid ascending portion and the mid descending portion. 
The shear stress at Re=4000 is much higher than that at Re=1350. At Re=4000 the 

variation of shear stress is not regular and the shear stress is higher at the descending 
portion than at the ascending portion. 

 

B. Pulsatile Inflow Condition 
 

 

 
Fig. 4. The mean stress distribution in outer wall in the three-layered model along the 
arch portion. The circumferential stress distribution (a). The longitudinal stress 
distribution (b). The radial stress distribution (c). The shear stress distribution (d). t1: 
systolic acceleration, t2: peak entrance flow, t3: systolic deceleration, and t1:foot 
entrance flow. 
 
1. Variations of stresses along arch 

Fig. 4 presents the variations of the mean circumferential stress, the mean 
longitudinal stress, the mean radial stress and the mean shear stress in outer wall along 
arch at systolic acceleration (t1), peak entrance flow (t2), systolic deceleration (t3), and 
foot entrance flow (t4) in the three-layered model. The circumferential, longitudinal, 
and radial stress at systolic acceleration (t1) are highest among those at four different 
times. The shear stress at foot entrance flow (t4) is highest among those at four different 
times. 

The value of the circumferential stress decreases along the arch. At peak entrance 
flow (t2), the circumferential stress gets a minor peak at the mid ascending portion and 
then decreases along the arch.  

The longitudinal stress at systolic acceleration (t1) and peak entrance flow (t2) is 
much higher than that at systolic deceleration (t3) and foot entrance flow (t4). At 
systolic acceleration (t1) and peak entrance flow (t2), the peak values are at the entrance 
ascending portion, the top of the arch and the distal end of arch.  

The radial stress at systolic acceleration (t1) and peak entrance flow (t2) is much 
higher than that at systolic deceleration (t3) and foot entrance flow (t4). At systolic 
acceleration (t1) and peak entrance flow (t2), the radial stress is a positive value in both 
the ascending and descending portions and the radial stress gets a peak value at the mid 
ascending portion and the mid descending portion. 
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For shear stress, the negative sign means the direction of stress. The shear stress at 
systolic deceleration (t3) and foot entrance flow (t4) is much higher than that at systolic 
acceleration (t1) and peak entrance flow (t2). At foot entrance flow (t4), the shear stress 
gets a first peak value at the mid ascending portion and a second peak value at the back 
descending portion. 

 

 

 
Fig. 5. Variation of the circumferential stress across the wall at systolic acceleration (t1) 

 

 

 
Fig. 6. Variation of the longitudinal stress across the wall at systolic acceleration (t1) 
 

2 Variations of stresses across the wall 
Four positions a=22.5°, a=67.5°, a=112.5°, and a=157.5° were selected in the arch 

portion to illustrate the variation of stresses across the wall.  
For circumferential stress, longitudinal stress, and radial stress, t1 (systolic 

acceleration) was selected since the value of stresses is highest at systolic acceleration 
(t1) among the four times. For shear stress, t4 (foot entrance flow) was selected since the 
value of stresses is highest at foot entrance flow (t4) among the four times. 
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The variations of the circumferential stress across the one-layer model wall and the 
three-layer model wall at four positions at systolic acceleration (t1) are shown in Fig. 5. 
Fig. 5 indicates a decreasing trend for circumferential stress with increasing radius in 
the 1-layer model. For the 3-layer model, the circumferential stress is much higher in 
the media layer than in the intima and adventitia layers. The variations of longitudinal 
and radial stress across the walls of the three models at four positions at systolic 
acceleration (t1) are shown in Fig. 6 and Fig. 7. For the 3-layer model, longitudinal and 
radial stress are much higher in the media layer than in the intima and adventitia layers.  

Variations of shear stress across the walls of the three models at four positions at foot 
entrance flow (t4) are shown in Fig. 8. The shear stress is nonlinear distributed across 
wall thickness and higher in media. 

 

 

 
 

Fig. 7. Variation of the radial stress across the wall at systolic acceleration (t1) 

 

 
Fig. 8. Variation of the shear stress across the wall at foot entrance flow (t4) 
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4. Discussion and Conclusion 

The present study provides the simulation of FSI within layered aortic arch model 
under steady flow and pulsatile flow using a loosely coupled method. The stress 
distributions along the arch and in wall under steady flow and pulsatile flow are 
provided. At steady inflow condition, the higher is the flow rate the higher is the stress. 
Under pulsatile flow, the highest normal stress appears at systolic acceleration phase 
and the highest shear stress appears at foot entrance flow.  

Wall stress is an important factor in aortic dissection, which has been recently 
addressed by several authors [3, 4, 26, 27, 28]. The variations of circumferential, 
longitudinal, and radial stress along arch at steady flow condition and at systolic 
acceleration (t1), peak entrance flow (t2) of pulsatile flow have a similar pattern. 

Circumferential stress was considered an important parameter for the 
mechanosensitive receptors. In general, the higher is the fluid flow the higher is the 
wall stress. In the present study, the circumferential stress depicted in Fig. 4 (a) is 
higher at systolic acceleration phase (t1) than that at peak entrance flow (t2). So the 
systolic acceleration phase is more critical than the peak flow for risk of wall tear or 
dissection. Hence during the cardiac cycle, at systolic acceleration phase the 
circumferential stress may contribute to the tear on aortic wall.  

In aortic dissection, the intimal tear is five times more likely to be transverse than 
longitudinal [29] and in some series it is reported to be transverse 95% of the time [30]. 
Thubrikar et al. [3] have proposed that longitudinal stress could be responsible for 
transverse tears in the aortic dissection. Roberts [31] reported that the tear is located in 
the ascending aorta, usually about 2 cm cephalad to the sinotubular junction, in 62% of 
the patients. This means the location is about at the entrance to the ascending portion of 
the arch. After the ascending aorta, about 16% of tears are at the aortic isthmus portion 
[31], which is near the top of the arch. 

Under steady flow and at systolic acceleration phase (t1) and peak entrance flow (t2) 
of pulsatile flow, the longitudinal stress gets its peak values at the entrance to the 
ascending portion and the top of the arch. Yet, the longitudinal stress also peaks in the 
distal end of the arch, and tears do not often occur at this location. From Fig. 3 (a)(b) 
and Fig. 4 (a) (b) we can see that both circumferential stress decreases along the arch. 
Carsten [28] has mentioned that both circumferential stress and longitudinal stress 
create the risk of aortic dissection. Circumferential stress and longitudinal stress should 
be considered together for understanding of the intimal tear. 

Under steady flow and at systolic acceleration phase (t1) and peak entrance flow (t2) 
of pulsatile flow the radial stress is a positive value in the ascending and descending 
portions, and thus, by definition, is tensile stress. Under normal conditions, radial 
stresses are compressive. MacLean et al. [4] showed that the aorta tore radially at a 
much lower value of radial tensile stress and mentioned that once a false lumen is 
formed by a dissection, radial tensile forces must exist in the aortic wall. In the present 
study, radial tensile stress exists due to the structure of arch and deformations of the 
wall. With dissections beginning in the ascending portion, the tear usually involves the 
right lateral aortic wall (outer wall) and thereafter courses downstream along the greater 
curvature of the ascending, transverse, and the descending thoracic portions of aorta 
[31]. Fig. 3 and Fig. 4 show the radial stress is high both in the ascending and 
descending portions at systolic acceleration phase (t1) and peak entrance flow (t2), and 
this can explain why most ascending aortic dissections extend to involve the 
descending aorta.  
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Many researchers have proposed that wall stress causes the tears and dissection in 
aortic dissection. For the 3-layer model of the aorta, all the stresses are highest in the 
media layer are highest in our numerical experiment. The results of Maltzahn et al. [18] 
also indicated the media was subject to much higher stresses. The stress in the intima 
layer is low, intima layer acting as a cushion in the aorta mechanics.  Macleod and 
Soames [32] have shown that the distribution of these intimal cushions may be related 
to haemodynamic stress. The intima layer plays a protective role with respect to the 
aorta wall. Once an intimal tear occurs, it readily extends into the media layer since the 
stresses in the media layer are highest. The phenomenon in aortic dissection is that 
about 65 to 87% of aortic dissections occur in the ascending aorta [29,31,33] and the 
dissection spreads in the media.  

The wall stresses and the breaking strength of the tissue must be considered together 
for understanding the aortic dissection. Despite the more accurate predictions of 
biomechanics utilizing an FSI technology, there are additional limitations. The external 
forces induced by surrounding tissue and organs, the variable thickness, the branches of 
aorta are related to the quantitative analysis. Due to the limitation of this technology we 
could not give quantities of strength of vessel wall. In the future work, we will include 
the additional factor to give a quantitative analysis. The material property of vessel wall 
is anisotropy and Wolinsky et al. [34] originated the phrase “Medial Lamellar Unit” 
(MLU) for a basic repetitive structural unit within the tunica media. Although the 
strength of the laminated arrangement makes the aorta durable enough to last for many 
years in a physiological environment, laminated structures are prone to split, creating a 
cleavage plane between lamellae. Van Baardwijk and Roach [35] suggested that the 
materials holding adjacent lamellae together are weaker than the elastin layers 
themselves. 

Under steady flow, the higher is inflow velocity the higher shear stress. However, 
under pulsatile flow, the shear stress is highest at foot entrance flow or diastolic phase 
among those at four different times. So at foot entrance flow or diastolic phase, the 
shear stress may contribute to the aortic dissection.  

In summary, the fluid-structure interaction within a 3-layered aortic arch model was 
simulated using a loosely coupled method to evaluate the impact of steady flow and 
pulsatile flow, calculate variations of wall stress along arch portion, determine wall 
stress distribution in three-layered wall, and provide insight into the biomechanics of 
aortic dissection. To the authors’ knowledge, this is the first computation FSI study of 
3-layered aortic arch model. As a future research, FSI simulation for the more complex 
aortic arch model and the more complex simulation condition on high performance 
computer is considered. 
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