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PAPER IEICE/IEEE Joint Special Section on Autonomous Decentralized Systems Theories and Application Deployments

Adaptive Flocking of Robot Swarms: Algorithms and Properties

Geunho LEE†a), Student Member and Nak Young CHONG†, Nonmember

SUMMARY This paper presents a distributed approach for adaptive
flocking of swarms of mobile robots that enables to navigate autonomously
in complex environments populated with obstacles. Based on the observa-
tion of the swimming behavior of a school of fish, we propose an integrated
algorithm that allows a swarm of robots to navigate in a coordinated man-
ner, split into multiple swarms, or merge with other swarms according to
the environment conditions. We prove the convergence of the proposed al-
gorithm using Lyapunov stability theory. We also verify the effectiveness
of the algorithm through extensive simulations, where a swarm of robots
repeats the process of splitting and merging while passing around multi-
ple stationary and moving obstacles. The simulation results show that the
proposed algorithm is scalable, and robust to variations in the sensing ca-
pability of individual robots.
key words: robot swarms, decentralized coordination, local interaction,
adaptive flocking

1. Introduction

Recently, swarms of mobile robots are expected to be de-
ployed in a wide variety of applications such as explo-
ration, search-and-rescue, medical operations within the hu-
man body, and so on [3]. In order to perform those tasks
successfully, individual robots need to be controlled to sup-
port coordinated swarm behaviors. For the purpose, socio-
biology has attracted much attention since living systems
exhibit self-organizing and adaptive behavior [1]. This pa-
per is motivated by the observation of schools of fish that
exhibit a certain swarm behavior in their environments. For
instance, when a school of fish faces obstacles, they avoid
collision by splitting themselves into a plurality of smaller
swarms, and merge to form a single swarm after they pass
around the obstacles. Based on such observation, we pro-
pose several swarm behavior rules that enable a swarm of
autonomous mobile robots to flock in a complex environ-
ment as illustrated in Fig. 1.

Reynolds [2] presented a distributed behavioral model
of coordinated animal motion based on fish schools and bird
flocks. His work demonstrated that flocking is an exam-
ple of emergent behavior arising from simple rules. Many
flocking strategies reported in the field of swarm robotics
can be classified into centralized and decentralized strate-
gies. Centralized strategies [4], [5] employ a central unit
that organizes the behaviors of the whole swarm. These
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Fig. 1 Concept of adaptive flocking.

strategies usually lack scalability and become technically
unfeasible when a large swarm is considered. On the other
hand, decentralized strategies are based on interactions be-
tween individual robots mostly inspired by evidence from
biological systems or natural phenomena. Decentralized
strategies can be further divided into biological emergence
[6]–[8], behavior-based [9], [10], and virtual physics-based
[12]–[14] approaches. Specifically, the behavior-based and
virtual physics-based approaches are related to the use of
such physical phenomena as crystallization [10], gravita-
tional forces [12], [13], and potential fields [14]. Those
works mostly use a force balance between inter-individual
interactions exerting an attractive or repulsive force within
the influence range, which might over-constrain the swarm
and frequently lead to deadlocks. Moreover, the computa-
tion of relative velocities or accelerations between robots are
needed to obtain the magnitude of the force. Regarding the
aspect of calculating the movement position of each robot,
accuracy and computational efficiency issues will arise.

In this paper, the swarm behavior emerges in a decen-
tralized way from the local interactions between robots un-
der environmental constraints. In detail, a geometric ap-
proach is proposed that enables three neighboring robots to
form an equilateral triangle lattice. The plurality of lattices
aggregate with each other to self-adjust their shape and size
according to the environment condition, eventually forming
a single, large swarm. With partially connected mesh topol-
ogy [18], the proposed method can take advantage of the
redundancy provided by a fully connected network topol-
ogy without the expense and complexity of networking pro-
cesses. From a practical standpoint, the swarm flocking can
be considered as a robust ad hoc mobile networking model
whose connectivity must be maintained in a cluttered envi-
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ronment.
The rest of this paper is organized as follows. Section 2

presents the robot model and the definition of adaptive flock-
ing problem. Section 3 describes the fundamental motion
planning of each robot locally interacting with neighboring
robots. Section 4 presents the properties of solutions to the
flocking rules. Section 5 provides the results of simulations
and discussion. Section 6 draws conclusions.

2. Problem Statement

We consider a swarm of n autonomous mobile robots, where
individual robots are denoted respectively by r1, · · · , rn.
Each robot is modeled as a point, which freely moves on
a two-dimensional plane. It is assumed that an initial dis-
tribution of robots is arbitrary and distinct. The robots have
no leader and no identifiers. They do not share any com-
mon coordinate system, and do not retain any memory of
past actions that gives inherently self-stabilizing property†
[19]. They can detect the positions of other robots within
their limited ranges of sensing, but do not have any explicit
direct means of communication to each other. Each of the
robots executes the same algorithm, but acts independently
and asynchronously from other robots. They repeat an end-
less activation cycle of observation, computation, and mo-
tion. At each activation, each robot computes their target
position using an algorithm (computation) based on the po-
sitions of other robots (observation), and moves toward the
computed position (motion) (see Fig. 2). Finally, an obstacle
with an even surface is modeled as a polygon-typed object
with finite dimensions.

The distance between the robot ri’s position pi and the
robot r j’s position pj is denoted as dist(pi, pj). Denote a
constant distance as du that is finite and greater than zero.
Each robot has a limited sensing boundary denoted by SB.
Then ri detects the positions of other robots, denoted by
{p1, p2, · · · }, located within its SB, and makes a set of the
observed positions Oi obtained with respect to its local co-
ordinate system. From Oi, ri can select two specific robots
rs1 and rs2, respectively. We call rs1 and rs2 the neighbors of
ri and denote their positions {ps1, ps2} as Ni. Given pi and
Ni, Triangular Configuration is defined as a set of three dis-
tinct positions {pi, ps1, ps2} denoted by Ti, where we define
the internal angle ∠ps1 pi ps2 of ri as αi. Next, we can de-
fine Equilateral Configuration denoted by Ei if and only if
all the possible distance permutations dist(pπ(i), pπ( j)) in Ti

are equal to du. Now we need a measure indicating to which
degree Ti is configured into Ei. Given Ti, we can express all
the possible distance permutations as the following matrix
termed Distance Matrix Di with respect to ri.

Di =

{
(dist(pm, pn) − du)2 if m � n

0 otherwise
(1)

where {{pm, pn}| pm, pn ∈ Ti = {pi, ps1, ps2}}. We will denote
(dist(pm, pn) − du)2) for simplicity as (dk − du)2.

It is known that local geometric shapes of a school of
tuna form a diamond shape [15], whereby tunas exhibit the

Fig. 2 Adaptive flocking flowchart.

following schooling behaviors: maintenance, partition, and
unification. Similarly, local interactions in this work is to
form Ei from an arbitrary Ti. Formally, Local Interactions
is to have ri maintain du with Ni at each time toward forming
Ei. Now, we can define the problem of Adaptive Flocking
for a swarm of robots based on local interactions as follows:

Given r1, · · · , rn located at arbitrarily distinct positions,
how to enable the robots to navigate in a coordinated man-
ner adapting to a given environment.

We advocate that adaptive flocking can be achieved by solv-
ing the following three constituent sub-problems.

• Problem-1(Maintenance): Given that robots located at
arbitrarily distinct positions, how to enable the robots
to flock in a single swarm.
• Problem-2(Partition): Given that an environmental

constraint is detected, how to enable a swarm to split
into multiple smaller swarms adapting to the environ-
ment.
• Problem-3(Unification): Given that multiple swarms

exist in close proximity, how to enable them to merge
into a single swarm.

As illustrated in Fig. 2, the input of the solution of
adaptive flocking for each time is Oi and the environment
constraint with respect to ri’s local coordinate system. The
output is the target positions of each robot. When robots de-
tect the constraint within their SB, they execute the partition
algorithm to adapt their position to the constraint. When
they face no constraint, but observe other swarms, they ex-
ecute the unification algorithm. Otherwise, they basically
execute the maintenance algorithm while navigating toward
a goal.

In practice, many works on robot swarms use sensor-
rich information, memory, and communication means. For

†Self-stabilization is the property of a system which, started
in an arbitrary state, always converges toward a desired behavior
[20], [21].
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example, Nembrini et al. [16] used direct communications,
and robots were not required to sense each other’s position.
Note that if any means of communication are employed,
robots need to identify with each other or use a global coor-
dinate or positioning system [16], [17]. In this paper, we at-
tempt to achieve adaptive flocking of robot swarms without
taking advantage of rich computational capabilities or com-
munication. This will allow us to develop robot systems in
simple, robust, and non-costly ways.

3. Local Interaction

This section explains the local interactions among three
neighboring robots. As presented in Algorithm-1, the al-
gorithm consists of a function ϕinteraction whose arguments
are pi and Ni at each activation. Consider a robot ri and its
two neighbors rs1 and rs2 located within ri’s SB. As shown in
Fig. 3(a), three robots are configured into Ti whose vertices
are pi, ps1, and ps2, respectively. First, ri finds the centroid
of the triangle �pi ps1 ps2, denoted by pct, with respect to its
local coordinates, and measures the angle φ between the line
connecting the two neighbors and ri’s horizontal axis. Using
pct and φ, ri calculates the target point pti. Each robot com-
putes pti by its current observation of neighboring robots.
Intuitively, under Algorithm-1, ri may maintain du with its
two neighbors at each time. In other words, each robot at-
tempts to form an isosceles triangle for Ni at each time, and
by repeatedly doing this, three robots configure into Ei.

As illustrated in Fig. 3(b), let’s consider the circum-
scribed circle of an equilateral triangle whose center is pct of
�pi ps1 ps2 and radius dr is du/

√
3. Under the local interac-

tions, the positions of each robot are determined by control-
ling the distance di from pct and the internal angle αi (see
Fig. 3(a)). First, the distance is controlled by the following
equation.

ḋi(t) = −a(di(t) − dr), (2)

where a is a positive constant. Indeed, the solution of (2)
is di(t) = |di(0)|e−at + dr that converges exponentially to dr

as t approaches infinity. Secondly, the internal angle is con-
trolled by the following equation.

α̇i(t) = k(βi(t) + γi(t) − 2αi(t)), (3)

where k is a positive number. Because the total internal an-
gle of a triangle is 180◦, (3) can be re-written as

α̇i(t) = k′(60◦ − αi(t)), (4)

where k′ is 3k. Likewise, the solution of (4) is αi(t) =
|αi(0)|e−k′t + 60◦ that converges exponentially to 60◦ as t ap-
proaches infinity.

Note that (2) and (4) imply that the trajectory of ri

converges to dr and 60◦, an equilibrium state as termed
[dr 60◦]T shown in Fig. 3(b). This also implies that three
robots eventually form Ei. In order to prove the convergence
of the local interactions, we demonstrate the application of

Algorithm-1 Local Interaction (code executed by the robot ri at
the point pi)
constant du := uniform distance
FUNCTION ϕinteraction({ps1, ps2}, pi)
1 (pct,x, pct,y) := centroid(ps1, ps2, pi)
2 φ := angle between ps1 ps2 and ri’s local horizontal axis
3 pti,x := pct,x + du cos(φ + π/2)/

√
3

4 pti,y := pct,y + du sin(φ + π/2)/
√

3
5 pti := (pti,x, pti,y)

Fig. 3 Illustration of two control parameters in local interaction.

Lyapunov stability theory† [22]. Now, the desired config-
uration can be regarded as one that minimizes the energy
level of a Lyapunov function.

Consider the following scalar function of the state x =
[di(t) αi(t)]T with continuous first order derivatives:

fl,i =
1
2

(di − dr)
2 +

1
2

(60◦ − αi)
2. (5)

This scalar function is always positive definite except di �
dr and αi � 60. The derivative of the scalar function is given
by

ḟl,i = −(di − dr)
2 − (60◦ − αi)

2, (6)

which is obtained by differentiating fl,i to substitute for ḋi

and α̇i. It is evident that (6) is negative definite and the
scalar function fl,i is radially unbounded since it tends to
infinity as ‖ x ‖→ ∞. Therefore, the equilibrium state is
asymptotically stable, implying that ri reaches a vertex of
Ei.

4. Solution Approaches

4.1 Team Maintenance

The first problem is how to maintain Ei with neighboring
robots while navigating. A swarm is required to maintain a
multitude of equilateral triangle lattices, denoted by

∑n
i=1 Ei.

†Lyapunovs stability theorem states if there exists a scalar
function v(x) of the state x with continuous first order derivatives
such that v(x) is positive definite, v̇(x) is negative definite, and
v(x) → ∞ as ‖ x ‖→ ∞, then the equilibrium at the origin is
asymptotically stable.
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Fig. 4 Illustration of team maintenance.

As illustrated in Fig. 4(a), ri adjusts �G, termed the goal di-
rection, with respect to ri’s local coordinates and computes
Oi at the time t. Here, let A( �G) denote the area of goal di-
rection defined within ri’s SB. Next, ri checks whether there
exists a neighbor in A( �G). If any robots exist within A( �G),
ri selects the first neighbor rs1 located the shortest distance
away from pi that gives ps1. Otherwise, ri spots a virtual
point pv located some distance dv away from pi along �G,
which gives ps1. As shown in Fig. 4(b), the second neigh-
bor rs2 is selected such that the total distance from ps1 to
pi passing through ps2 is minimized. As a result, pti can be
obtained by ϕinteraction in Algorithm-1.

Under the maintenance algorithm, ri attempts to find
two neighbors within SB at each time and then form Ei.
Again, in order to examine the convergence property of the
algorithm, we will apply Lyapunov’s theory with a scalar
function given by

fm,i =
∑
Ti

(dk − du)2 + fl,i, (7)

where fl,i indicates the scalar function of local interactions
in (5),

∑
Ti

(dk − du)2 is defined as the constant value Di as-
sociated with Ti at each time (see (1)). A symmetric matrix
Di can be said to be positive definite, if xT Dix > 0 for ev-
ery nonzero x [23]. Moreover the term fl,i is always positive
definite except di � dr and αi � 60. (If Ti is equal to Ei,
it is easily seen that

∑
Ti

(dk − du)2 reaches 0, resulted from
dr = du/

√
3.) The derivative of the scalar function is given

by ḟm,i = ḟl,i. From (6), the derivative is negative definite.
Therefore, the equilibrium state is asymptotically stable, im-
plying that ri reaches a vertex of the desired triangle.

Next, the collective scalar function Fm of a swarm of
robots is a nonzero function with the property that any so-
lution of the set of algebraic constraints on range and bear-
ing (see Fig. 3(b)) is closely related to a set of equilibria for
{ri|1 ≤ i ≤ n} and vice versa. Without loss of generality,
the collective scalar function is a diminished energy func-
tion with a scalar potential. Therefore, the scalar function
Fm for a swarm of n robots is defined as Fm =

∑n
i=1 fm,i. It

is straightforward to verify that Fm is positive definite and
Ḟm is negative definite. Consequently, a swarm of n robots
converges into Ei for their Ni.

Fig. 5 Illustration of team partition.

4.2 Team Partition

When a swarm of robots detects an obstacle in its path, each
robot is required to determine its direction toward the goal
avoiding the obstacle. In this work, each robot determines
their direction by using the relative degree of attraction of
the passageway [24], termed the favorite vector �f , whose
magnitude is given by

| �f j| = |w j/d
2
j |. (8)

In Fig. 5(a), s j denotes the passageway with width w j, and dj

denotes the distance between the center of w j and pi. Note
that if ri can not exactly measure w j beyond its SB, w j may
be shortened. Now the passageways can be represented by
a set of favorite vectors { �f j|1 ≤ j ≤ n} and then ri selects
the maximum magnitude of �f j denoted as | �f j|max. As shown
in Fig. 5(b), ri defines a maximum favorite area A( �f jmax)
based on the direction of | �f j|max within its SB. Next, ri checks
whether there exists a neighbor in A( �f jmax). If neighbors are
found, ri selects rs1 located the shortest distance away from
itself to define ps1. Otherwise, ri spots a virtual point pv lo-
cated at dv in the direction of | �f j|max to define ps1. Finally rs2

is selected such that the total distance from ps1 to pi passing
through ps2 is minimized. As a result, pti can be obtained
by ϕinteraction in Algorithm-1.

Note that | �f j|max forces ri move a certain direction of
pti. | �f j|max can be regarded as motion planning given simply
by | �f j|max = f̈l,i. Unless ri collides with any obstacles while
locally interacting, then we can prove the convergence into
Ei as detailed below.

Here, Lyapunov’s theory is applied again to show the
convergence of ri using the positive definite scalar function
fp,i given by

fp,i =
1
2

( ḟl,i)
2 + fl,i +

∑
Ti

(dk − du)2. (9)

It is evident that the differentiation of fp,i gives

ḟp,i = ḟl,i( f̈l,i) + ḟl,i = ḟl,i( f̈l,i + 1). (10)
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Fig. 6 Illustration of team unification.

which is negative definite. Therefore, based on Lyapunov’s
theory, the motion planning of ri under partition converges
into Ei while avoiding any obstacles.

Now we examine the convergence of partition for a
swarm of n robots. It is straightforward to define Fp =∑n

i=1 fp,i, and show that Fp is positive definite. It is also
evident that Ḟp is negative definite. Consequently, a swarm
of n robots can be split into multiple swarms according to
| �f j|max within their SB while avoiding obstacles.

4.3 Team Unification

In order to enable the multiple swarms in close proximity
to merge into a single swarm, ri adjusts �G with respect to
its local coordinates and defines the position set of robots
Du located within the range of du. Let ang(�m, �n) be an an-
gle between two arbitrary vectors �m and �n. As shown in
Fig. 6(a), ri computes ang( �G,−−−−→pi puk), where −−−−→pi puk is the vec-
tors starting from pi to puk of Du, and defines a neighbor
point pre f that gives the minimum ang( �G,−−−−→pi puk) between
�G and −−−−→pi puk. Starting from −−−−→pi pre f , ri checks whether there
exists a neighbor point pul which belongs to Du within the
area obtained by rotating −−−−→pi pre f 60 degrees clockwise. If
there exists pul, ri finds another neighbor point pum using
the same method starting from −−−→pi pul. Unless pul exists, ri de-
fines pre f as prn. Similarly, ri can decide a specific neighbor
point pln while rotating 60 degrees counterclockwise from−−−−→pi pre f . The two points, denoted as prn and pln, are located
at the farthest point in the right-hand or left-hand direction
of −−−−→pi pre f , respectively. As illustrated in Fig. 6(b), a unifica-
tion area A(U) is defined as the common area between A( �G)
in SB and the rest of the area in SB, where no element of
Du exists. Then, ri defines a set of robots in A(U) and se-
lects the first neighbor rs1 located the shortest distance away
from pi in A(U). The second neighbor position is defined
such that the total distance from ps1 to pi can be minimized
through either prn or pln. As a result, pti can be obtained as
using ϕinteraction.

The unification algorithm aims to merge multiple
smaller swarms into a single, large swarm. In other words,
the solution enables the robots located on the boundaries of
the swarms to increase the number of neighbor robots which

form Ei centering ri within SB. Therefore, ri attempts to
reach the maximum number of desired configurations given
by max[

∑s
k=1(Ei)k], where s will not exceed a maximum of

6 since the configuration is a hexagon composed of 6 equi-
lateral triangle lattices. Depending on the current location
of each robot, s varies from 1 to 6.

We define the scalar function related to unification with
respect to ri as fu,i given by

fu,i =
w∑

k=1

( fl,i)k + fl,i +
∑
Ti

(dk − du)2 (11)

where w is less than max[s]. Using (11), max[
∑s

k=1(Ei)k] can
be re-written as follows:

fu,i = min[
s∑

k=1

( fl,i)k] (12)

where s is greater than or equal to w + 1 and is less than or
equal to 6. Note that, when ri approaches another swarm,
(11) implies that fu,i forces ri to minimize

∑w
k=1( fl,i)k. If fu,i

decreases, we can predict that ri becomes stable, namely,
min[
∑s

k=1( fl,i)k]. By doing this repeatedly, the smaller split
groups will be merged.

In order to examine the convergence property of ri,
Lyapunov’s theory is applied with positive definite scalar
function (11). Differentiating fu,i gives

ḟu,i = ḟl,i +
w∑

k=1

( ḟl,i) j, (13)

which can be simplified to ḟu,i =
∑s

k=1( ḟl,i)k. It is evident
that ḟu,i is negative definite. Therefore, based on Lyapunov’s
theory, the motion of ri under unification converges into∑s

k=1(Ei)k.
Now we examine the convergence of unification for a

swarm of n robots. Using (11), if the scalar function is de-
fined as Fu =

∑n
i=1 fu,i, it is straightforward to verify that Fu

is positive definite and Ḟu is negative definite. Consequently,
a swarm of n robots converges into

∑n
i=1

(
max[
∑s

k=1(Ei)k]
)
.

5. Simulation Results

We set the distance dv between pv and pi to 1.2 times longer
than du and the range of SB to 3.5 times longer than du.
A stationary goal is assumed as a light source and located
at a long distance. Moreover, we assume that each robot
can detect the goal direction through light emitted from the
source. Our simulations start from the scenario that a swarm
of robots navigates toward the goal while adapting to an un-
known environment like an exploration application.

The first simulation demonstrates how a swarm of
robots adaptively flocks in an environment populated with
obstacles. In Fig. 7, the swarm navigates toward the goal
located at the upper center point. On the way to the goal,
some of the robots detect an obstacle that forces the swarm
split into two groups in Fig. 7(b). The rest of the robots just
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Fig. 7 Simulation results of adaptive flocking under static environmental
conditions.

follow their neighbors moving ahead. After being split into
two swarms, each swarm maintains the geometric config-
uration while navigating in Fig. 7(c). Note that the robots
that could not identify the obstacle follow the moving direc-
tion of proceeding robots. Figs. 7(d) and (e) show that two
swarms merge and/or split again into smaller swarms due
to other obstacles. In Fig. 7(f), the robots successfully pass
through the obstacles.

We now investigate properties of the proposed algo-
rithm by changing the number of robots in a swarm to 80,
100, and 120, respectively. Figure 8 presents the changes in
the number of neighboring robots at a uniform distance of du

from each robot while traveling toward a goal in Fig. 7. We
can largely divide their behavior into the following four time
periods in Fig. 8(a). First, during the first 10 sec., each robot
generated an equilateral triangle of a side length of du with
their neighbors, which resulted in a significant increase of
the number of neighbors at a distance of du. Secondly, from
10 sec. to 40 sec., the number of robots accompanied by 6
neighboring robots decreased, while the number of robots

Fig. 8 Changes in the number of neighboring robots located at a constant
distance of du from each robot in Fig. 7.

accompanied by 4 neighboring robots increased. If we take
a close look at Fig. 7(d), during this period, the swarm was
split into multiple smaller groups due to the obstacles in its
path. Thirdly, from 40 sec. to 50 sec., the multiple groups
were re-united and the number of neighboring robots lo-
cated at du gradually increased. Lastly, after the unification
period, there were no changes in the number of neighboring
robots at du, maintaining a single swarm through the local
interactions of individual robots.

Moreover, Fig. 8 demonstrates the stability and the net-
work connection of a swarm for the proposed algorithm
when the participated different numbers of robots are ap-
plied to it over the same environmental condition. First,
regardless of the environmental constraints, each robot at-
tempts to form Ei for two selected neighbors at a distance
of du at each time. In other words, it means stability of the
motion planning by locally interacting with the neighbors of
each robot while traveling. Secondly, the simulation results
present the network connection of the swarm representing
the changes of the number of neighboring robots located at a
uniform distance du while adapting to an environment. Sim-
ilarly, the proposed algorithm is evaluated in a changing en-
vironment as presented in Fig. 9 under the same conditions
as the previous static environment. Due to one continuously
moving obstacle, two swarms traded robots with each other.

We now examine the effect of the changes in each
robot’s SB on swarm behaviors. We set SB to 2 times, 3.5
times, 6 times, and 100 times du, respectively, in Fig. 10.
Each robot is heading toward a goal located on the right side



2854
IEICE TRANS. COMMUN., VOL.E91–B, NO.9 SEPTEMBER 2008

Fig. 9 Simulation results of adaptive flocking under dynamic
environmental conditions.

Fig. 10 Simulation results of adaptive flocking according to changes in
sensing boundary (a) 2 times du, (b) 3.5 times du, (c) 6 times du, (d) 100
times du.

of the figure. Figure 10(a) shows that only the leading edge
of the swarm detected the obstacles and selected their path.
Other robots were split into three swarms by interacting with
the leading edge robots. In contrast, Fig. 10(d) shows that a
single swarm was maintained, since all the robots were able
to observe the obstacles from a long distance and select their
favorite passageway | �f j|max with the largest width. Figure 11
shows the variations in the number of neighbor robots at a

Fig. 11 Variations in the number of neighboring robots located at a
constant distance of du in Fig. 10.

constant distance of du in Fig. 10 according to SB. The larger
SB has each robot, the less fluctuation occurs in the number
of neighbor robots at du.

6. Conclusion

In this paper, we presented a decentralized algorithm of
adaptive flocking, enabling a swarm of autonomous mobile
robots to navigate toward achieving a mission while adapt-
ing to a complex environment. Through local interactions
by observing the positions of neighboring robots, each robot
could maintain a uniform distance to their neighbors, and
adapt the direction of heading and geometric shape. The al-
gorithm was proved to be convergent using Lyapunov stabil-
ity theory. Furthermore, we verified the effectiveness of the
proposed strategy using our in-house simulator. The simu-
lation results clearly demonstrated that the proposed algo-
rithm is a simple yet robust approach to autonomous nav-
igation of robot swarms in a changing, cluttered environ-
ment. In practice, because our robot model is very weak,
this algorithm is easily implementable on a wide variety of
resource-constrained mobile robots and platforms.
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