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A CONSTRUCTIVE LOOK AT THE COMPLETENESS

OF THE SPACE D (R)

HAJIME ISHIHARA AND SATORU YOSHIDA

Abstract. We show, within the framework of Bishop’s constructive mathematics, that (sequential)

completeness of the locally convex space D (R) of test functions is equivalent to the principle BD-N which

holds in classical mathemtatics, Brouwer’s intuitionism and Markov’s constructive recursive mathematics,

but does not hold in Bishop’s constructivism.

§1. Introduction. The space D (R) of all infinitely differentiable functions f :
R → R with compact support together with a locally convex structure defined by
the seminorms

pα,â(f) := sup
n
max
l≤â(n)

sup
|x|≥n

2α(n)|f(l)(x)| (α, â ∈ N → N)

is an important example of a locally convex space. Classically the spaceD (R)—the
space of test functions—is complete, but it has not been known whether the con-
structive completion ofD (R), whose explicit description was given in [1, Appendix
A] and [2, Chapter 7, Notes], coincides with the original space or not. This leads
us to a difficulty in developing the theory of distributions in Bishop’s constructive
mathematics; see [1, Appendix A] and [2, Chapter 7, Notes] for more details.
The aim of our paper is to find a principle which is necessary and sufficient to
establish the completeness of D (R). Although it is formulated in the setting of
informal Bishop-style constructive mathematics, the proofs could easily be formal-
ized in a system based on intuitionistic finite-type arithmetics HAù [8, Chapter 1],
[9, Chapter 9]; see also [5].
A subset A of N is said to be pseudobounded if for each sequence {an}n in A,

lim
n→∞

an
n
= 0.

A bounded subset of N is pseudobounded. The converse for countable sets holds
in in classical mathematics, intuitionistic mathematics and constructive recursive
mathematics of Markov’s school; see [6]. However, a natural recursivisation of the
following principle is independent of Heyting arithmetic [4].

BD-N: Every countable pseudobounded subset of N is bounded.

BD-N has been proved to be equivalent to the following theorems [6, 7, 4]; Banach’s
inverse mapping theorem; the open mapping theorem; the closed graph theorem;
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1512 HAJIME ISHIHARA AND SATORU YOSHIDA

the Banach-Steinhaus theorem; the Hellinger-Toeplitz theorem; every sequentially
continuous mapping of a separable metric space into a metric space is pointwise
continuous; every uniformly sequentially continuous mapping of a separable metric
space into a metric space is uniformly continuous. In this paper, we will show that
it is also equivalent to the (sequential) completeness of D (R).
In the rest of the paper, we assume familiarity with the constructive calculus, as
found in [1, Chapter 2], [3, Appendix], [2, Chapter 2], or [9, Chapter 6]. In the next
section, we shall show that the test function

ϕ̂(x) :=

{
exp

(
− 1
1−x2

)
if |x| < 1

0 if |x| ≥ 1

is well-defined in Bishop’s constructive mathematics. In the last section, we shall
prove our main result with the completeness of the space K (R), which is another
important example of a locally convex space, of all uniformly continuous functions
f : R → R with compact support together with the seminorms

qα(f) := sup
n
sup
|x|≥n

2α(n)|f(x)| (α ∈ N → N).

Note that since functions differentiable on a compact interval are uniformly contin-
uous on the interval, functions in D (R) belong toK (R).

§2. An example of a test function. A function f : (a, b)→ R is said to vanish at
end points if for each k there exists m such that for all x ∈ (a, b),

x < a + 2−m ∨ b − 2−m < x=⇒|f(x)| < 2−k .

Proposition 1. Let f : (a, b)→ R be a function which vanishes at end points and
is uniformly continuous on each compact subinterval of (a, b). Then there exists a
uniformly continuous function f̂ : R → R such that f̂ = f on (a, b) and f̂ = 0 on
(−∞, a) ∪ (b,∞).

Proof. We first show that f is uniformly continuous on (a, b). To this end, let
k ∈ N. Then there exists m such that for all x ∈ (a, b),

x < a + 2−m ∨ b − 2−m < x=⇒|f(x)| < 2−k−1.

Since f is uniformly continuous on each compact subinterval of (a, b), we can find
n > m such that for all x, y ∈ [a + 2−m−2, b − 2−m−2],

|x − y| < 2−n =⇒|f(x)− f(y)| < 2−k .

Let x, y ∈ (a, b) with |x − y| < 2−n. Then since (a, b) = (a, a + 2−m−1) ∪
(a + 2−m−2, b − 2−m−2) ∪ (b − 2−m−1, b), either x, y ∈ (a + 2−m−2, b − 2−m−2),
x ∈ (a, a+2−m−1)∪ (b−2−m−1, b), or y ∈ (a, a+2−m−1)∪ (b−2−m−1, b). In the
first case, we have |f(x)−f(y)| < 2−k . In the second case, if x ∈ (a, a + 2−m−1),
then

a < y ≤ x + |x − y| < a + 2−m−1 + 2−n ≤ a + 2−m,

and hence a < y < a + 2−m; or else x ∈ (b − 2−m−1, b), similarly we have
b − 2−m < y < b. Hence

|f(x)− f(y)| ≤ |f(x)|+ |f(y)| < 2−k−1 + 2−k−1 = 2−k .
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In the last case, similarly we have |f(x)− f(y)| < 2−k . Therefore f is uniformly
continuous on (a, b).
Define the function F : (−∞, a) ∪ (a, b) ∪ (b,∞)→ R by

F (x) :=

{
f(x) if a < x < b

0 if x < a or b < x.

We show that F is uniformly continuous on (−∞, a) ∪ (a, b) ∪ (b,∞). Let k ∈ N.
Then there exists n such that for all x, y ∈ (a, b),

|x − y| < 2−n=⇒|f(x)− f(y)| < 2−k ,

x < a + 2−n ∨ b − 2−n < x=⇒|f(x)| < 2−k .

Let x, y ∈ (−∞, a) ∪ (a, b) ∪ (b,∞) with |x − y| < 2−n. Then either x, y ∈ (a, b),
x ∈ (−∞, a) ∪ (b,∞), or y ∈ (−∞, a) ∪ (b,∞). In the first case, we have

|F (x)− F (y)| = |f(x)− f(y)| < 2−k .

In the second case, if x ∈ (−∞, a), then y ∈ (−∞, a) ∪ (a, a + 2−n), and hence

|F (x)− F (y)| = |F (y)| < 2−k ;

or elsex ∈ (b,∞), wehavey ∈ (b−2−n, b)∪(b,∞), andhence |F (x)−F (y)| < 2−k .
The last case is similar. Thus F is uniformly continuous.
Therefore by [2, Lemma 4.3.7], there exists a uniformly continuous function
f̂ : R → R such that f̂(x) = F (x) for all x ∈ (−∞, a) ∪ (a, b) ∪ (b,∞). ⊣

A function f from a subset X of R into R is uniformly differentiable on X , with
a derivative f′, if for each k, there exists n such that for all x, y ∈ X ,

|x − y| < 2−n=⇒|f′(x)(x − y) − (f(x)− f(y))| < 2−k .

We shall use the familiar notation for iterated derivatives: f(0) := f, f(l+1) :=
(f(l))′.
Letf,f′ : (a, b)→ Rbe functionswhich vanish at endpoints, and suppose thatf
is uniformly differentiable on each compact subinterval of (a, b) with a derivativef′.
Then by [3, A.1], f and f′ are uniformly continuous on each compact subinterval

of (a, b), and hence they have the uniformly continuous extensions f̂ and f̂′.

Proposition 2. Let f,f′ : (a, b)→ R be functions which vanish at end points, and
suppose that f is uniformly differentiable on each compact subinterval of (a, b) with

a derivative f′. Then f̂ is uniformly differentiable on R with a derivative f̂′.

Proof. We first show thatf is uniformly differentiable on (a, b) with a derivative

f′. To this end, let k ∈ N. Then since f̂′ is uniformly continuous, there exists n
such that for all x, y ∈ (a, b),

|x − y| < 2−n =⇒|f′(x)− f′(y)| < 2−k .

Let x, y ∈ (a, b) with |x − y| < 2−n, and note that

f(w) =

∫ w

y

f′(t)dt + f(y)
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on a compact subinterval of (a, b) containing x and y; see [2, Theorem 2.6.8].
Then

|f′(x)(x − y)− (f(x)− f(y))| =

∣∣∣∣f′(x)(x − y) −

∫ x

y

f′(t)dt

∣∣∣∣

=

∣∣∣∣
∫ x

y

(f′(x)− f′(t))dt

∣∣∣∣

≤ 2−k|x − y|.

Therefore f is uniformly differentiable on (a, b) with a derivative f′.

We show that f̂ is uniformly differentiable on R with a derivative f̂′. For given
k ∈ N, there exists n such that for all x, y ∈ (a, b),

|x − y| < 2−n =⇒|f′(x)(x − y) − (f(x)− f(y))| ≤ 2−k−1|x − y|,

x < a + 2−n ∨ b − 2−n < x=⇒|f′(x)| < 2−k−1.

Let x, y ∈ R with |x − y| < 2−n, and suppose that

|f̂′(x)(x − y)− (f̂(x)− f̂(y))| > 2−k|x − y|.

Then there exist u, v ∈ (−∞, a) ∪ (a, b) ∪ (b,∞) with |u − v| < 2−n and m such
that

|f̂′(u)(u − v)− (f̂(u)− f̂(v))| > 2−k|u − v|+ 2−m.

Either u, v ∈ (a, b), u ∈ (−∞, a) ∪ (b,∞), or v ∈ (−∞, a) ∪ (b,∞). The first
case is absurd. In the second case, if u ∈ (−∞, a), then since v ∈ (−∞, a) is
impossible, v ∈ (a, a + 2−n), and hence choosing w with a < w < v < a + 2−n so
that |f(w)| < 2−m, we have

2−k|u − v|+ 2−m < |f̂′(u)(u − v)− (f̂(u)− f̂(v))|

≤ |f′(w)(w − v)− (f(w)− f(v))|

+|f′(w)(w − v)|+ |f(w)|

< 2−k−1|w − v|+ 2−k−1|w − v|+ 2−m

< 2−k|u − v|+ 2−m,

a contradiction; or else u ∈ (b,∞), by a similar argument, we have a contradiction.
Similarly the last case is absurd. Therefore

|f̂′(x)(x − y)− (f̂(x)− f̂(y))| ≤ 2−k|x − y|. ⊣

The function

ϕ(x) := exp

(
−

1

1− x2

)

from (−1, 1) to R is infinitely differentiable on each compact subinterval of (−1, 1),
and its l -th derivative is

ϕ(l)(x) =
Pl (x)

(1− x2)2l
exp

(
−

1

1− x2

)
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for some polynomial Pl . Since for each m and k there exists n such that

t > 2n =⇒
tm

exp(t)
< 2−k (t ∈ R),

each ϕ(l) vanishes at end points. Hence ϕ̂ = ϕ̂(0) is infinitely differentiable on R,

and its l -th derivative ϕ̂(l) is ϕ̂(l).

§3. Completeness and BD-N.

Lemma 3. A subset A of N is pseudobounded if and only if for each sequence {an}
in A, an < n for all sufficiently large n.

Proof. The “only if” part is trivial. To prove the converse, let {an} be a sequence
in A, k a positive integer, and construct a binary sequence such that

ën = 0 =⇒ max
{
am/m : n2

k ≤ m < (n + 1)2k
}
< 2−k ,

ën = 1 =⇒ max
{
am/m : n2

k ≤ m < (n + 1)2k
}
≥ 2−k .

Define a sequence {a′n} in A as follows: if ën = 0, set a
′
n := a0; if ën = 1, choose

m with n2k ≤ m < (n + 1)2k such that am/m ≥ 2−k and set a′n := am. Then there
exists a positive integer N such that a′n < n for all n ≥ N . If ën = 1 for some
n ≥ N , then there exists m such that n2k ≤ m < (n + 1)2k and a′n/m ≥ 2−k , and
hence

n ≤ m2−k ≤ a′n < n,

a contradiction. Thus ën = 0 for all n ≥ N . ⊣

Theorem 4. The following are equivalent.

1. K (R) is (sequentially) complete.
2. D (R) is (sequentially) complete.
3. BD-N.

Proof. (3) =⇒ (1). Let {fi} be a Cauchy sequence in K (R). Then taking
α := ën.0, for each k there exists I such that

sup
|x|≥0

|fi(x)− fj(x)| ≤ qα(fi − fj) < 2
−k (i, j ≥ I ).

By a straightforward modification of the proof of [2, Theorem 2.4.11], {fi} con-
verges uniformly to a uniformly continuous function f. Note that for each
α ∈ N → N and k there exists I such that

∀n∀x ∈ R(|x| ≥ n=⇒ 2α(n)|fi(x)− f(x)| ≤ 2
−k) (i ≥ I ).

In fact, given α ∈ N → N and k, there exists I such that qα(fi−fj) < 2−k−1 for all

i, j ≥ I . Let i ≥ I , and suppose that there exists n such that 2α(n)|fi(x′)−f(x′)| >
2−k for some x′ ∈ R with |x′| ≥ n. Then there exists j with j ≥ I such that
|fj(x)− f(x)| < 2−α(n)−k−1 for all x ∈ R, and hence

2−k < 2α(n)|fi(x
′)− f(x′)|

≤ 2α(n)|fi(x
′)− fj(x

′)|+ 2α(n)|fj(x
′)− f(x′)|

≤ qα(fi − fj) + 2
−k−1 < 2−k ,
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a contradiction. We shall show that f has compact support, and hence {fi}
converges to f inK (R). To this end, let

A := {0} ∪ {n ∈ N : ∃m ∈ N∃u ∈ Q(|u| ≥ n ∧ |f(u)| > 2−m)}.

Then A is a countable subset of N. Given sequence {an} in A, construct a binary
sequence {ën} such that ë0 := 0 and for n ≥ 1,

ën = 0 =⇒ an < n,

ën = 1 =⇒ an ≥ n.

Define a sequence α ∈ N → N as follows: if ën = 0, set α(n) := 0; if ën = 1, choose
m such that ∃u ∈ Q(|u| ≥ an ∧ |f(u)| > 2−m) and set α(n) := m. Then there exists
I such that

∀n∀x ∈ R(|x| ≥ n=⇒ 2α(n)|fI (x)− f(x)| ≤ 1).

Choosing N such that fI (x) = 0 for all x ∈ R with |x| ≥ N , consider any integer
n ≥ N . If ën = 1, then there exists u ∈ Q such that |u| ≥ an ≥ n ≥ N and
|f(u)| > 2−α(n), and hence

1 < 2α(n)|f(u)| = 2α(n)|fI (u)− f(u)| ≤ 1,

a contradiction. Thus ën = 0 for all n ≥ N . Therefore A is pseudobounded, and
so A is bounded, that is f has compact support.
(1) =⇒ (2). Let {fi} be a Cauchy sequence inD (R). Then for each l , α ∈ N →

N and k, letting â := ën.l , there exists I such that

qα(f
(l)
i − f(l)j ) ≤ pα,â(fi − fj) < 2

−k (i, j ≥ I ).

Hence for each l , {f(l)i } is a Cauchy sequence inK (R), and thus converges to a limit

f(l) in K (R). We show that f(l) is uniformly differentiable on R with a derivative
f(l+1), and sof := f(0) ∈ D (R). For given k, sincef(l+1) is uniformly continuous,
there exists n such that for all x, y ∈ R,

|x − y| < 2−n =⇒|f(l+1)(x)− f(l+1)(y)| < 2−k .

Let x, y ∈ Rwith |x−y| < 2−n. Then since {f(l)i } and {f(l+1)i } converge uniformly

to f(l) and f(l+1) respectively, we have

f(l)(x)− f(l)(y) = lim
i→∞

(
f(l)i (x)− f

(l)
i (y)

)
= lim
i→∞

∫ x

y

f(l+1)i (t)dt

=

∫ x

y

f(l+1)(t)dt

by [2, Lemma 2.6.9], and hence

|f(l+1)(x)(x − y) − (f(l)(x)− f(l)(y))|

=

∣∣∣∣f(l+1)(x)(x − y)−
∫ x

y

f(l+1)(t)dt

∣∣∣∣

=

∣∣∣∣
∫ x

y

(f(l+1)(x)− f(l+1)(t))dt

∣∣∣∣

≤ 2−k|x − y|.
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We show that {fi} converges to f in D (R). For given α, â ∈ N → N and
k ∈ N, there exists I such that pα,â(fi − fj) < 2

−k−1 for all i, j ≥ I . Suppose
that pα,â(fi − f) > 2

−k for some i ≥ I . Then there exists n and l with l ≤

â(n) such that sup|x|≥n 2
α(n)|f(l)i (x) − f

(l)(x)| > 2−k . Choosing j ≥ I so that

qα(f
(l)
j − f(l)) < 2−k−1, we have

2−k < sup
|x|≥n

2α(n)|f(l)i (x)− f
(l)(x)|

≤ sup
|x|≥n

2α(n)|f(l)i (x)− f
(l)
j (x)|+ sup

|x|≥n

2α(n)|f(l)j (x)− f
(l)(x)|

≤ pα,â(fi − fj) + qα(f
(l)
j − f(l)) < 2−k ,

a contradiction. Therefore pα,â(fi − f) ≤ 2
−k for all i ≥ I .

(2) =⇒ (3). Let A be a pseudobounded subset of N and {an} an enumeration
of A. We may assume that an ≥ 1 for all n. For each m, define the infinitely
differentiable function gm : R → R by

gm(x) :=
ϕ̂(2(x − am) + 1)

2m
.

Then

• 0 < gm(am − 1/2) for all m,

• 0 < |g(l)m (x)|=⇒ 0 ≤ am − 1 ≤ x ≤ am for all m and l , and
• for each l and å > 0 there exists I such that

∞∑

m=I

|g(l)m (x)| < å (x ∈ R).

We shall show that the sequence {fi} := {
∑i
m=0 gm(x)} in D (R) is a Cauchy

sequence. To this end, we first show that

sup
|x|≥n

2α(n)
∞∑

m=0

|g(l)m (x)|

exists for all α ∈ N → N, n and l , and hence

sα,ân := max
l≤â(n)

sup
|x|≥n

2α(n)
∞∑

m=0

|g(l)m (x)|

exists for all α, â ∈ N → N and n. Fix α ∈ N → N, n and l , and let a, b ∈ R with
a < b. Then there exists I such that

∞∑

m=I+1

|g(l)m (x)| <
b − a

2α(n)+1
(x ∈ R).

Either a < sup|x|≥n 2
α(n)

∑I
m=0 |g

(l)
m (x)| or sup|x|≥n 2

α(n)
∑I
m=0 |g

(l)
m (x)| < (a +

b)/2: in the former case, we have

a < 2α(n)
I∑

m=0

|g(l)m (x
′)| ≤ 2α(n)

∞∑

m=0

|g(l)m (x
′)|
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for some x′ ∈ R with |x′| ≥ n; in the latter case, we have

2α(n)
∞∑

m=0

|g(l)m (x)| ≤ 2
α(n)

I∑

m=0

|g(l)m (x)|+ 2
α(n)

∞∑

m=I+1

|g(l)m (x)| < b

for all x ∈ R with |x| ≥ n. Therefore by the constructive least-upper-bound
principle [2, Proposition 2.4.3], the supremum exists.
For given α, â ∈ N → N and k, construct a binary sequence {ën} such that

ën = 0 =⇒ sα,ân < 2−k ,

ën = 1 =⇒ sα,ân > 0.

Define a sequence {a′n} in A as follows: if ën = 0, set a
′
n := a0; if ën = 1,

choosing l ≤ â(n), x ∈ R with |x| ≥ n and m such that 0 < |g(l)m (x)|, we have
n ≤ x ≤ am, and set a′n := am. Then since A is pseudobounded, there exists N
such that a′n < n for all n ≥ N . If ën = 1 for some n ≥ N , then n ≤ a′n < n, a
contradiction. Hence ën = 0 for all n ≥ N . LettingM := max{α(n) : n < N} and
L := max{â(n) : n < N}, there exists I such that

∞∑

m=I

|g(l)m (x)| < 2
−M−k (x ∈ R, l ≤ L).

For each i, j with j ≥ i ≥ I , we have for n < N

max
l≤â(n)

sup
|x|≥n

2α(n)

∣∣∣∣∣

j∑

m=i

g(l)m (x)

∣∣∣∣∣ ≤maxl≤L sup|x|≥n

2M
j∑

m=i

|g(l)m (x)|

≤max
l≤L
sup
|x|≥n

2M2−M−k = 2−k ,

and for n ≥ N

max
l≤â(n)

sup
|x|≥n

2α(n)

∣∣∣∣∣

j∑

m=i

g(l)m (x)

∣∣∣∣∣ ≤ maxl≤â(n)
sup
|x|≥n

2α(n)
j∑

m=i

|g(l)m (x)|

≤ sα,ân < 2−k .

Therefore

pα,â(fi − fj) = sup
n
max
l≤â(n)

sup
|x|≥n

2α(n)

∣∣∣∣∣

j∑

m=i+1

g(l)m (x)

∣∣∣∣∣ ≤ 2
−k .

Thus {fi} is a Cauchy sequence, and hence has a limit f in D (R). Let K be a
positive integer such that f(x) = 0 whenever |x| ≥ K . If an > K for some n, then
K < an − 1/2 and 0 < gn(an − 1/2) ≤ f(an − 1/2), a contradiction. Therefore
an ≤ K for all n. ⊣
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