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The Game of Synchronized Triomineering and
Synchronized Tridomineering

Alessandro Cincotti, Shigetaka Komori and Hiroyuki Iida

Abstract—In synchronized games players make their moves si-
multaneously rather than alternately. Synchronized Triomineering
and Synchronized Tridomineering are respectively the synchronized
versions of Triomineering and Tridomineering, two variants of a
classic two-player combinatorial game called Domineering. Exper-
imental results for small m × n boards (with m + n ≤ 12 for
Synchronized Triomineering and m + n ≤ 10 for Synchronized
Tridomineering) and some theoretical results for general k×n boards
(with k = 3, 4, 5 for Synchronized Triomineering and k = 3
for Synchronized Tridomineering) are presented. Future research is
indicated.

Keywords—Combinatorial games, Synchronized games, Triomi-
neering, Tridomineering.

I. INTRODUCTION

THE game of Triomineering and Tridomineering are two-
player games with perfect information, proposed in 2004

by Blanco and Fraenkel [1]. In Triomineering two players,
usually denoted by Vertical and Horizontal, take turns in
placing ”straight” triominoes (3 × 1 tile) on a checkerboard.
Vertical is only allowed to place its triominoes vertically and
Horizontal is only allowed to place its triominoes horizontally
on the board. Triominoes are not allowed to overlap and the
first player that cannot find a place for one of its triominoes
loses. After a time the remaining space may separate into
several disconnected regions, and each player must choose into
which region to place a triomino. In Tridomineering Vertical
and Horizontal alternate in tiling with either a domino (2× 1
tile) or a straight triomino.

Blanco and Fraenkel [1] calculated Triomineering and
Tridomineering values for boards up to 6 squares and small
rectangular boards.

II. SYNCHRONIZED GAMES

For the sake of self containment, we recall the previous
results concerning synchronized games. Initially, the concept
of synchronism was introduced in the games of Cutcake
[2], Maundy Cake [3], and Domineering [4] in order to
study combinatorial games where players make their moves
simultaneously.

As a result, in the synchronized versions of these games
there exist no zero-games (fuzzy-games), i.e., games where
the winner depends exclusively on the player that makes the
second (first) move. Moreover, there exists the possibility of a
draw, which is impossible in a typical combinatorial game. In
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TABLE I
THE POSSIBLE OUTCOMES IN SYNCHRONIZED TRIOMINEERING AND

SYNCHRONIZED TRIDOMINEERING

Horizontal ls Horizontal ds Horizontal ws
Vertical ls G = V HD G = HD G = H
Vertical ds G = V D G = D -
Vertical ws G = V - -

this work, we continue to investigate synchronized combina-
torial games by focusing our attention on Triomineering and
Tridomineering.

In the game of Synchronized Triomineering and Synchro-
nized Tridomineering, a general instance and the legal moves
for Vertical and Horizontal are defined exactly in the same
way as defined for the game of Triomineering. There is
only one difference: Vertical and Horizontal make their legal
moves simultaneously, therefore, triominoes and/or dominoes
are allowed to overlap if they have a 1×1 tile in common. We
note that 1× 1 overlap is only possible within a simultaneous
move.

At the end, if both players cannot make a move, then the
game ends in a draw, else if only one player can still make a
move, then he/she is the winner.

In Synchronized Triomineering and Synchronized Tridomi-
neering, for each player there exist three possible outcomes:

• The player has a winning strategy (ws) independently of
the opponent’s strategy, or

• The player has a drawing strategy (ds), i.e., he/she can
always get a draw in the worst case, or

• The player has a losing strategy (ls), i.e., he/she does not
have a strategy for winning or for drawing.

Table I shows all the possible cases. It is clear that if one
player has a winning strategy, then the other player has neither
a winning strategy nor a drawing strategy. Therefore, the cases
ws − ws, ws − ds, and ds − ws never happen. As a conse-
quence, if G is an instance of Synchronized Triomineering
(Synchronized Tridomineering), then we have 6 possible legal
cases:

• G = D if both players have a drawing strategy, and the
game will always end in a draw under perfect play, or

• G = V if Vertical has a winning strategy, or
• G = H if Horizontal has a winning strategy, or
• G = V D if Vertical can always get a draw in the worst

case, but he/she could be able to win if Horizontal makes
a wrong move, or

• G = HD if Horizontal can always get a draw in the
worst case, but he/she could be able to win if Vertical
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makes a wrong move, or
• G = V HD if both players have a losing strategy and the

outcome is totally unpredictable.

III. EXAMPLES OF SYNCHRONIZED TRIOMINEERING

The game

always ends in a draw, therefore G = D.
In the game

Vertical has a winning strategy moving in the second (or in
the third) column, therefore G = V .

In the game

if Vertical moves in the first column we have two possibilities

or

therefore, either Vertical wins or the game ends in a draw.
Symmetrically, if Vertical moves in the third column we have
two possibilities

or

therefore, either Vertical wins or the game ends in a draw. It
follows G = V D.

In the game

each player has 4 possible moves. For every move of Vertical,
Horizontal can win or draw (and sometimes lose); likewise,
for every move by Horizontal, Vertical can win or draw (and
sometimes lose). As a result it follows that G = V HD.

IV. RESULTS FOR SYNCHRONIZED TRIOMINEERING

Table II shows the results obtained using an exhaustive
search algorithm for n × m boards with n + m ≤ 12.

Theorem 1: Let G = [n, 4] be a rectangle of Synchronized
Triomineering with n ≥ 9. Then Vertical has a winning
strategy.

Proof: In the beginning, Vertical will always move into
the second column of the board, i.e., (k, b), (k+1, b), (k+2, b)

TABLE II
OUTCOMES FOR RECTANGLES IN SYNCHRONIZED TRIOMINEERING

1 2 3 4 5 6 7 8 9 10 11
1 D D H H H H H H H H H
2 D D H H H H H H H H
3 V V D V V D V V D
4 V V H D V H H HD
5 V V H H D H H
6 V V D V V D
7 V V H V V
8 V V H V D
9 V V D
10 V V
11 V

a b c d
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k + 1
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n − 1
n

Fig. 1. Synchronized Triomineering played on n × 4 rectangular board.

where k ≡ 1 (mod 3), as shown in Fig. 1. When Vertical
cannot move anymore in the second column, let us imagine
that we divide the main rectangle into 3 × 4 sub-rectangles
starting from the top of the board (by using horizontal cuts).
Of course, if n �≡ 0 (mod 3), then the last sub-rectangle
will be of size either 1 × 3 or 2 × 3, and Horizontal will be
able to make respectively either one more move or two more
moves. We can classify all these sub-rectangles into 5 different
classes.

• Class A. Vertical is able to make three more moves in
each sub-rectangle of this class.

• Class B. Vertical is able to make one more move in each
sub-rectangle of this class. For example

• Class C. Horizontal is able to make two more moves in
each sub-rectangle and Vertical is able to make at least
�|C|/2� moves where |C| is the number of sub-rectangles
belonging to this class. The last statement is true under
the assumption that Vertical moves into the sub-rectangles
of this class as long as they exist before to move into the
sub-rectangles of the other classes. For example
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• Class D. Horizontal is able to make one more move in
each sub-rectangle of this class. For example

• Class E. Neither Vertical nor Horizontal are able to make
a move in the sub-rectangles of this class. For example

We show that when Vertical cannot move anymore in the
central column, he/she can make a greater number of moves
than Horizontal, i.e., moves(H) < moves(V ). We denote
with |A| the number of sub-rectangles in the A class, with
|B| the number of sub-rectangles in the B class, and so on.
Both Vertical and Horizontal have placed the same number of
triominoes, therefore

|A| = |C| + 2|D| + 3|E|
It follows that

moves(H) ≤ 2|C| + |D| + 2
= 2|A| − 3|D| − 6|E| + 2
< 3|A| + |B| + �|C|/2�
≤ moves(V )

The condition 2|A|− 3|D|− 6|E|+2 < 3|A|+ |B|+ �|C|/2�
is always true, as shown below.

• If |A| = 0 then |C| = 0, |D| = 0, |E| = 0, and |B| ≥ 3
because by hypothesis n ≥ 9,

• If |A| = 1 then |C| = 1, |D| = 0, |E| = 0, and |B| ≥ 1
because by hypothesis n ≥ 9,

• If |A| = 2 then either |C| = 2, |D| = 0, and |E| = 0 or
|C| = 0, |D| = 1, |E| = 0,

• If |A| ≥ 3 then 2|A| + 2 < 3|A|.

Theorem 2: Let G = [n, 5] be a rectangle of Synchronized
Domineering with n ≥ 6. Then Vertical has a winning strategy.

Proof: In the beginning, Vertical will always move into
the central column of the board, i.e., (k, c), (k + 1, c), and
(k + 2, c) where k ≡ 1 (mod 3), as shown in Fig. 2. When
Vertical cannot move anymore into the central column, let
us imagine that we divide the main rectangle into 3 × 5
sub-rectangles starting from the top of the board (by using
horizontal cuts). Of course, if n �≡ 0 (mod 3), then the
last sub-rectangle will be of size either 1 × 5 or 2 × 5, and
Horizontal will be able to make respectively either one more
move or two more moves.

We can classify all these sub-rectangles into 5 different
classes according to:

• The number of vertical triominoes already placed in the
sub-rectangle (vt),

a b c d e
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n − 1
n

Fig. 2. Synchronized Triomineering played on n × 5 rectangular board.

TABLE III
THE 5 CLASSES FOR 3 × 5 SUB-RECTANGLES

Class vt ht vm hm Example

A 1 0 4|A| 0

B 1 1 2|B| 0

C 0 1 |C| 2|C|

D 0 2 0 |D|

E 0 3 0 0

• The number of horizontal triominoes already placed in
the sub-rectangle (ht),

• The number of moves that Vertical is able to make in the
worst case, in all the sub-rectangles of that class (vm),

• The number of moves that Horizontal is able to make in
the best case, in all the sub-rectangles of that class (hm),

as shown in Table III. We denote with |A| the number of
sub-rectangles in the A class, with |B| the number of sub-
rectangles in the B class, and so on. In the C class, Vertical
is able to make |C| moves under the assumption that he/she
moves into the sub-rectangles of this class as long as they exist
before to move into the sub-rectangles of the other classes.

When Vertical cannot move anymore into the central col-
umn, both Vertical and Horizontal have placed the same
number of triominoes, therefore

|A| = |C| + 2|D| + 3|E| (1)
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Fig. 3. Synchronized Triomineering played on n × 3 rectangular board.

Let us prove by contradiction that Vertical can make a
larger number of moves than Horizontal. Assume therefore
moves(V ) ≤ moves(H) using the data in Table III

4|A| + 2|B| + |C| ≤ 2|C| + |D| + 2

and applying Equation 2

|C| + 2|D| + 3|E| + 3|A| + 2|B| + |C| ≤ 2|C| + |D| + 2

therefore

3|A| + 2|B| + |D| + 3|E| ≤ 2

which is false because

|A| + |B| + |C| + |D| + |E| = �n/3	
and by hypothesis n ≥ 6. We note that if |A| = 0 then |C| = 0,
|D| = 0, |E| = 0, and |B| ≥ 2. So moves(V ) ≤ moves(H)
does not hold and consequently moves(H) < moves(V ).

By symmetry the following two theorems hold.
Theorem 3: Let G = [4, n] be a rectangle of Synchronized

Triomineering with n ≥ 9. Then Horizontal has a winning
strategy.

Theorem 4: Let G = [5, n] be a rectangle of Synchronized
Triomineering with n ≥ 6. Then Horizontal has a winning
strategy.

Theorem 5: Let G = [n, 3] be a rectangle of Synchronized
Triomineering. If n ≡ 0 (mod 3), then Vertical has a
drawing strategy.

Proof: In the beginning, Vertical will always move into
the central column of the board, i.e., (k, b), (k + 1, b), and
(k + 2, b) where k ≡ 1 (mod 3), as shown in Fig. 3. When
Vertical cannot move anymore into the central column, let
us imagine that we divide the main rectangle into 3 × 3
sub-rectangles starting from the top of the board (by using
horizontal cuts). We can classify all these sub-rectangles into
5 different classes.

• Class A. Vertical is able to make two more moves in each
sub-rectangle of this class.

• Class B. Neither Vertical nor Horizontal are able to make
another move in the sub-rectangles of this class. For
example

• Class C. Horizontal is able to make two more moves in
each sub-rectangle of this class. For example

• Class D. Horizontal is able to make one more move in
each sub-rectangle of this class. For example

• Class E. In each sub-rectangle of this class Horizontal
has already made three moves.

We show that when Vertical cannot move anymore into the
central column, he/she can make a number of moves greater or
equal to Horizontal, i.e., moves(H) ≤ moves(V ). We denote
with |A| the number of sub-rectangles in the class A, with |B|
the number of sub-rectangles in the class B, and so on. We
observe that |A| = |C| + 2|D| + 3|E| because both Vertical
and Horizontal have placed the same number of triominoes.

moves(H) = 2|C| + |D|
= 2|A| − 3|D| − 6|E|
≤ 2|A|
= moves(V )

By symmetry the following theorem holds.
Theorem 6: Let G = [3, n] be a rectangle of Synchronized

Triomineering. If n ≡ 0 (mod 3), then Horizontal has a
drawing strategy.

V. RESULTS FOR SYNCHRONIZED TRIDOMINEERING

Table IV shows the results obtained using an exhaustive
search algorithm for n × m boards with n + m ≤ 10.

Theorem 7: Let G = [n, 3] be a rectangle of Synchronized
Tridomineering with n ≥ 8. Then, Vertical has a winning
strategy.

Proof: Let us imagine that we divide the main rectangle
into 3 × 3 sub-rectangles starting from the top of the board
(by using horizontal cuts). If n ≡ 1 (mod 3), then the last
2 sub-rectangles on the bottom of the board will be 2 × 3. If
n ≡ 2 (mod 3), then the last sub-rectangle on the bottom of
the board will be 2 × 3. In the beginning, Vertical will place
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TABLE IV
OUTCOMES FOR RECTANGLES IN SYNCHRONIZED TRIDOMINEERING

1 2 3 4 5 6 7 8 9
1 D H H H H H H H H
2 V D D D D HD D H
3 V D D HD HD H H
4 V D V D D D HD
5 V D V D D D
6 V V D V V D
7 V D V
8 V V
9 V

TABLE V
THE 9 CLASSES FOR 3 × 3 AND 2 × 3 SUB-RECTANGLES

Class vt ht vm hm Example

A 1 0 2|A| 0

B 1 1 0 0

C 0 1 0 2|C|

D 0 2 0 |D|

E 0 3 0 0

F 1 0 2|F | 0

G 1 1 0 0

H 0 1 0 |H|

I 0 2 0 0

triominoes into the central column of 3×3 sub-rectangles and
dominoes into the central column of 2 × 3 sub-rectangles.

As shown in Table V, we can classify all these sub-
rectangles into 9 different classes according to:

• The number of vertical triominoes (or dominoes) already
placed in the sub-rectangle (vt),

• The number of horizontal triominoes (or dominoes) al-
ready placed in the sub-rectangle (ht).

For each class, vm and hm represent respectively the number
of moves that Vertical is able to make in the worst case and
the number of moves that Horizontal is able to make in the
best case in all the sub-rectangles of that class.

We denote with |A| the number of sub-rectangles in the A
class, with |B| the number of sub-rectangles in the B class, and
so on. When Vertical cannot move anymore into the central

TABLE VI
NUMBER OF EFFECTIVE MOVES FOR VERTICAL

First Second vm Effective moves
A A 4 6
A B 2 4
A C 2 3
B A 2 4
B B 0 2
B C 0 1

column, both Vertical and Horizontal have placed the same
number of triominoes and dominoes, therefore

|A| + |F | = |C| + 2|D| + 3|E| + |H| + 2|I| (2)

Moreover, Vertical can make a larger number of moves than
Horizontal as shown below.

moves(V ) = 2|A| + 2|F |
= 2|C| + 4|D| + 6|E| + 2|H| + 4|I|
≥ 2|C| + |D| + |H|
= moves(H)

If |D| = |E| = |H| = |I| = 0 then moves(V ) should be
equal to moves(H). Actually, the number of effective moves
that Vertical is able to make in the first and second 3 × 3
sub-rectangles on the top of the board considered as a single
6 × 3 rectangle, is greater than the previous estimation (vm)
as shown in Table VI. The last statement is true under the
assumption that Vertical moves into the first and second 3× 3
sub-rectangles on the top of the board before to move into
the other sub-rectangles. We note that the condition n ≥ 8 is
necessary to have at least a couple of 3× 3 sub-rectangles on
the top of the board.

By symmetry the following theorem holds.
Theorem 8: Let G = [3, n] be a rectangle of Synchronized

Tridomineering with n ≥ 8. Then, Horizontal has a winning
strategy.

VI. CONCLUSIONS AND FUTURE WORK

We observe that to play with triominoes (or triominoes
and dominoes) increases the possibility to reach interesting
game positions, i.e., games where the final outcome is not
easily predictable. As a consequence, the outcomes V D and
HD appear in Table II and Table IV. This seems to be the
main difference between the games analyzed in this paper
and the game of Synchronized Domineering [4] where the
outcome V D and HD never appear in the outcome table for
small boards and theoretical results seem indicate that these
outcomes never appear for any m × n board.

In the field of combinatorial game theory, the concept of
synchronism has been introduced recently and further efforts
are necessary for a deep understanding of this topic:

• To complete the analysis of Synchronized Domineering
and its variants,

• To investigate the synchronized version of other combi-
natorial games,

• To establish a general mathematical theory for the clas-
sification and analysis of synchronized combinatorial
games.
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